1
|
Pipes BL, Nishiguchi MK. Generation and validation of a versatile inducible multiplex CRISPRi system to examine bacterial regulation in the Euprymna-Vibrio fischeri symbiosis. Arch Microbiol 2025; 207:147. [PMID: 40380978 DOI: 10.1007/s00203-025-04354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/29/2025] [Accepted: 05/04/2025] [Indexed: 05/19/2025]
Abstract
The Vibrio fischeri-Euprymna scolopes symbiosis has become a powerful animal-microbe model system to examine the genetic underpinnings of symbiont development and regulation. Although there has been a number of elegant bacterial genetic technologies developed to examine this symbiosis, there is still a need to develop more sophisticated methodologies to better understand complex regulatory pathways that lie within the association. Therefore, we have developed a suite of CRISPR interference (CRISPRi) vectors for inducible repression of specific V. fischeri genes associated with symbiotic competence. The suite utilizes both Tn7-integrating and shuttle vector plasmids that allow for inducible expression of CRISPRi dCas9 protein along with single-guide RNAs (sgRNA) modules. We validated this CRISPRi tool suite by targeting both exogenous (an introduced mRFP reporter) and endogenous genes (luxC in the bioluminescence producing lux operon, and flrA, the major regulatory gene controlling flagella production). The suite includes shuttle vectors expressing both single and multiple sgRNAs complementary to the non-template strand of multiple targeted genetic loci, which were effective in inducible gene repression, with significant reductions in targeted gene expression levels. V. fischeri cells harboring a version of this system targeting the luxC gene and suppressing the production of luminescence were used to experimentally validate the hypothesis that continuous luminescence must be produced by the symbiont in order to maintain the symbiosis at time points longer than the known 24-h limit. This robust new CRISPRi genetic toolset has broad utility and will enhance the study of V. fischeri genes, bypassing the need for gene disruptions by standard techniques of allelic knockout-complementation-exchange and the ability to visualize symbiotic regulation in vivo.
Collapse
Affiliation(s)
- Brian Lynn Pipes
- Department of Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | | |
Collapse
|
2
|
Broadie CO, Telchy AI, Baines AT, Dillard JP, Nicholas RA, Williams D. Coordinated Transcriptional Increases in Cell Wall Synthesis Genes in Neisseria gonorrhoeae Lacking the Lytic Transglycosylase, ltgA. Curr Microbiol 2025; 82:278. [PMID: 40327097 PMCID: PMC12055626 DOI: 10.1007/s00284-025-04261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Lytic transglycosylase A in Neisseria gonorrhoeae cleaves the β-1,4-glycosidic bond between peptidoglycan (PG) monomers to liberate 1,6-anhydro-PG fragments that are either recycled or released as cytotoxic fragments. To gain further insight into the effect of LtgA on cellular processes in Neisseria gonorrhoeae, we performed a proteomic analysis comparing wild-type and an isogenic ltgA null mutant strain. Proteins were separated by two-dimensional gel electrophoresis and identified by MALDI-TOF mass spectrometry, which revealed several proteins that were increased in their level of expression upon loss of LtgA. The most notable changes corresponded to enzymes related to aminosugar and pyrimidine metabolism. Quantitative real-time RT-PCR of mRNA from a ltgA null strain confirmed increased transcription of genes encoding enzymes involved in UDP-N-acetylglucosamine (UDP-GlcNAc) synthesis, a major precursor in PG and lipooligosaccharide (LOS) synthesis, during normal growth conditions and following exposure to penicillin. We also found that the ltgA mutant strains were more susceptible to β-lactam antibiotics, vancomycin, and the human-cathelicidin antibacterial peptide, LL-37, than their corresponding wild-type parental strains. Our results suggest that increased expression of enzymes responsible for production UDP-GlcNAc is an adaptive response due to inactivation of ltgA and/or exposure to penicillin.
Collapse
Affiliation(s)
- Candra O Broadie
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Alaa I Telchy
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Antonio T Baines
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706-1521, USA
| | - Robert A Nicholas
- Departments of Pharmacology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA
| | - Daniel Williams
- Department of Biological Sciences, Alabama State University, 915 S. Jackson Street, Montgomery, AL, 36104, USA.
| |
Collapse
|
3
|
Guo N, Wang S, Whitfield CT, Batchelor WD, Wang Y, Blersch D, Higgins BT, Feng Y, Liles MR, de-Bashan LE, Wang Y, Ma Y. High-Efficiency CRISPR-Cas9 Genome Editing Unveils Biofilm Insights and Enhances Antimicrobial Activity in Bacillus velezensis FZB42. Biotechnol Bioeng 2025; 122:983-994. [PMID: 39871438 DOI: 10.1002/bit.28933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/29/2025]
Abstract
Bacillus velezensis FZB42 is a prominent plant growth-promoting rhizobacterium and biocontrol agent known for producing a wide array of antimicrobial compounds. The capability to genetically manipulate this strain would facilitate understanding its metabolism and enhancing its sustainable agriculture applications. In this study, we report the first successful implementation of high-efficiency CRISPR-Cas9 genome editing in B. velezensis FZB42, enabling targeted genetic modifications to gain insights into its plant growth-promotion and biocontrol properties. Deletion of the slrR gene, a key regulator of biofilm formation, resulted in significant alterations in biofilm structure and development, as demonstrated by scanning electron microscopy and quantitative biofilm assays. These findings provide valuable insights into the mechanisms of biofilm formation, which are critical for root colonization and plant growth promotion. Additionally, we overexpressed the bac gene cluster responsible for bacilysin biosynthesis by replacing its native promoter with the strong constitutive promoter P43 and integrating an additional copy of the bacG gene. This genetic manipulation led to a 2.7-fold increase in bacB gene expression and significantly enhanced antibacterial activity against Escherichia coli and Lactobacillus diolivorans. The successful implementation of the CRISPR-Cas9 system for genome editing in FZB42 provides a valuable tool for genetic engineering, with the potential to improve its biocontrol efficacy and broaden its applications in agriculture and other biotechnology areas. Our principles and procedures are broadly applicable to other agriculturally significant microorganisms.
Collapse
Affiliation(s)
- Na Guo
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Shangjun Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | | | - William D Batchelor
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Yifen Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - David Blersch
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Brendan T Higgins
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Yucheng Feng
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama, USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Luz E de-Bashan
- The Bashan Institute of Science, Auburn, Alabama, USA
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Yuechao Ma
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
4
|
Paupelin-Vaucelle H, Boschiero C, Lazennec-Schurdevin C, Schmitt E, Mechulam Y, Marlière P, Pezo V. Cys-tRNAj as a Second Translation Initiator for Priming Proteins with Cysteine in Bacteria. ACS OMEGA 2025; 10:4548-4560. [PMID: 39959092 PMCID: PMC11822699 DOI: 10.1021/acsomega.4c08326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 02/18/2025]
Abstract
We report the construction of an alternative protein priming system to recode genetic translation in Escherichia coli by designing, through trial and error, a chimeric initiator whose sequence identity points partly to elongator tRNACys and partly to initiator tRNAf Met. The elaboration of a selection based on the N-terminal cysteine imperative for the function of glucosamine-6-phosphate synthase, an essential enzyme in bacterial cell wall synthesis, was a crucial step to achieve the engineering of this Cys-tRNAj. Iterative improvement of successive versions of Cys-tRNAj was corroborated in vitro by using a biochemical luciferase assay and in vivo by selecting for translation priming of E. coli thymidylate synthase. Condensation assays using specific fluorescent reagent FITC-Gly-cyanobenzothiazole provided biochemical evidence of cysteine coding at the protein priming stage. We showed that translation can be initiated, by N-terminal incorporation of cysteine, at a codon other than UGC by expressing a tRNAj with the corresponding anticodon. The optimized tRNAj is now available to recode the priming of an arbitrary subset of proteins in the bacterial proteome with absolute control of their expression and to evolve the use of xenonucleotides and the emergence of a tXNAj in vivo.
