1
|
Boshchenko AA, Maslov LN, Mukhomedzyanov AV, Zhuravleva OA, Slidnevskaya AS, Naryzhnaya NV, Zinovieva AS, Ilinykh PA. Peptides Are Cardioprotective Drugs of the Future: The Receptor and Signaling Mechanisms of the Cardioprotective Effect of Glucagon-like Peptide-1 Receptor Agonists. Int J Mol Sci 2024; 25:4900. [PMID: 38732142 PMCID: PMC11084666 DOI: 10.3390/ijms25094900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1β, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3β, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.
Collapse
Affiliation(s)
- Alla A. Boshchenko
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Olga A. Zhuravleva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alisa S. Slidnevskaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Arina S. Zinovieva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Liu C, Bao X, Tian Y, Xue P, Wang Y, Li Y. Polymorphisms in the glucagon-like peptide-1 receptor gene and their interactions on the risk of osteoporosis in postmenopausal Chinese women. PLoS One 2023; 18:e0295451. [PMID: 38096145 PMCID: PMC10721101 DOI: 10.1371/journal.pone.0295451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a prevalent form of primary osteoporosis, affecting over 40% of postmenopausal women. Previous studies have suggested a potential association between single nucleotide polymorphisms (SNPs) in glucagon-like peptide-1 receptor (GLP-1R) and PMOP in postmenopausal Chinese women. However, available evidence remains inconclusive. Therefore, this study aimed to investigate the possible association between GLP-1R SNPs and PMOP in Han Chinese women. Thus, we conducted a case-control study with 152 postmenopausal Han Chinese women aged 45-80 years, including 76 women with osteoporosis and 76 without osteoporosis. Seven SNPs of the GLP-1R were obtained from the National Center of Biotechnology Information and Genome Variation Server. We employed three genetic models to assess the association between GLP-1R genetic variants and osteoporosis in postmenopausal women, while also investigating SNP-SNP and SNP-environment interactions with the risk of PMOP. In this study, we selected seven GLP-1R SNPs (rs1042044, rs2268641, rs10305492, rs6923761, rs1126476, rs2268657, and rs2295006). Of these, the minor allele A of rs1042044 was significantly associated with an increased risk of PMOP. Genetic model analysis revealed that individuals carrying the A allele of rs1042044 had a higher risk of developing osteoporosis in the dominant model (P = 0.029, OR = 2.76, 95%CI: 1.09-6.99). Furthermore, a multiplicative interaction was found between rs1042044 and rs2268641 that was associated with osteoporosis in postmenopausal women (Pinteraction = 0.034). Importantly, this association remained independent of age, menopausal duration, family history of osteoporosis, and body mass index. However, no significant relationship was observed between GLP-1R haplotypes and PMOP. In conclusion, this study suggests a close association between the A allele on the GLP-1R rs1042044 and an increased risk of PMOP. Furthermore, this risk was significantly augmented by an SNP-SNP interaction with rs2268641. These results provide new scientific insights into the development of personalized prevention strategies and treatment approaches for PMOP.
Collapse
Affiliation(s)
- Chang Liu
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Xiaoxue Bao
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yawei Tian
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Peng Xue
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yan Wang
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yukun Li
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, China
| |
Collapse
|
3
|
Wan W, Qin Q, Xie L, Zhang H, Wu F, Stevens RC, Liu Y. GLP-1R Signaling and Functional Molecules in Incretin Therapy. Molecules 2023; 28:751. [PMID: 36677809 PMCID: PMC9866634 DOI: 10.3390/molecules28020751] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a critical therapeutic target for type 2 diabetes mellitus (T2DM). The GLP-1R cellular signaling mechanism relevant to insulin secretion and blood glucose regulation has been extensively studied. Numerous drugs targeting GLP-1R have entered clinical treatment. However, novel functional molecules with reduced side effects and enhanced therapeutic efficacy are still in high demand. In this review, we summarize the basis of GLP-1R cellular signaling, and how it is involved in the treatment of T2DM. We review the functional molecules of incretin therapy in various stages of clinical trials. We also outline the current strategies and emerging techniques that are furthering the development of novel therapeutic drugs for T2DM and other metabolic diseases.
Collapse
Affiliation(s)
- Wenwei Wan
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qikai Qin
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hanqing Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Fan Wu
- Structure Therapeutics, South San Francisco, CA 94080, USA
| | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Structure Therapeutics, South San Francisco, CA 94080, USA
| | - Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Zaborska KE, Jordan KL, Thorson AS, Dadi PK, Schaub CM, Nakhe AY, Dickerson MT, Lynch JC, Weiss AJ, Dobson JR, Jacobson DA. Liraglutide increases islet Ca 2+ oscillation frequency and insulin secretion by activating hyperpolarization-activated cyclic nucleotide-gated channels. Diabetes Obes Metab 2022; 24:1741-1752. [PMID: 35546791 PMCID: PMC9843726 DOI: 10.1111/dom.14747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/19/2023]
Abstract
AIM To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels impact glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) modulation of islet Ca2+ handling and insulin secretion. METHODS The impact of liraglutide (GLP-1 analogue) on islet Ca2+ handling, HCN currents and insulin secretion was monitored with fluorescence microscopy, electrophysiology and enzyme immunoassays, respectively. Furthermore, liraglutide-mediated β-to-δ-cell cross-communication was assessed following selective ablation of either mouse islet δ or β cells. RESULTS Liraglutide increased β-cell Ca2+ oscillation frequency in mouse and human islets under stimulatory glucose conditions. This was dependent in part on liraglutide activation of HCN channels, which also enhanced insulin secretion. Similarly, liraglutide activation of HCN channels also increased β-cell Ca2+ oscillation frequency in islets from rodents exposed to a diabetogenic diet. Interestingly, liraglutide accelerated Ca2+ oscillations in a majority of islet δ cells, which showed synchronized Ca2+ oscillations equivalent to β cells; therefore, we assessed if either cell type was driving this liraglutide-mediated islet Ca2+ response. Although δ-cell loss did not impact liraglutide-mediated increase in β-cell Ca2+ oscillation frequency, β-cell ablation attenuated liraglutide-facilitated acceleration of δ-cell Ca2+ oscillations. CONCLUSION The data presented here show that liraglutide-induced stimulation of islet HCN channels augments Ca2+ oscillation frequency. As insulin secretion oscillates with β-cell Ca2+ , these findings have important implications for pulsatile insulin secretion that is probably enhanced by liraglutide activation of HCN channels and therapeutics that target GLP-1Rs for treating diabetes. Furthermore, these studies suggest that liraglutide as well as GLP-1-based therapies enhance δ-cell Ca2+ oscillation frequency and somatostatin secretion kinetics in a β-cell-dependent manner.
