1
|
Dubey SK, Dubey R, Jung K, Hernandez AG, Kleinman ME. Deciphering age-related transcriptomic changes in the mouse retinal pigment epithelium. Aging (Albany NY) 2025; 17:657-684. [PMID: 40042930 PMCID: PMC11984418 DOI: 10.18632/aging.206219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/18/2025] [Indexed: 04/08/2025]
Abstract
Aging of the retinal pigment epithelium (RPE) leads to a gradual decline in RPE homeostasis over time, significantly impacting retinal health. Understanding the mechanisms underlying RPE aging is crucial for elucidating the background in which many age-related retinal pathologies develop. In this study, we compared the transcriptomes of young and aged mouse RPE and observed a marked upregulation of immunogenic, proinflammatory, and oxidative stress genes in aging RPE. Additionally, aging RPE exhibited dysregulation of pathways associated with visual perception and extracellular matrix production. Research on aging in post-natal quiescent RPE is hindered by the absence of relevant in vitro models. Here, we evaluated an in vitro model of chronologically aged primary human RPE to address this gap and observed gene expression patterns comparable to native-aged RPE. Gene expression profiling in this model highlighted its potential utility in investigating cellular and molecular mechanisms of RPE aging and in screening of therapeutic compounds. In conclusion, our findings underscore the pivotal role of inflammation, immune activation, and oxidative stress in the aging RPE landscape and provide insights into why age increases the risk of retinal pathologies.
Collapse
Affiliation(s)
- Sushil K. Dubey
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| | - Rashmi Dubey
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| | - Kyungsik Jung
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mark E. Kleinman
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
2
|
Longakit AN, Bourget H, Van Raamsdonk CD. Mitf over-expression leads to microphthalmia and coloboma in Mitf-cre mice. Exp Eye Res 2025; 251:110209. [PMID: 39694408 DOI: 10.1016/j.exer.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
The Mitf transcription factor is a critical regulator of the melanocyte lineage and eye development. Mitf activity in different cell types is controlled in part by ten alternative promoters and their resulting isoforms. A useful tool for melanocyte-based research, Mitf-cre was designed to express Cre from the Mitf-M promoter, which is melanocyte specific. However, Mitf-cre mice are also microphthalmic, perhaps because of insertional mutagenesis or disrupted gene expression. Here, we investigated these possibilities and described the eye phenotype. Targeted locus amplification indicated that the transgene integrated on chromosome 2, in between Spred1 and Meis2. The BAC transgene used to make Mitf-cre was larger than expected, carrying three upstream alternative promoters, Mitf-H, Mitf-D, and Mitf-B, which could express their isoforms intact off the transgene. RT-qPCR using eye tissue demonstrated a 5-fold increase in Mitf transcripts containing exon 1B1b, which is shared by Mitf-H, Mitf-D, and Mitf-B, while Spred1 and Meis2 did not differ in their expression. These findings clarify and support the usage of Mitf-cre in conditional mutagenesis in melanocytes. The specific over-expression of these isoforms, which are preferentially expressed in the RPE, presents a unique resource for those interested in eye development and coloboma.
Collapse
Affiliation(s)
- Anne Nathalie Longakit
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Hannah Bourget
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
3
|
Brown AD, Lynch K, Langelaan DN. The C-terminal transactivation domain of MITF interacts promiscuously with co-activator CBP/p300. Sci Rep 2023; 13:16094. [PMID: 37752231 PMCID: PMC10522771 DOI: 10.1038/s41598-023-43207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
The microphthalmia-associated transcription factor (MITF) is one of four closely related members of the MiT/TFE family (TFEB, TFE3, TFEC) that regulate a wide range of cellular processes. MITF is a key regulator of melanocyte-associated genes, and essential to proper development of the melanocyte cell lineage. Abnormal MITF activity can contribute to the onset of several diseases including melanoma, where MITF is an amplified oncogene. To enhance transcription, MITF recruits the co-activator CREB-binding protein (CBP) and its homolog p300 to gene promoters, however the molecular determinants of their interaction are not yet fully understood. Here, we characterize the interactions between the C-terminal MITF transactivation domain and CBP/p300. Using NMR spectroscopy, protein pulldown assays, and isothermal titration calorimetry we determine the C-terminal region of MITF is intrinsically disordered and binds with high-affinity to both TAZ1 and TAZ2 of CBP/p300. Mutagenesis studies revealed two conserved motifs within MITF that are necessary for TAZ2 binding and critical for MITF-dependent transcription of a reporter gene. Finally, we observe the transactivation potential of the MITF C-terminal region is reliant on the N-terminal transactivation domain for function. Taken together, our study helps elucidate the molecular details of how MITF interacts with CBP/p300 through multiple redundant interactions that lend insight into MITF function in melanocytes and melanoma.
Collapse
Affiliation(s)
- Alexandra D Brown
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Kyle Lynch
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - David N Langelaan
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
4
|
Agostini F, Agostinis R, Medina DL, Bisaglia M, Greggio E, Plotegher N. The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Mol Neurobiol 2022; 59:5000-5023. [PMID: 35665902 PMCID: PMC9363479 DOI: 10.1007/s12035-022-02895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022]
Abstract
The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.
Collapse
Affiliation(s)
| | - Rossella Agostinis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Scuola Superiore Meridionale SSM, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Medical and Translational, Science, II University, Naples, Federico, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| | | |
Collapse
|
5
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
Oppezzo A, Rosselli F. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci 2021; 11:18. [PMID: 33441180 PMCID: PMC7805242 DOI: 10.1186/s13578-021-00529-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Haematopoiesis, the process by which a restrained population of stem cells terminally differentiates into specific types of blood cells, depends on the tightly regulated temporospatial activity of several transcription factors (TFs). The deregulation of their activity or expression is a main cause of pathological haematopoiesis, leading to bone marrow failure (BMF), anaemia and leukaemia. TFs can be induced and/or activated by different stimuli, to which they respond by regulating the expression of genes and gene networks. Most TFs are highly pleiotropic; i.e., they are capable of influencing two or more apparently unrelated phenotypic traits, and the action of a single TF in a specific setting often depends on its interaction with other TFs and signalling pathway components. The microphthalmia-associated TF (MiTF) is a prototype TF in multiple situations. MiTF has been described extensively as a key regulator of melanocyte and melanoma development because it acts mainly as an oncogene. Mitf-mutated mice show a plethora of pleiotropic phenotypes, such as microphthalmia, deafness, abnormal pigmentation, retinal degeneration, reduced mast cell numbers and osteopetrosis, revealing a greater requirement for MiTF activity in cells and tissue. A growing amount of evidence has led to the delineation of key roles for MiTF in haematopoiesis and/or in cells of haematopoietic origin, including haematopoietic stem cells, mast cells, NK cells, basophiles, B cells and osteoclasts. This review summarizes several roles of MiTF in cells of the haematopoietic system and how MiTFs can impact BM development.
Collapse
Affiliation(s)
- Alessia Oppezzo
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France. .,Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Université Paris Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France. .,Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Université Paris Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
7
|
Vu HN, Dilshat R, Fock V, Steingrímsson E. User guide to MiT-TFE isoforms and post-translational modifications. Pigment Cell Melanoma Res 2020; 34:13-27. [PMID: 32846025 DOI: 10.1111/pcmr.12922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The microphthalmia-associated transcription factor (MITF) is at the core of melanocyte and melanoma fate specification. The related factors TFEB and TFE3 have been shown to be instrumental for transcriptional regulation of genes involved in lysosome biogenesis and autophagy, cellular processes important for mediating nutrition signals and recycling of cellular materials, in many cell types. The MITF, TFEB, TFE3, and TFEC proteins are highly related. They share many structural and functional features and are targeted by the same signaling pathways. However, the existence of several isoforms of each factor and the increasing number of residues shown to be post-translationally modified by various signaling pathways poses a difficulty in indexing amino acid residues in different isoforms across the different proteins. Here, we provide a resource manual to cross-reference amino acids and post-translational modifications in all isoforms of the MiT-TFE family in humans, mice, and zebrafish and summarize the protein accession numbers for each isoform of these factors in the different genomic databases. This will facilitate future studies on the signaling pathways that regulate different isoforms of the MiT-TFE transcription factor family.
