1
|
Mookerjee‐Basu J, Hooper R, Gross S, Schultz B, Go CK, Samakai E, Ladner J, Nicolas E, Tian Y, Zhou B, Zaidi MR, Tourtellotte W, He S, Zhang Y, Kappes DJ, Soboloff J. Suppression of Ca 2+ signals by EGR4 controls Th1 differentiation and anti-cancer immunity in vivo. EMBO Rep 2020; 21:e48904. [PMID: 32212315 PMCID: PMC7202224 DOI: 10.15252/embr.201948904] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
While the zinc finger transcription factors EGR1, EGR2, and EGR3 are recognized as critical for T-cell function, the role of EGR4 remains unstudied. Here, we show that EGR4 is rapidly upregulated upon TCR engagement, serving as a critical "brake" on T-cell activation. Hence, TCR engagement of EGR4-/- T cells leads to enhanced Ca2+ responses, driving sustained NFAT activation and hyperproliferation. This causes profound increases in IFNγ production under resting and diverse polarizing conditions that could be reversed by pharmacological attenuation of Ca2+ entry. Finally, an in vivo melanoma lung colonization assay reveals enhanced anti-tumor immunity in EGR4-/- mice, attributable to Th1 bias, Treg loss, and increased CTL generation in the tumor microenvironment. Overall, these observations reveal for the first time that EGR4 is a key regulator of T-cell differentiation and function.
Collapse
Affiliation(s)
| | - Robert Hooper
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Scott Gross
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Christina K Go
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Elsie Samakai
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | | | | | - Yuanyuan Tian
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | - Bo Zhou
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Warren Tourtellotte
- Department of Pathology and Laboratory MedicineCedars Sinai Medical CenterWest HollywoodCAUSA
| | - Shan He
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | | | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
2
|
Göl MF, Erdoğan FF, Bayramov KK, Mehmetbeyoğlu E, Özkul Y. Assessment of genes involved in behavior, learning, memory, and synaptic plasticity following status epilepticus in rats. Epilepsy Behav 2019; 98:101-109. [PMID: 31326869 DOI: 10.1016/j.yebeh.2019.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE In this study, it was aimed to evaluate cognitive and behavioral changes after status epilepticus (SE) induced by pentylenetetrazole in immature rats via Morris water maze and open-field area tests and to assess alterations in expression of 84 key genes involved in synaptic plasticity after SE. METHOD The study was conducted on 30 immature rats (12-days old). The rats were assigned into groups as control and experiment (SE) groups. The SE was induced by pentylenetetrazole in 12-days old rats. In addition, experiment group was divided into two groups as mature (n = 8) and immature SE (n = 8) subgroups. Again, the control group was divided into two groups as mature (n = 7) and immature control (n = 7) subgroups. Hippocampal tissue samples were prepared, and expression of 84 key genes involved in synaptic plasticity was assessed in Genome and Stem Cell Center of Erciyes University before behavioral tests in immature rats (22-days old) and after open-filed area and Morris water maze tests in mature rats (72-days old) in both experiment and control groups. RESULTS No significant difference was detected in behavioral tests assessing spatial memory and learning among groups. Significant differences were detected, ARC (activity-regulated cytoskeleton-associated protein), BDNF (brain-derived neurotrophic factor), MAPK1 (mitogen-activated protein kinase 1), NR4A1 (nuclear receptor subfamily 4 group A member 1), PPP3CA (protein phosphatase 3 catalytic subunit alpha), RGS2 (regulator of G protein signaling 2), and TNF (tumor necrosis factor) gene expressions between control and experiment groups in immature rats whereas in ADCY8 (adenylate cyclase 8), BDNF (brain-derived neurotrophic factor), EGR4 (early growth response 4), and KIF17 (kinesin family member 17) gene expressions between control and experiment groups in mature rats. DISCUSSION In this study, differences detected in gene expressions of synaptic plasticity after SE indicate in which steps of synaptic plasticity may be problematic in epileptogenesis. The gene expressions in this study may be considered as potential biomarkers; however, epileptogenesis is a dynamic process and cannot be explained through a single mechanism. Future studies on epileptogenesis and studies specifically designed to evaluate genes detected in our study will further elucidate synaptic plasticity in epilepsy and epileptogenesis.
Collapse
Affiliation(s)
- Mehmet Fatih Göl
- Department of Neurology, Kayseri City Hospital, Kayseri, Turkey.
| | - Füsun Ferda Erdoğan
- Department of Neurology, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | | | | | - Yusuf Özkul
- Department of Medical Genetics, Erciyes University Faculty of Medicine, Kayseri, Turkey
| |
Collapse
|
3
|
EGR-mediated control of STIM expression and function. Cell Calcium 2018; 77:58-67. [PMID: 30553973 DOI: 10.1016/j.ceca.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022]
Abstract
Ca2+ is a ubiquitous, dynamic and pluripotent second messenger with highly context-dependent roles in complex cellular processes such as differentiation, proliferation, and cell death. These Ca2+ signals are generated by Ca2+-permeable channels located on the plasma membrane (PM) and endoplasmic reticulum (ER) and shaped by PM- and ER-localized pumps and transporters. Differences in the expression of these Ca2+ homeostasis proteins contribute to cell and context-dependent differences in the spatiotemporal organization of Ca2+ signals and, ultimately, cell fate. This review focuses on the Early Growth Response (EGR) family of zinc finger transcription factors and their role in the transcriptional regulation of Stromal Interaction Molecule (STIM1), a critical regulator of Ca2+ entry in both excitable and non-excitable cells.