Collapse
Affiliation(s)
- Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Kelli L Jordan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Ariel S Thorson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Charles M Schaub
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Joshua C Lynch
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Adam J Weiss
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Jordyn R Dobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
5
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
6
|
Abdul-Maksoud RS, Elsayed WSH, Rashad NM, Elsayed RS, Elshorbagy S, Hamed MG. GLP-1R polymorphism (rs1042044) and expression are associated with the risk of papillary thyroid cancer among the Egyptian population. Gene X 2022; 834:146597. [PMID: 35598685 DOI: 10.1016/j.gene.2022.146597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glucagon like peptide-1 receptor (GLP-1R) agonist usage has previously been linked to an elevated incidence of thyroid cell adenomas and carcinomas in animals. AIM The goal of this study was to determine if there was an association between GLP-1R gene polymorphism and expression with the risk of papillary thyroid carcinoma (PTC) and its clinical characteristics among the Egyptian population. MATERIAL AND METHODS A total of eighty PTC patients and eighty healthy controls were included in the study. Real-time polymerase chain reaction (real-time PCR) and immunohistochemistry were used to determine GLP-1R expression in tumor tissue. The polymorphisms rs1042044 and rs6923761 in the GLP-1R gene were determined using PCR -restriction fragment length polymorphism (PCR-RFLP). RESULTS PTC patients exhibited considerably greater frequencies of rs1042044 AA genotypes and A allele than controls (OR (95% CI) = 4.5 (1.75-11.8), P < 0.001; OR (95% CI) = 2.032 (1.301-3.17), P < 0.001 respectively). GLP-1R mRNA and protein expressions were higher in tumor samples than normal thyroid tissues among PTC patients. In addition, high GLP-1R expressions were more common in rs1042044 AA genotype carriers than CC carriers (P < 0.001). GLP-1R mRNA expression showed 95 % sensitivity and 97% specificity for PTC diagnosis. Moreover, GLP-1R expression was closely associated with LN metastasis, tumor size, tumor stage, and multifocality in PTC patients. CONCLUSION This research provides new evidence linking the GLP-1R genetic polymorphism and tissue expression to PTC risk and invasiveness among the Egyptian population.
Collapse
Affiliation(s)
- Rehab S Abdul-Maksoud
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Walid S H Elsayed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nearmeen M Rashad
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha S Elsayed
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shereen Elshorbagy
- Medical Oncology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed G Hamed
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
López-Ferreras L, Eerola K, Shevchouk OT, Richard JE, Nilsson FH, Jansson LE, Hayes MR, Skibicka KP. The supramammillary nucleus controls anxiety-like behavior; key role of GLP-1R. Psychoneuroendocrinology 2020; 119:104720. [PMID: 32563174 DOI: 10.1016/j.psyneuen.2020.104720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are among the most prevalent categories of mental illnesses. The gut-brain axis, along with gastrointestinally-derived neuropeptides, like glucagon-like peptide-1 (GLP-1), are emerging as potential key regulators of emotionality, including anxiety behavior. However, the neuroanatomical substrates from which GLP-1 exerts its anxiogenic effect remain poorly characterized. Here we focus on a relatively new candidate nucleus, the supramammillary nucleus (SuM), located just caudal to the lateral hypothalamus and ventral to the ventral tegmental area. Our focus on the SuM is supported by previous data showing expression of GLP-1R mRNA throughout the SuM and activation of the SuM during anxiety-inducing behaviors in rodents. Data show that chemogenetic activation of neurons in the SuM results in an anxiolytic response in male and female rats. In contrast, selective activation of SuM GLP-1R, by microinjection of a GLP-1R agonist exendin-4 into the SuM resulted in potent anxiety-like behavior, measured in both open field and elevated plus maze tests in male and female rats. This anxiogenic effect of GLP-1R activation persisted after high-fat diet exposure. Importantly, reduction of GLP-1R expression in the SuM, by AAV-shRNA GLP-1R knockdown, resulted in a clear anxiolytic response; an effect only observed in female rats. Our data identify a new neural substrate for GLP-1 control of anxiety-like behavior and indicate that the SuM GLP-1R are sufficient for anxiogenesis in both sexes, but necessary only in females.
Collapse
Affiliation(s)
- L López-Ferreras
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - K Eerola
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Research Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - O T Shevchouk
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - J E Richard
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - F H Nilsson
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - L E Jansson
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - M R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - K P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
8
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
9
|
An incretin-based tri-agonist promotes superior insulin secretion from murine pancreatic islets via PLC activation. Cell Signal 2018; 51:13-22. [DOI: 10.1016/j.cellsig.2018.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
|
10
|
Karageorgos V, Venihaki M, Sakellaris S, Pardalos M, Kontakis G, Matsoukas MT, Gravanis A, Margioris A, Liapakis G. Current understanding of the structure and function of family B GPCRs to design novel drugs. Hormones (Athens) 2018; 17:45-59. [PMID: 29858864 DOI: 10.1007/s42000-018-0009-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/25/2018] [Indexed: 01/10/2023]
Abstract
Family B of G-protein-coupled receptors (GPCRs) and their ligands play a central role in a number of homeostatic mechanisms in the endocrine, gastrointestinal, skeletal, immune, cardiovascular and central nervous systems. Alterations in family B GPCR-regulated homeostatic mechanisms may cause a variety of potentially life-threatening conditions, signifying the necessity to develop novel ligands targeting these receptors. Obtaining structural and functional information on family B GPCRs will accelerate the development of novel drugs to target these receptors. Family B GPCRs are proteins that span the plasma membrane seven times, thus forming seven transmembrane domains (TM1-TM7) which are connected to each other by three extracellular (EL) and three intracellular (IL) loops. In addition, these receptors have a long extracellular N-domain and an intracellular C-tail. The upper parts of the TMs and ELs form the J-domain of receptors. The C-terminal region of peptides first binds to the N-domain of receptors. This 'first-step' interaction orients the N-terminal region of peptides towards the J-domain of receptors, thus resulting in a 'second-step' of ligand-receptor interaction that activates the receptor. Activation-associated structural changes of receptors are transmitted through TMs to their intracellular regions and are responsible for their interaction with the G proteins and activation of the latter, thus resulting in a biological effect. This review summarizes the current information regarding the structure and function of family B GPCRs and their physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Vlasios Karageorgos
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, 71003, Heraklion, Crete, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Stelios Sakellaris
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, 71003, Heraklion, Crete, Greece
| | - Michail Pardalos
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, 71003, Heraklion, Crete, Greece
| | - George Kontakis
- Department of Orthopedics, University Hospital of Heraklion, Crete, Greece
| | | | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, 71003, Heraklion, Crete, Greece
| | - Andreas Margioris
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - George Liapakis
- Department of Pharmacology, School of Medicine, University of Crete, Voutes, 71003, Heraklion, Crete, Greece.