Collapse
Affiliation(s)
- Hong Nhung Vu
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
8
|
Ballesteros-Álvarez J, Dilshat R, Fock V, Möller K, Karl L, Larue L, Ögmundsdóttir MH, Steingrímsson E. MITF and TFEB cross-regulation in melanoma cells. PLoS One 2020; 15:e0238546. [PMID: 32881934 PMCID: PMC7470386 DOI: 10.1371/journal.pone.0238546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/18/2020] [Indexed: 01/24/2023] Open
Abstract
The MITF, TFEB, TFE3 and TFEC (MiT-TFE) proteins belong to the basic helix-loop-helix family of leucine zipper transcription factors. MITF is crucial for melanocyte development and differentiation, and has been termed a lineage-specific oncogene in melanoma. The three related proteins MITF, TFEB and TFE3 have been shown to be involved in the biogenesis and function of lysosomes and autophagosomes, regulating cellular clearance pathways. Here we investigated the cross-regulatory relationship of MITF and TFEB in melanoma cells. Like MITF, the TFEB and TFE3 genes are expressed in melanoma cells as well as in melanoma tumors, albeit at lower levels. We show that the MITF and TFEB proteins, but not TFE3, directly affect each other's mRNA and protein expression. In addition, the subcellular localization of MITF and TFEB is subject to regulation by the mTOR signaling pathway, which impacts their cross-regulatory relationship at the transcriptional level. Our work shows that the relationship between MITF and TFEB is multifaceted and that the cross-regulatory interactions of these factors need to be taken into account when considering pathways regulated by these proteins.
Collapse
Affiliation(s)
- Josué Ballesteros-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Katrín Möller
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Ludwig Karl
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| | | | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
- * E-mail:
| |
Collapse
|
9
|
Udry F, Decembrini S, Gamm DM, Déglon N, Kostic C, Arsenijevic Y. Lentiviral mediated RPE65 gene transfer in healthy hiPSCs-derived retinal pigment epithelial cells markedly increased RPE65 mRNA, but modestly protein level. Sci Rep 2020; 10:8890. [PMID: 32483256 PMCID: PMC7264209 DOI: 10.1038/s41598-020-65657-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/08/2020] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of cobblestone-like epithelial cells that accomplishes critical functions for the retina. Several protocols have been published to differentiate pluripotent stem cells into RPE cells suitable for disease modelling and therapy development. In our study, the RPE identity of human induced pluripotent stem cell (hiPSC)-derived RPE (iRPE) was extensively characterized, and then used to test a lentiviral-mediated RPE65 gene augmentation therapy. A dose study of the lentiviral vector revealed a dose-dependent effect of the vector on RPE65 mRNA levels. A marked increase of the RPE65 mRNA was also observed in the iRPE (100-fold) as well as in an experimental set with RPE derived from another hiPSC source and from foetal human RPE. Although iRPE displayed features close to bona fide RPE, no or a modest increase of the RPE65 protein level was observed depending on the protein detection method. Similar results were observed with the two other cell lines. The mechanism of RPE65 protein regulation remains to be elucidated, but the current work suggests that high vector expression will not produce an excess of the normal RPE65 protein level.
Collapse
Affiliation(s)
- Florian Udry
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
| | - Sarah Decembrini
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
- Department of Biomedicine, University Hospital Basel & University Basel, Hebelstr. 20, 4031, Basel, Switzerland
| | - David M Gamm
- McPherson Eye Research Institute, Waisman Center and Department of Ophthalmology and Visual Sciences, and University of Wisconsin-Madison, Madison, USA
| | - Nicole Déglon
- Neuroscience Research Center, Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corinne Kostic
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of ophthalmology, Unit of Retinal Degeneration and Regeneration, University of Lausanne, Hôpital ophtalmique Jules-Gonin, 1004, Lausanne, Switzerland.
| |
Collapse
|
10
|
Lei C, Jing G, Jichao W, Xiaohui L, Fang Q, Hua G, Yazhou M, Zhang Y. MiR-137's Tumor Suppression on Prolactinomas by Targeting MITF and Modulating Wnt Signaling Pathway. J Clin Endocrinol Metab 2019; 104:6391-6402. [PMID: 31162548 DOI: 10.1210/jc.2018-02544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Prolactinomas are the most common functional pituitary adenomas; the aggressive tumors still present challenge to clinicians. Aberrant expression of miRNAs has been functionally associated with prolactinomas. OBJECTIVE Here we explored the role of miR-137 on the proliferation, invasion, and apoptosis of prolactinomas and its possible mechanism. RESULTS Low expression of miR-137 was correlated with the invasive behavior of human prolactinomas and predicted high recurrence. MiR-137 inhibited cell proliferation, invasion, and survivals of MMQ and GH3 cells and reduced tumor volume in F344 rat prolactinomas. The luciferase reporter assay confirmed that microphthalmia-associated transcription factor (MITF) was the direct target of miR-137. In addition, miR-137 mimics could inhibit MITF expression in vivo and in vitro. Upregulation of MITF expression promoted cell proliferation, invasion, and survivals and reversed the antitumor effect of miR-137 in vivo and in vitro. Furthermore, miR-137 could also upregulate wnt-inhibitory factor-1 and inhibit nuclear translocation of β-catenin. Upregulation of wnt-inhibitory factor-1 with decitabine can enhance the inhibition on cell proliferation of miR-137. A glycogen synthase kinase-3 inhibitor, SB 216763, promoted cell proliferation by upregulation of total/cytoplasmic/nuclear β-catenin and reversed tumor suppression of miR-137 mimics. CONCLUSIONS Our data suggest that miR-137 possesses a tumor invasive suppressor function with a prognostic value in prolactinomas by targeting MITF and modulating Wnt-β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cao Lei
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
| | - Guo Jing
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai District, Beijing, China
| | - Wang Jichao
- Department of Neurosurgery, People's Hospital of Xinjiang Autonomous Region, Tianshan District, Urumqi, China
| | - Lou Xiaohui
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai District, Beijing, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai District, Beijing, China
| | - Gao Hua
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai District, Beijing, China
| | - Miao Yazhou
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai District, Beijing, China
| | - Yazhou Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Fengtai District, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Fengtai District, Beijing, China
| |
Collapse
|
11
|
Michael HT, Graff-Cherry C, Chin S, Rauck C, Habtemichael AD, Bunda P, Smith T, Campos MM, Bharti K, Arnheiter H, Merlino G, Day CP. Partial Rescue of Ocular Pigment Cells and Structure by Inducible Ectopic Expression of Mitf-M in MITF-Deficient Mice. Invest Ophthalmol Vis Sci 2019; 59:6067-6073. [PMID: 30590377 PMCID: PMC6314104 DOI: 10.1167/iovs.18-25186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Complete deficiency of microphthalmia transcription factor (MITF) in Mitfmi-vga9/mi-vga9 mice is associated with microphthalmia, retinal dysplasia, and albinism. We investigated the ability of dopachrome tautomerase (DCT) promoter-mediated inducible ectopic expression of Mitf-M to rescue these phenotypic abnormalities. Methods A new mouse line was created with doxycycline-inducible ectopic Mitf-M expression on an Mitf-deficient Mitfmi-vga9 background (DMV mouse). Adult DMV mice were phenotypically characterized and tissues were collected for histology, immunohistochemistry, and evaluation of Mitf, pigmentary genes, and retinal pigment epithelium (RPE) gene expression. Results Ectopic Mitf-M expression was specifically induced in the eyes, but was not detected in the skin of DMV mice. Inducible expression of Mitf-M partially rescued the microphthalmia, RPE structure, and pigmentation as well as a subset of the choroidal and iris melanocytes but not cutaneous melanocytes. RPE function and vision were not restored in the DMV mice. Conclusions Ectopic expression of Mitf-M during development of Mitf-deficient mice is capable of partially rescuing ocular and retinal structures and uveal melanocytes. These findings provide novel information about the roles of Mitf isoforms in the development of mouse eyes.
Collapse
Affiliation(s)
- Helen T Michael
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Insitutes of Health, Bethesda, Maryland, United States
| | - Cari Graff-Cherry
- Laboratory Animal Science Program, National Frederick Laboratory for Cancer Research, National Insitutes of Health, Frederick, Maryland, United States
| | - Sung Chin
- Laboratory Animal Science Program, National Frederick Laboratory for Cancer Research, National Insitutes of Health, Frederick, Maryland, United States
| | - Corinne Rauck
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Insitutes of Health, Bethesda, Maryland, United States
| | - Amelework D Habtemichael
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Insitutes of Health, Bethesda, Maryland, United States
| | - Patricia Bunda
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Insitutes of Health, Bethesda, Maryland, United States
| | - Tunde Smith
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Insitutes of Health, Bethesda, Maryland, United States
| | - Maria M Campos
- Histopathology Core Facility, National Eye Institute, National Insitutes of Health, Bethesda, Maryland, United States
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Insitutes of Health, Bethesda, Maryland, United States
| | - Heinz Arnheiter
- Scientist Emeritus, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Insitutes of Health, Bethesda, Maryland, United States
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Insitutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
12
|
Abstract
In this review, Goding and Arnheiter present the current understanding of MITF's role and regulation in development and disease and highlight key areas where our knowledge of MITF regulation and function is limited. All transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes. What marks MITF as being remarkable among its peers is the sheer range of biological processes that it appears to coordinate. These include cell survival, differentiation, proliferation, invasion, senescence, metabolism, and DNA damage repair. In this article we present our current understanding of MITF's role and regulation in development and disease, as well as those of the MITF-related factors TFEB and TFE3, and highlight key areas where our knowledge of MITF regulation and function is limited.