Collapse
|
4
|
Promoter-level expression clustering identifies time development of transcriptional regulatory cascades initiated by ErbB receptors in breast cancer cells. Sci Rep 2015; 5:11999. [PMID: 26179713 PMCID: PMC4503981 DOI: 10.1038/srep11999] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/14/2015] [Indexed: 12/26/2022] Open
Abstract
The analysis of CAGE (Cap Analysis of Gene Expression) time-course has been proposed by the FANTOM5 Consortium to extend the understanding of the sequence of events facilitating cell state transition at the level of promoter regulation. To identify the most prominent transcriptional regulations induced by growth factors in human breast cancer, we apply here the Complexity Invariant Dynamic Time Warping motif EnRichment (CIDER) analysis approach to the CAGE time-course datasets of MCF-7 cells stimulated by epidermal growth factor (EGF) or heregulin (HRG). We identify a multi-level cascade of regulations rooted by the Serum Response Factor (SRF) transcription factor, connecting the MAPK-mediated transduction of the HRG stimulus to the negative regulation of the MAPK pathway by the members of the DUSP family phosphatases. The finding confirms the known primary role of FOS and FOSL1, members of AP-1 family, in shaping gene expression in response to HRG induction. Moreover, we identify a new potential regulation of DUSP5 and RARA (known to antagonize the transcriptional regulation induced by the estrogen receptors) by the activity of the AP-1 complex, specific to HRG response. The results indicate that a divergence in AP-1 regulation determines cellular changes of breast cancer cells stimulated by ErbB receptors.
Collapse
|
5
|
Cheng MC, Chuang YA, Lu CL, Chen YJ, Luu SU, Li JM, Hsu SH, Chen CH. Genetic and functional analyses of early growth response (EGR) family genes in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:149-55. [PMID: 22691714 DOI: 10.1016/j.pnpbp.2012.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Early growth response genes (EGR1, 2, 3, and 4) encode a family of nuclear proteins that function as transcriptional regulators. They are involved in the regulation of synaptic plasticity, learning, and memory, and are implicated in the pathogenesis of schizophrenia. METHODS We conducted a genetic association analysis of 14 SNPs selected from the EGR1, 2, 3, and 4 genes of 564 patients with schizophrenia and 564 control subjects. We also conducted Western blot analysis and promoter activity assay to characterize the EGR genes associated with schizophrenia RESULTS We did not detect a true genetic association of these 14 SNPs with schizophrenia in this sample. However, we observed a nominal over-representation of C/C genotype of rs9990 of EGR2 in female schizophrenia as compared to female control subjects (p=0.012, uncorrected for multiple testing). Further study showed that the average mRNA level of the EGR2 gene in the lymphoblastoid cell lines of female schizophrenia patients was significantly higher than that in female control subjects (p=0.002). We also detected a nominal association of 4 SNPs (rs6747506, rs6718289, rs2229294, and rs3813226) of the EGR4 gene that form strong linkage disequilibrium with schizophrenia in males. Reporter gene assay showed that the haplotype T-A derived from rs6747506 and rs6718289 at the promoter region had significantly reduced promoter activity compared with the haplotype A-G. CONCLUSION Our data suggest a tendency of gender-specific association of EGR2 and EGR4 in schizophrenia, with an elevated expression of EGR2 in lympoblastoid cell lines of female schizophrenia patients and a reduced EGR4 gene expression in male schizophrenia patients.
Collapse
Affiliation(s)
- Min-Chih Cheng
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Veterans Hospital, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Rothe K, Solinski HJ, Boekhoff I, Gudermann T, Breit A. Morphine activates the E twenty six-like transcription factor-1/serum response factor pathway via extracellular signal-regulated kinases 1/2 in F11 cells derived from dorsal root ganglia neurons. J Pharmacol Exp Ther 2012; 342:41-52. [PMID: 22454534 DOI: 10.1124/jpet.112.192757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Morphine-induced signaling via opioid receptors (ORs) in dorsal root ganglia (DRG) neurons, the spinal cord, and various brain regions has been shown to modulate gene activity. Hitherto, little attention has been paid to extracellular signal-regulated kinases-1/2 (ERK-1/2)-mediated activation of the serum response factor (SRF) and ternary complex factors (TCFs) such as the E twenty six-like transcription factor-1 (ELK-1) in this context. Using TCF/SRF-dependent reporter gene constructs, a specific ERK-1/2 inhibitor and a dominant-negative ELK-1 mutant, we show herein that morphine activates ELK-1 via ERK-1/2 in DRG-derived F11 cells endogenously expressing μ and δ ORs. Previous studies with glioma cell lines such as NG108-15 cells attributed morphine-induced gene expression to the activation of the cAMP-responsive element binding protein (CREB). Thus, we also analyzed morphine-dependent activation of CREB in F11 and NG108-15 cells. In contrast to the CREB stimulation found in NG108-15 cells, we observed an inhibitory effect of morphine in F11 cells, indicating cell type-specific regulation of CREB by morphine. To obtain data about putative target genes of morphine-induced ELK-1/SRF activation, we analyzed mRNA levels of 15 ELK-1/SRF-dependent genes in cultured rat DRG neurons and F11 cells. We identified the early growth response protein-4 (EGR-4) as the strongest up-regulated gene in both cell types and observed ELK-1 activity-dependent activation of an EGR-4-driven reporter in F11 cells. Overall, we reveal an important role of ELK-1 for morphine-dependent gene induction in DRG-derived cells and propose that ELK-1 and EGR-4 contribute to the effects of morphine on neuronal plasticity.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- Early Growth Response Transcription Factors/genetics
- Early Growth Response Transcription Factors/metabolism
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- MAP Kinase Signaling System/drug effects
- Mice
- Morphine/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Signal Transduction/drug effects
- Ternary Complex Factors/genetics
- Ternary Complex Factors/metabolism
- Transcription, Genetic/drug effects
- Transcriptional Activation/drug effects
- Up-Regulation/drug effects
- ets-Domain Protein Elk-1/genetics
- ets-Domain Protein Elk-1/metabolism
Collapse
Affiliation(s)
- Kathrin Rothe
- Walther-Straub-Institut of Pharmacology and Toxicology, Ludwig-Maximilians University of Munich, Goethestrasse 33, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
7
|
Hogarth CA, Mitchell D, Small C, Griswold M. EGR4 displays both a cell- and intracellular-specific localization pattern in the developing murine testis. Dev Dyn 2010; 239:3106-14. [PMID: 20925118 PMCID: PMC3218559 DOI: 10.1002/dvdy.22442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spermatogenesis is an intricately regulated process of cellular differentiation transforming spermatogonial stem cells to spermatozoa. Elimination of the transcription factor EGR4 generates subfertile male mice yet the expression and function of EGR4 in the mammalian testis has yet to be fully investigated. We performed in situ hybridization and immunofluorescence to identify Egr4 transcript and protein localization in the developing murine testis. EGR4 was detected in both germ and somatic cells in the neonatal testis but was specific to germ cells inside the seminiferous epithelium from juvenile development onward. EGR4 also displayed distinct intracellular localization patterns within specific cell populations of the testis. In addition, Egr4-deficient testis tubules regress from relatively normal to Sertoli cell and undifferentiated spermatogonia only over time. Taken together, these data suggest that Egr4 may regulate spermatogenesis at multiple steps, with roles in the dividing Sertoli cells, peritubular myoid cells, and the meiotic and elongating haploid germ cell populations.
