1
|
Liu JB, Yuan HL, Zhang G, Ke JB. Comprehensive Characterization of a Subfamily of Ca 2+-Binding Proteins in Mouse and Human Retinal Neurons at Single-Cell Resolution. eNeuro 2024; 11:ENEURO.0145-24.2024. [PMID: 39260891 PMCID: PMC11419601 DOI: 10.1523/eneuro.0145-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Ca2+-binding proteins (CaBPs; CaBP1-5) are a subfamily of neuronal Ca2+ sensors with high homology to calmodulin. Notably, CaBP4, which is exclusively expressed in rod and cone photoreceptors, is crucial for maintaining normal retinal functions. However, the functional roles of CaBP1, CaBP2, and CaBP5 in the retina remain elusive, primarily due to limited understanding of their expression patterns within inner retinal neurons. In this study, we conducted a comprehensive transcript analysis using single-cell RNA sequencing datasets to investigate the gene expression profiles of CaBPs in mouse and human retinal neurons. Our findings revealed notable similarities in the overall expression patterns of CaBPs across both species. Specifically, nearly all amacrine cell, ganglion cell, and horizontal cell types exclusively expressed CaBP1. In contrast, the majority of bipolar cell types, including rod bipolar (RB) cells, expressed distinct combinations of CaBP1, CaBP2, and CaBP5, rather than a single CaBP as previously hypothesized. Remarkably, mouse rods and human cones exclusively expressed CaBP4, whereas mouse cones and human rods coexpressed both CaBP4 and CaBP5. Our single-cell reverse transcription polymerase chain reaction analysis confirmed the coexpression CaBP1 and CaBP5 in individual RBs from mice of either sex. Additionally, all three splice variants of CaBP1, primarily L-CaBP1, were detected in mouse RBs. Taken together, our study offers a comprehensive overview of the distribution of CaBPs in mouse and human retinal neurons, providing valuable insights into their roles in visual functions.
Collapse
Affiliation(s)
- Jun-Bin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He-Lan Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Gong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiang-Bin Ke
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
2
|
Mizobuchi K, Hayashi T, Katagiri S, Yoshitake K, Fujinami K, Yang L, Kuniyoshi K, Shinoda K, Machida S, Kondo M, Ueno S, Terasaki H, Matsuura T, Tsunoda K, Iwata T, Nakano T. Characterization of GUCA1A-associated dominant cone/cone-rod dystrophy: low prevalence among Japanese patients with inherited retinal dystrophies. Sci Rep 2019; 9:16851. [PMID: 31728034 PMCID: PMC6856191 DOI: 10.1038/s41598-019-52660-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
GUCA1A gene variants are associated with autosomal dominant (AD) cone dystrophy (COD) and cone-rod dystrophy (CORD). GUCA1A-associated AD-COD/CORD has never been reported in the Japanese population. The purpose of this study was to investigate clinical and genetic features of GUCA1A-associated AD-COD/CORD from a large Japanese cohort. We identified 8 variants [c.C50_80del (p.E17VfsX22), c.T124A (p.F42I), c.C204G (p.D68E), c.C238A (p.L80I), c.T295A (p.Y99N), c.A296C (p.Y99S), c.C451T (p.L151F), and c.A551G (p.Q184R)] in 14 families from our whole exome sequencing database composed of 1385 patients with inherited retinal diseases (IRDs) from 1192 families. Three variants (p.Y99N, p.Y99S, and p.L151F), which are located on/around EF-hand domains 3 and 4, were confirmed as "pathogenic", whereas the other five variants, which did not co-segregate with IRDs, were considered "non-pathogenic". Ophthalmic findings of 9 patients from 3 families with the pathogenic variants showed central visual impairment from early to middle-age onset and progressive macular atrophy. Electroretinography revealed severely decreased or non-recordable cone responses, whereas rod responses were highly variable, ranging from nearly normal to non-recordable. Our results indicate that the three pathogenic variants, two of which were novel, underlie AD-COD/CORD with progressive retinal atrophy, and the prevalence (0.25%, 3/1192 families) of GUCA1A-associated IRDs may be low among Japanese patients.
Collapse
Affiliation(s)
- Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan. .,Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan.
| | - Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan
| | - Kaoru Fujinami
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,UCL Institute of Ophthalmology associated with Moorfields Eye Hospital, London, UK
| | - Lizhu Yang
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kei Shinoda
- Department of Ophthalmology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shigeki Machida
- Department of Ophthalmology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan.,Department of Ophthalmology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Mie, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Chen ZH, Wang C, Zhuo MQ, Zhai QX, Chen Q, Guo YX, Zhang YX, Gui J, Tang ZH, Zeng XL. Exome sequencing identified a novel missense mutation c.464G>A (p.G155D) in Ca 2+-binding protein 4 ( CABP4) in a Chinese pedigree with autosomal dominant nocturnal frontal lobe epilepsy. Oncotarget 2017; 8:78940-78947. [PMID: 29108277 PMCID: PMC5668010 DOI: 10.18632/oncotarget.20694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to identify disease-causing gene mutations in a Chinese family affected with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), a 4-generation pedigree of 27 members in the Southern Chinese Han population, including 11 individuals diagnosed with ADNFLE. DNA samples were collected from 15 family members, chinese han people, including seven affected and eight unaffected individuals. None of these patients had night blindness or visual disorders. Four affected individuals were screened for mutations using whole-exome sequencing, and 13 potentially interesting mutations shared by all the four affected individuals were validated using the Sanger sequencing method. Only one novel missense mutation c.464G>A (p.G155D) in the CABP4 gene, encoding the neuronal Ca2+-binding protein 4 (CaBP4), was present in all seven affected individuals in this family as revealed by PCR with blood DNA samples using CABP4 primers. The mutation was also found in one young unaffected family member, but was absent from 300 unrelated control subjects. The p.G155D mutation, located near the Ca2+ binding motif EF-hand 1 and the L-type Ca2+ channel (Cav1.4) binding motif within the N-terminal lobe of CaBP4, is predicted to affect protein function according to the bioinformatics tools PolyPhen-2 and SIFT. These findings suggest that mutations in the CABP4 gene may be linked to ADNFLE.
Collapse
Affiliation(s)
- Zhi-Hong Chen
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Chun Wang
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Mu-Qing Zhuo
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qian Chen
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yu-Xiong Guo
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yu-Xin Zhang
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Juan Gui
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhi-Hong Tang
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiao-Lu Zeng
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
4
|
Lack of CaBP1/Caldendrin or CaBP2 Leads to Altered Ganglion Cell Responses. eNeuro 2016; 3:eN-NWR-0099-16. [PMID: 27822497 PMCID: PMC5083949 DOI: 10.1523/eneuro.0099-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/24/2016] [Accepted: 10/08/2016] [Indexed: 12/01/2022] Open
Abstract
Calcium-binding proteins (CaBPs) form a subfamily of calmodulin-like proteins that were cloned from the retina. CaBP4 and CaBP5 have been shown to be important for normal visual function. Although CaBP1/caldendrin and CaBP2 have been shown to modulate various targets in vitro, it is not known whether they contribute to the transmission of light responses through the retina. Therefore, we generated mice that lack CaBP2 or CaBP1/caldendrin (Cabp2–/– and Cabp1–/–) to test whether these CaBPs are essential for normal retinal function. By immunohistochemistry, the overall morphology of Cabp1–/– and Cabp2–/– retinas and the number of synaptic ribbons appear normal; transmission electron microscopy shows normal tethered ribbon synapses and synaptic vesicles as in wild-type retinas. However, whole-cell patch clamp recordings showed that light responses of retinal ganglion cells of Cabp2–/– and Cabp1–/– mice differ in amplitude and kinetics from those of wild-type mice. We conclude that CaBP1/caldendrin and CaBP2 are not required for normal gross retinal and synapse morphology but are necessary for the proper transmission of light responses through the retina; like other CaBPs, CaBP1/caldendrin and CaBP2 likely act by modulating presynaptic Ca2+-dependent signaling mechanisms.
Collapse
|
5
|
Nikoletopoulou V, Tavernarakis N. Calcium homeostasis in aging neurons. Front Genet 2012; 3:200. [PMID: 23060904 PMCID: PMC3462315 DOI: 10.3389/fgene.2012.00200] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/19/2012] [Indexed: 11/13/2022] Open
Abstract
The nervous system becomes increasingly vulnerable to insults and prone to dysfunction during aging. Age-related decline of neuronal function is manifested by the late onset of many neurodegenerative disorders, as well as by reduced signaling and processing capacity of individual neuron populations. Recent findings indicate that impairment of Ca(2+) homeostasis underlies the increased susceptibility of neurons to damage, associated with the aging process. However, the impact of aging on Ca(2+) homeostasis in neurons remains largely unknown. Here, we survey the molecular mechanisms that mediate neuronal Ca(2+) homeostasis and discuss the impact of aging on their efficacy. To address the question of how aging impinges on Ca(2+) homeostasis, we consider potential nodes through which mechanisms regulating Ca(2+) levels interface with molecular pathways known to influence the process of aging and senescent decline. Delineation of this crosstalk would facilitate the development of interventions aiming to fortify neurons against age-associated functional deterioration and death by augmenting Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Vassiliki Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas Heraklion, Crete, Greece
| | | |
Collapse
|
6
|
RD3, the protein associated with Leber congenital amaurosis type 12, is required for guanylate cyclase trafficking in photoreceptor cells. Proc Natl Acad Sci U S A 2010; 107:21158-63. [PMID: 21078983 DOI: 10.1073/pnas.1010460107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Guanylate cyclases, GC1 and GC2, are localized in the light-sensitive outer segment compartment of photoreceptor cells, where they play a crucial role in phototransduction by catalyzing the synthesis of cGMP, the second messenger of phototransduction, and regulating intracellular Ca(2+) levels in combination with the cGMP-gated channel. Mutations in GC1 are known to cause Leber congenital amaurosis type 1 (LCA1), a childhood disease associated with severe vision loss. Although the enzymatic and regulatory properties of guanylate cyclases have been studied extensively, the molecular determinants responsible for their trafficking in photoreceptors remain unknown. Here we show that RD3, a protein of unknown function encoded by a gene associated with photoreceptor degeneration in humans with Leber congenital amaurosis type 12 (LCA12), the rd3 mouse, and rcd2 collie, colocalizes and interacts with GC1 and GC2 in rod and cone photoreceptor cells of normal mice. GC1 and GC2 are undetectable in photoreceptors of the rd3 mouse deficient in RD3 by immunofluorescence microscopy. Cell expression studies show that RD3 mediates the export of GC1 from the endoplasmic reticulum to endosomal vesicles, and that the C terminus of GC1 is required for RD3 binding. Our results indicate that photoreceptor degeneration in the rd3 mouse, rcd2 dog, and LCA12 patients is caused by impaired RD3-mediated guanylate cyclase expression and trafficking. The resulting deficiency in cGMP synthesis and the constitutive closure of cGMP-gated channels might cause a reduction in intracellular Ca(2+) to a level below that required for long-term photoreceptor cell survival.