Collapse
Affiliation(s)
- Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Heinz Arnheiter
- National Institute of Neurological Disorders and Stroke, National Institutes of Heath, Bethesda, Maryland 20824, USA
| |
Collapse
|
13
|
Genome analysis identifies the mutant genes for common industrial Silverblue and Hedlund white coat colours in American mink. Sci Rep 2019; 9:4581. [PMID: 30872653 PMCID: PMC6418256 DOI: 10.1038/s41598-019-40918-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
The fur colour of American mink (Neovison vison) involves over 35 traits, but only three of these have been linked to specific genes. Despite being the most popular, coat colours Silverblue and Hedlund white remain uncharacterized genetically. The former is the first genetic mutant of fur colour identified in minks, while the latter is a commercially valuable phenotype that can be dyed easily. Here, we performed the whole genome sequencing for two American mink breeds with Silverblue and Hedlund white coats. We identified mutations in splice donor sites of genes coding melanophilin (MLPH) and microphthalmia-associated transcription factor (MITF) that regulate melanosome transport and neural-crest-derived melanocyte development, respectively. Both mutations cause mRNA splicing impairments that lead to a shift in open reading frames of MLPH and MITF. We conclude that our data should be useful for tracking economically valuable fur traits in mink breeding programs to contribute to global fur production.
Collapse
|
14
|
BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proc Natl Acad Sci U S A 2018; 115:E8668-E8677. [PMID: 30150413 DOI: 10.1073/pnas.1810498115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease. The microphthalmia-associated transcription factor MITF plays a crucial role in the development of melanocytes, the retinal pigment epithelium, osteoclasts, and mast cells and acts as a lineage survival oncogene in melanoma. MITF coordinates survival, differentiation, cell-cycle progression, cell migration, metabolism, and lysosome biogenesis. However, how the activity of this key transcription factor is controlled remains poorly understood. Here, we show that GSK3, downstream from both the PI3K and Wnt pathways, and BRAF/MAPK signaling converges to control MITF nuclear export. Phosphorylation of the melanocyte MITF-M isoform in response to BRAF/MAPK signaling primes for phosphorylation by GSK3, a kinase inhibited by both PI3K and Wnt signaling. Dual phosphorylation, but not monophosphorylation, then promotes MITF nuclear export by activating a previously unrecognized hydrophobic export signal. Nonmelanocyte MITF isoforms exhibit poor regulation by MAPK signaling, but instead their export is controlled by mTOR. We uncover here an unanticipated mode of MITF regulation that integrates the output of key developmental and cancer-associated signaling pathways to gate MITF flux through the import-export cycle. The results have significant implications for our understanding of melanoma progression and stem cell renewal.
Collapse
|
15
|
Yang M, Liu E, Tang L, Lei Y, Sun X, Hu J, Dong H, Yang SM, Gao M, Tang B. Emerging roles and regulation of MiT/TFE transcriptional factors. Cell Commun Signal 2018; 16:31. [PMID: 29903018 PMCID: PMC6003119 DOI: 10.1186/s12964-018-0242-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
The MiT/TFE transcription factors play a pivotal role in the regulation of autophagy and lysosomal biogenesis. The subcellular localization and activity of MiT/TFE proteins are primarily regulated through phosphorylation. And the phosphorylated protein is retained in the cytoplasm and subsequently translocates to the nucleus upon dephosphorylation, where it stimulates the expression of hundreds of genes, leading to lysosomal biogenesis and autophagy induction. The transcription factor-mediated lysosome-to-nucleus signaling can be directly controlled by several signaling molecules involved in the mTORC1, PKC, and AKT pathways. MiT/TFE family members have attracted much attention owing to their intracellular clearance of pathogenic factors in numerous diseases. Recently, multiple studies have also revealed the MiT/TFE proteins as master regulators of cellular metabolic reprogramming, converging on autophagic and lysosomal function and playing a critical role in cancer, suggesting that novel therapeutic strategies could be based on the modulation of MiT/TFE family member activity. Here, we present an overview of the latest research on MiT/TFE transcriptional factors and their potential mechanisms in cancer.
Collapse
Affiliation(s)
- Min Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - En Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xuemei Sun
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Jiaxi Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.,Department of Medicine, University of California San Diego, San Diego, CA, 92093, USA
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Mingfa Gao
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 40037, China.
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| |
Collapse
|
16
|
Ohba K, Takeda K, Furuse T, Suzuki T, Wakana S, Suzuki T, Yamamoto H, Shibahara S. Microphthalmia-associated transcription factor ensures the elongation of axons and dendrites in the mouse frontal cortex. Genes Cells 2016; 21:1365-1379. [PMID: 27859996 DOI: 10.1111/gtc.12450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/06/2016] [Indexed: 11/29/2022]
Abstract
Long interspersed element-1 (LINE-1) is a mammalian transposable element, and its genomic insertion could cause neurological disorders in humans. Incidentally, LINE-1 is present in intron 3 of the microphthalmia-associated transcription factor (Mitf) gene of the black-eyed white mouse (Mitfmi-bw allele). Mice homozygous for the Mitfmi-bw allele show the white coat color with black eye and deafness. Here, we explored the functional consequences of the LINE-1 insertion in the Mitf gene using homozygous Mitfmi-bw mice on the C3H background (C3H-bw mice) or on the C57BL/6 background (bw mice). The open-field test showed that C3H-bw mice moved more irregularly in an unfamiliar environment during the 20-min period, compared to wild-type mice, suggesting the altered emotionality. Moreover, C3H-bw mice showed the lower serum creatinine levels, which may reflect the creatine deficiency. In fact, morphologically abnormal neurons and astrocytes were detected in the frontal cortex of bw mice. The immunohistochemical analysis of bw mouse tissues showed the lower intensity for expression of guanidinoacetate methyltransferase, a key enzyme in creatine synthesis, in neurons of the frontal cortex and in glomeruli and renal tubules. Thus, Mitf may ensure the elongation of axons and dendrites by maintaining creatine synthesis in the frontal cortex.
Collapse
Affiliation(s)
- Koji Ohba
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Kazuhisa Takeda
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Tamio Furuse
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BRC, Tsukuba, Ibaraki, 305-0074, Japan
| | - Tomohiro Suzuki
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BRC, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BRC, Tsukuba, Ibaraki, 305-0074, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Hiroaki Yamamoto
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Shigeki Shibahara
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan.,Faculty of Sports Science, Sendai University, Shibata-Gun, Miyagi, 989-1693, Japan
| |
Collapse
|
17
|
Ohba K, Takeda K, Yamamoto H, Shibahara S. Microphthalmia-associated transcription factor is expressed in projection neurons of the mouse olfactory bulb. Genes Cells 2015; 20:1088-102. [DOI: 10.1111/gtc.12312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Koji Ohba
- Department of Molecular Biology and Applied Physiology; Tohoku University School of Medicine; 2-1 Seiryo-machi Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Kazuhisa Takeda
- Department of Molecular Biology and Applied Physiology; Tohoku University School of Medicine; 2-1 Seiryo-machi Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Hiroaki Yamamoto
- Faculty of Bioscience; Nagahama Institute of Bio-Science and Technology; 1266 Tamura-cho Nagahama Shiga 526-0829 Japan
| | - Shigeki Shibahara
- Department of Molecular Biology and Applied Physiology; Tohoku University School of Medicine; 2-1 Seiryo-machi Aoba-ku Sendai Miyagi 980-8575 Japan
| |
Collapse
|
18
|
Ploper D, De Robertis EM. The MITF family of transcription factors: Role in endolysosomal biogenesis, Wnt signaling, and oncogenesis. Pharmacol Res 2015; 99:36-43. [DOI: 10.1016/j.phrs.2015.04.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 04/18/2015] [Accepted: 04/18/2015] [Indexed: 12/19/2022]
|
19
|
Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 2014; 72:1249-60. [PMID: 25433395 PMCID: PMC4363485 DOI: 10.1007/s00018-014-1791-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023]
Abstract
MITF (microphthalmia-associated transcription factor) represents a melanocytic lineage-specific transcription factor whose role is profoundly extended in malignant melanoma. Over the last few years, the function of MITF has been tightly connected to plasticity of melanoma cells. MITF participates in executing diverse melanoma phenotypes defined by distinct gene expression profiles. Mutation-dependent alterations in MITF expression and activity have been found in a relatively small subset of melanomas. MITF activity is rather modulated by its upstream activators and suppressors operating on transcriptional, post-transcriptional and post-translational levels. These regulatory mechanisms also include epigenetic and microenvironmental signals. Several transcription factors and signaling pathways involved in the regulation of MITF expression and/or activity such as the Wnt/β-catenin pathway are broadly utilized by various types of tumors, whereas others, e.g., BRAFV600E/ERK1/2 are more specific for melanoma. Furthermore, the MITF activity can be affected by the availability of transcriptional co-partners that are often redirected by MITF from their own canonical signaling pathways. In this review, we discuss the complexity of a multilevel regulation of MITF expression and activity that underlies distinct context-related phenotypes of melanoma and might explain diverse responses of melanoma patients to currently used therapeutics.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | | |
Collapse
|
20
|
Microphthalmia-associated transcription factor as the molecular target of cadmium toxicity in human melanocytes. Biochem Biophys Res Commun 2014; 454:594-9. [DOI: 10.1016/j.bbrc.2014.10.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 12/26/2022]
|
21
|
Lu SY, Li M, Lin YL. Mitf regulates osteoclastogenesis by modulating NFATc1 activity. Exp Cell Res 2014; 328:32-43. [PMID: 25152440 DOI: 10.1016/j.yexcr.2014.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/25/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Transcription factors Mitf and NFATc1 share many downstream targets that are critical for osteoclastogenesis. Since RANKL signals induce/activate both NFATc1 and Mitf isoform-E (Mitf-E), a tissue-restricted Mitf isoform in osteoclasts, it is plausible that the two factors work together to promote osteoclastogenesis. Although Mitf was shown to function upstream of NFATc1 previously, this study showed that expression of Mitf had little effects on NFATc1 and NFATc1 was critical for the induction of Mitf-E. In Mitf(mi/mi) mice, the semi-dominant mutation in Mitf gene leads to arrest of osteoclastogenesis in the early stages. However, when stimulated by RANKL, the Mitf(mi/mi) preosteoclasts responded with a significant induction of NFATc1, despite that the cells cannot differentiate into functional osteoclasts. In the absence of RANKL stimulation, very high levels of NFATc1 are required to drive osteoclast development. Our data indicate that Mitf functions downstream of NFATc1 in the RANKL pathway, and it plays an important role in amplifying NFATc1-dependent osteoclastogenic signals, which contributes to the significant synergy between the two factors during osteoclastogenesis. We propose that Mitf-E functions as a tissue-specific modulator for events downstream of NFATc1 activation during osteoclastogenesis.