Collapse
Affiliation(s)
- Cathryn A. Hogarth
- School of Molecular Biosciences and Centre for Reproductive Biology, Washington State University, Pullman, Washington
| | - Debra Mitchell
- School of Molecular Biosciences and Centre for Reproductive Biology, Washington State University, Pullman, Washington
| | - Christopher Small
- School of Molecular Biosciences and Centre for Reproductive Biology, Washington State University, Pullman, Washington
| | - Michael Griswold
- School of Molecular Biosciences and Centre for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
8
|
Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells. BMC Genomics 2009; 10:545. [PMID: 19925682 PMCID: PMC2785842 DOI: 10.1186/1471-2164-10-545] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 11/20/2009] [Indexed: 12/29/2022] Open
Abstract
Background Sharing a common ErbB/HER receptor signaling pathway, heregulin (HRG) induces differentiation of MCF-7 human breast cancer cells while epidermal growth factor (EGF) elicits proliferation. Although cell fates resulting from action of the aforementioned ligands completely different, the respective gene expression profiles in early transcription are qualitatively similar, suggesting that gene expression during late transcription, but not early transcription, may reflect ligand specificity. In this study, based on both the data from time-course quantitative real-time PCR on over 2,000 human transcription factors and microarray of all human genes, we identified a series of transcription factors which may control HRG-specific late transcription in MCF-7 cells. Results We predicted that four transcription factors including EGR4, FRA-1, FHL2, and DIPA should have responsibility of regulation in MCF-7 cell differentiation. Validation analysis suggested that one member of the activator protein 1 (AP-1) family, FOSL-1 (FRA-1 gene), appeared immediately following c-FOS expression, might be responsible for expression of transcription factor FHL2 through activation of the AP-1 complex. Furthermore, RNAi gene silencing of FOSL-1 and FHL2 resulted in increase of extracellular signal-regulated kinase (ERK) phosphorylation of which duration was sustained by HRG stimulation. Conclusion Our analysis indicated that a time-dependent transcriptional regulatory network including c-FOS, FRA-1, and FHL2 is vital in controlling the ERK signaling pathway through a negative feedback loop for MCF-7 cell differentiation.
Collapse
|
9
|
Lohoff M, Giaisi M, Köhler R, Casper B, Krammer PH, Li-Weber M. Early growth response protein-1 (Egr-1) is preferentially expressed in T helper type 2 (Th2) cells and is involved in acute transcription of the Th2 cytokine interleukin-4. J Biol Chem 2009; 285:1643-52. [PMID: 19915002 DOI: 10.1074/jbc.m109.011585] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The early growth response gene product Egr-1 has been shown to have great impact on growth, proliferation, and differentiation in a wide variety of cells, including T cells. In this study, we show that Egr-1 is rapidly induced upon T cell stimulation and is expressed predominantly in T helper type 2 (Th2) compared with type 1 (Th1) cells. We further investigate the role of Egr-1 in regulation of the Th2 cytokine interleukin-4 (IL-4) expression. IL-4 is a key Th2 cytokine that regulates humoral immunity and also causes allergic inflammation. Regulation of IL-4 gene transcription in Th2 cells has been shown to be controlled by multiple T cell receptor (TCR)-induced transcription factors. However, only a few transcription factors were shown to be selectively induced in differentiated Th2 cells in response to TCR stimulation. Chromatin immunoprecipitation analysis demonstrates that Egr-1 binds to the IL-4 promoter in vivo upon T cell stimulation. Ectopic expression of Egr-1 enhances endogenous IL-4 mRNA expression and elevates IL-4 promoter activity. We also show that Egr-1, nuclear factor of activated T cell, and NF-kappaB cooperatively bind to an NFAT/NF-kappaB-overlapping IL-4 enhancer element and activate the IL-4 promoter synergistically. Furthermore, we show that antisense oligonucleotides that knock down Egr-1 expression attenuate IL-4 transcription. Our study provides the first evidence that Egr-1 protein is differentially expressed in Th1 and Th2 cells and is involved in the acute phase of the IL-4 transcription in response to TCR stimulation.
Collapse
Affiliation(s)
- Michael Lohoff
- Tumor Immunology Program D030, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Markkanen M, Uvarov P, Airaksinen MS. Role of upstream stimulating factors in the transcriptional regulation of the neuron-specific K-Cl cotransporter KCC2. Brain Res 2008; 1236:8-15. [PMID: 18755167 DOI: 10.1016/j.brainres.2008.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 11/17/2022]
Abstract
The neuron-specific K-Cl cotransporter (KCC2) maintains a low intracellular Cl(-) concentration in neurons and is necessary for fast hyperpolarizing responses to GABA and glycine. The mammalian KCC2 gene (alias Slc12a5) generates two neuron-specific isoforms by using alternative promoters and first exons. Expression of the major isoform, KCC2b, is strongly upregulated during neuronal maturation, and is modulated by neuronal activity, trauma, and neurotrophic factors. In the present study, we have focused on the regulatory influence of the upstream stimulating factors USF1 and USF2 via an E-box control element in the KCC2b promoter (E-boxKCC2b). Electrophoretic mobility shift assay in cell lines and chromatin immunoprecipitation in neurons demonstrated binding of endogenous USF1 and USF2 to the E-box(KCC2b) element. Mutation of the E-boxKCC2b site resulted in reduced KCC2b promoter activity in cell lines and cortical neurons. Overexpression of a dominant-negative form of USF confirmed the involvement of endogenous USF proteins in the regulation of the KCC2b gene. The results suggest that binding of USF proteins to the E-boxKCC2b may contribute to the upregulation of KCC2b gene expression in developing brain.