Collapse
Affiliation(s)
- Humbeline Paupelin-Vaucelle
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Claire Boschiero
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Christine Lazennec-Schurdevin
- Laboratoire
de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique,
CNRS, Institut Polytechnique de Paris, Bat 84, Route de Saclay, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire
de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique,
CNRS, Institut Polytechnique de Paris, Bat 84, Route de Saclay, 91128 Palaiseau cedex, France
| | - Yves Mechulam
- Laboratoire
de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique,
CNRS, Institut Polytechnique de Paris, Bat 84, Route de Saclay, 91128 Palaiseau cedex, France
| | - Philippe Marlière
- TESSSI, 81 rue Réaumur, 75002 Paris, France
- Theraxen
SA, 296 route de Longwy, L-1940, Luxembourg, Luxembourg
| | - Valérie Pezo
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| |
Collapse
|
5
|
Chatham JC, Wende AR. The role of protein O-GlcNAcylation in diabetic cardiomyopathy. Biochem Soc Trans 2024; 52:2343-2358. [PMID: 39601777 DOI: 10.1042/bst20240262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
It is well established that diabetes markedly increases the risk of multiple types of heart disease including heart failure. However, despite substantial improvements in the treatment of heart failure in recent decades the relative increased risk associated with diabetes remains unchanged. There is increasing appreciation of the importance of the post translational modification by O-linked-N-acetylglucosamine (O-GlcNAc) of serine and threonine residues on proteins in regulating cardiomyocyte function and mediating stress responses. In response to diabetes there is a sustained increase in cardiac O-GlcNAc levels, which has been attributed to many of the adverse effects of diabetes on the heart. Here we provide an overview of potential mechanisms by which increased cardiac O-GlcNAcylation contributes to the adverse effects on the heart and highlight some of the key gaps in our knowledge.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
6
|
He M, Yin S, Huang X, Li Y, Li B, Gong T, Liu Q. Insights into the regulatory role of bacterial sncRNA and its extracellular delivery via OMVs. Appl Microbiol Biotechnol 2024; 108:29. [PMID: 38159117 DOI: 10.1007/s00253-023-12855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Small noncoding RNAs (sncRNAs) play important regulatory roles in bacterial physiological processes and host-pathogen interactions. Meanwhile, bacterial outer membrane vesicles (OMVs), as naturally secreted outer membrane structures, play a vital role in the interaction between bacteria and their living environment, including the host environment. However, most current studies focus on the biological functions of sncRNAs in bacteria or hosts, while neglecting the roles and regulatory mechanisms of the OMVs that encapsulate these sncRNAs. Therefore, this review aims to summarize the intracellular regulatory roles of bacterial sncRNAs in promoting pathogen survival by regulating virulence, modulating bacterial drug resistance, and regulating iron metabolism, and their extracellular regulatory function for influencing host immunity through host-pathogen interactions. Additionally, we introduce the key role played by OMVs, which serve as important cargoes in bacterial sncRNA-host interactions. We propose emerging pathways of sncRNA action to further discuss the mode of host-pathogen interactions, highlighting that the inhibition of sncRNA delivery by OMVs may prevent the occurrence of infection to some extent. Hence, this review lays the foundation for future prophylactic treatments against bacterial infections and strategies for addressing bacterial drug resistance. KEY POINTS: •sncRNAs have intracellular and extracellular regulatory functions in bacterial physiological processes and host-pathogen interactions. •OMVs are potential mediators between bacterial sncRNAs and host cells. •OMVs encapsulating sncRNAs have more potential biological functions.
Collapse
Affiliation(s)
- Mengdan He
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Shuanshuan Yin
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Xinlei Huang
- Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yi Li
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Biaoxian Li
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Qiong Liu
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
7
|
Baiyin B, Xiang Y, Shao Y, Son JE, Tagawa K, Yamada S, Yamada M, Yang Q. Metabolite Profiling of Hydroponic Lettuce Roots Affected by Nutrient Solution Flow: Insights from Comprehensive Analysis Using Widely Targeted Metabolomics and MALDI Mass Spectrometry Imaging Approaches. Int J Mol Sci 2024; 25:10155. [PMID: 39337645 PMCID: PMC11432021 DOI: 10.3390/ijms251810155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Root morphology, an important determinant of nutrient absorption and plant growth, can adapt to various growth environments to promote survival. Solution flow under hydroponic conditions provides a mechanical stimulus, triggering adaptive biological responses, including altered root morphology and enhanced root growth and surface area to facilitate nutrient absorption. To clarify these mechanisms, we applied untargeted metabolomics technology, detecting 1737 substances in lettuce root samples under different flow rates, including 17 common differential metabolites. The abscisic acid metabolic pathway product dihydrophaseic acid and the amino and nucleotide sugar metabolism factor N-acetyl-d-mannosamine suggest that nutrient solution flow rate affects root organic acid and sugar metabolism to regulate root growth. Spatial metabolomics analysis of the most stressed root bases revealed significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways: "biosynthesis of cofactors" and "amino sugar and nucleotide sugar metabolism". Colocalization analysis of pathway metabolites revealed a flow-dependent spatial distribution, with higher flavin mononucleotide, adenosine-5'-diphosphate, hydrogenobyrinic acid, and D-glucosamine 6-phosphate under flow conditions, the latter two showing downstream-side enrichment. In contrast, phosphoenolpyruvate, 1-phospho-alpha-D-galacturonic acid, 3-hydroxyanthranilic acid, and N-acetyl-D-galactosamine were more abundant under no-flow conditions, with the latter two concentrated on the upstream side. As metabolite distribution is associated with function, observing their spatial distribution in the basal roots will provide a more comprehensive understanding of how metabolites influence plant morphology and response to environmental changes than what is currently available in the literature.
Collapse
Affiliation(s)
- Bateer Baiyin
- Research Center for Smart Horticulture Engineering, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Yue Xiang
- Research Center for Smart Horticulture Engineering, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Yang Shao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Kotaro Tagawa
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Satoshi Yamada
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Mina Yamada
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Qichang Yang
- Research Center for Smart Horticulture Engineering, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| |
Collapse
|
8
|
Zeng X, Wei T, Wang X, Liu Y, Tan Z, Zhang Y, Feng T, Cheng Y, Wang F, Ma B, Qin W, Gao C, Xiao J, Wang C. Discovery of metal-binding proteins by thermal proteome profiling. Nat Chem Biol 2024; 20:770-778. [PMID: 38409364 DOI: 10.1038/s41589-024-01563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Metal-binding proteins (MBPs) have various and important biological roles in all living species and many human diseases are intricately linked to dysfunctional MBPs. Here, we report a chemoproteomic method named 'metal extraction-triggered agitation logged by thermal proteome profiling' (METAL-TPP) to globally profile MBPs in proteomes. The method involves the extraction of metals from MBPs using chelators and monitoring the resulting protein stability changes through thermal proteome profiling. Applying METAL-TPP to the human proteome with a broad-spectrum chelator, EDTA, revealed a group of proteins with reduced thermal stability that contained both previously known MBPs and currently unannotated MBP candidates. Biochemical characterization of one potential target, glutamine-fructose-6-phosphate transaminase 2 (GFPT2), showed that zinc bound the protein, inhibited its enzymatic activity and modulated the hexosamine biosynthesis pathway. METAL-TPP profiling with another chelator, TPEN, uncovered additional MBPs in proteomes. Collectively, this study developed a robust tool for proteomic discovery of MBPs and provides a rich resource for functional studies of metals in cell biology.
Collapse
Affiliation(s)
- Xin Zeng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tiantian Wei
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xianghe Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhenshu Tan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yihai Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Tianyu Feng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yao Cheng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Fengzhang Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bin Ma
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chuanping Gao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Junyu Xiao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
9
|
Tran TDT, Park J, Kim DY, Han IO. Caffeine-induced protein kinase A activation restores cognitive deficits induced by sleep deprivation by regulating O-GlcNAc cycling in adult zebrafish. Am J Physiol Cell Physiol 2024; 326:C978-C989. [PMID: 38314722 DOI: 10.1152/ajpcell.00691.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
Sleep deprivation (SD) is widely acknowledged as a significant risk factor for cognitive impairment. In this study, intraperitoneal caffeine administration significantly ameliorated the learning and memory (L/M) deficits induced by SD and reduced aggressive behaviors in adult zebrafish. SD led to a reduction in protein kinase A (PKA) phosphorylation, phosphorylated-cAMP response element-binding protein (p-CREB), and c-Fos expression in zebrafish brain. Notably, these alterations were effectively reversed by caffeine. In addition, caffeine mitigated neuroinflammation induced by SD, as evident from suppression of the SD-mediated increase in glial fibrillary acidic protein (GFAP) and nuclear factor-κB (NF-κB) activation. Caffeine restored normal O-GlcNAcylation and O-GlcNAc transferase (OGT) levels while reversing the increased expression of O-GlcNAcase (OGA) in zebrafish brain after SD. Intriguingly, rolipram, a selective phosphodiesterase 4 (PDE4) inhibitor, effectively mitigated cognitive deficits, restored p-CREB and c-Fos levels, and attenuated the increase in GFAP in brain induced by SD. In addition, rolipram reversed the decrease in O-GlcNAcylation and OGT expression as well as elevation of OGA expression following SD. Treatment with H89, a PKA inhibitor, significantly impaired the L/M functions of zebrafish compared with the control group, inducing a decrease in O-GlcNAcylation and OGT expression and, conversely, an increase in OGA expression. The H89-induced changes in O-GlcNAc cycling and L/M dysfunction were effectively reversed by glucosamine treatment. H89 suppressed, whereas caffeine and rolipram promoted O-GlcNAc cycling in Neuro2a cells. Our collective findings underscore the interplay between PKA signaling and O-GlcNAc cycling in the regulation of cognitive function in the brain, offering potential therapeutic targets for cognitive deficits associated with SD.NEW & NOTEWORTHY Our observation highlights the intricate interplay between cAMP/PKA signaling and O-GlcNAc cycling, unveiling a novel mechanism that potentially governs the regulation of learning and memory functions. The dynamic interplay between these two pathways provides a novel and nuanced perspective on the molecular foundation of learning and memory regulation. These insights open avenues for the development of targeted interventions to treat conditions that impact cognitive function, including SD.