Collapse
Affiliation(s)
- Ssu-Yi Lu
- Department of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, USA.
| | - Mengtao Li
- Department of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, USA; CHS 23-087, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| | - Yi-Ling Lin
- Department of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, USA; Gene Regulation Program, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Raviv S, Bharti K, Rencus-Lazar S, Cohen-Tayar Y, Schyr R, Evantal N, Meshorer E, Zilberberg A, Idelson M, Reubinoff B, Grebe R, Rosin-Arbesfeld R, Lauderdale J, Lutty G, Arnheiter H, Ashery-Padan R. PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLoS Genet 2014; 10:e1004360. [PMID: 24875170 PMCID: PMC4038462 DOI: 10.1371/journal.pgen.1004360] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
During organogenesis, PAX6 is required for establishment of various progenitor subtypes within the central nervous system, eye and pancreas. PAX6 expression is maintained in a variety of cell types within each organ, although its role in each lineage and how it acquires cell-specific activity remain elusive. Herein, we aimed to determine the roles and the hierarchical organization of the PAX6-dependent gene regulatory network during the differentiation of the retinal pigmented epithelium (RPE). Somatic mutagenesis of Pax6 in the differentiating RPE revealed that PAX6 functions in a feed-forward regulatory loop with MITF during onset of melanogenesis. PAX6 both controls the expression of an RPE isoform of Mitf and synergizes with MITF to activate expression of genes involved in pigment biogenesis. This study exemplifies how one kernel gene pivotal in organ formation accomplishes a lineage-specific role during terminal differentiation of a single lineage. It is currently poorly understood how a single developmental transcription regulator controls early specification as well as a broad range of highly specialized differentiation schemes. PAX6 is one of the most extensively investigated factors in central nervous system development, yet its role in execution of lineage-specific programs remains mostly elusive. Here, we directly investigated the involvement of PAX6 in the differentiation of one lineage, the retinal pigmented epithelium (RPE), a neuroectodermal-derived tissue that is essential for retinal development and function. We revealed that PAX6 accomplishes its role through a unique regulatory interaction with the transcription factor MITF, a master regulator of the pigmentation program. During the differentiation of the RPE, PAX6 regulates the expression of an RPE-specific isoform of Mitf and importantly, at the same time, PAX6 functions together with MITF to directly activate the expression of downstream genes required for pigment biogenesis. These findings provide comprehensive insight into the gene hierarchy that controls RPE development: from a kernel gene (a term referring to the upper-most gene in the gene regulatory network) that is broadly expressed during CNS development through a lineage-specific transcription factor that together with the kernel gene creates cis-regulatory input that contributes to transcriptionally activate a battery of terminal differentiation genes.
Collapse
Affiliation(s)
- Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sigal Rencus-Lazar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Schyr
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naveh Evantal
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alona Zilberberg
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maria Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy & Department of Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy & Department of Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rhonda Grebe
- Wilmer Ophthalmological Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Gerard Lutty
- Wilmer Ophthalmological Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Heinz Arnheiter
- Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland, United States of America
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
23
|
Kuznetsova AV. Morphological and physiological characteristics of the native retinal pigment epithelium in vertebrate animals and human. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s2079086414020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Takeda K, Hozumi H, Nakai K, Yoshizawa M, Satoh H, Yamamoto H, Shibahara S. Insertion of long interspersed element-1 in the Mitf gene is associated with altered neurobehavior of the black-eyed white Mitf(mi-bw) mouse. Genes Cells 2013; 19:126-40. [PMID: 24304702 DOI: 10.1111/gtc.12117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf) is required for the differentiation of melanoblasts of the neural crest origin. The mouse homozygous for the black-eyed white (Mitf(mi-bw) ) allele is characterized by white-coat color and deafness with black eye, due to the loss of melanoblasts during embryonic development. The Mitf(mi-bw) allele carries an insertion of long interspersed element-1 (L1) in intron 3 of the Mitf gene, which may cause the deficiency of melanocyte-specific Mitf-M. Here, we show that the L1 insertion results in the generation of alternatively spliced Mitf-M mRNA species, such as Mitf-M mRNA lacking exon 3, exon 4 or both exons 3 and 4, each of which encodes Mitf-M protein with an internal deletion. Transient expression assays showed the loss of or reduction in function of each aberrant Mitf-M protein and the dominant negative effect of Mitf-M lacking exon 4 that encodes an activation domain. Thus, the L1 insertion may decrease the expression level of functional Mitf-M. Importantly, Mitf-M mRNA is expressed in the wild-type mouse brain, with the highest expression level in the hypothalamus. Likewise, aberrant Mitf-M mRNAs are expressed in the bw mouse brain. The bw mice show the altered neurobehavior under a stressful environment, suggesting the role of Mitf-M in sensory perception.
Collapse
Affiliation(s)
- Kazuhisa Takeda
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Current models of melanoma propose that transition from the proliferative to the invasive stages of tumor development involves a dynamic and reversible switch in cell phenotype. The almost mutually exclusive proliferative and invasive phenotypes are defined by distinct gene expression signatures, which are themselves controlled by the level of functional MITF protein present in the cell. Recently, new signaling pathways and transcription factors that regulate MITF expression have been defined, and high throughput genomics have identified novel MITF target genes. MITF acts both as a transcription activator to promote expression of genes involved in cell cycle, but also as a transcriptional repressor of genes involved in invasion. A novel human germline mutation in MITF has been identified that blocks its sumoylation, thereby altering its transcriptional properties and conferring an increased risk of melanoma. These new studies depict an ever more complex function for MITF in melanoma.
Collapse
Affiliation(s)
- Dana Koludrovic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, 1 Rue Laurent Fries, 67404 Illkirch Cédex, France
| | | |
Collapse
|
26
|
Hozumi H, Takeda K, Yoshida-Amano Y, Takemoto Y, Kusumi R, Fukuzaki-Dohi U, Higashitani A, Yamamoto H, Shibahara S. Impaired development of melanoblasts in the black-eyed white Mitf(mi-bw) mouse, a model for auditory-pigmentary disorders. Genes Cells 2012; 17:494-508. [PMID: 22563733 DOI: 10.1111/j.1365-2443.2012.01603.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf) is a regulator for differentiation of melanoblasts that are derived from the neural crest. The mouse homozygous for the black-eyed white (Mitf(mi-bw)) allele is characterized by the white coat color and deafness, with black eye that is associated with the lack of melanocytes in skin and inner ear. The Mitf(mi-bw) mutation is an insertion of the LINE1 retrotransposable element into intron 3 of the Mitf gene that causes the selective deficiency of the melanocyte-specific Mitf isoform, Mitf-M. Here, we show the expression of Mitf-M mRNA in the trunk region of the homozygous Mitf(mi-bw)(bw) mouse at embryonic days (E) 11.5 and E12.5, but Mitf-M mRNA is undetectable at E13.5. In addition, using bw mouse that carries the lacZ transgene under the control of a melanoblast-specific promoter, we show that the number of migrating melanoblasts in bw embryos was less than 10% of that in control embryos at E11.5 and E12.5, and melanoblasts disappear by E13.5. The loss of melanoblasts in bw embryos was probably caused by apoptosis. Finally, forced expression of Mitf-M in the cultured neural tube of bw embryos ensured the differentiation of melanoblasts. Therefore, the correct dose of Mitf-M is required for the normal development of melanoblasts.