| |
Collapse
|
11
|
Babateen O, Korol SV, Jin Z, Bhandage AK, Ahemaiti A, Birnir B. Liraglutide modulates GABAergic signaling in rat hippocampal CA3 pyramidal neurons predominantly by presynaptic mechanism. BMC Pharmacol Toxicol 2017; 18:83. [PMID: 29246184 PMCID: PMC5732397 DOI: 10.1186/s40360-017-0191-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
Background γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain where it regulates activity of neuronal networks. The receptor for glucagon-like peptide-1 (GLP-1) is expressed in the hippocampus, which is the center for memory and learning. In this study we examined effects of liraglutide, a GLP-1 analog, on GABA signaling in CA3 hippocampal pyramidal neurons. Methods We used patch-clamp electrophysiology to record synaptic and tonic GABA-activated currents in CA3 pyramidal neurons in rat hippocampal brain slices. Results We examined the effects of liraglutide on the neurons at concentrations ranging from one nM to one μM. Significant changes of the spontaneous inhibitory postsynaptic currents (sIPSCs) were only recorded with 100 nM liraglutide and then in just ≈50% of the neurons tested at this concentration. In neurons affected by liraglutide both the sIPSC frequency and the most probable amplitudes increased. When the action potential firing was inhibited by tetrodotoxin (TTX) the frequency and amplitude of IPSCs in TTX and in TTX plus 100 nM liraglutide were similar. Conclusions The results demonstrate that liraglutide regulation of GABA signaling of CA3 pyramidal neurons is predominantly presynaptic and more limited than has been observed for GLP-1 and exendin-4 in hippocampal neurons.
Collapse
Affiliation(s)
- Omar Babateen
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden
| | - Sergiy V Korol
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden
| | - Amol K Bhandage
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden
| | - Aikeremu Ahemaiti
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden
| | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, 75124, Uppsala, SE, Sweden.
| |
Collapse
|
12
|
Shigeto M, Cha CY, Rorsman P, Kaku K. A role of PLC/PKC-dependent pathway in GLP-1-stimulated insulin secretion. J Mol Med (Berl) 2017; 95:361-368. [PMID: 28097390 DOI: 10.1007/s00109-017-1508-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 11/19/2016] [Accepted: 11/30/2016] [Indexed: 01/11/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an endogenous glucose-lowering hormone and GLP-1 receptor agonists are currently being used as antidiabetic drugs clinically. The canonical signalling pathway (including cAMP, Epac2, protein kinase A (PKA) and KATP channels) is almost universally accepted as the main mechanism of GLP-1-stimulated insulin secretion. This belief is based on in vitro studies that used nanomolar (1-100 nM) concentrations of GLP-1. Recently, it was found that the physiological concentrations (1-10 pM) of GLP-1 also stimulate insulin secretion from isolated islets, induce membrane depolarization and increase of intracellular [Ca2+] in isolated β cells/pancreatic islets. These responses were unaffected by PKA inhibitors and occurred without detectable increases in intracellular cAMP and PKA activity. These PKA-independent actions of GLP-1 depend on protein kinase C (PKC), involve activation of the standard GLP-1 receptor (GLP1R) and culminate in activation of phospholipase C (PLC), leading to an elevation of diacylglycerol (DAG), increased L-type Ca2+ and TRPM4/TRPM5 channel activities. Here, we review these recent data and contrast them against the effects of nanomolar concentrations of GLP-1. The differential intracellular signalling activated by low and high concentrations of GLP-1 could provide a clue to explain how GLP-1 exerts different function in the central nervous system and peripheral organs.
Collapse
Affiliation(s)
- Makoto Shigeto
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK. .,Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Chae Young Cha
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Kohei Kaku
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
13
|
Shigeto M, Ramracheya R, Tarasov AI, Cha CY, Chibalina MV, Hastoy B, Philippaert K, Reinbothe T, Rorsman N, Salehi A, Sones WR, Vergari E, Weston C, Gorelik J, Katsura M, Nikolaev VO, Vennekens R, Zaccolo M, Galione A, Johnson PRV, Kaku K, Ladds G, Rorsman P. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J Clin Invest 2015; 125:4714-28. [PMID: 26571400 DOI: 10.1172/jci81975] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023] Open
Abstract
Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca(2+) channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na(+). The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na(+)-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca(2+) from thapsigargin-sensitive Ca(2+) stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells.
Collapse
|
14
|
Culhane KJ, Liu Y, Cai Y, Yan ECY. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors. Front Pharmacol 2015; 6:264. [PMID: 26594176 PMCID: PMC4633518 DOI: 10.3389/fphar.2015.00264] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/23/2015] [Indexed: 01/28/2023] Open
Abstract
Although family B G protein-coupled receptors (GPCRs) contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.