Collapse
Affiliation(s)
- Thuy-Duong Thi Tran
- Program in Biomedical Science and Engineering, Department of Biomedical Science, College of Medicine, Inha University, Incheon, South Korea
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Program in Biomedical Science and Engineering, Department of Biomedical Science, College of Medicine, Inha University, Incheon, South Korea
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, South Korea
| | - Dong Yeol Kim
- Program in Biomedical Science and Engineering, Department of Biomedical Science, College of Medicine, Inha University, Incheon, South Korea
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Program in Biomedical Science and Engineering, Department of Biomedical Science, College of Medicine, Inha University, Incheon, South Korea
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
10
|
Liang Z, Zheng K, Xie G, Luo X, Li H. Sugar Utilization-Associated Food-Grade Selection Markers in Lactic Acid Bacteria and Yeast. Pol J Microbiol 2024; 73:3-10. [PMID: 38437472 PMCID: PMC10911659 DOI: 10.33073/pjm-2024-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/27/2024] [Indexed: 03/06/2024] Open
Abstract
This comprehensive review explores the development of food-grade selection markers in lactic acid bacteria and yeast; some of their strains are precisely defined as safe microorganisms and are crucial in the food industry. Lactic acid bacteria, known for their ability to ferment carbohydrates into lactic acid, provide essential nutrients and contribute to immune responses. With its strong fermentation capabilities and rich nutritional profile, yeast finds use in various food products. Genetic engineering in these microorganisms has grown rapidly, enabling the expression of enzymes and secondary products for food production. However, the focus is on ensuring safety, necessitating food-grade selection markers. Traditional antibiotic and heavy metal resistance selection markers pose environmental and health risks, prompting the search for safer alternatives. Complementary selection markers, such as sugar utilization markers, offer a promising solution. These markers use carbohydrates as carbon sources for growth and are associated with the natural metabolism of lactic acid bacteria and yeast. This review discusses the use of specific sugars, such as lactose, melibiose, sucrose, D-xylose, glucosamine, and N-acetylglucosamine, as selection markers, highlighting their advantages and limitations. In summary, this review underscores the importance of food-grade selection markers in genetic engineering and offers insights into their applications, benefits, and challenges, providing valuable information for researchers in the field of food microbiology and biotechnology.
Collapse
Affiliation(s)
- Zhiwen Liang
- School of Life and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ke Zheng
- School of Life and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guifeng Xie
- Guangzhou MEIZHONG Biotechnology Co., Ltd, Guangzhou, China
| | - Xiongsheng Luo
- Guangzhou MEIZHONG Biotechnology Co., Ltd, Guangzhou, China
| | - Huangjin Li
- School of Life and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
11
|
Gaviria-Cantin T, Fernández-Coll L, Vargas AF, Jiménez CJ, Madrid C, Balsalobre C. Expression of accessory genes in Salmonella requires the presence of the Gre factors. Genomics 2024; 116:110777. [PMID: 38163572 DOI: 10.1016/j.ygeno.2023.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Genomic studies with Salmonella enterica serovar Typhimurium reveal a crucial role of horizontal gene transfer (HGT) in the acquisition of accessory cellular functions involved in host-interaction. Many virulence genes are located in genomic islands, plasmids and prophages. GreA and GreB proteins, Gre factors, interact transiently with the RNA polymerase alleviating backtracked complexes during transcription elongation. The overall effect of Gre factors depletion in Salmonella expression profile was studied. Both proteins are functionally redundant since only when both Gre factors were depleted a major effect in gene expression was detected. Remarkably, the accessory gene pool is particularly sensitive to the lack of Gre factors, with 18.6% of accessory genes stimulated by the Gre factors versus 4.4% of core genome genes. Gre factors involvement is particularly relevant for the expression of genes located in genomic islands. Our data reveal that Gre factors are required for the expression of accessory genes.
Collapse
Affiliation(s)
- Tania Gaviria-Cantin
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Llorenç Fernández-Coll
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Andrés Felipe Vargas
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Carlos Jonay Jiménez
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Cristina Madrid
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain.
| |
Collapse
|
12
|
Rohilla M, Rishabh, Bansal S, Garg A, Dhiman S, Dhankhar S, Saini M, Chauhan S, Alsubaie N, Batiha GES, Albezrah NKA, Singh TG. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy. Biomed Pharmacother 2023; 169:115881. [PMID: 37989030 DOI: 10.1016/j.biopha.2023.115881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Diabetic retinopathy (DR) is a form of retinal microangiopathy that occurs as a result of long-term Diabetes mellitus (DM). Patients with Diabetes mellitus typically suffer from DR as a progression of the disease that may be due to initiation and dysregulation of pathways like the polyol, hexosamine, the AGE/RAGE, and the PKC pathway, which all have negative impacts on eye health and vision. In this review, various databases, including PubMed, Google Scholar, Web of Science, and Science Direct, were scoured for data relevant to the aforementioned title. The three most common therapies for DR today are retinal photocoagulation, anti-vascular endothelial growth factor (VEGF) therapy, and vitrectomy, however, there are a number of drawbacks and limits to these methods. So, it is of critical importance and profound interest to discover treatments that may successfully address the pathogenesis of DR. Curcumin and β-glucogallin are the two potent compounds of natural origin that are already being used in various nutraceutical formulations for several ailments. They have been shown potent antiapoptotic, anti-inflammatory, antioxidant, anticancer, and pro-vascular function benefits in animal experiments. Their parent plant species have been used for generations by practitioners of traditional herbal medicine for the treatment and prevention of various eye ailments. In this review, we will discuss about pathophysiology of Diabetic retinopathy and the therapeutic potentials of curcumin and β-glucogallin one of the principal compounds from Curcuma longa and Emblica officinalis in Diabetic retinopathy.
Collapse
Affiliation(s)
- Manni Rohilla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India
| | - Rishabh
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Seema Bansal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Anjali Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Devi Dyal College of Pharmacy, Golpura Barwala, Panchkula, Haryana 134118, India
| | - Sachin Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India; M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Nisreen Khalid Aref Albezrah
- Obstetric and Gynecology Department, Medicine College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
13
|
Ye L, Ding W, Xiao D, Jia Y, Zhao Z, Ao X, Wang J. O-GlcNAcylation: cellular physiology and therapeutic target for human diseases. MedComm (Beijing) 2023; 4:e456. [PMID: 38116061 PMCID: PMC10728774 DOI: 10.1002/mco2.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.
Collapse
Affiliation(s)
- Lin Ye
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- The Affiliated Hospital of Qingdao UniversityQingdao Medical CollegeQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yi Jia
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Zhonghao Zhao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
14
|
Mishra NR, Sharma AD, Gargvanshi S, Gutheil WG. Deconvolution of multichannel LC-MS/MS chromatograms of glucosamine-phosphates: Evidence of a GlmS regulatory difference between Staphylococcus aureus and Enterococcus faecium. TALANTA OPEN 2023; 8:100241. [PMID: 38187186 PMCID: PMC10769159 DOI: 10.1016/j.talo.2023.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Resolving isomeric analytes is challenging given their physical similarity - making chromatographic resolution difficult, and their identical masses - making simple mass resolution impossible. MS/MS data provides a means to resolve isomeric analytes if their MS/MS intensity profiles are sufficiently different. Glucosamine-6-phosphate (GlcN-6P) and glucosamine-1-phosphate (GlcN-1P) are early bacterial cell wall intermediates. These and other isomeric hexosamine-phosphates are highly polar and unretained on reverse-phase chromatography media. Three commercially available hexosamine-phosphate standards (GlcN-6P, GlcN-1P, and GalN-1P) were derivatized with octanoic anhydride, and chromatographic conditions were established to resolve these analytes on C18 columns. GlcN-1P and GalN-1P overlapped chromatographically under all tested chromatography conditions. Three MS/MS fragments (79, 97, and 199 m/z) were common to all three commercially available hexosamine-phosphates. Intensity ratios of the three MS/MS fragments from these three hexosamine-phosphate standards were used to deconvolute mixture chromatograms of these standards by non-negative linear regression. This approach allowed the complete resolution of these analytes. The chromatographically overlapping GlcN-1P and GalN-1P, which shared similar but modestly different MS/MS intensity profiles, were fully resolved with this non-negative deconvolution approach. This approach was then applied to MRSA, VSE, and VRE bacterial extracts before and after exposure to vancomycin. This demonstrated a substantial (3-fold) increase in GlcN-6P in vancomycin-treated MRSA samples but not in vancomycin-treated VSE or VRE samples. These observations appear to localize previously observed differences between MRSA and VRE/VSE peptidoglycan biosynthesis regulation to GlmS, which synthesizes GlcN-6P and is the product of a regulatory ribozyme sensitive to the levels of GlcN-6P.
Collapse
Affiliation(s)
| | | | - Shivani Gargvanshi
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - William G. Gutheil
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| |
Collapse
|
15
|
Mossine VV, Mawhinney TP. 1-Amino-1-deoxy-d-fructose ("fructosamine") and its derivatives. Adv Carbohydr Chem Biochem 2023; 83:27-132. [PMID: 37968038 DOI: 10.1016/bs.accb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Fructosamine has long been considered as a key intermediate of the Maillard reaction, which to a large extent is responsible for specific aroma, taste, and color formation in thermally processed or dehydrated foods. Since the 1980s, however, as a product of the Amadori rearrangement reaction between glucose and biologically significant amines such as proteins, fructosamine has experienced a boom in biomedical research, mainly due to its relevance to pathologies in diabetes and aging. In this chapter, we assess the scope of the knowledge on and applications of fructosamine-related molecules in chemistry, food, and health sciences, as reflected mostly in publications within the past decade. Methods of fructosamine synthesis and analysis, its chemical, and biological properties, and degradation reactions, together with fructosamine-modifying and -recognizing proteins are surveyed.
Collapse
Affiliation(s)
- Valeri V Mossine
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
16
|
Murase LS, Perez de Souza JV, Meneguello JE, Palomo CT, Fernandes Herculano Ramos Milaré ÁC, Negri M, Dias Siqueira VL, Demarchi IG, Vieira Teixeira JJ, Cardoso RF. Antibacterial and immunological properties of piperine evidenced by preclinical studies: a systematic review. Future Microbiol 2023; 18:1279-1299. [PMID: 37882762 DOI: 10.2217/fmb-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
Aim: To review in vitro, in vivo, and in silico studies examining the antibacterial and immunomodulatory properties of piperine (PPN). Methods: This systematic review followed PRISMA guidelines, and five databases were searched. Results: A total of 40 articles were included in this study. Six aspects of PPN activity were identified, including antibacterial spectrum, association with antibiotics, efflux pump inhibition, biofilm effects, protein target binding, and modulation of immune functions/virulence factors. Most studies focused on Mycobacterium spp. and Staphylococcus aureus. Cell lineages and in vivo models were employed to study PPN antibacterial effects. Conclusion: We highlight PPN as a potential adjuvant in the treatment of bacterial infections. PPN possesses several antibacterial properties that need further exploration to determine the mechanisms behind its pharmacological activity.