Collapse
Affiliation(s)
- Hiroki Hozumi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Genetic and functional evaluation of MITF as a candidate gene for cutaneous melanoma predisposition in pigs. Mamm Genome 2011; 22:602-12. [DOI: 10.1007/s00335-011-9334-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/12/2011] [Indexed: 11/25/2022]
|
28
|
Effect of the mutant microphthalmia-associated transcription factor found in Tietz syndrome on the in vitro development of mast cells. J Pediatr Hematol Oncol 2010; 32:442-7. [PMID: 20485200 DOI: 10.1097/mph.0b013e3181d9da5d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutations in microphthalmia-associated transcription factor (MITF) lead to Waardenburg syndrome type 2 (WS2), a dominantly inherited disorder involving hearing loss and pigment disturbances caused by a lack of melanocytes. On rare occasions, mutations in MITF lead to Tietz syndrome (TS), which is characterized by a severe WS2 phenotype. The MITF gene is the human homolog of the mouse microphthalmia (mi) gene in some families. Mi/mi mice show decreased numbers and an abnormal phenotype of mast cells (MC). In contrast, the number and phenotype of MC in WS2/TS patients who also have an alteration in their MITF gene are unclear. In this study, we identified a mutation in the MITF gene, delR217, which was equivalent to that found in mi/mi mice, in a case of TS. None of the MITF isoforms with the mutation were able to transactivate the tyrosinase gene promoter. In addition, mutant MITF-M showed dominant negative activity toward wild-type MITF-M, inhibiting its transactivation of the tyrosinase gene promoter. The patient's peripheral blood CD34 cells showed no differences with respect to total cell number or their expression levels of tryptase mRNA in a serum-deprived liquid culture system for 6 weeks when compared with normal control cells. These findings suggest that MITF does not play a critical role in MC development in humans.
Collapse
|
29
|
Lu SY, Wan HC, Li M, Lin YL. Subcellular localization of Mitf in monocytic cells. Histochem Cell Biol 2010; 133:651-8. [PMID: 20437053 PMCID: PMC2869019 DOI: 10.1007/s00418-010-0703-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2010] [Indexed: 10/27/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf) is a transcription factor that plays an important role in regulating the development of several cell lineages. The subcellular localization of Mitf is dynamic and is associated with its transcription activity. In this study, we examined factors that affect its subcellular localization in cells derived from the monocytic lineage since Mitf is present abundantly in these cells. We identified a domain encoded by Mitf exon 1B1b to be important for Mitf to commute between the cytoplasm and the nucleus. Deletion of this domain disrupts the shuttling of Mitf to the cytoplasm and results in its retention in the nucleus. M-CSF and RANKL both induce nuclear translocation of Mitf. We showed that Mitf nuclear transport is greatly influenced by ratio of M-CSF/Mitf protein expression. In addition, cell attachment to a solid surface also is needed for the nuclear transport of Mitf.
Collapse
Affiliation(s)
- Ssu-Yi Lu
- Department of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Microphthalmia-associated transcription factor (Mitf) regulates the development and function of several cell lineages, including osteoclasts. In this report, we identified a novel mechanism by which RANKL regulates osteoclastogenesis via induction of Mitf isoform E (Mitf-E). Both Mitf-A and Mitf-E are abundantly present in osteoclasts. Unlike Mitf-A, which is ubiquitously expressed and is present in similar amounts in macrophages and osteoclasts, Mitf-E is almost nondetectable in macrophages, but its expression is significantly up-regulated during osteoclastogenesis. In addition to their different expression profiles, the two isoforms are drastically different in their abilities to support osteoclastogenesis, despite sharing all known functional domains. Unlike Mitf-A, small amounts of Mitf-E are present in nuclear lysates unless chromatin is digested/sheared during the extraction. Based on these data, we propose a model in which Mitf-E is induced during osteoclastogenesis and is closely associated with chromatin to facilitate its interaction with target promoters; therefore, Mitf-E has a stronger osteoclastogenic activity. Mitf-A is a weaker osteoclastogenic factor, but activated Mitf-A alone is not sufficient to fully support osteoclastogenesis. Therefore, this receptor activator for nuclear factor-kappaB ligand (RANKL)-induced Mitf phenomenon seems to play an important role during osteoclastogenesis. Although the current theory indicates that Mitf and its binding partner Tfe3 are completely redundant in osteoclasts, using RNA interference, we demonstrated that Mitf has a distinct role from Tfe3. This study provides the first evidence that RANKL-induced Mitf is critical for osteoclastogenesis and Mitf is not completely redundant with Tfe3.
Collapse
Affiliation(s)
- Ssu-Yi Lu
- Section of Oral Pathology, Department of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
31
|
Wang Y, Radfar S, Liu S, Riker AI, Khong HT. Mitf-Mdel, a novel melanocyte/melanoma-specific isoform of microphthalmia-associated transcription factor-M, as a candidate biomarker for melanoma. BMC Med 2010; 8:14. [PMID: 20163701 PMCID: PMC2839965 DOI: 10.1186/1741-7015-8-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melanoma incidence is on the rise and advanced melanoma carries an extremely poor prognosis. Treatment options, including chemotherapy and immunotherapy, are limited and offer low response rates and transient efficacy. Thus, identification of new melanocyte/melanoma antigens that serve as potential novel candidate biomarkers in melanoma is an important area for investigation. METHODS Full length MITF-M and its splice variant cDNA were cloned from human melanoma cell line 624 mel by reverse transcription polymerase chain reaction (RT-PCR). Expression was investigated using regular and quantitative RT-PCR in three normal melanocytes (NHEM), 31 melanoma cell lines, 21 frozen melanoma tissue samples, 18 blood samples (peripheral blood mononuclear cell; PBMC) from healthy donors and 12 non-melanoma cancer cell lines, including three breast, five glioma, one sarcoma, two kidney and one ovarian cancer cell lines. RESULTS A novel splice variant of MITF-M, which we named MITF-Mdel, was identified. The predicted MITF-Mdel protein contains two in frame deletions, 56- and 6- amino acid deletions in exon 2 (from V32 to E87) and exon 6 (from A187 to T192), respectively. MITF-Mdel was widely expressed in melanocytes, melanoma cell lines and tissues, but almost undetectable in non-melanoma cell lines or PBMC from healthy donors. Both isoforms were expressed significantly higher in melanoma tissues than in cell lines. Two of 31 melanoma cell lines expressed only one isoform or the other. CONCLUSION MITF-Mdel, a novel melanocyte/melanoma-specific isoform of MITF-M, may serve as a potential candidate biomarker for diagnostic and follow-up purposes in melanoma.
Collapse
Affiliation(s)
- Yixiang Wang
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | | | | | | | | |
Collapse
|
32
|
Martignoni G, Pea M, Reghellin D, Gobbo S, Zamboni G, Chilosi M, Bonetti F. Molecular pathology of lymphangioleiomyomatosis and other perivascular epithelioid cell tumors. Arch Pathol Lab Med 2010; 134:33-40. [PMID: 20073603 DOI: 10.5858/2008-0542-rar1.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Lymphangioleiomyomatosis (LAM) is a cystic lung disease that can be included in the wide group of proliferative lesions named PEComas (perivascular epithelioid cell tumors). These proliferative tumors are characterized by the coexpression of myogenic and melanogenesis-related markers. In all these lesions, genetic alterations related to the tuberous sclerosis complex (TSC) have been demonstrated. Striking improvements in the understanding of the genetic basis of this autosomal dominant genetic disease are coupled to the understanding of the mechanisms that link the loss of TSC1 (9q34) or TSC2 (16p13.3) genes with the regulation of the Rheb/m-TOR/p70S6K pathway. These data have opened a new era in the comprehension of the pathogenesis of LAM and have also suggested new therapeutic strategies for this potentially lethal disease. OBJECTIVE To present and discuss the pathologic and molecular features of LAM within the spectrum of PEComas, providing a rational approach to their diagnosis. DATA SOURCES The published literature and personal experience. CONCLUSIONS The inclusion of LAM within the PEComa category is supported by a variety of biologic data and can significantly help in providing a comprehensive view of this interesting and clinically relevant group of lesions. The demonstration of molecular alterations of the mTOR pathway in LAM and other PEComas represents a rational basis for innovative therapeutic approaches with inhibitors of mTOR signaling.