Collapse
Affiliation(s)
- Kelly J Culhane
- Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT, USA
| | - Yuting Liu
- Department of Chemistry, Yale University New Haven, CT, USA
| | - Yingying Cai
- Department of Chemistry, Yale University New Haven, CT, USA
| | - Elsa C Y Yan
- Department of Chemistry, Yale University New Haven, CT, USA
| |
Collapse
|
15
|
Jensterle M, Pirš B, Goričar K, Dolžan V, Janež A. Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: a pilot study. Eur J Clin Pharmacol 2015; 71:817-24. [PMID: 25991051 DOI: 10.1007/s00228-015-1868-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The weight lowering potential of glucagon-like peptide 1 (GLP-1) receptor agonists (RAs) is inter-individually different and clinically unpredictable. The potential role of genetic variability of GLP-1R on body weight response to GLP-1 RAs in obese women with polycystic ovary syndrome (PCOS) has not yet been evaluated. METHODS Fifty-seven obese women with PCOS (aged 30.7 ± 7.0, BMI 38.6 ± 5.3 kg/m(2)) were assigned to liraglutide 1.2 mg QD s.c. for 12 weeks and classified as strong responders regarding weight loss if they lost 5% or more of their initial body weight. They were genotyped for common GLP-1R single nucleotide polymorphisms (SNPs) rs6923761 and rs10305420. Changes of measures of obesity were measured before and at the end of the treatment. RESULTS Twenty out of 57 subjects were strong responders and lost 7.38 ± 1.74 compared to 2.11 ± 2.17 kg lost in poor responders. Carriers of at least one polymorphic rs10305420 allele had poor treatment response compared to carriers of two wild type alleles (OR = 0.27, 95% CI = 0.09-0.85, P = 0.025). Carriers of at least one polymorphic rs6923761 allele tended to have stronger treatment response compared to carriers of two wild type alleles (OR = 3.06, 95% CI = 0.96-9.74, P = 0.058). Fasting glucose and glucose after oral glucose tolerance test (OGTT) comparably decreased in both groups when compared to baseline, whereas no within treatment differences were found in androgen profile. Gastrointestinal adverse events were transit and balanced between strong and poor responders. CONCLUSIONS GLP-1R rs10305420 polymorphism explained some of the inter-individual differences in response to liraglutide regarding weight loss in obese PCOS women.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloska 7, 1525, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
16
|
Koole C, Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM. Differential impact of amino acid substitutions on critical residues of the human glucagon-like peptide-1 receptor involved in peptide activity and small-molecule allostery. J Pharmacol Exp Ther 2015; 353:52-63. [PMID: 25630467 DOI: 10.1124/jpet.114.220913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor that has a critical role in the regulation of glucose homeostasis, principally through the regulation of insulin secretion. The receptor system is highly complex, able to be activated by both endogenous [GLP-1(1-36)NH2, GLP-1(1-37), GLP-1(7-36)NH2, GLP-1(7-37), oxyntomodulin], and exogenous (exendin-4) peptides in addition to small-molecule allosteric agonists (compound 2 [6,7-dichloro-2-methylsulfonyl-3-tert-butylaminoquinoxaline], BETP [4-(3-benzyloxy)phenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine]). Furthermore, the GLP-1R is subject to single-nucleotide polymorphic variance, resulting in amino acid changes in the receptor protein. In this study, we investigated two polymorphic variants previously reported to impact peptide-mediated receptor activity (M149) and small-molecule allostery (C333). These residues were mutated to a series of alternate amino acids, and their functionality was monitored across physiologically significant signaling pathways, including cAMP, extracellular signal-regulated kinase 1 and 2 phosphorylation, and intracellular Ca(2+) mobilization, in addition to peptide binding and cell-surface expression. We observed that residue 149 is highly sensitive to mutation, with almost all peptide responses significantly attenuated at mutated receptors. However, most reductions in activity were able to be restored by the small-molecule allosteric agonist compound 2. Conversely, mutation of residue 333 had little impact on peptide-mediated receptor activation, but this activity could not be modulated by compound 2 to the same extent as that observed at the wild-type receptor. These results provide insight into the importance of residues 149 and 333 in peptide function and highlight the complexities of allosteric modulation within this receptor system.
Collapse
Affiliation(s)
- Cassandra Koole
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| | - Denise Wootten
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| | - John Simms
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| | - Laurence J Miller
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| | - Arthur Christopoulos
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| | - Patrick M Sexton
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (C.K., D.W., J.S., A.C., P.M.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.)
| |
Collapse
|
17
|
Merlino DJ, Blomain ES, Aing AS, Waldman SA. Gut-Brain Endocrine Axes in Weight Regulation and Obesity Pharmacotherapy. J Clin Med 2014; 3:763-94. [PMID: 26237477 PMCID: PMC4449653 DOI: 10.3390/jcm3030763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/29/2014] [Accepted: 06/16/2014] [Indexed: 12/21/2022] Open
Abstract
In recent years, the obesity epidemic has developed into a major health crisis both in the United States as well as throughout the developed world. With current treatments limited to expensive, high-risk surgery and minimally efficacious pharmacotherapy, new therapeutic options are urgently needed to combat this alarming trend. This review focuses on the endogenous gut-brain signaling axes that regulate appetite under physiological conditions, and discusses their clinical relevance by summarizing the clinical and preclinical studies that have investigated manipulation of these pathways to treat obesity.
Collapse
Affiliation(s)
- Dante J Merlino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA 19107, USA.
| | - Erik S Blomain
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA 19107, USA.
| | - Amanda S Aing
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA 19107, USA.