Collapse
Affiliation(s)
- Marika Markkanen
- Neuroscience Center, Viikinkaari 4, 00014 University of Helsinki, Finland
| | | | | |
Collapse
|
11
|
Barbolina MV, Adley BP, Ariztia EV, Liu Y, Stack MS. Microenvironmental regulation of membrane type 1 matrix metalloproteinase activity in ovarian carcinoma cells via collagen-induced EGR1 expression. J Biol Chem 2007; 282:4924-4931. [PMID: 17158885 DOI: 10.1074/jbc.m608428200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Late stage ovarian cancer is characterized by disseminated intraperitoneal metastasis as secondary lesions anchor in the type I and III collagen-rich submesothelial matrix. Ovarian carcinoma cells preferentially adhere to interstitial collagen, and collagen-induced integrin clustering up-regulates the expression of the transmembrane collagenase membrane type 1 matrix metalloproteinase (MT1-MMP). Collagenolytic activity is important in intraperitoneal metastasis, potentiating invasion through the mesothelial cell layer and colonization of the submesothelial collagen-rich matrix. The objective of this study was to elucidate a potential mechanistic link between collagen adhesion and MT1-MMP expression. Our results indicate that culturing cells on three-dimensional collagen gels, but not thin layer collagen or synthetic three-dimensional hydrogels, results in rapid induction of the transcription factor EGR1. Integrin signaling through a SRC kinase-dependent pathway is necessary for EGR1 induction. Silencing of EGR1 expression using small interfering RNA abrogated collagen-induced MT1-MMP expression and inhibited cellular invasion of three-dimensional collagen gels. These data support a model for intraperitoneal metastasis wherein collagen adhesion and clustering of collagen binding integrins activates integrin-mediated signaling via SRC kinases to induce expression of EGR1, resulting in transcriptional activation of the MT1-MMP promoter and subsequent MT1-MMP-catalyzed collagen invasion. This model highlights the role of unique interactions between ovarian carcinoma cells and interstitial collagens in the ovarian tumor microenvironment in inducing gene expression changes that potentiate intraperitoneal metastatic progression.
Collapse
Affiliation(s)
- Maria V Barbolina
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611
| | - Brian P Adley
- Pathology, Northwestern University Feinberg School of Medicine and the Chicago, Illinois 60611
| | - Edgardo V Ariztia
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611
| | - Yueying Liu
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611
| | - M Sharon Stack
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611; Cell & Molecular Biology and Chicago, Illinois 60611; Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611.
| |
Collapse
|
12
|
de Mestre AM, Soe-Htwe T, Sutcliffe EL, Rao S, Pagler EB, Hornby JR, Hulett MD. Regulation of mouseHeparanasegene expression in T lymphocytes and tumor cells. Immunol Cell Biol 2007; 85:205-14. [PMID: 17213834 DOI: 10.1038/sj.icb.7100022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heparanase (HPSE) is an endoglycosidase that cleaves heparan sulfate (HS) and plays an important role in tumor metastasis, angiogenesis and inflammation. The regulation of HPSE expression and function is tightly controlled and the increasing use of the mouse as an animal model to define the role of HPSE in many physiological and pathological settings, makes understanding the regulatory mechanisms of HPSE in this species of fundamental importance. However, the expression distribution of the mouse Hpse gene and the mechanisms that regulate its transcription are poorly defined. In this study, the mouse Hpse gene was determined to encode for two mRNA transcripts of 1.9 and 3.2 kb in length with identical open reading frames that showed similar tissue expression distribution to the human HPSE. The mouse Hpse promoter was cloned and a 478-bp minimal promoter was identified that contained regulatory elements responsible for both basal promoter activity in mouse tumor cells as well as inducible activity in T cells. Mutagenesis and transactivation studies identified a functional site in the minimal promoter region for the transcription factor Early growth response gene 1 (Egr1). Interestingly, Egr1 acted differentially in mouse tumor cells, functioning in an activating or repressive manner in breast carcinoma or melanoma cells, respectively. Furthermore, the proximal region of the promoter, identified as important in the regulation of Hpse transcription, was shown to become accessible in T cells upon cell activation. Significantly, the maximal accessibility of the promoter occurred at 16 h post-stimulation, which correlated with the induction kinetics of Hpse mRNA expression. In summary, this study demonstrates that mouse Hpse is expressed and regulated in a similar manner to human HPSE and also provides some novel insights into mechanisms of Hpse gene regulation that are likely to be relevant to control of the human gene.
Collapse
Affiliation(s)
- Amanda M de Mestre
- Cancer and Vascular Biology Group, Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Uvarov P, Ludwig A, Markkanen M, Rivera C, Airaksinen MS. Upregulation of the neuron-specific K+/Cl- cotransporter expression by transcription factor early growth response 4. J Neurosci 2006; 26:13463-73. [PMID: 17192429 PMCID: PMC6674722 DOI: 10.1523/jneurosci.4731-06.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 11/23/2006] [Accepted: 11/23/2006] [Indexed: 11/21/2022] Open
Abstract
The expression of the neuron-specific K+/Cl- cotransporter (KCC2) is restricted to the CNS and is strongly upregulated during neuronal maturation, yielding a low intracellular chloride concentration that is required for fast synaptic inhibition in adult neurons. To elucidate the mechanisms of KCC2 gene regulation, we analyzed the KCC2 (alias Slc12a5) promoter and proximal intron-1 regions and revealed 10 candidate transcription factor binding sites that are highly conserved in mammalian KCC2 genes. Here we focus on one of these factors, early growth response 4 (Egr4), which shows a similar developmental upregulation in CNS neurons as KCC2. KCC2 luciferase reporter constructs containing the Egr4 site (Egr4(KCC2)) were strongly induced by Egr4 overexpression in neuro-2a neuroblastoma cells and in cultured neurons. Egr4-mediated induction was decreased significantly by point-mutating the Egr4(KCC2). Insertion of Egr4(KCC2) into the KCC2 basal promoter in the endogenous reverse, but not in the opposite, orientation reestablished Egr4-mediated induction. Electrophoretic mobility shift assay confirmed specific Egr4 binding to Egr4(KCC2). Interference RNA-mediated knock-down of Egr4 and a dominant-negative isoform of Egr4 significantly inhibited KCC2 reporter induction and endogenous KCC2 expression in cultured neurons. Together, the results indicate an important role for Egr4 in the developmental upregulation of KCC2 gene expression.