Collapse
|
33
|
Identification of microphthalmia-associated transcription factor isoforms in dogs. Vet J 2009; 182:283-93. [DOI: 10.1016/j.tvjl.2008.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 11/22/2022]
|
34
|
Fujimura N, Taketo MM, Mori M, Korinek V, Kozmik Z. Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Dev Biol 2009; 334:31-45. [PMID: 19596317 DOI: 10.1016/j.ydbio.2009.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 12/23/2022]
Abstract
Wnt/beta-catenin signaling is highly active in the dorsal retinal pigment epithelium (RPE) during eye development. To study the role of Wnt/beta-catenin signaling in the RPE development we used a conditional Cre/loxP system in mice to inactivate or ectopically activate Wnt/beta-catenin signaling in the RPE. Inactivation of Wnt/beta-catenin signaling results in transdifferentiation of RPE to neural retina (NR) as documented by downregulation of RPE-specific markers Mitf and Otx2 and ectopic expression of NR-specific markers Chx10 and Rx, respectively. In contrast, ectopic activation of Wnt/beta-catenin signaling results in the disruption of the RPE patterning, indicating that precise spatial and temporal regulation of Wnt/beta-catenin signaling is required for normal RPE development. Using chromatin immunoprecipitation (ChIP) and reporter gene assays we provide evidence that Otx2 and RPE-specific isoform of Mitf, Mitf-H, are direct transcriptional targets of Wnt/beta-catenin signaling. Combined, our data suggest that Wnt/beta-catenin signaling plays an essential role in development of RPE by maintaining or inducing expression of Mitf and Otx2.
Collapse
Affiliation(s)
- Naoko Fujimura
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
35
|
Jungbluth AA. Serological reagents for the immunohistochemical analysis of melanoma metastases in sentinel lymph nodes. Semin Diagn Pathol 2008; 25:120-5. [PMID: 18697716 DOI: 10.1053/j.semdp.2008.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For the immunohistochemical analysis of melanoma, various serological reagents are available. Melanocyte differentiation markers are reactive with cells and tumors of melanocytic lineage. HMB45 to gp100 has been the most commonly used melanocyte differentiation marker. Recently it was complemented by reagents such as antibodies to Melan-A/MART-1 and tyrosinase. Other reagents, whose reactivity is not strictly confined to melanocyte differentiation antigens, are also commonly used. Among them, the most prominent is S100. Other reagents are D5 to MITF or PNL-2. The properties of these reagents are presented, and their usefulness as markers in the setting of metastatic melanoma in sentinel lymph nodes is discussed.
Collapse
Affiliation(s)
- Achim A Jungbluth
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| |
Collapse
|
36
|
Avdonin PP, Markitantova YV, Zinovieva RD, Mitashov VI. Expression of regulatory genes Px6, Otx2, Six3, and FGF2 during newt retina regeneration. BIOL BULL+ 2008. [DOI: 10.1134/s1062359008040043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Shiohara M, Shigemura T, Suzuki T, Tanaka M, Morii E, Ohtsu H, Shibahara S, Koike K. MITF-CM, a newly identified isoform of microphthalmia-associated transcription factor, is expressed in cultured mast cells. Int J Lab Hematol 2008; 31:215-26. [PMID: 18284417 DOI: 10.1111/j.1751-553x.2008.01028.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The microphthalmia-associated transcription factor (MITF) gene encodes a basic helix-loop-helix and leucin zipper protein. In this study, we identified a novel MITF isoform, MITF-CM, which possesses a unique amino terminus. Exon 1CM is located 84 kb upstream of the exon encoding the B1b domain. MITF-CM was expressed in the human mast cell line HMC-1, the human basophilic cell line KU812, and CB-derived mast cells cultured for 10 weeks as well as bone marrow mononuclear cells. Transient transfection of MITF-CM cDNA in COS-7 cells resulted in the expression of a 64-kDa protein, detected by Western blotting, and nuclear localization of the protein, detected by immunostaining. The transient cotransfection of a luciferase construct under the control of the tyrosinase promoter and MITF-CM cDNA increased luciferase activity threefold. In contrast, none of the MITF isoforms transactivated both the tryptase and chymase gene promoters, indicating differences in the gene transactivation system between humans and mice.
Collapse
Affiliation(s)
- M Shiohara
- Department of Pediatrics, Shinshu University School of Medicine, Asahi, Matsumoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hallsson JH, Haflidadóttir BS, Schepsky A, Arnheiter H, Steingrímsson E. Evolutionary sequence comparison of the Mitf gene reveals novel conserved domains. ACTA ACUST UNITED AC 2007; 20:185-200. [PMID: 17516926 DOI: 10.1111/j.1600-0749.2007.00373.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The microphthalmia-associated transcription factor (MITF) is a member of the MYC family of basic helix-loop-helix leucine zipper transcription factors. The corresponding gene was initially discovered in the mouse based on mutations which affect the development of several different cell types, including melanocytes and retinal pigment epithelium cells. Subsequently, it was shown to be associated with deafness and hypo-pigmentation disorders in humans. More recently, the gene has been shown to be critical in melanoma formation and to play a role in melanocyte stem cell maintenance. Thus, the mouse Mitf gene represents an important model system for the study of human disease as well as an interesting model for the study of transcription factor function in the organism. Here we use the evolutionary relationship of Mitf genes from numerous distantly related species, including vertebrates and invertebrates, to identify novel conserved domains in the Mitf protein and regions of possible functional importance in the 3' untranslated region. We also characterize the nine different 5' exons of the Mitf gene and identify a new 5' exon in the Drosophila Mitf gene. Our analysis sheds new light on the conservation of the Mitf gene and protein and opens the door for further functional analysis.
Collapse
Affiliation(s)
- Jón Hallsteinn Hallsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | | | | | | |
Collapse
|
39
|
Takeda K, Takahashi NH, Shibahara S. Neuroendocrine functions of melanocytes: beyond the skin-deep melanin maker. TOHOKU J EXP MED 2007; 211:201-21. [PMID: 17347546 DOI: 10.1620/tjem.211.201] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The skin is armored with "dead cells", the stratum corneum, and is continuously exposed to external stressful environments, such as atmospheric oxygen, solar radiations, and thermal and chemical insults. Melanocytes of neural crest origin are located in the skin, eye, inner ear, and leptomeninges. Melanin pigment in the skin is produced by melanocytes under the influence of various endogenous factors, derived from neighboring keratinocytes and underlying fibroblasts. The differentiation and functions of melanocytes are regulated at multiple processes, including transcription, RNA editing, melanin synthesis, and the transport of melanosomes to keratinocytes. Impairment at each step causes the pigmentary disorders in humans, with the historical example of oculocutaneous albinism. Moreover, heterozygous mutations in the gene coding for microphthalmia-associated transcription factor, a key regulator for melanocyte development, are associated with Waardenburg syndrome type 2, an auditory-pigmentary disorder. Sun tanning, melasma, aging spots (lentigo senilis), hair graying, and melanoma are well-known melanocyte-related pathologies. Melanocytes therefore have attracted much attention of many ladies, makeup artists and molecular biologists. More recently, we have shown that lipocalin-type prostaglandin D synthase (L-PGDS) is expressed in melanocytes but not in other skin cell types. L-PGDS generates prostaglandin D2 and also functions as an inter-cellular carrier protein for lipophilic ligands, such as bilirubin and thyroid hormones. Thus, melanocytes may exert hitherto unknown functions through L-PGDS and prostaglandin D2. Here we update the neuroendocrine functions of melanocytes and discuss the possible involvement of melanocytes in the control of the central chemosensor that generates respiratory rhythm.
Collapse
Affiliation(s)
- Kazuhisa Takeda
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
40
|
Murakami M, Iwata Y, Funaba M. Expression and transcriptional activity of alternative splice variants of Mitf exon 6. Mol Cell Biochem 2007; 303:251-7. [PMID: 17457519 DOI: 10.1007/s11010-007-9474-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 04/03/2007] [Indexed: 11/27/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf) is a tissue-specific transcription factor. At least nine distinct mouse isoform mRNAs are encoded by alternative splicing of the first exon of Mitf (Mitf-A, -B, -C, -D, -E, -H, -J, -M, and -mc), while exons 2-9 of all Mitf isoforms examined to date are identical. In addition, alternative splice variants of exon 6a encoding 6 amino acid proximal to the basic region of the protein are known in Mitf-A, -H, and -M. In this study, we identified alternative splice variants of exon 6a in other Mitf isoforms (Mitf-E, -J, and -mc) in melanocytes, mast cells, macrophages, and heart. We also compared the transcriptional activity of Mitf variants containing exon 6a to that of Mitf variants that did not contain exon 6a. PCR-RFLP analysis revealed that expression of Mitf with exon 6a was comparable with that of Mitf without exon 6a, irrespective of the specificity of the first exon, or cell type, although Mitf isoforms with different first exons were expressed in a cell type-dependent manner. Luciferase-based reporter assays revealed that transcription of Tyrosinase, which is known Mitf-regulated gene, was elicited more efficiently by expression of Mitf isoforms containing exon 6a, compared to isoforms that did not contain exon 6a. However, when transcription of Tyrp-1, Mmcp-6, and PAI-1 was examined, no significant differences were detected between Mitf isoforms with exon 6a and those without exon 6a, except for Tyrp-1 transcription by Mitf-D/E isoform. These results reveal a diverse pattern of gene expression and different transcriptional activities of Mitf isoforms, suggesting discrete regulation of gene transcription in specific tissues by Mitf.