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA 19107, USA.
| |
Collapse
|
18
|
Allosteric modulation of the activity of the glucagon-like peptide-1 (GLP-1) metabolite GLP-1 9-36 amide at the GLP-1 receptor. PLoS One 2012; 7:e47936. [PMID: 23094100 PMCID: PMC3477139 DOI: 10.1371/journal.pone.0047936] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/25/2012] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) released from intestinal L cells in response to nutrients has many physiological effects but particularly enhances glucose-dependent insulin release through the GLP-1 receptor (GLP-1R). GLP-1 7–36 amide, the predominant circulating active form of GLP-1, is rapidly truncated by dipeptidyl peptidase-4 to GLP-1 9–36 amide, which is generally considered inactive. Given its physiological roles, the GLP-1R is targeted for treatment of type 2 diabetes. Recently ‘compound 2’ has been described as both an agonist and positive allosteric modulator of GLP-1 7–36 amide affinity, but not potency, at the GLP-1R. Importantly, we demonstrated previously that exendin 9–39, generally considered a GLP-1R antagonist, enhances compound 2 efficacy (or vice versa) at the GLP-1R. Given that GLP-1 9–36 amide is the major circulating form of GLP-1 post-prandially and is a low affinity weak partial agonist or antagonist at the GLP-1R, we investigated interaction between this metabolite and compound 2 in a cell line with recombinant expression of the human GLP-1R and the rat insulinoma cell line, INS-1E, with native expression of the GLP-1R. We show compound 2 markedly enhances efficacy and potency of GLP-1 9–36 amide for key cellular responses including AMP generation, Ca2+ signaling and extracellular signal-regulated kinase. Thus, metabolites of peptide hormones including GLP-1 that are often considered inactive may provide a means of manipulating key aspects of receptor function and a novel therapeutic strategy.
Collapse
|
19
|
Deželak M, Bavec A. Glucagon like-peptide-1 receptor is covalently modified by endogenous mono-ADP-ribosyltransferase. Mol Biol Rep 2011; 39:4375-81. [DOI: 10.1007/s11033-011-1225-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/20/2011] [Indexed: 10/17/2022]
|
20
|
Coopman K, Wallis R, Robb G, Brown AJH, Wilkinson GF, Timms D, Willars GB. Residues within the transmembrane domain of the glucagon-like peptide-1 receptor involved in ligand binding and receptor activation: modelling the ligand-bound receptor. Mol Endocrinol 2011; 25:1804-18. [PMID: 21868452 DOI: 10.1210/me.2011-1160] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.
Collapse
Affiliation(s)
- K Coopman
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Shpakov AO. Signal protein-derived peptides as functional probes and regulators of intracellular signaling. JOURNAL OF AMINO ACIDS 2011; 2011:656051. [PMID: 22312467 PMCID: PMC3268021 DOI: 10.4061/2011/656051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 06/01/2011] [Indexed: 12/21/2022]
Abstract
The functionally important regions of signal proteins participating in their specific interaction and responsible for transduction of hormonal signal into cell are rather short in length, having, as a rule, 8 to 20 amino acid residues. Synthetic peptides corresponding to these regions are able to mimic the activated form of full-size signal protein and to trigger signaling cascades in the absence of hormonal stimulus. They modulate protein-protein interaction and influence the activity of signal proteins followed by changes in their regulatory and catalytic sites. The present review is devoted to the achievements and perspectives of the study of signal protein-derived peptides and to their application as selective and effective regulators of hormonal signaling systems in vitro and in vivo. Attention is focused on the structure, biological activity, and molecular mechanisms of action of peptides, derivatives of the receptors, G protein α subunits, and the enzymes generating second messengers.
Collapse
Affiliation(s)
- Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 194223 St. Petersburg, Russia
| |
Collapse
|
22
|
Deželak M, Bavec A. Third intracellular loop of glucagon like-peptide-1 receptor is coupled with endogenous mono-ADP-ribosyltransferase - novel type of receptor regulation? Eur J Pharmacol 2011; 666:35-42. [PMID: 21635883 DOI: 10.1016/j.ejphar.2011.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Our previous studies revealed the main role of the third intracellular loop (IC(3)) of glucagon-like peptide-1 receptor (GLP-1 receptor), in G-protein activation, where the presence or absence of agonist and the receptor phosphorylation seemed to be the only regulatory mechanisms. In order to further study the signaling mechanisms of GLP-1 receptor, we investigated the effect of the third intracellular loop-derived peptide on endogenous mono-ADP-ribosyltransferase mediated mono-ADP-ribosylation of G-proteins β subunit in CHO cells. Results showed an inhibitory effect of IC(3) peptide on mono-ADP-ribosylation of β subunit, obviously via the mechanism of competitive inhibition. Excluding the activity of this inhibitory mechanism via pertussis toxin-sensitive G proteins, the direct functional coupling of IC(3) of GLP-1 receptor and endogenous mono-ADP-ribosyltransferase was confirmed. We suggest that this arginine specific enzymatic posttranslational modification of third intracellular loop of GLP-1 receptor might represent a possible novel mechanism of receptor activity regulation and the pharmacological potential in treatment of diabetes mellitus type 2.
Collapse
Affiliation(s)
- Matjaž Deželak
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
23
|
Wootten D, Simms J, Koole C, Woodman OL, Summers RJ, Christopoulos A, Sexton PM. Modulation of the glucagon-like peptide-1 receptor signaling by naturally occurring and synthetic flavonoids. J Pharmacol Exp Ther 2011; 336:540-50. [PMID: 21075839 DOI: 10.1124/jpet.110.176362] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The glucagon-like peptide 1 receptor (GLP-1R) is a promising target for the treatment of type II diabetes mellitus because of its role in metabolic homeostasis. In recent years, difficulties with peptide therapies have driven the search for small-molecule compounds to modulate the activity of this receptor. We recently identified quercetin, a naturally occurring flavonoid, as a probe-dependent, pathway-selective allosteric modulator of GLP-1R-mediated signaling. Using Chinese hamster ovary cells expressing the human GLP-1R, we have now extended this work to identify the structural requirements of flavonoids to modify GLP-1R binding and signaling (cAMP formation and intracellular Ca(2+) mobilization) of each of the GLP-1R endogenous agonists, as well as the clinically used exogenous peptide mimetic exendin-4. This study identified a chemical series of hydroxyl flavonols with the ability to selectively augment calcium (Ca(2+)) signaling in a peptide agonist-specific manner, with effects only on truncated GLP-1 peptides [GLP-1(7-36)NH(2) and GLP-1(7-37)] and exendin-4, but not on oxyntomodulin or full-length GLP-1 peptides [GLP-1(1-36)NH(2) and GLP-1(1-37)]. In addition, the 3-hydroxyl group on the flavone backbone (i.e., a flavonol) was essential for this activity, however insufficient on its own, to produce the allosteric effects. In contrast to hydroxyl flavonols, catechin had no effect on peptide-mediated Ca(2+) signaling but negatively modulated peptide-mediated cAMP formation in a probe-dependent manner. These data represent a detailed examination of the action of different flavonoids on peptide agonists at the GLP-1R and may aid in the development of future small molecule compounds targeted at this receptor.