Collapse
Affiliation(s)
- Letícia Sayuri Murase
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | - João Vítor Perez de Souza
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Jean Eduardo Meneguello
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Carolina Trevisolli Palomo
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | | | - Melyssa Negri
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Vera Lúcia Dias Siqueira
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Izabel Galhardo Demarchi
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianopólis, Santa Catarina, 88040-900, Brazil
| | - Jorge Juarez Vieira Teixeira
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
17
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
18
|
Wang C, Xiong Y, Bao C, Wei Y, Wen Z, Cao X, Yu Z, Deng X, Li G, Deng Q. Antibacterial and anti-biofilm activity of radezolid against Staphylococcus aureus clinical isolates from China. Front Microbiol 2023; 14:1131178. [PMID: 37180277 PMCID: PMC10169660 DOI: 10.3389/fmicb.2023.1131178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/24/2023] [Indexed: 05/16/2023] Open
Abstract
Although the potent antibacterial ability of radezolid against Staphylococcus aureus has been widely reported worldwide, its antibacterial and anti-biofilm activity against the S. aureus clinical isolates from China remains elusive. In this study, the minimum inhibitory concentration (MIC) of radezolid was determined in S. aureus clinical isolates from China using the agar dilution method, and the relationship between radezolid susceptibility and ST distribution was also investigated. The anti-biofilm activity of radezolid against S. aureus was determined by a crystal violet assay and compared with that of linezolid and contezolid. The quantitative proteomics of S. aureus treated with radezolid was analyzed, and the genetic mutations in radezolid-induced resistant S. aureus were determined by whole-genome sequencing. The dynamic changes in transcriptional expression levels of several biofilm-related genes were analyzed by quantitative RT-PCR. Our data showed that radezolid MIC ranged from ≤0.125 to 0.5 mg/L, which was almost 1/4 × MIC of linezolid against S. aureus, indicating the greater antibacterial activity of radezolid than linezolid. The S. aureus clinical isolates with radezolid MICs of 0.5 mg/L were most widely distributed in ST239 of MRSA and ST7 of MSSA. Moreover, the more robust anti-biofilm activity of radezolid with subinhibitory concentrations (1/8 × MIC and 1/16 × MIC) was demonstrated against S. aureus when compared with that of contezolid and linezolid. Genetic mutations were found in glmS, 23S rRNA, and DUF1542 domain-containing protein in radezolid-induced resistant S. aureus selected by in vitro induction of drug exposure. Quantitative proteomic analysis of S. aureus indicated that the global expression of some biofilm-related and virulence-related proteins was downregulated. Quantitative RT-PCR further confirmed that the expressions of some downregulated biofilm-related proteins, including sdrD, carA, sraP, hlgC, sasG, spa, sspP, fnbA, and oatA, were decreased after 12 h and 24 h of exposure to radezolid. Conclusively, radezolid shows robust antibacterial and anti-biofilm activity against S. aureus clinical isolates from China when compared with contezolid and linezolid.
Collapse
Affiliation(s)
- Cong Wang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yanpeng Xiong
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Chai Bao
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ying Wei
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
- Heilongjiang Medical Service Management Evaluation Center, Harbin, Heilongjiang, China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xinyi Cao
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiangbing Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Guiqiu Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
19
|
Taibi M, Elbouzidi A, Ou-Yahia D, Dalli M, Bellaouchi R, Tikent A, Roubi M, Gseyra N, Asehraou A, Hano C, Addi M, El Guerrouj B, Chaabane K. Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis verticillata Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis. Antibiotics (Basel) 2023; 12:antibiotics12040655. [PMID: 37107017 PMCID: PMC10135233 DOI: 10.3390/antibiotics12040655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Ptychotis verticillata Duby, referred to as Nûnkha in the local language, is a medicinal plant that is native to Morocco. This particular plant is a member of the Apiaceae family and has a longstanding history in traditional medicine and has been utilized for therapeutic purposes by practitioners for generations. The goal of this research is to uncover the phytochemical makeup of the essential oil extracted from P. verticillata, which is indigenous to the Touissite region in Eastern Morocco. The extraction of the essential oil of P. verticillata (PVEO) was accomplished through the use of hydro-distillation via a Clevenger apparatus. The chemical profile of the essential oil was then determined through analysis utilizing gas chromatography–mass spectrometry (GC/MS). The study findings indicated that the essential oil of P. verticillata is composed primarily of Carvacrol (37.05%), D-Limonene (22.97%), γ-Terpinene (15.97%), m-Cymene (12.14%) and Thymol (8.49%). The in vitro antioxidant potential of PVEO was evaluated using two methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical trapping assay and the ferric reducing antioxidant power (FRAP) method. The data demonstrated considerable radical scavenging and relative antioxidative power. Escherichia coli, Staphylococcus aureus, Listeria innocua, and Pseudomonas aeruginosa were the most susceptible bacterial strains tested, while Geotrichum candidum, Candida albicans, and Rhodotorula glutinis were the most resilient fungi strains. PVEO had broad-spectrum antifungal and antibacterial properties. To elucidate the antioxidative and antibacterial characteristics of the identified molecules, we applied the methodology of molecular docking, a computational approach that forecasts the binding of a small molecule to a protein. Additionally, we utilized the Prediction of Activity Spectra for Substances (PASS) algorithm; Absorption, Distribution, Metabolism, and Excretion (ADME); and Pro-Tox II (to predict the toxicity in silico) tests to demonstrate PVEO’s identified compounds’ drug-likeness, pharmacokinetic properties, the anticipated safety features after ingestion, and the potential pharmacological activity. Finally, our findings scientifically confirm the ethnomedicinal usage and usefulness of this plant, which may be a promising source for future pharmaceutical development.
Collapse
Affiliation(s)
- Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Douaae Ou-Yahia
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Dalli
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, University Mohammed The First, Oujda 60000, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Aziz Tikent
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Roubi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France
- Correspondence: (C.H.); (M.A.)
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Correspondence: (C.H.); (M.A.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
20
|
Emerging Role of Protein O-GlcNAcylation in Liver Metabolism: Implications for Diabetes and NAFLD. Int J Mol Sci 2023; 24:ijms24032142. [PMID: 36768465 PMCID: PMC9916810 DOI: 10.3390/ijms24032142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
O-linked b-N-acetyl-glucosaminylation (O-GlcNAcylation) is one of the most common post-translational modifications of proteins, and is established by modifying the serine or threonine residues of nuclear, cytoplasmic, and mitochondrial proteins. O-GlcNAc signaling is considered a critical nutrient sensor, and affects numerous proteins involved in cellular metabolic processes. O-GlcNAcylation modulates protein functions in different patterns, including protein stabilization, enzymatic activity, transcriptional activity, and protein interactions. Disrupted O-GlcNAcylation is associated with an abnormal metabolic state, and may result in metabolic disorders. As the liver is the center of nutrient metabolism, this review provides a brief description of the features of the O-GlcNAc signaling pathway, and summarizes the regulatory functions and underlying molecular mechanisms of O-GlcNAcylation in liver metabolism. Finally, this review highlights the role of O-GlcNAcylation in liver-associated diseases, such as diabetes and nonalcoholic fatty liver disease (NAFLD). We hope this review not only benefits the understanding of O-GlcNAc biology, but also provides new insights for treatments against liver-associated metabolic disorders.
Collapse
|
21
|
Esser A, Mayer G. Characterization of the glmS Ribozymes from Listeria Monocytogenes and Clostridium Difficile. Chemistry 2023; 29:e202202376. [PMID: 36194523 PMCID: PMC10099748 DOI: 10.1002/chem.202202376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/23/2022]
Abstract
The glmS ribozyme regulates the expression of the essential GlmS enzyme being involved in cell wall biosynthesis. While >450 variants of the glmS ribozyme were identified by in silico approaches and homology searches, only a few have yet been experimentally investigated. Herein, we validate and characterize the glmS ribozymes of the human pathogens Clostridium difficile and Listeria monocytogenes. Both ribozymes, as their previous characterized homologs rely on glucosamine-6-phosphate as co-factor and the presence of divalent cations for exerting the cleavage reaction. The observed EC50 values in turn were found to be in the submicromolar range, at least an order of magnitude lower than observed for glmS ribozymes from other bacteria. The glmS ribozyme of L. monocytogenes was further shown to bear unique properties. It discriminates between co-factors very stringently and other than the glmS ribozyme of C. difficile retains activity at low temperatures. This finding illustrates that albeit being highly conserved, glmS ribozymes have unique characteristics.