Collapse
Affiliation(s)
| | - Anastasia Ludwig
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | - Claudio Rivera
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
14
|
Usskilat C, Skerka C, Saluz HP, Hänel F. The transcription factor Egr-1 is a regulator of the human TopBP1 gene. Gene 2006; 380:144-50. [PMID: 16831524 DOI: 10.1016/j.gene.2006.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 05/15/2006] [Accepted: 05/15/2006] [Indexed: 10/24/2022]
Abstract
The human topoisomerase IIbeta binding protein 1 (TopBP1) has been reported to be involved in DNA replication, in DNA damage checkpoints and in apoptosis. Detailed analysis of the TopBP1 promoter revealed that the early growth response protein-1 (Egr-1) induces this promoter. Binding of Egr-1 to the TopBP1 promoter was determined to region -50 to -18 using EMSA and ChIP technology. Furthermore, deletion of the E2F transcription factor binding sites or mutation of the Egr-1 transcription factor binding sites lead to reduced stimulation of the TopBP1 promoter by Egr-1. These data indicate a cooperative regulation of the TopBP1 promoter by Egr-1 and E2F.
Collapse
Affiliation(s)
- Christian Usskilat
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knoell Institute), Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
15
|
Wieland GD, Nehmann N, Müller D, Eibel H, Siebenlist U, Sühnel J, Zipfel PF, Skerka C. Early growth response proteins EGR-4 and EGR-3 interact with immune inflammatory mediators NF-κB p50 and p65. J Cell Sci 2005; 118:3203-12. [PMID: 16014385 DOI: 10.1242/jcs.02445] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we characterize the basis for the T-cell-specific activity of the human zinc-finger protein early growth response factor 4 (EGR-4). A yeast two-hybrid screen showed interaction of EGR-4 with NF-κB p50. Using recombinant proteins, stable physical complex formation was confirmed for EGR-4 and EGR-3 with p50 and with p65 using glutathione-S-transferase pull-down assays and surface-plasmon-resonance and peptide-spot analyses. In vivo interaction of EGR-4 and EGR-3 with NF-κB p65 was demonstrated by immunoprecipitation experiments and fluorescence-resonance-energy transfer (FRET) analysis showing interaction in the nucleus of transfected Jurkat T cells. In transfection assays, EGR-p50 complexes were transcriptionally inactive and EGR-p65 complexes strongly activated transcription of the promoters of the human genes encoding the cytokines interleukin 2, tissue necrosis factor α and ICAM-1. The EGR-p65 complexes increased reporter-gene activity about 100-fold and thus exceeded the transcriptional activities of the p65 homodimer and the p65/p50 heterodimers. The major interaction domain for p65 was localized within the third zinc finger of EGR-4 using deletion mutants for pull-down assays and peptide-spot assays. By computer modeling, this interaction domain was localized to an α-helical region and shown to have the central amino acids surface exposed and thus accessible for interaction. In summary, in T cells, the two zinc-finger proteins EGR-4 and EGR-3 interact with the specific nuclear mediator NF-κB and control transcription of genes encoding inflammatory cytokines.
Collapse
Affiliation(s)
- Gerhard D Wieland
- Department of Infection Biology, Leibniz-Institute for Natural Products, Research and Infection Biology, Hans-Knoell-Institute, Butenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Jorgensen JS, Quirk CC, Nilson JH. Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone. Endocr Rev 2004; 25:521-42. [PMID: 15294880 DOI: 10.1210/er.2003-0029] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Normal reproductive function in mammals requires precise control of LH synthesis and secretion by gonadotropes of the anterior pituitary. Synthesis of LH requires expression of two genes [alpha-glycoprotein subunit (alphaGSU) and LHbeta] located on different chromosomes. Hormones from the hypothalamus and gonads modulate transcription of both genes as well as secretion of the biologically active LH heterodimer. In males and females, the transcriptional tone of the genes encoding alphaGSU and LHbeta reflects dynamic integration of a positive signal provided by GnRH from hypothalamic neurons and negative signals emanating from gonadal steroids. Although alphaGSU and LHbeta genes respond transcriptionally in the same manner to changes in hormonal input, different combinations of regulatory elements orchestrate their response. These hormone-responsive regulatory elements are also integral members of much larger combinatorial codes responsible for targeting expression of alphaGSU and LHbeta genes to gonadotropes. In this review, we will profile the genomic landscape of the promoter-regulatory region of both genes, depicting elements and factors that contribute to gonadotrope-specific expression and hormonal regulation. Within this context, we will highlight the different combinatorial codes that control transcriptional responses, particularly those that mediate the opposing effects of GnRH and one of the sex steroids, androgens. We will use this framework to suggest that GnRH and androgens attain the same transcriptional endpoint through combinatorial codes unique to alphaGSU and LHbeta. This parallelism permits the dynamic and coordinate regulation of two genes that encode a single hormone.