Collapse
Affiliation(s)
- Denise Wootten
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Coopman K, Huang Y, Johnston N, Bradley SJ, Wilkinson GF, Willars GB. Comparative effects of the endogenous agonist glucagon-like peptide-1 (GLP-1)-(7-36) amide and the small-molecule ago-allosteric agent "compound 2" at the GLP-1 receptor. J Pharmacol Exp Ther 2010; 334:795-808. [PMID: 20507928 PMCID: PMC2939672 DOI: 10.1124/jpet.110.166009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 05/26/2010] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) mediates antidiabetogenic effects through the GLP-1 receptor (GLP-1R), which is targeted for the treatment of type 2 diabetes. Small-molecule GLP-1R agonists have been sought due to difficulties with peptide therapeutics. Recently, 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (compound 2) has been described as a GLP-1R allosteric modulator and agonist. Using human embryonic kidney-293 cells expressing human GLP-1Rs, we extended this work to consider the impact of compound 2 on G protein activation, Ca(2+) signaling and receptor internalization and particularly to compare compound 2 and GLP-1 across a range of functional assays in intact cells. GLP-1 and compound 2 activated Galpha(s) in cell membranes and increased cellular cAMP in intact cells, with compound 2 being a partial and almost full agonist, respectively. GLP-1 increased intracellular [Ca(2+)] by release from intracellular stores, which was mimicked by compound 2, with slower kinetics. In either intact cells or membranes, the orthosteric antagonist exendin-(9-39), inhibited GLP-1 cAMP generation but increased the efficacy of compound 2. GLP-1 internalized enhanced green fluorescent protein-tagged GLP-1Rs, but the speed and magnitude evoked by compound 2 were less. Exendin-(9-39) inhibited internalization by GLP-1 and also surprisingly that by compound 2. Compound 2 displays GLP-1R agonism consistent with action at an allosteric site, although an orthosteric antagonist increased its efficacy on cAMP and blocked compound 2-mediated receptor internalization. Full assessment of the properties of compound 2 was potentially hampered by damaging effects that were particularly manifest in either longer term assays with intact cells or in acute assays with membranes.
Collapse
Affiliation(s)
- Karen Coopman
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Bhashyam S, Fields AV, Patterson B, Testani JM, Chen L, Shen YT, Shannon RP. Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. Circ Heart Fail 2010; 3:512-21. [PMID: 20466848 PMCID: PMC3075465 DOI: 10.1161/circheartfailure.109.900282] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 04/08/2010] [Indexed: 12/28/2022]
Abstract
BACKGROUND We have shown that glucagon-like peptide-1 (GLP-1[7-36] amide) stimulates myocardial glucose uptake in dilated cardiomyopathy (DCM) independent of an insulinotropic effect. The cellular mechanisms of GLP-1-induced myocardial glucose uptake are unknown. METHODS AND RESULTS Myocardial substrates and glucoregulatory hormones were measured in conscious, chronically instrumented dogs at control (n=6), DCM (n=9) and DCM after treatment with a 48-hour infusion of GLP-1 (7-36) amide (n=9) or vehicle (n=6). GLP-1 receptors and cellular pathways implicated in myocardial glucose uptake were measured in sarcolemmal membranes harvested from the 4 groups. GLP-1 stimulated myocardial glucose uptake (DCM: 20+/-7 nmol/min/g; DCM+GLP-1: 61+/-12 nmol/min/g; P=0.001) independent of increased plasma insulin levels. The GLP-1 receptors were upregulated in the sarcolemmal membranes (control: 98+/-2 density units; DCM: 256+/-58 density units; P=0.046) and were expressed in their activated (65 kDa) form in DCM. The GLP-1-induced increases in myocardial glucose uptake did not involve adenylyl cyclase or Akt activation but was associated with marked increases in p38alpha MAP kinase activity (DCM+vehicle: 97+/-22 pmol ATP/mg/min; DCM+GLP-1: 170+/-36 pmol ATP/mg/min; P=0.051), induction of nitric oxide synthase 2 (DCM+vehicle: 151+/-13 density units; DCM+GLP-1: 306+/-12 density units; P=0.001), and GLUT-1 translocation (DCM+vehicle: 21+/-3% membrane bound; DCM+GLP-1: 39+/-3% membrane bound; P=0.005). The effects of GLP-1 on myocardial glucose uptake were blocked by pretreatment with the p38alpha MAP kinase inhibitor or the nonspecific nitric oxide synthase inhibitor nitro-l-arginine. CONCLUSIONS GLP-1 stimulates myocardial glucose uptake through a non-Akt-1-dependent mechanism by activating cellular pathways that have been identified in mediating chronic hibernation and the late phase of ischemic preconditioning.
Collapse
Affiliation(s)
- Siva Bhashyam
- Departments of Medicine, Allegheny General Hospital, Pittsburgh, PA
| | | | - Brandy Patterson
- Departments of Medicine, Allegheny General Hospital, Pittsburgh, PA
| | | | - Li Chen
- University of Pennsylvania School of Medicine, Philadelphia, PA
| | - You-tang Shen
- University of Pennsylvania School of Medicine, Philadelphia, PA
| | | |
Collapse
|
26
|
Shpakov AO, Shpakova EA, Tarasenko II, Derkach KV, Vlasov GP. The Peptides Mimicking the Third Intracellular Loop of 5-Hydroxytryptamine Receptors of the Types 1B and 6 Selectively Activate G Proteins and Receptor-Specifically Inhibit Serotonin Signaling via the Adenylyl Cyclase System. Int J Pept Res Ther 2010. [DOI: 10.1007/s10989-010-9208-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Functional characterization of N-terminally GFP-tagged GLP-1 receptor. J Biomed Biotechnol 2009; 2009:498149. [PMID: 19859570 PMCID: PMC2765688 DOI: 10.1155/2009/498149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/19/2009] [Accepted: 08/10/2009] [Indexed: 11/24/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1 receptor) mediates important effects on peripheral tissues and the central nervous system. It seems one of the most promising therapeutic targets for treatment of diabetes mellitus type 2. Surprisingly, very little is known about the cellular mechanisms that regulate its function in vivo. One of the approaches to study receptor dynamics, expression, or signaling is using GFP-tagged fluorescent proteins. In this study, we synthesized and characterized N-terminally GFP-tagged GLP-1 (GFP-GLP-1) receptor in CHO cells. We demonstrated that GFP-GLP-1 receptor is weakly expressed in the plasma membranes and is functionally coupled to adenylyl cyclase via heterotrimeric G-proteins, similarly as its wild type.