Collapse
Affiliation(s)
- Anna Esser
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Günter Mayer
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany.,Center of Aptamer Research & Development, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
22
|
Drug repurposing – A search for novel therapy for the treatment of diabetic neuropathy. Biomed Pharmacother 2022; 156:113846. [DOI: 10.1016/j.biopha.2022.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
|
23
|
Stefaniak J, Nowak MG, Wojciechowski M, Milewski S, Skwarecki AS. Inhibitors of glucosamine-6-phosphate synthase as potential antimicrobials or antidiabetics - synthesis and properties. J Enzyme Inhib Med Chem 2022; 37:1928-1956. [PMID: 35801410 PMCID: PMC9272926 DOI: 10.1080/14756366.2022.2096018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is known as a promising target for antimicrobial agents and antidiabetics. Several compounds of natural or synthetic origin have been identified as inhibitors of this enzyme. This set comprises highly selective l-glutamine, amino sugar phosphate or transition state intermediate cis-enolamine analogues. Relatively low antimicrobial activity of these inhibitors, poorly penetrating microbial cell membranes, has been improved using the pro-drug approach. On the other hand, a number of heterocyclic and polycyclic compounds demonstrating antimicrobial activity have been presented as putative inhibitors of the enzyme, based on the results of molecular docking to GlcN-6-P synthase matrix. The most active compounds of this group could be considered promising leads for development of novel antimicrobial drugs or antidiabetics, provided their selective toxicity is confirmed.
Collapse
Affiliation(s)
- Joanna Stefaniak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Marek Wojciechowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
24
|
Ortiz-Ramírez JA, Cuéllar-Cruz M, López-Romero E. Cell compensatory responses of fungi to damage of the cell wall induced by Calcofluor White and Congo Red with emphasis on Sporothrix schenckii and Sporothrix globosa. A review. Front Cell Infect Microbiol 2022; 12:976924. [PMID: 36211971 PMCID: PMC9539796 DOI: 10.3389/fcimb.2022.976924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
The cell wall (CW) of fungi exhibits a complex structure and a characteristic chemical composition consisting almost entirely of interacting crystalline and amorphous polysaccharides. These are synthesized by a number of sugar polymerases and depolymerases encoded by a high proportion of the fungal genome (for instance, 20% in Saccharomyces cerevisiae). These enzymes act in an exquisitely coordinated process to assemble the tridimensional and the functional structure of the wall. Apart from playing a critical role in morphogenesis, cell protection, viability and pathogenesis, the CW represents a potential target for antifungals as most of its constituents do not exist in humans. Chitin, β-glucans and cellulose are the most frequent crystalline polymers found in the fungal CW. The hexosamine biosynthesis pathway (HBP) is critical for CW elaboration. Also known as the Leloir pathway, this pathway ends with the formation of UDP-N-GlcNAc after four enzymatic steps that start with fructose-6-phosphate and L-glutamine in a short deviation of glycolysis. This activated aminosugar is used for the synthesis of a large variety of biomacromolecules in a vast number of organisms including bacteria, fungi, insects, crustaceans and mammalian cells. The first reaction of the HBP is catalyzed by GlcN-6-P synthase (L-glutamine:D-fructose-6-phosphate amidotransferase; EC 2.6.1.16), a critical enzyme that has been considered as a potential target for antifungals. The enzyme regulates the amount of cell UDP-N-GlcNAc and in eukaryotes is feedback inhibited by the activated aminosugar and other factors. The native and recombinant forms of GlcN-6-P synthase has been purified and characterized from both prokaryotic and eukaryotic organisms and demonstrated its critical role in CW remodeling and morphogenesis after exposure of some fungi to agents that stress the cell surface by interacting with wall polymers. This review deals with some of the cell compensatory responses of fungi to wall damage induced by Congo Red and Calcofluor White.
Collapse
|
25
|
Giarimoglou N, Kouvela A, Maniatis A, Papakyriakou A, Zhang J, Stamatopoulou V, Stathopoulos C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics (Basel) 2022; 11:antibiotics11091243. [PMID: 36140022 PMCID: PMC9495366 DOI: 10.3390/antibiotics11091243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Riboswitches are structured non-coding RNAs found in the 5′ UTR of important genes for bacterial metabolism, virulence and survival. Upon the binding of specific ligands that can vary from simple ions to complex molecules such as nucleotides and tRNAs, riboswitches change their local and global mRNA conformations to affect downstream transcription or translation. Due to their dynamic nature and central regulatory role in bacterial metabolism, riboswitches have been exploited as novel RNA-based targets for the development of new generation antibacterials that can overcome drug-resistance problems. During recent years, several important riboswitch structures from many bacterial representatives, including several prominent human pathogens, have shown that riboswitches are ideal RNA targets for new compounds that can interfere with their structure and function, exhibiting much reduced resistance over time. Most interestingly, mainstream antibiotics that target the ribosome have been shown to effectively modulate the regulatory behavior and capacity of several riboswitches, both in vivo and in vitro, emphasizing the need for more in-depth studies and biological evaluation of new antibiotics. Herein, we summarize the currently known compounds that target several main riboswitches and discuss the role of mainstream antibiotics as modulators of T-box riboswitches, in the dawn of an era of novel inhibitors that target important bacterial regulatory RNAs.
Collapse
Affiliation(s)
- Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 15341 Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-997932
| |
Collapse
|
26
|
Chandrasekaran R, Murugavel S, Silambarasan T. Computer Aided Drug Design of 1,2,3-Triazole Fused Bioactive Derivative Targeting Glucosamine-6-Phosphate Synthase (GlmS) – XRD, Computational Crystallography, and Molecular Simulation Approach. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2067196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- RaviKumar Chandrasekaran
- Department of Physics, Thanthai Periyar EVR Government Polytechnic College, Vellore, Tamil Nadu, India
| | - Saminathan Murugavel
- Department of Physics, Thanthai Periyar Government Institute of Technology, Vellore, Tamil Nadu, India
| | - Tamilselvan Silambarasan
- Department of Microbiology, School of Allied Health Sciences, VIMS Campus, Vinayaka Missions Research Foundation (Deemed University), Salem, Tamil Nadu, India
| |
Collapse
|
27
|
Kandsi F, Elbouzidi A, Lafdil FZ, Meskali N, Azghar A, Addi M, Hano C, Maleb A, Gseyra N. Antibacterial and Antioxidant Activity of Dysphania ambrosioides (L.) Mosyakin and Clemants Essential Oils: Experimental and Computational Approaches. Antibiotics (Basel) 2022; 11:482. [PMID: 35453233 PMCID: PMC9031865 DOI: 10.3390/antibiotics11040482] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Dysphania ambrosioides (L.) Mosyakin and Clemants, also known as Mexican tea, and locally known as Mkhinza, is a polymorphic annual and perennial herb, and it is widely used in folk medicine to treat a broad range of illnesses in Morocco. The aim of this study was to determine the phytochemical content and the antioxidant and the antibacterial properties of essential oils isolated from D. ambrosioides aerial components, growing in Eastern Morocco (Figuig). Hydrodistillation was used to separate D. ambrosioides essential oils, and the abundance of each phytocompound was determined by using Gas Chromatography coupled with Mass Spectrometry (GC-MS). In vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and inhibition of β-carotene/linoleic acid bleaching assays were used to determine D. ambrosioides essential oils' antioxidant activity. The findings revealed relative antioxidative power and modest radical scavenging. The antibacterial activity of the essential oils was broad-spectrum, with Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis as the most susceptible strains tested. To elucidate the physicochemical nature, drug-likeness, and the antioxidant and antibacterial action of the identified phytocomponents, computational techniques, such as ADMET analysis, and molecular docking were used.
Collapse
Affiliation(s)
- Fahd Kandsi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (F.K.); (F.Z.L.); (N.G.)
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (N.M.)
| | - Fatima Zahra Lafdil
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (F.K.); (F.Z.L.); (N.G.)
| | - Nada Meskali
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (N.M.)
| | - Ali Azghar
- Laboratoire de Microbiologie, Centre Hospitalier Universitaire (CHU), Oujda 60000, Morocco; (A.A.); (A.M.)
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (N.M.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France
- Le StudiumInstitue for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| | - Adil Maleb
- Laboratoire de Microbiologie, Centre Hospitalier Universitaire (CHU), Oujda 60000, Morocco; (A.A.); (A.M.)
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (F.K.); (F.Z.L.); (N.G.)
| |
Collapse
|
28
|
Nie XK, Chen Y, Zhang SQ, Cui X, Tang Z, Li GX. Chiral Primary Amine Catalyzed Enantioselective Tandem Reactions Based on Heyns Rearrangement: Synthesis of α-Tertiary Amino Ketones. Org Lett 2022; 24:2069-2074. [PMID: 35261250 DOI: 10.1021/acs.orglett.2c00724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we disclose a new catalytic asymmetric tandem reaction based on the Heyns rearrangement for the synthesis of chiral α-amino ketones with readily available substrates. The rearrangement is different from the Heyns rearrangement in that the α-amino ketones were obtained without the shift of the carbonyl group. The key to success is using chiral primary amine as a catalyst by mimicking glucosamine-6-phosphate synthase in catalyzing the efficient Heyns rearrangement in organisms.
Collapse
Affiliation(s)
- Xiao-Kang Nie
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Yue Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Shi-Qi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-Xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
29
|
Sánchez-Adriá IE, Sanmartín G, Prieto JA, Estruch F, Randez-Gil F. Slt2 Is Required to Activate ER-Stress-Protective Mechanisms through TORC1 Inhibition and Hexosamine Pathway Activation. J Fungi (Basel) 2022; 8:jof8020092. [PMID: 35205847 PMCID: PMC8877190 DOI: 10.3390/jof8020092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Slt2, the MAPK of the cell wall integrity (CWI) pathway, connects different signaling pathways and performs different functions in the protective response of S. cerevisiae to stress. Previous work has evidenced the relation of the CWI pathway and the unfolded protein response (UPR), a transcriptional program activated upon endoplasmic reticulum (ER) stress. However, the mechanisms of crosstalk between these pathways and the targets regulated by Slt2 under ER stress remain unclear. Here, we demonstrated that ectopic expression of GFA1, the gene encoding the first enzyme in the synthesis of UDP-GlcNAc by the hexosamine biosynthetic pathway (HBP) or supplementation of the growth medium with glucosamine (GlcN), increases the tolerance of slt2 mutant cells to different ER-stress inducers. Remarkably, GlcN also alleviates the sensitivity phenotype of cells lacking IRE1 or HAC1, the main actors in controlling the UPR. The exogenous addition of GlcN reduced the abundance of glycosylated proteins and triggered autophagy. We also found that TORC1, the central stress and growth controller, is inhibited by tunicamycin exposure in cells of the wild-type strain but not in those lacking Slt2. Consistent with this, the tunicamycin-induced activation of autophagy and the increased synthesis of ATP in response to ER stress were absent by knock-out of SLT2. Altogether, our data placed Slt2 as an essential actor of the ER stress response by regulating the HBP activity and the TORC1-dependent signaling.