Collapse
Affiliation(s)
- Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | | | | |
Collapse
|
41
|
Zou J, Beermann F, Wang J, Kawakami K, Wei X. The Fugu tyrp1 promoter directs specific GFP expression in zebrafish: tools to study the RPE and the neural crest-derived melanophores. ACTA ACUST UNITED AC 2007; 19:615-27. [PMID: 17083488 PMCID: PMC2920493 DOI: 10.1111/j.1600-0749.2006.00349.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In vertebrates, pigment cells account for a small percentage of the total cell population and they intermingle with other cell types. This makes it difficult to isolate them for analyzes of their functions in the context of development. To alleviate such difficulty, we generated two stable transgenic zebrafish lines (pt101 and pt102) that express green fluorescent protein (GFP) in melanophores under the control of the 1 kb Fugu tyrp1 promoter. In pt101, GFP is expressed in both retinal pigment epithelium (RPE) cells and the neural crest-derived melanophores (NCDM), whereas in pt102, GFP is predominately expressed in the NCDM. Our results indicate that the Fugu tyrp1 promoter can direct transgene expression in a cell-type-specific manner in zebrafish. In addition, our findings provide evidence supporting differential regulations of melanin-synthesizing genes in RPE cells and the NCDM in zebrafish. Utilizing the varying GFP expression levels in these fish, we have isolated melanophores via flow cytometry and revealed the capability of sorting the NCDM from RPE cells as well. Thus, these transgenic lines are useful tools to study melanophores in zebrafish.
Collapse
Affiliation(s)
- Jian Zou
- Department of Ophthalmology, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Friedrich Beermann
- ISREC (Swiss Institute for Experimental Cancer Research), National Center of Competence in Research (NCCR) Molecular Oncology, Chemin des Boveresses, 1066 Epalinges, Switzerland
| | - Jianxin Wang
- Znomics, Inc. 2611 S.W. 3rd Ave. Suite 200, Portland, OR 97201, USA
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Xiangyun Wei
- Department of Ophthalmology, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
- Corresponding author: Tel: 412-647-3537 Fax: 412-647-5880
| |
Collapse
|
42
|
Nakai N, Kishida T, Shin-Ya M, Imanishi J, Ueda Y, Kishimoto S, Mazda O. Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf. Gene Ther 2006; 14:357-65. [PMID: 17024102 DOI: 10.1038/sj.gt.3302868] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf) is critically involved in melanin synthesis as well as differentiation of cells of the melanocytic lineage. Some earlier studies suggested that Mitf is also essential in the survival of melanoma cells, but this notion remains controversial. We synthesized short interfering RNA (siRNA) duplexes corresponding to the mitf sequence and transfected them into B16 melanoma. Lipid-mediated transfection in vitro of Mitf-specific siRNA resulted in specific downregulation of Mitf and of the tyrosinase that is a transcriptional target of Mitf. This treatment also remarkably reduced the viability of melanoma cells by inducing apoptosis. To examine the potential feasibility of RNAi therapy against melanoma, B16 cells were subcutaneously injected into syngenic mice and siRNA was transfected into the pre-established tumor by means of electroporation. The Mitf-specific siRNA drastically reduced outgrowth of subcutaneous melanoma, while nonspecific siRNA failed to affect tumor progression. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-based analysis of tumor specimens demonstrated that the tumor cells transfected with Mitf-siRNA effectively underwent apoptosis in vivo. The present results indicate that Mitf plays important roles in melanoma survival. Intratumor electrotransfer of Mitf-specific siRNA may provide a powerful strategy for therapeutic intervention of malignant melanoma.
Collapse
Affiliation(s)
- N Nakai
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Yokoyama S, Takeda K, Shibahara S. Functional Difference of the SOX10 Mutant Proteins Responsible for the Phenotypic Variability in Auditory-Pigmentary Disorders. ACTA ACUST UNITED AC 2006; 140:491-9. [PMID: 16921166 DOI: 10.1093/jb/mvj177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Waardenburg syndrome (WS) is an inherited disorder, characterized by auditory-pigmentary abnormalities. SOX10 transcription factor and endothelin receptor type B (EDNRB) are responsible for WS type 4 (WS4), which also exhibits megacolon, while microphthalmia-associated transcription factor (MITF) is responsible for WS2, which is not associated with megacolon. Here, we investigated the functions of SOX10 mutant proteins using the target promoters, EDNRB and MITF. The SOX10 mutations chosen were E189X, Q377X, and 482ins6, which are associated with WS4, and S135T that is associated with Yemenite deaf-blind hypopigmentation syndrome (YDBS), which does not manifest megacolon. These SOX10 mutant proteins showed impaired transactivation activity on the MITF promoter. In contrast, E189X and Q377X proteins, each of which lacks its C-terminal portion, activated the EDNRB promoter, whereas no activation was detected with the SOX10 proteins mutated at the DNA-binding domain, 482ins6 and S135T. However, unlike 482ins6 protein, S135T protein synergistically activated EDNRB promoter with a transcription factor Sp1, indicating that Sp1 could compensate the impaired function of a SOX10 mutant protein. We suggest that the variability in transactivation ability of SOX10 mutant proteins may account for the different phenotypes between WS4 and YDBS and that Sp1 is a potential modifier gene of WS4.
Collapse
Affiliation(s)
- Satoru Yokoyama
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575
| | | | | |
Collapse
|
44
|
Kumasaka M, Sato S, Yajima I, Goding CR, Yamamoto H. Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf. Dev Dyn 2006; 234:523-34. [PMID: 16028277 DOI: 10.1002/dvdy.20505] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mitf is a central regulator of pigment cell development that is essential for the normal development of the melanocyte and retinal pigment epithelium (RPE) lineages. To understand better the role of Mitf, we have used the Xenopus laevis experimental system to allow a rapid examination of the role of Mitf in vivo. Here, we report the function of XlMitfalpha-M on melanophore development and melanization compared with that of Slug that is expressed in neural crest cells. Overexpression of XlMitfalpha-M led to an increase in melanophores that was partly contributed by an increase in Slug-positive cells, indicating that XlMitfalpha-M is a key regulator of melanocyte/melanophore development and melanization. Moreover, overexpression of a dominant-negative form of XlMitfalpha led to a decrease in the number of melanophores and induced abnormal melanoblast migration. We also observed an induction of ectopic RPE and extended RPE by overexpression of XlMitfalpha-M and possible interactions between XlMitfalpha and several eye-related genes essential for normal eye development.
Collapse
Affiliation(s)
- Mayuko Kumasaka
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | |
Collapse
|
45
|
Takeda K, Yokoyama S, Aburatani H, Masuda T, Han F, Yoshizawa M, Yamaki N, Yamamoto H, Eguchi N, Urade Y, Shibahara S. Lipocalin-type prostaglandin D synthase as a melanocyte marker regulated by MITF. Biochem Biophys Res Commun 2005; 339:1098-106. [PMID: 16337607 DOI: 10.1016/j.bbrc.2005.11.125] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 11/16/2005] [Indexed: 11/21/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) is responsible for differentiation of melanocytes. A recessive MITF mutant, black-eyed white Mitf(mi-bw) mouse, is characterized by white coat color and deafness, due to the lack of melanocytes in the skin and inner ears. By cDNA microarray analysis, we have identified lipocalin-type prostaglandin D synthase (L-PGDS), whose mRNA is undetectable in the homozygous Mitf(mi-bw) skin. Immunohistochemical analysis of wild-type mice identified the specific expression of L-PGDS in follicular melanocytes. L-PGDS mRNA is expressed in B16 mouse melanoma cells, but undetectable in human melanoma cell lines. RNA interference analysis against MITF suggests that L-PGDS expression is dependent on MITF in B16 melanoma cells. Furthermore, we have provided evidence that MITF is involved in the melanocyte lineage-specific transcription of the mouse L-PGDS gene. Thus, L-PGDS represents a newly identified melanocyte marker. MITF may modulate the production of prostaglandin D(2) by activating the L-PGDS gene in melanocytes.