Collapse
|
28
|
Shpakov AO. Polycationic peptides as nonhormonal regulators of chemosignal systems. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s002209300904001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Bavec A. Constructing glucagon like peptide-1 receptor fused with derivatives of GFP for visualizing protein-protein interaction in living cells. Mol Biol Rep 2009; 37:2749-55. [PMID: 19757164 DOI: 10.1007/s11033-009-9813-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/03/2009] [Indexed: 12/11/2022]
Abstract
The glucagon-like peptide-1 receptor (GLP-1 receptor) mediates important antidiabetogenic effects on peripheral tissues. It appears to be one of the most promising therapeutic targets for treatment of diabetes mellitus type 2. Surprisingly, very little is known about the cellular mechanisms that regulate receptor function in living cells. One of the approaches how to study receptor dynamics is by using tagged fluorescent proteins. In this study, YFP-tagged GLP-1 (YFP-GLP-1) receptor and CFP-tagged GLP-1 (CFP-GLP-1) receptor for visualizing protein-protein interaction in living cells were constructed and localized in CHO cells. Cells expressing YFP-GLP-1 and CFP-GLP-1 receptor showed characteristic GLP-1 mediated increase in cAMP, similar to cells expressing a wild type GLP-1 receptor. This means that both types of receptors are functional and localized in plasma membrane.
Collapse
Affiliation(s)
- Aljosa Bavec
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
30
|
Yamashita T, Tose K, Shichida Y. First cytoplasmic loop of glucagon-like peptide-1 receptor can function at the third cytoplasmic loop position of rhodopsin. Photochem Photobiol 2008; 84:931-6. [PMID: 18363619 DOI: 10.1111/j.1751-1097.2008.00327.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G protein-coupled receptors (GPCRs) are classified into several families based on their amino acid sequences. In family 1, GPCRs such as rhodopsin and adrenergic receptor, the structure-function relationship has been extensively investigated to demonstrate that exposure of the third cytoplasmic loop is essential for selective G protein activation. In contrast, much less is known about other families. Here we prepared chimeric mutants between Gt-coupled rhodopsin and Gi/Go- and Gs-coupled glucagon-like peptide-1 (GLP-1) receptor of family 2 and tried to identify the loop region that functions at the third cytoplasmic loop position of rhodopsin. We succeeded in expressing a mutant having the first cytoplasmic loop of GLP-1 receptor and found that this mutant activated Gi and Go efficiently but did not activate Gt. Moreover, the rhodopsin mutant having the first loop of Gs-coupled secretin receptor of family 2 decreased the Gi and Go activation efficiencies. Therefore, the first loop of GLP-1 receptor would share a similar role to the third loop of rhodopsin in G protein activation. This result strongly suggested that different families of GPCRs have maintained molecular architectures of their ancestral types to generate a common mechanism, namely exposure of the cytoplasmic loop, to activate peripheral G protein.
Collapse
Affiliation(s)
- Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
31
|
Bavec A, Jiang Y, Langel U, Zorko M. Role of cysteine 341 and arginine 348 of GLP-1 receptor in G-protein coupling. Mol Biol Rep 2006; 34:53-60. [PMID: 17103235 DOI: 10.1007/s11033-006-9015-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 08/21/2006] [Indexed: 10/23/2022]
Abstract
We have demonstrated the ability of peptides derived from the third intracellular loop of GLP-1 receptor to differently modulate activity of four different types of G-proteins overexpressed in sf9 cells. In this respect, the involvement of Cys(341) in inhibition of G(s) and Cys(341) in activation of G(s) and in inhibition of G(i1,) G(o), and G(11), respectively, indicates their potential role in discrimination between different types of G-proteins. Moreover, these two amino acids from the third intracellular loop might represent an important novel targets for covalent modification by downstream regulators in signaling through GLP-1 receptor.
Collapse
Affiliation(s)
- Aljosa Bavec
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
32
|
Florén A, Sollenberg U, Lundström L, Zorko M, Stojan J, Budihna M, Wheatley M, Martin NP, Kilk K, Mazarati A, Bartfai T, Lindgren M, Langel U. Multiple interaction sites of galnon trigger its biological effects. Neuropeptides 2005; 39:547-58. [PMID: 16297447 DOI: 10.1016/j.npep.2005.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 09/24/2005] [Indexed: 11/22/2022]
Abstract
Galnon was first reported as a low molecular weight non-peptide agonist at galanin receptors [Saar et al. (2002) Proc. Natl. Acad. Sci. USA 99, 7136-7141]. Following its systemic administration, this synthetic ligand affected a range of important physiological processes including appetite, seizures and pain. Physiological activity of galnon could not be explained solely by the activation of the three known galanin receptors, GalR1, GalR2 and GalR3. Consequently, it was possible that galnon generates its manifold effects by interacting with other signaling pathway components, in addition to via GalR1-3. In this report, we establish that galnon: (i) can penetrate across the plasma membrane of cells, (ii) can activate intracellular G-proteins directly independent of receptor activation thereby triggering downstream signaling, (iii) demonstrates selectivity for different G-proteins, and (iiii) is a ligand to other G-protein coupled receptors (GPCRs) in addition to via GalR1-3. We conclude that galnon has multiple sites of interaction within the GPCR signaling cascade which mediate its physiological effects.