Collapse
Affiliation(s)
- Isabel E. Sánchez-Adriá
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Gemma Sanmartín
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Jose A. Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Francisco Estruch
- Departament of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain;
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
- Correspondence:
| |
Collapse
|
30
|
Maraii D, Dammak M. Synthesis, structure, optical and thermal analysis of the new compound of the new compound organo-metallic (C5H6N)2TeCl6. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Antimicrobial Activity and In Silico Molecular Docking Studies of Pentacyclic Spiro[oxindole-2,3′-pyrrolidines] Tethered with Succinimide Scaffolds. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three-component cascade reactions of (E)-3-arylidene-1-methyl-pyrrolidine-2,5-diones, L-valine and various isatin derivatives are described. A series of 17 spiropyrrolidine derivatives with wide structural complexity and diversity have been thus obtained in moderate to excellent yields under mild reaction conditions. The structure and stereochemistry of these N-heterocyclic cycloadducts has been established by spectroscopic techniques and unambiguously confirmed by a single-crystal X-ray diffraction analysis performed on one derivative. UV-visible spectra have been recorded for all new compounds. Furthermore, the synthesized N-heterocyclic compounds have been screened for their in vitro antibacterial and antifungal activities. Several derivatives exhibited moderate to good activities, comparable to those of the known standard drugs Amphotericin B and Tetracycline. Structural activity relationships (SARs) and molecular docking of the most promising derivatives into the binding sites of glucosamine 6-phosphate synthase (GlcN6P) and methionyl-trna-synthetase (1PFV) were also established. Furthermore, pharmacokinetic studies indicate that the heterocycles exhibit acceptable predictive ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties and good drug ability.
Collapse
|
32
|
Shadakshari A, Suresha Kumara T, Sowmya H, Ismail, Harish B, Yamuna A. Recyclable Amberlite IR-120 Catalyzed domino reaction: Synthesis, anticancer activity and molecular docking studies of biscoumarins. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
De la Rosa A, Olaso-Gonzalez G, Garcia-Dominguez E, Mastaloudis A, Hester SN, Wood SM, Gomez-Cabrera MC, Viña J. Glucosamine Supplementation Improves Physical Performance in Trained Mice. Med Sci Sports Exerc 2021; 54:466-474. [PMID: 34711707 DOI: 10.1249/mss.0000000000002821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION D-Glucosamine (GlcN) is one of the most widely consumed dietary supplements and complementary medicines in the world and has been traditionally used to attenuate osteoarthritis in humans. GlcN extends lifespan in different animal models. In humans, its supplementation has been strongly associated with decreased total mortality and improved vascular endothelial function. GlcN acts as a suppressor of inflammation and by inhibiting glycolysis, it can activate the metabolism of stored fat and mitochondrial respiration. METHODS The conventional human GlcN dose is 1,500 mg x day-1 but extensive evidence indicates that much higher doses are well tolerated. GlcN is one of the supplements that has experienced a greater use in the last years in elite athletes mainly due to its potential chondroprotective effects that may promote cartilage health. However, the possibility of it being an ergogenic aid has not been explored. We aimed to study the potential beneficial effects of GlcN on mitochondrial content, on physical performance and oxidative stress in mice that were aerobically trained and supplemented with three different doses of glucosamine (250, 500, and 1,000 mg x Kg-1) for six weeks. We measured exercise performance (grip strength, motor coordination and running capacity) before and after the training period. Proteins involved in mitochondrial biogenesis (AMPK, PGC-1, NRF-1, SIRT-1, cytochrome c, citrate synthase), markers of oxidative stress (GSSG/GSH) or damage (MDA, carbonylated proteins), antioxidant enzymes (NRF-2, SOD1, SOD2, Catalase and PRDX6) and MAPKs (p38 and ERK ½) were also determined in skeletal muscle. RESULTS AND CONCLUSIONS Our results show that GlcN supplementation in aerobically trained mice, at doses equivalent to those conventionally used in humans, increases the protein levels of mitochondrial biogenesis markers, improves motor coordination and may have a synergistic effect with exercise training on running distance.
Collapse
Affiliation(s)
- Adrian De la Rosa
- Freshage Research Group. Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES. Fundación Investigación Hospital Clínico Universitario/INCLIVA, Spain Laboratory of Exercise Physiology, Sports Science and Innovation Research Group (GICED), Unidades Tecnológicas de Santander (UTS), Bucaramanga (Colombia) Pharmanex Research, NSE Products, Inc., Provo, UT
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim SM, Zhang S, Park J, Sung HJ, Tran TDT, Chung C, Han IO. REM Sleep Deprivation Impairs Learning and Memory by Decreasing Brain O-GlcNAc Cycling in Mouse. Neurotherapeutics 2021; 18:2504-2517. [PMID: 34312767 PMCID: PMC8804064 DOI: 10.1007/s13311-021-01094-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Rapid eye movement (REM) sleep is implicated learning and memory (L/M) functions and hippocampal long-term potentiation (LTP). Here, we demonstrate that REM sleep deprivation (REMSD)-induced impairment of contextual fear memory in mouse is linked to a reduction in hexosamine biosynthetic pathway (HBP)/O-GlcNAc flux in mouse brain. In mice exposed to REMSD, O-GlcNAcylation, and O-GlcNAc transferase (OGT) were downregulated while O-GlcNAcase was upregulated compared to control mouse brain. Foot shock fear conditioning (FC) induced activation of protein kinase A (PKA) and cAMP response element binding protein (CREB), which were significantly inhibited in brains of the REMSD group. Intriguingly, REMSD-induced defects in L/M functions and FC-induced PKA/CREB activation were restored upon increasing O-GlcNAc cycling with glucosamine (GlcN) or Thiamet G. Furthermore, Thiamet G restored the REMSD-induced decrease in dendritic spine density. Suppression of O-GlcNAcylation by the glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitor, 6-diazo-5-oxo-L-norleucine (DON), or OGT inhibitor, OSMI-1, impaired memory function, and inhibited FC-induced PKA/CREB activation. DON additionally reduced the amplitude of baseline field excitatory postsynaptic potential (fEPSP) and magnitude of long-term potentiation (LTP) in normal mouse hippocampal slices. To our knowledge, this is the first study to provide comprehensive evidence of dynamic O-GlcNAcylation changes during the L/M process in mice and defects in this pathway in the brain of REM sleep-deprived mice. Our collective results highlight HBP/O-GlcNAc cycling as a novel molecular link between sleep and cognitive function.
Collapse
Affiliation(s)
- Sang-Min Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - Hyun Jae Sung
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - Thuy-Duong Thi Tran
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
35
|
Pham EC, Truong TN, Dong NH, Vo DD, Hong Do TT. Synthesis of a Series of Novel 2-Amino-5-Substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole Derivatives as Potential Anticancer, Antifungal and Antibacterial Agents. Med Chem 2021; 18:558-573. [PMID: 34344293 DOI: 10.2174/1573406417666210803170637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many compounds containing a five-membered heterocyclic ring display exceptional chemical properties and versatile biological activities. OBJECTIVE The objective of the present study was the desire to prepare the 5-substituted 2-amino-1,3,4-oxadiazole and 2-amino-1,3,4-thiadiazole derivatives and evaluate their potential anticancer, antibacterial and antifungal activities. METHODS Twenty-seven derivatives were synthesized by iodine-mediated cyclization of semicarbazones or thiosemicarbazones obtained from condensation of semicarbazide or thiosemicarbazide and aldehydes. The structures were confirmed by 1H-NMR, 13C-NMR and MS spectra. The antibacterial and antifungal activities were evaluated by diffusion method and the anticancer activities were evaluated by MTT assay. RESULTS Twenty-seven derivatives have been synthesized in moderate to good yields. A number of derivatives exhibited potential antibacterial, antifungal and anticancer activities. CONCLUSION Compounds (1b, 1e and 1g) showed antibacterial activity against Streptococcus faecalis, MSSA and MRSA with MIC ranging between 4 to 64 µg/mL. Compound (2g) showed antifungal activity against Candida albicans (8 µg/mL) and Aspergillus niger (64 µg/mL). Compound (1o) exhibited high cytotoxic activity against HepG2 cell line (IC50 value 8.6 µM), which is comparable to the activity of paclitaxel, and is non-toxic on LLC-PK1 normal cell line. The structure activity relationship and molecular docking study of the synthesized compounds are also reported.