Collapse
Affiliation(s)
- Joan S Jorgensen
- Department of Veterinary Biosciences, University of Illinois, Urbana 61802, USA
| | | | | |
Collapse
|
17
|
Decker EL, Nehmann N, Kampen E, Eibel H, Zipfel PF, Skerka C. Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression. Nucleic Acids Res 2003; 31:911-21. [PMID: 12560487 PMCID: PMC149206 DOI: 10.1093/nar/gkg186] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 12/10/2002] [Accepted: 12/10/2002] [Indexed: 02/02/2023] Open
Abstract
Activation of transcription factors by receptor mediated signaling is an essential step for T lymphocyte effector function. Following antigenic stimulation of T cells the two central cytokines IL-2 and TNFalpha are co-expressed and co-regulated. Two important transcription factors, i.e., early growth response (EGR) protein EGR-1 and nuclear factors of activated T cells (NFAT) protein NFATc, regulate transcription of the human IL-2 cytokine and the same combination of EGR and NFAT proteins seems relevant for coordinated cytokine expression. Here we demonstrate that the zinc finger protein EGR-1 and two members of the NFAT protein family bind simultaneously to adjacent elements position -168 to -150 within the TNFalpha promoter. Both promoter sites are important for TNFalpha gene transcription as shown by transfection assays having the IL-2 and TNFalpha promoters linked to a luciferase reporter. The use of promoter deletion constructs with the zinc finger protein (ZIP), the NFAT binding element or a combination of both deleted show a functional cooperation of these elements and of their binding factors. These experiments demonstrate that EGR-1 as well as EGR-4 functionally cooperate with NFAT proteins and induce expression of both cytokine genes. Using tagged NFATc and NFATp in glutathione S-transferase pull down assays showed interaction and physical complex formation of each NFAT protein with recombinant, as well as native, EGR-1 and EGR-4 proteins. Thus EGR-NFAT interaction and complex formation seems essential for human cytokine expression as adjacent ZIP and NFAT elements are conserved in the IL-2 and TNFalpha gene promoters. Binding of regulatory EGR and NFAT factors to these sites and the functional interaction and formation of stable heterodimeric complexes indicate an important role of these factors for gene transcription.
Collapse
Affiliation(s)
- Eva L Decker
- Research Group of Biomolecular Medicine, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Bernhard-Nocht Strasse 74, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Jouvert P, Dietrich JB, Aunis D, Zwiller J. Differential rat brain expression of EGR proteins and of the transcriptional corepressor NAB in response to acute or chronic cocaine administration. Neuromolecular Med 2002; 1:137-51. [PMID: 12025859 DOI: 10.1385/nmm:1:2:137] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2001] [Accepted: 12/12/2001] [Indexed: 02/03/2023]
Abstract
Members of the Egr family of early genes are known to play a prominent role in neuronal plasticity. Using in situ hybridization, we report the induction in the rat forebrain of the immediate early gene egr-1 and of the transcriptional repressor NAB2 in response to acute or repeated cocaine administration. A single exposure to cocaine enhanced the expression of egr-1 in dopaminergic brain areas. Chronic cocaine treatment was not followed by induction of egr-1 mRNA initially, but only 12 h following the last injection, whereas Egr-1 binding activity was maintained elevated at 2 h and was increased again at 12 h. Expression of the Egr corepressor NAB2, but not NAB1, was rapidly and transiently stimulated by cocaine. Both acute and chronic cocaine treatment displayed biphasic NAB2 mRNA expression. It appears that NAB2 operates as an inducible regulator of gene expression in postmitotic neurons. Egr-3 displayed an expression profile similar to that of Egr-1 in response to acute cocaine injection and was expressed slightly earlier upon repeated cocaine treatment. Regulation of Egr transcription factors during chronic cocaine treatment appears to differ from that of the AP1 transcription factor, since Egr-1 and Egr-3 were induced after both acute and repeated cocaine administration, and that neither Egr-2 nor Egr-3 substituted for Egr-1 after chronic cocaine treatment. Our data suggest that Egr-1, Egr-3, and NAB2 are the key members of their families that regulate expression of Egr target genes.
Collapse
Affiliation(s)
- Peggy Jouvert
- INSERM U338, Centre de Neurochimie, Strasbourg, France
| | | | | | | |
Collapse
|
19
|
Hess S, Rheinheimer C, Tidow F, Bartling G, Kaps C, Lauber J, Buer J, Klos A. The reprogrammed host: Chlamydia trachomatis-induced up-regulation of glycoprotein 130 cytokines, transcription factors, and antiapoptotic genes. ARTHRITIS AND RHEUMATISM 2001; 44:2392-401. [PMID: 11665982 DOI: 10.1002/1529-0131(200110)44:10<2392::aid-art404>3.0.co;2-i] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Infection with Chlamydia trachomatis is a known cause of sexually transmitted diseases, eye infections (including trachoma), and reactive arthritis (ReA). Because the mechanisms of Chlamydia-induced changes leading to ReA are poorly defined, this study sought to identify the target genes involved at the molecular level. METHODS Chlamydia-induced changes in host cells were investigated by combining a screening technique, which utilized complementary DNA arrays on C trachomatis-infected and mock-infected epithelial HeLa cells, with real-time reverse transcription-polymerase chain reaction or enzyme-linked immunosorbent assay of gene products. Some responses were additionally demonstrated on human primary chondrocytes and a human synovial fibroblast cell line, both of which served as model cells for ReA. RESULTS Eighteen genes (of 1,176) were found to be up-regulated after 24 hours of infection with this obligate intracellular bacterium, among them the glycoprotein 130 family members IL-11 and LIF, the chemokine gene MIP2-alpha, the transcription factor genes EGR1, ETR101, FRA1, and c-jun, the apoptosis-related genes IEX-1L and MCL-1, adhesion molecule genes such as ICAM1, and various other functionally important genes. In the context of this rheumatic disease, the cytokines and transcription factors seem to be especially involved, since various connections to chondrocytes, synoviocytes, bone remodeling, joint pathology, and other rheumatic diseases have been demonstrated. CONCLUSION Infection with C trachomatis seems to reprogram the host cells (independent of activation by lipopolysaccharide or other ultraviolet-resistant bacterial components) at various key positions that act as intra- or intercellular switches, suggesting that these changes and similar Chlamydia-induced functional alterations constitute an important basis of the pathogenic inflammatory potential of these cells in ReA. Our results suggest that this approach is generally useful for the broad analysis of host-pathogen interactions involving obligate intracellular bacteria, and for the identification of target genes for therapeutic intervention in this rheumatic disease.