Collapse
Affiliation(s)
- Kazuhisa Takeda
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hershey CL, Fisher DE. Genomic analysis of the Microphthalmia locus and identification of the MITF-J/Mitf-J isoform. Gene 2005; 347:73-82. [PMID: 15715979 DOI: 10.1016/j.gene.2004.12.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 11/03/2004] [Accepted: 12/06/2004] [Indexed: 11/17/2022]
Abstract
The deafness-pigmentary disorder Waardenburg Syndrome Type 2 is caused by mutations in the human Microphthalmia-associated transcription factor (MITF) gene. Multiple related deafness-pigmentary disorders result from mutations in genes that regulate MITF expression or its activity. Similarly in mouse, homozygous mutations in the Mitf gene disrupt the development of melanocytes as well as retinal pigment epithelial (RPE) cells, osteoclasts, mast cells, and NK cells. Because abnormalities in Mitf/MITF function are associated with numerous inherited disorders of mouse and man, a detailed understanding of its gene structure is important for both diagnostic and structure/function analyses. While at least eight distinct isoforms of MITF/Mitf have been identified to date, each differing in their promoter and initial exon usage, the positions of these exons and their order within the locus have yet to be fully defined. In this study, we provide a detailed description of the MITF/Mitf locus, identify corresponding human and mouse isoforms, and utilize an informatics-based approach to identify a novel ninth MITF/Mitf isoform, MITF-J/Mitf-J, which we show is expressed in multiple cell types. The MITF/Mitf locus is over 200 kb in length, with strong but imperfect exon conservation between human and mouse. MITF/Mitf tissue expression data are presented from multiple datasets, including EST expression patterns and isoform-specific RT-PCR. The majority of isoforms were found to be broadly expressed, with the M- and Mc-isoforms being tissue-restricted to melanocytes and mast cells, respectively. Consequently, a detailed characterization of this complex locus may help to identify additional unknown deafness-pigmentary syndrome mutations in human kindred and permit a better understanding of tissue-regulated expression that likely underlies divergent biological functions of this factor across multiple cell types.
Collapse
Affiliation(s)
- Christine L Hershey
- Division of Pediatric Hematology/Oncology and Melanoma Program in Medical Oncology, Dana-Farber Cancer Institute and Children's Hospital, Harvard Medical School, 44 Binney Street, Dana 630, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Abstract
The first mouse microphthalmia transcription factor (Mitf ) mutation was discovered over 60 years ago, and since then over 24 spontaneous and induced mutations have been identified at the locus. Mitf encodes a member of the Myc supergene family of basic helix-loop-helix zipper (bHLH-Zip) transcription factors. Like Myc, Mitf regulates gene expression by binding to DNA as a homodimer or as a heterodimer with another related family member, in the case of Mitf the Tfe3, Tfeb, and Tfec proteins. The study of Mitf has provided many insights into the biology of melanocytes and helped to explain how melanocyte-specific gene expression and signaling is regulated. The human homologue of MITF is mutated in patients with the pigmentary and deafness disorder Waardenburg Syndrome Type 2A (WS2A). The mouse Mitf mutations therefore serve as a model for the study of this human disease. Mutations and/or aberrant expression of several MITF family member genes have also been reported in human cancer, including melanoma (MITF), papillary renal cell carcinoma (TFE3, TFEB), and alveolar soft part sarcoma (TFE3). Genes in the MITF/TFE pathway may therefore also represent valuable therapeutic targets for the treatment of human cancer. Here we review recent developments in the analysis of Mitf function in vivo and in vitro and show how traditional genetics, modern forward genetics and in vitro biochemical analyses have combined to produce an intriguing story on the role and actions of a gene family in a living organism.
Collapse
Affiliation(s)
- Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, University of Iceland, 101 Reykjavik, Iceland.
| | | | | |
Collapse
|
48
|
Kumasaka M, Sato H, Sato S, Yajima I, Yamamoto H. Isolation and developmental expression of Mitf in Xenopus laevis. Dev Dyn 2004; 230:107-13. [PMID: 15108314 DOI: 10.1002/dvdy.20019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mitf (gene for microphthalmia-associated transcription factor) encodes a transcription factor of the basic/helix-loop-helix/leucine-zipper family and is a key regulator during the development of two different types of melanin-producing cell lineages, namely neural crest-derived melanocytes/melanophores, and the retinal pigment epithelium (RPE) differentiated from the outer layer of the eye cup. Mitf-deficient mice show a lack of melanocytes and small eyes caused by abnormal RPE development. An interesting feature of Mitf is the existence of multiple isoforms with different amino termini and their functions in the development of these melanin-producing pigment cells. In this study, we isolated two Mitf homologues (XlMitfalpha and XlMitfbeta) and their isoforms from Xenopus laevis. Alignment analysis of the amino acid sequences of the N-termini suggests that these isoforms are homologues of mouse Mitf-M (expressed specifically in the melanocyte lineage) and Mitf-A (strongly expressed in the RPE, although this expression is ubiquitous). In Xenopus, XlMitfalpha is strongly expressed in the melanophore lineage (especially in premigratory melanoblasts) and the presumptive RPE and the epiphysis, in which melanin-producing cells differentiate in some vertebrates. Conservation of the Mitf isoforms expected to possess specific functions in the development of melanin-producing cells and of the expressions in such cell types in Xenopus suggest that XlMitf plays a central role in the development of melanin-producing cell lineages, and that, as in mice and humans, most of the signaling molecules or transcription factors implicated genetically in the development of melanin-producing cell lineages affect either Mitf expression or its function (Goding [2000] Genes Dev. 14:1712-1728).
Collapse
Affiliation(s)
- Mayuko Kumasaka
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | |
Collapse
|
49
|
Horsford DJ, Nguyen MTT, Sellar GC, Kothary R, Arnheiter H, McInnes RR. Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development 2004; 132:177-87. [PMID: 15576400 DOI: 10.1242/dev.01571] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During vertebrate eye development, the cells of the optic vesicle (OV) become either neuroretinal progenitors expressing the transcription factor Chx10, or retinal pigment epithelium (RPE) progenitors expressing the transcription factor Mitf. Chx10 mutations lead to microphthalmia and impaired neuroretinal proliferation. Mitf mutants have a dorsal RPE-to-neuroretinal phenotypic transformation, indicating that Mitf is a determinant of RPE identity. We report here that Mitf is expressed ectopically in the Chx10(or-J/or-J) neuroretina (NR), demonstrating that Chx10 normally represses the neuroretinal expression of Mitf. The ectopic expression of Mitf in the Chx10(or-J/or-J) NR deflects it towards an RPE-like identity; this phenotype results not from a failure of neuroretinal specification, but from a partial loss of neuroretinal maintenance. Using Chx10 and Mitf transgenic and mutant mice, we have identified an antagonistic interaction between Chx10 and Mitf in regulating retinal cell identity. FGF (fibroblast growth factor) exposure in a developing OV has also been shown to repress Mitf expression. We demonstrate that the repression of Mitf by FGF is Chx10 dependent, indicating that FGF, Chx10 and Mitf are components of a pathway that determines and maintains the identity of the NR.
Collapse
Affiliation(s)
- D Jonathan Horsford
- Program in Developmental Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Seethala RR, Goldblum JR, Hicks DG, Lehman M, Khurana JS, Pasha TL, Zhang PJ. Immunohistochemical evaluation of microphthalmia-associated transcription factor expression in giant cell lesions. Mod Pathol 2004; 17:1491-6. [PMID: 15205688 DOI: 10.1038/modpathol.3800211] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microphthalmia-associated transcription factor (Mitf), a member of the helix-loop-helix transcription factor subfamily, normally expressed in mononuclear and multinucleated osteoclasts, is involved in the terminal differentiation of osteoclasts. Dysfunction of osteoclast activity resulting from abnormal Mitf expression has been implicated in osteopetrosis. Numerous other giant cells of various types including osteoclast-like giant cells seen in various tumors, traditionally thought to be monocyte derived, are seen in a variety of bone and extraosseous lesions. Using a monoclonal antibody with a standard immunohistochemical technique on paraffin sections, we evaluated expression of Mitf in 89 various giant cell lesions including giant cell tumor of bone (n26), giant cell tumor of tendon sheath/pigmented villonodular synovitis (n24), giant cell reparative granuloma (n3), aneurysmal bone cysts (n11), chondroblastomas (n7), foreign body giant cell reaction (n10), and sarcoidosis (n8). We also evaluated three cases of osteopetrosis and 27 various tissues without monocyte-derived giant cells (nine bone marrows, nine products of conception, seven lymph nodes with sinus histiocytosis, one granulation tissue and one thymus). Nuclear Mitf immunoreactivity was evaluated. Mitf was variably expressed in the monocyte-derived giant cells and/or the adjacent mononuclear cells/histiocytes in 23 (89%) giant cell tumors of the bone, 23 (96%) giant cell tumors of tendon sheath/pigmented villonodular synovitis, three (100%) giant cell reparative granuloma, eight (73%) aneurysmal bone cysts, five (71%) chondroblastomas, eight (80%) foreign-body giant cell reactions, and six (75%) sarcoidoses. No Mitf immunoreactivity was detected in cases of osteopetrosis and giant cells of nonmonocyte origin. Mitf immunoreactivity is rare in tissues with rich mononuclear cells/histiocytes but no monocyte derived giant cells. These findings support the notion that giant cells in giant cell lesions are likely derived from adjacent mononuclear cells and Mitf might play a role in the multinucleation process of such cells.
Collapse
Affiliation(s)
- Raja R Seethala
- University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|