Collapse
Affiliation(s)
- Em Canh Pham
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh city. Vietnam
| | - Tuyen Ngoc Truong
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh city. Vietnam
| | - Nguyen Hanh Dong
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh city. Vietnam
| | - Duy Duc Vo
- Department of Chemistry, and Department of Cell and Molecular Biology, Uppsala University, Uppsala city. Sweden
| | - Tuoi Thi Hong Do
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 700000 Ho Chi Minh city. Vietnam
| |
Collapse
|
36
|
Sharma S, Bhatia V. Appraisal of the Role of In silico Methods in Pyrazole Based Drug Design. Mini Rev Med Chem 2021; 21:204-216. [PMID: 32875985 DOI: 10.2174/1389557520666200901184146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Pyrazole and its derivatives are a pharmacologically and significantly active scaffolds that have innumerable physiological and pharmacological activities. They can be very good targets for the discovery of novel anti-bacterial, anti-cancer, anti-inflammatory, anti-fungal, anti-tubercular, antiviral, antioxidant, antidepressant, anti-convulsant and neuroprotective drugs. This review focuses on the importance of in silico manipulations of pyrazole and its derivatives for medicinal chemistry. The authors have discussed currently available information on the use of computational techniques like molecular docking, structure-based virtual screening (SBVS), molecular dynamics (MD) simulations, quantitative structure activity relationship (QSAR), comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to drug design using pyrazole moieties. Pyrazole based drug design is mainly dependent on the integration of experimental and computational approaches. The authors feel that more studies need to be done to fully explore the pharmacological potential of the pyrazole moiety and in silico method can be of great help.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Chemistry, Miranda House, University of Delhi, India
| | - Vinayak Bhatia
- ICARE Eye Hospital and Postgraduate Institute, U.P., Noida, India
| |
Collapse
|
37
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
38
|
Sj AR, Ck R, S R, M P. Dehydroabietylamine, A Diterpene from Carthamus tinctorious L. Showing Antibacterial and Anthelmintic Effects with Computational Evidence. Curr Comput Aided Drug Des 2021; 16:231-237. [PMID: 30827256 DOI: 10.2174/1573409915666190301142811] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 02/21/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plant-based drugs provide an outstanding contribution to modern therapeutics, and it is well known that the presence of different phytochemicals is responsible for such pharmacological effects. Carthamus tinctorius L. is one such medicinally important plant whose different solvent extracts have been reported with several pharmacological effects like antibacterial, hepatoprotective, and wound healing. The exploration of phytoconstituents from such a medicinally important plant for different pharmacological effects could produce new and effective drugs to treat human diseases. OBJECTIVE The present study attempts to explore the antibacterial and anthelmintic properties of dehydroabietylamine, a diterpene isolated from Carthamus tinctorius L. followed by the in silico elucidation of its probable mode of action. METHODS The minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) of dehydroabietylamine were assessed against Staphylococcus aureus and Pseudomonas aeruginosa, using micro- broth dilution method. The anthelmintic activity of was determined to assess the time taken for paralysis and death of Pheretima Posthuma at different concentrations. Additionally, molecular docking study was conducted to understand the interaction between dehydroabietylamine with target proteins identified for both antibacterial and anthelmintic activity viz., glucosamine-6-phosphate synthase and β-Tubulin, respectively. RESULTS The dehydroabietylamine showed the significant MIC for S. aureus (12.5 μg/ml) and P. aeruginosa (6.25μg/ml), respectively. The result of anthelmintics effect of dehydroabietylamine was found to be dosedependent and compared to the standard drug, albendazole. CONCLUSION The interactions of dehydroabietylamine with the two target proteins with high binding affinity indicated the probable inhibition of target proteins, which could be the cause for prominent antibacterial and antihelminthic effects.
Collapse
Affiliation(s)
- Aditya R Sj
- Department of Biotechnology, SBRR Mahajana First Grade College, Mysore, Karnataka, India.,Molecular Biomedicine Laboratory and Department of P.G. Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India
| | - Ramesh Ck
- Molecular Biomedicine Laboratory and Department of P.G. Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India
| | - Raghavendra S
- Molecular Biomedicine Laboratory and Department of P.G. Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India.,Department of Biochemistry, College of Horticulture, University of Horticultural Sciences, Bagalkot, Karnataka, India
| | - Paramesha M
- Molecular Biomedicine Laboratory and Department of P.G. Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India.,Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| |
Collapse
|
39
|
Responses of Sporothrix globosa to the cell wall perturbing agents Congo Red and Calcofluor White. Antonie van Leeuwenhoek 2021; 114:609-624. [PMID: 33660079 DOI: 10.1007/s10482-021-01545-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
It is well documented that disturbance of cell surface by some agents triggers compensatory responses aimed to maintain the cell wall integrity in fungi and other organisms. Here, the thermodimorphic fungus Sporothrix globosa, a member of the pathogenic clade of the Sporothrix complex, was propagated in yeast-peptone-dextrose medium under conditions to obtain the mycelium (pH 4.5, 27-28 °C) or the yeast (pH 7.8, 32-34 °C) morphotypes in the absence and presence of the wall-interacting dyes Congo Red (CR) and Calcofluor White (CFW) either alone or in combination. After different periods of time, growth, cell morphology and activity of glucosamine-6-phosphate synthase (GlcN-6-P synthase), an ubiquitous enzyme that plays a crucial role in cell wall biogenesis, were determined. CR and to a lower extent CFW affected growth and morphology of both fungal morphotypes and significantly increased enzyme activity. Notoriously, CR or CR in combination with CFW induced the transient conversion of yeasts into conidia-forming filamentous cells even under culture conditions adjusted for yeast development, most likely as a strategy to evade the noxious effect of the dye. After sometime, hypha returned to yeast cells. An hypothetical model to explain the effect of CR on morphology and enzyme activity based on the possible role of membrane-spanning proteins known as mechanosensors is proposed. Results are discussed in terms of the fungal responses to cell wall damage.
Collapse
|
40
|
L-arabinose induces the formation of viable non-proliferating spheroplasts in Vibrio cholerae. Appl Environ Microbiol 2021; 87:AEM.02305-20. [PMID: 33355111 PMCID: PMC8090878 DOI: 10.1128/aem.02305-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, the agent of the deadly human disease cholera, propagates as a curved rod-shaped bacterium in warm waters. It is sensitive to cold, but persists in cold waters under the form of viable but non-dividing coccoidal shaped cells. Additionally, V. cholerae is able to form non-proliferating spherical cells in response to cell wall damage. It was recently reported that L-arabinose, a component of the hemicellulose and pectin of terrestrial plants, stops the growth of V. cholerae. Here, we show that L-arabinose induces the formation of spheroplasts that lose the ability to divide and stop growing in volume over time. However, they remain viable and upon removal of L-arabinose they start expanding in volume, form branched structures and give rise to cells with a normal morphology after a few divisions. We further show that WigKR, a histidine kinase/response regulator pair implicated in the induction of a high expression of cell wall synthetic genes, prevents the lysis of the spheroplasts during growth restart. Finally, we show that the physiological perturbations result from the import and catabolic processing of L-arabinose by the V. cholerae homolog of the E. coli galactose transport and catabolic system. Taken together, our results suggest that the formation of non-growing spherical cells is a common response of Vibrios exposed to detrimental conditions. They also permit to define conditions preventing any physiological perturbation of V. cholerae when using L-arabinose to induce gene expression from the tightly regulated promoter of the Escherichia coli araBAD operon.Importance Vibrios among other bacteria form transient cell wall deficient forms as a response to different stresses and revert to proliferating rods when permissive conditions have been restored. Such cellular forms have been associated to antimicrobial tolerance, chronic infections and environmental dispersion.The effect of L-Ara on V. cholerae could provide an easily tractable model to study the ability of Vibrios to form viable reversible spheroplasts. Indeed, the quick transition to spheroplasts and reversion to proliferating rods by addition or removal of L-Ara is ideal to understand the genetic program governing this physiological state and the spatial rearrangements of the cellular machineries during cell shape transitions.
Collapse
|
41
|
Zheng F, Wang T, Niu C, Jia Y, Zheng R, Liu C, Wang J, Li Q. Proteomic Analysis of Hop Bitter Compound Iso-α-acid Tolerance in Beer Spoilage Lactobacillus casei 2-9-5. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2020.1864710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Tianmu Wang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yun Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ruilong Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
42
|
Comparative Study of Metabolite Changes After Antihypertensive Therapy With Calcium Channel Blockers or Angiotensin Type 1 Receptor Blockers. J Cardiovasc Pharmacol 2021; 77:228-237. [PMID: 33235029 DOI: 10.1097/fjc.0000000000000958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023]
Abstract
ABSTRACT The high prevalence of hypertension contributes to an increased global burden of cardiovascular diseases. Calcium channel blockers (CCBs) and angiotensin type 1 receptor blockers (ARBs) are the most widely used antihypertensive drugs, and the effects of these drugs on serum metabolites remain unknown. Untargeted metabolomics has been proved to be a powerful approach for the detection of biomarkers and new compounds. In this study, we aimed to determine the changes in metabolites after single-drug therapy with a CCB or ARB in patients newly diagnosed with mild to moderate primary hypertension. We enrolled 33 patients and used an untargeted metabolomics approach to measure 625 metabolites associated with the response to a 4-week treatment of antihypertensive drugs. After screening based on P < 0.05, fold change > 1.2 or fold change < 0.83, and variable importance in projection > 1, 63 differential metabolites were collected. Four metabolic pathways-cysteine and methionine metabolism, phenylalanine metabolism, taurine and hypotaurine metabolism, and tyrosine metabolism-were identified in participants treated with ARBs. Only taurine and hypotaurine metabolism were identified in participants treated with CCBs. Furthermore, homocitrulline and glucosamine-6-phosphate were relevant to whether the blood pressure reduction achieved the target blood pressure (P < 0.05). Our study provides some evidence that changes in certain metabolites may be a potential marker for the dynamic monitoring of the protective effects and side effects of antihypertensive drugs.