Collapse
Affiliation(s)
- S Hess
- Medical School Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Takemori H, Doi J, Katoh Y, Halder SK, Lin XZ, Horike N, Hatano O, Okamoto M. Characterization of a proximal element in the rat preadipocyte factor-1 (Pref-1) gene promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:205-17. [PMID: 11168353 DOI: 10.1046/j.1432-1033.2001.01847.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preadipocyte factor-1 (Pref-1) was shown to negatively regulate adipocyte differentiation. We recently reported that ZOG, a rat homolog of Pref-1, was specifically expressed in the adrenal zona glomerulosa. Results of the investigation of Pref-1 expression in preadipocyte and in undifferentiated adrenal cortex suggested that down-regulation of Pref-1 gene was closely correlated with the differentiation process. In this study we demonstrate that an upstream region (from -76 to -47) of the rat Pref-1 gene was essential for its expression in adrenocortical carcinoma-derived H295R cells. A nucleotide sequence found in this region, GCGTGGGCGTGGGCGGGGG (Egr/GC-box), seemed to contain three elements, two early growth response (Egr) elements and one GC-box, overlapping each other. Mutations of four or five nucleotides in a 7-nucleotides-stretch in the midst of the Egr/GC-box eliminated the binding of Sp1/3, abolished the activation by Egr-factor(s) and diminished the Pref-1 promoter activity. When mutations were introduced into the outside of the middle portion, the binding of Sp1/3 to the Egr/GC-box was abolished similarly. However, the decrease in the promoter activity was less than that found with the construct mutated at the middle. These results indicated that an element present at the 7-nucleotides-stretch in the midst of the Egr/GC-box might be important for the Pref-1 promoter activity, and this proximal element was possibly activated by a still-unidentified nuclear factor(s). This element would function as the promoter of the Pref-1 gene in H295R cells, but not in HeLa cells.
Collapse
Affiliation(s)
- H Takemori
- Department of Molecular Physiological Chemistry, Osaka University Medical School (H-1), 2-2 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dai KS, Liew CC. Chromosomal, in silico and in vitro expression analysis of cardiovascular-based genes encoding zinc finger proteins. J Mol Cell Cardiol 1999; 31:1749-69. [PMID: 10471358 DOI: 10.1006/jmcc.1999.1011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three hundred and sixty expressed sequence tags (ESTs) from human heart cDNA libraries corresponding to one hundred and twenty six unique zinc finger proteins (ZFPs) were annotated and classified into seven types of ZFPs as reported previously. Among these 126 cvbZFPs (cardiovascular-based ZFPs), the C(2)H(2)-type and the C(2)C(2)-type are the two major ZFP types which account for more than 80% of ZFP genes present in the cardiovascular system. The expression patterns of 11 randomly selected ZFP genes (at least one for each type) in normal fetal, adult and hypertrophic adult hearts, respectively, were determined using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. The results suggest that ZFPs may be involved in the processes of either developmental control (downregulated or upregulated expression) or basic cellular functional regulation (constant expression). Interestingly, PAF-1 (peroxisome assembly factor-1), a C(3)HC(4)-type ZFP (RING domain-containing ZFP) showing a downregulated expression pattern in normal tissues was found to be upregulated in hypertrophic adult heart, suggesting a possible role for this fetal gene in the pathogenesis of cardiac hypertrophy. In silico Northern analysis of 15 tissues showed that over 90% of cvbZFPs demonstrate widespread tissue distribution, suggesting the vast majority of ZFPs are functionally shared among tissues. The potential importance of transcriptional repressors in cardiovascular development and disease, such as HFHZ, was supported by the observation that one-third (39 of 126) of cvbZFPs possess this function. Of these, 26 are C(2)H(2)-type and the remaining 13 included 8 C(2)C(2)-type, 1 C(3)HC(4)-type, 1 C(2)HC(4)C(HD)-type, 2 C(3)H-type and 1 combination type. Of particular interest was the observation that ZFPs which contain a KRAB domain are the major subtype present (51. 3% of the total repressors in cvbZFPs). Chromosomal distribution analysis showed that mapping loci of cvbZFP genes are concentrated on chromosomes 1, 3, 6, 8, 10, 11, 12, 19 and X. In particular, chromosome 19 appears to be enriched in ZFP genes with C(2)H(2)-type as the predominant type present. Overall, this report provides a fundamental initial step toward understanding the potential role of ZFPs in regulating cadiac development and disease.
Collapse
Affiliation(s)
- K S Dai
- The Cardiac Gene Unit, Institute of Medical Science Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Seroussi E, Kedra D, Kost-Alimova M, Sandberg-Nordqvist AC, Fransson I, Jacobs JF, Fu Y, Pan HQ, Roe BA, Imreh S, Dumanski JP. TOM1 genes map to human chromosome 22q13.1 and mouse chromosome 8C1 and encode proteins similar to the endosomal proteins HGS and STAM. Genomics 1999; 57:380-8. [PMID: 10329004 DOI: 10.1006/geno.1998.5739] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The avian tom1 (target of myb 1) gene has been previously characterized from v-myb-transformed cells. We report here cloning of the human and mouse tom1 orthologs. Both genes are expressed ubiquitously, with the highest levels in skeletal muscle, brain, and intestines, as assessed by Northern blot and mRNA in situ hybridization. The N-terminal domain of the TOM1 protein shares similarity with HGS (hepatocyte growth factor-regulated tyrosine kinase substrate) and STAM (signal-transducing adaptor molecule), which are associated with vesicular trafficking at the endosome. A putative coiled-coil domain was also detected in the central part of the TOM1 protein. This domain structure suggests that TOM1 is another member of a family of genes implicated in the trafficking regulation of growth-factor-receptor complexes that are destined for degradation in the lysosome. We also show that a human paralog of TOM1 (TOM1-like gene 1) exists. Furthermore, we provide a transcription map over a 190-kb contig of the TOM1 region. This map includes its distal neighbors HMOX1 and MCM5 and two proximal novel genes, one of which is a HMG-box-containing gene (HMG2L1), and the other of unknown function. Using a genomic PAC clone, we demonstrate that the mouse Tom1 and Hmox1 genes are part of an as yet undescribed syntenic group between mouse chromosome 8C1 and human chromosome 22q13.1.