Collapse
Affiliation(s)
- Anders Florén
- Department of Neurochemistry, Stockholm University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Shpakov AO, Pertseva MN. Use of Peptide Strategy for Study of Molecular Mechanisms of Hormonal Signal Transduction into Cell. J EVOL BIOCHEM PHYS+ 2005. [DOI: 10.1007/s10893-005-0088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Turner JH, Raymond JR. Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor. A putative regulator of G protein coupling and receptor phosphorylation by protein kinase C. J Biol Chem 2005; 280:30741-50. [PMID: 15970592 DOI: 10.1074/jbc.m501696200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 5-hydroxytryptamine2A (5-HT2A) receptor is a G(q/11)-coupled serotonin receptor that activates phospholipase C and increases diacylglycerol formation. In this report, we demonstrated that calmodulin (CaM) co-immunoprecipitates with the 5-HT2A receptor in NIH-3T3 fibroblasts in an agonist-dependent manner and that the receptor contains two putative CaM binding regions. The putative CaM binding regions of the 5-HT2A receptor are localized to the second intracellular loop and carboxyl terminus. In an in vitro binding assay peptides encompassing the putative second intracellular loop (i2) and carboxyl-terminal (ct) CaM binding regions bound CaM in a Ca2+-dependent manner. The i2 peptide bound with apparent higher affinity and shifted the mobility of CaM in a nondenaturing gel shift assay. Fluorescence emission spectral analyses of dansyl-CaM showed apparent K(D) values of 65 +/- 30 nM for the i2 peptide and 168 +/- 38 nM for the ct peptide. The ct CaM-binding domain overlaps with a putative protein kinase C (PKC) site, which was readily phosphorylated by PKC in vitro. CaM binding and phosphorylation of the ct peptide were found to be antagonistic, suggesting a putative role for CaM in the regulation of 5-HT2A receptor phosphorylation and desensitization. Finally, we showed that CaM decreases 5-HT2A receptor-mediated [35S]GTPgammaS binding to NIH-3T3 cell membranes, supporting a possible role for CaM in regulating receptor-G protein coupling. These data indicate that the serotonin 5-HT2A receptor contains two high affinity CaM-binding domains that may play important roles in signaling and function.
Collapse
Affiliation(s)
- Justin H Turner
- Medical and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425-2227, USA
| | | |
Collapse
|
36
|
Tokuyama Y, Matsui K, Egashira T, Nozaki O, Ishizuka T, Kanatsuka A. Five missense mutations in glucagon-like peptide 1 receptor gene in Japanese population. Diabetes Res Clin Pract 2004; 66:63-9. [PMID: 15364163 DOI: 10.1016/j.diabres.2004.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 01/27/2004] [Accepted: 02/10/2004] [Indexed: 10/26/2022]
Abstract
To address the possibility that the partial disruption of Glucagon-like peptide-1 (GLP-1) signaling could cause diabetes, we tried to detect the mutation in GLP-1 receptor (GLP-1R) gene in the population with type 2 diabetes. Genomic DNA was extracted from 36 unrelated Japanese type 2 diabetic subjects and directly sequenced for the GLP-1R gene. For the detected polymorphisms, 791 patients with type 2 diabetes and 318 controls were screened by polymerase chain reaction-restricted fragment length polymorphism and association study was carried out. Five missense and four silent variants were detected in the GLP-1R gene. There were no significant differences in the frequencies of Pro7Leu, Arg44His and Leu260Pro polymorphism between the diabetic and control groups. And also there were no significant differences in body mass index (BMI), onset age and fasting IRI among the wild type, heterozygote and homozygote of these variants in diabetic patients. Thr149Met mutation was detected in one case among 791 type 2 diabetes patients, but not in control subjects. The patient with this mutation exhibited impairment of both insulin secretion, insulin sensitivity and glucose effectiveness, which may be partially explained by Thr149Met mutation in GLP-1R, though family linkage analysis and function analysis remain to be examined.
Collapse
Affiliation(s)
- Yoshiharu Tokuyama
- Diabetes Center, Chiba Central Medical Center, 1835-1 Kasori, Wakaba-ku, Chiba 264-0017, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Bavec A. Immunoassay for visualization of protein-protein interactions on Ni-nitrilotriacetate support: Example of a laboratory exercise with recombinant heterotrimeric Gα(i2) β(1γ2) Tagged by Hexahistidine from sf9 Cells. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 32:258-262. [PMID: 21706735 DOI: 10.1002/bmb.2004.494032040380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have developed an in vitro assay for following the interaction between the α(i2) subunit and β(1γ2) dimer from sf9 cells. This method is suitable for education purposes because it is easy, reliable, nonexpensive, can be applied for a big class of 20 students, and avoid the commonly used kinetic approach, which does not allow visualization of protein-protein interaction.
Collapse
Affiliation(s)
- Aljosa Bavec
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
38
|
Bavec A. Novel features of amphiphilic peptide Mas7 in signalling via heterotrimeric G-proteins. J Pept Sci 2004; 10:691-9. [PMID: 15568683 DOI: 10.1002/psc.579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amphiphilic peptide Mas7, a structural analogue of mastoparan is a known activator of heterotrimeric Gi-proteins and its downstream effectors. This study investigated the functional interaction of Mas7 with a plasma membrane protein from CHO cells, the endogenous mono-ADP-ribosyltransferase. The substrate of endogenous mono-ADP-ribosyltransferase was the ADP-ribosylated protein with a molecular mass of 36 kDa, which corresponded to the beta subunit of heterotrimeric G-proteins. The effect of Mas7 on endogenous mono-ADP-ribosyltransferase activity was in the micromolar range with a maximal activation of 205% over the basal. In pertussis treated plasma membranes, it was found that the effect of Mas7 on endogenous mono-ADP-ribosyltransferase was partially blocked, which suggests the involvement of G-proteins, such as Gi or G0. In addition, an immunoassay was developed for the visualization of interaction between the a subunit and the betagamma dimer of G-protein on a Ni-NTA support. The physical interaction was tested of Mas7 with the heterotrimeric G-protein alphai2 subunit, which was overexpressed together with beta1gamma2-His6 subunits in sf9 cells. An interaction between Gi2 heterotrimer and Mas7 was not observed, which was not in accordance with previously reported results of mastoparan obtained for Gi-proteins from bovine brain. In conclusion, the signal is mediated from Mas7 to endogenous mono-ADP-ribosyltransferase via pertussis sensitive G-proteins. Furthermore, it is hypothesized that Gi2 G-proteins are not involved in the process.
Collapse
Affiliation(s)
- Aljosa Bavec
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|