Collapse
|
43
|
Bolanle IO, Riches-Suman K, Williamson R, Palmer TM. Emerging roles of protein O-GlcNAcylation in cardiovascular diseases: Insights and novel therapeutic targets. Pharmacol Res 2021; 165:105467. [PMID: 33515704 DOI: 10.1016/j.phrs.2021.105467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked β-N-acetylglucosamine transferase (OGT) and O-linked β-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.
Collapse
Key Words
- (R)-N-(Furan-2-ylmethyl)-2-(2-methoxyphenyl)-2-(2-oxo-1,2-dihydroquinoline-6-sulfonamido)-N-(thiophen-2-ylmethyl)acetamide [OSMI-1] (PubChem CID: 118634407)
- 2-(2-Amino-3-methoxyphenyl)-4H-chromen-4-one [PD98059] (PubChem CID: 4713)
- 5H-Pyrano[3,2-d]thiazole-6,7-diol, 2-(ethylamino)-3a,6,7,7a-tetrahydro-5-(hydroxymethyl)-(3aR,5R,6S,7R,7aR) [Thiamet-G] (PubChem CID: 1355663540)
- 6-Diazo-5-oxo-l-norleucine [DON] (PubChem CID: 9087)
- Alloxan (PubChem CID: 5781)
- Azaserine (PubChem CID: 460129)
- BADGP, Benzyl-2-acetamido-2-deoxy-α-d-galactopyranoside [BADGP] (PubChem CID: 561184)
- Cardiovascular disease
- Methoxybenzene-sulfonamide [KN-93] (PubChem CID: 5312122)
- N-[(5S,6R,7R,8R)-6,7-Dihydroxy-5-(hydroxymethyl)-2-(2-phenylethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-8-yl]-2-methylpropanamide [GlcNAcstatin] (PubChem CID: 122173013)
- O-(2-Acetamido-2-deoxy-d-glucopyranosyliden)amino-N-phenylcarbamate [PUGNAc] (PubChem CID: 9576811)
- O-GlcNAc transferase
- O-GlcNAcase
- Protein O-GlcNAcylation
- Streptozotocin (PubCHem CID: 7067772)
Collapse
Affiliation(s)
- Israel Olapeju Bolanle
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Kirsten Riches-Suman
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1DP, UK
| | - Ritchie Williamson
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
44
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
45
|
Panchal V, Brenk R. Riboswitches as Drug Targets for Antibiotics. Antibiotics (Basel) 2021; 10:45. [PMID: 33466288 PMCID: PMC7824784 DOI: 10.3390/antibiotics10010045] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Riboswitches reside in the untranslated region of RNA and regulate genes involved in the biosynthesis of essential metabolites through binding of small molecules. Since their discovery at the beginning of this century, riboswitches have been regarded as potential antibacterial targets. Using fragment screening, high-throughput screening and rational ligand design guided by X-ray crystallography, lead compounds against various riboswitches have been identified. Here, we review the current status and suitability of the thiamine pyrophosphate (TPP), flavin mononucleotide (FMN), glmS, guanine, and other riboswitches as antibacterial targets and discuss them in a biological context. Further, we highlight challenges in riboswitch drug discovery and emphasis the need to develop riboswitch specific high-throughput screening methods.
Collapse
Affiliation(s)
- Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| |
Collapse
|
46
|
Mizukami H, Osonoi S. Pathogenesis and Molecular Treatment Strategies of Diabetic Neuropathy Collateral Glucose-Utilizing Pathways in Diabetic Polyneuropathy. Int J Mol Sci 2020; 22:ijms22010094. [PMID: 33374137 PMCID: PMC7796340 DOI: 10.3390/ijms22010094] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic polyneuropathy (DPN) is the most common neuropathy manifested in diabetes. Symptoms include allodynia, pain, paralysis, and ulcer formation. There is currently no established radical treatment, although new mechanisms of DPN are being vigorously explored. A pathophysiological feature of DPN is abnormal glucose metabolism induced by chronic hyperglycemia in the peripheral nerves. Particularly, activation of collateral glucose-utilizing pathways such as the polyol pathway, protein kinase C, advanced glycation end-product formation, hexosamine biosynthetic pathway, pentose phosphate pathway, and anaerobic glycolytic pathway are reported to contribute to the onset and progression of DPN. Inhibitors of aldose reductase, a rate-limiting enzyme involved in the polyol pathway, are the only compounds clinically permitted for DPN treatment in Japan, although their efficacies are limited. This may indicate that multiple pathways can contribute to the pathophysiology of DPN. Comprehensive metabolic analysis may help to elucidate global changes in the collateral glucose-utilizing pathways during the development of DPN, and highlight therapeutic targets in these pathways.
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan;
- Correspondence: ; Tel.: +81-172-39-5025
| | - Sho Osonoi
- Department Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan;
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
47
|
Chatham JC, Young ME, Zhang J. Reprint of: Role of O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins in diabetic cardiovascular complications. Curr Opin Pharmacol 2020; 54:209-220. [PMID: 33278716 DOI: 10.1016/j.coph.2020.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The post-translational modification of serine and threonine residues of proteins by O-linked N-acetylglucosamine (O-GlcNAc) regulates diverse cellular processes in the cardiovascular system. UDP-GlcNAc is a substrate for O-GlcNAc transferase, which catalyzes the attachment of O-GlcNAc to proteins. O-GlcNAcase catalyzes the removal of O-GlcNAc from proteins. UDP-GlcNAc is the end product of the hexosamine biosynthesis pathway, which is regulated primarily by glucose-6-phosphate-Glutamine:fructose-6-phosphate amidotransferase (GFAT). GFAT catalyzes the formation of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. Whereas O-GlcNAc is essential for cell viability, sustained increases in O-GlcNAc levels have been implicated in the etiology of many chronic diseases and is associated with glucose toxicity and diabetic complications in various organs including the cardiovascular system. This review provides an overview of the regulation of protein O-GlcNAcylation followed by a discussion of potential mechanisms by which dysregulation in O-GlcNAc cycling contributes to the adverse effects of diabetes on the cardiovascular system.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States; Birmingham VA Medical Center, Birmingham, AL, United States
| |
Collapse
|
48
|
Chatham JC, Young ME, Zhang J. Role of O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins in diabetic cardiovascular complications. Curr Opin Pharmacol 2020; 57:1-12. [PMID: 32937226 DOI: 10.1016/j.coph.2020.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
The post-translational modification of serine and threonine residues of proteins by O-linked N-acetylglucosamine (O-GlcNAc) regulates diverse cellular processes in the cardiovascular system. UDP-GlcNAc is a substrate for O-GlcNAc transferase, which catalyzes the attachment of O-GlcNAc to proteins. O-GlcNAcase catalyzes the removal of O-GlcNAc from proteins. UDP-GlcNAc is the end product of the hexosamine biosynthesis pathway, which is regulated primarily by glucose-6-phosphate-Glutamine:fructose-6-phosphate amidotransferase (GFAT). GFAT catalyzes the formation of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. Whereas O-GlcNAc is essential for cell viability, sustained increases in O-GlcNAc levels have been implicated in the etiology of many chronic diseases and is associated with glucose toxicity and diabetic complications in various organs including the cardiovascular system. This review provides an overview of the regulation of protein O-GlcNAcylation followed by a discussion of potential mechanisms by which dysregulation in O-GlcNAc cycling contributes to the adverse effects of diabetes on the cardiovascular system.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States; Birmingham VA Medical Center, Birmingham, AL, United States
| |
Collapse
|
49
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
50
|
Glucosamine regulates hepatic lipid accumulation by sensing glucose levels or feeding states of normal and excess. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158764. [PMID: 32663610 DOI: 10.1016/j.bbalip.2020.158764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/14/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022]
Abstract
Dose-dependent lipid accumulation was induced by glucose in HepG2 cells. GlcN also exerted a promotory effect on lipid accumulation in HepG2 cells under normal glucose conditions (NG, 5 mM) and liver of normal fed zebrafish larvae. High glucose (HG, 25 mM)-induced lipid accumulation was suppressed by l-glutamine-d-fructose 6-phosphate amidotransferase inhibitors. ER stress inhibitors did not suppress HG or GlcN-mediated lipid accumulation. HG and GlcN stimulated protein expression, DNA binding and O-GlcNAcylation of carbohydrate-responsive element-binding protein (ChREBP). Furthermore, both HG and GlcN increased nuclear sterol regulatory element-binding protein-1 (SREBP-1) levels in HepG2 cells. In contrast to its stimulatory effect under NG, GlcN suppressed lipid accumulation in HepG2 cells under HG conditions. Similarly, GlcN suppressed lipid accumulation in livers of overfed zebrafish. In addition, GlcN activity on DNA binding and O-GlcNAcylation of ChREBP was stimulatory under NG and inhibitory under HG conditions. Moreover, GlcN enhanced ChREBP, SREBP-1c, ACC, FAS, L-PK and SCD-1 mRNA expression under NG but inhibited HG-induced upregulation in HepG2 cells. The O-GlcNAc transferase inhibitor, alloxan, reduced lipid accumulation by HG or GlcN while the O-GlcNAcase inhibitor, PUGNAc, enhanced lipid accumulation in HepG2 cells and liver of zebrafish larvae. GlcN-induced lipid accumulation was inhibited by the AMPK activator, AICAR. Phosphorylation of AMPK (p-AMPK) was suppressed by GlcN under NG while increased by GlcN under HG. PUGNAc downregulated p-AMPK while alloxan restored GlcN- or HG-induced p-AMPK inhibition. Our results collectively suggest that GlcN regulates lipogenesis by sensing the glucose or energy states of normal and excess fuel through AMPK modulation.
Collapse
|