Collapse
Affiliation(s)
- E Seroussi
- Department of Molecular Medicine, Karolinska Hospital, CMM Building, L8:00, Stockholm, S-171 76, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Meyyappan M, Wheaton K, Riabowol KT. Decreased expression and activity of the immediate-early growth response (Egr-1) gene product during cellular senescence. J Cell Physiol 1999; 179:29-39. [PMID: 10082129 DOI: 10.1002/(sici)1097-4652(199904)179:1<29::aid-jcp4>3.0.co;2-d] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human diploid fibroblasts (HDFs) undergo a limited number of population doublings in culture before reaching the end of their proliferative life span, an event termed in vitro cellular senescence. Considerable evidence suggests that altered expression of key genes involved in the mitogenic response may be responsible for the inability of senescent cells to proliferate. Here we examined the expression and activity of the early growth response-1 (egr-1) gene, an "immediate-early" gene that is believed to link extracellular mitogenic signals to cell-cycle progression. We found that egr-1 was strongly downregulated in senescent HDFs at the level of mRNA, protein, and DNA binding activity. Decreased DNA binding activity of Egr-1 in vitro corresponded to decreased transcriptional activation in vivo. To further understand the mechanism of egr-1 downregulation, we examined the potential role of the serum response elements (SREs) present in the egr-1 promoter. Electrophoretic mobility shift studies using young and old cell nuclear extracts showed a marked decrease in serum response factor (SRF) binding activity to the SRE in old compared to young cells. Loss of SRF binding activity has been correlated with the loss of expression of another growth-related immediate-early gene (c-fos). These results suggest a common mechanism for the downregulation of c-fos, egr-1, and other SRE-dependent, mitogen-responsive genes during cellular senescence.
Collapse
Affiliation(s)
- M Meyyappan
- Department of Medical Science, Southern Alberta Cancer Research Center, University of Calgary Health Sciences Center, Canada
| | | | | |
Collapse
|
24
|
Decker EL, Skerka C, Zipfel PF. The early growth response protein (EGR-1) regulates interleukin-2 transcription by synergistic interaction with the nuclear factor of activated T cells. J Biol Chem 1998; 273:26923-30. [PMID: 9756940 DOI: 10.1074/jbc.273.41.26923] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The early growth response-1 gene (EGR-1) is induced by a wide range of stimuli in diverse cell types; however, EGR-1-regulated genes display a highly restricted pattern of expression. Recently, an overlapping Sp1.EGR-1 binding site has been identified within the interleukin-2 (IL-2) gene promoter directly upstream of the binding site for the nuclear factor of activated T cells (NFAT). We used transfection assays to study how the abundantly and constitutively expressed Sp1 protein and the immediate early EGR-1 zinc finger protein regulate IL-2 gene expression. Here, we identify EGR-1 as an important activator of the IL-2 gene. In Jurkat T cells, EGR-1 but not Sp1 acts as a potent coactivator for IL-2 transcription, and in combination with NFATc, EGR-1 increases transcription of an IL-2 reporter construct 200-fold. Electrophoretic mobility shift assays reveal that recombinant EGR-1 and NFATc bind independently to their target sites within the IL-2 promoter, and the presence of both sites on the same DNA molecule is required for EGR-1.NFATc.DNA complex formation. The transcriptional synergy observed here for EGR-1 and NFATc explains how the abundant nuclear factor EGR-1 contributes to the expression of restrictively expressed genes.
Collapse
Affiliation(s)
- E L Decker
- Research Group of Biomolecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, D-20359 Hamburg, Germany
| | | | | |
Collapse
|
25
|
Skerka C, Decker EL, Zipfel PF. Coordinate expression and distinct DNA-binding characteristics of the four EGR-zinc finger proteins in Jurkat T lymphocytes. Immunobiology 1997; 198:179-91. [PMID: 9442390 DOI: 10.1016/s0171-2985(97)80039-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Early Growth Response Genes (EGR-1 to AT133/EGR-4) encode a family of proteins that are composed of three homologous consecutive zinc fingers of the Cys2-His2 type and different flanking sequence. Upon growth stimulation of resting cells the four EGR-genes are simultaneously transcribed. We have analyzed the expression of the four EGR-proteins in Jurkat T cells and show by Western blot analysis that the four EGR-proteins are coordinately induced upon treatment with a combination of PHA and PMA. As the individual proteins are reported to bind to identical target sequences, we have analyzed the DNA-binding of the native proteins. Using nuclear extract in which we have demonstrated expression of all four EGR-proteins, only EGR-1, but no other member of this protein family is found to bind to the EGR-consensus site (GCG GGG GCG). In addition, DNA-binding of both native EGR-1 and of recombinant EGR-1 and AT133/EGR-4 proteins expressed in insect cells was analyzed. This comparison revealed distinct binding properties of recombinant EGR-1 and AT133/EGR-4 to oligonucleotides that include the EGR-consensus sites. The distinct binding affinities suggest that in vivo EGR-proteins bind to different target sequences and that each EGR-protein regulates distinct target genes. This is underlined by demonstrating that EGR-1 but not AT133/EGR-4 binds to a related G-rich promoter element with the sequence GGG GTG GGG. This G-rich sequence serves as an overlapping binding site for the two zinc finger proteins EGR-1 and Sp1. As similar overlapping binding sites for EGR-1 and Sp1 have been identified in several human and mouse gene promoters, we raise the question whether the Sp1 binding sites described in a large number of eukaryotic gene promoters also represent binding sites for EGR-1.
Collapse
Affiliation(s)
- C Skerka
- Department of Molecular Biology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | |
Collapse
|