Collapse
|
7
|
Orban T, Bereta G, Miyagi M, Wang B, Chance MR, Sousa MC, Palczewski K. Conformational changes in guanylate cyclase-activating protein 1 induced by Ca2+ and N-terminal fatty acid acylation. Structure 2010; 18:116-26. [PMID: 20152158 DOI: 10.1016/j.str.2009.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/29/2009] [Accepted: 11/08/2009] [Indexed: 11/25/2022]
Abstract
Neuronal Ca(2+) sensors (NCS) are high-affinity Ca(2+)-binding proteins critical for regulating a vast range of physiological processes. Guanylate cyclase-activating proteins (GCAPs) are members of the NCS family responsible for activating retinal guanylate cyclases (GCs) at low Ca(2+) concentrations, triggering synthesis of cGMP and recovery of photoreceptor cells to the dark-adapted state. Here we use amide hydrogen-deuterium exchange and radiolytic labeling, and molecular dynamics simulations to study conformational changes induced by Ca(2+) and modulated by the N-terminal myristoyl group. Our data on the conformational dynamics of GCAP1 in solution suggest that Ca(2+) stabilizes the protein but induces relatively small changes in the domain structure; however, loss of Ca(+2) mediates a significant global relaxation and movement of N- and C-terminal domains. This model and the previously described "calcium-myristoyl switch" proposed for recoverin indicate significant diversity in conformational changes among these highly homologous NCS proteins with distinct functions.
Collapse
Affiliation(s)
- Tivadar Orban
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Karan S, Frederick JM, Baehr W. Novel functions of photoreceptor guanylate cyclases revealed by targeted deletion. Mol Cell Biochem 2009; 334:141-55. [PMID: 20012162 DOI: 10.1007/s11010-009-0322-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Accepted: 11/04/2009] [Indexed: 02/04/2023]
Abstract
Targeted deletion of membrane guanylate cyclases (GCs) has yielded new information concerning their function. Here, we summarize briefly recent results of laboratory generated non-photoreceptor GC knockouts characterized by complex phenotypes affecting the vasculature, heart, brain, kidney, and other tissues. The main emphasis of the review, however, addresses the two GCs expressed in retinal photoreceptors, termed GC-E and GC-F. Naturally occurring GC-E (GUCY2D) null alleles in human and chicken are associated with an early onset blinding disorder, termed "Leber congenital amaurosis type 1" (LCA-1), characterized by extinguished scotopic and photopic ERGs, and retina degeneration. In mouse, a GC-E null genotype produces a recessive cone dystrophy, while rods remain functional. Rod function is supported by the presence of GC-F (Gucy2f), a close relative of GC-E. Deletion of Gucy2f has very little effect on rod and cone physiology and survival. However, a GC-E/GC-F double knockout (GCdko) phenotypically resembles human LCA-1 with extinguished ERGs and rod/cone degeneration. In GCdko rods, PDE6 and GCAPs are absent in outer segments. In contrast, GC-E(-/-) cones lack proteins of the entire phototransduction cascade. These results suggest that GC-E may participate in transport of peripheral membrane proteins from the endoplasmic reticulum (ER) to the outer segments.
Collapse
Affiliation(s)
- Sukanya Karan
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, 65 Mario Capecchi Dr., Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
9
|
Rieke F, Lee A, Haeseleer F. Characterization of Ca2+-binding protein 5 knockout mouse retina. Invest Ophthalmol Vis Sci 2008; 49:5126-35. [PMID: 18586882 DOI: 10.1167/iovs.08-2236] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The goal of this study was to investigate, with the use of CaBP5 knockout mice, whether Ca(2+)-binding protein 5 (CaBP5) is required for vision. The authors also tested whether CaBP5 can modulate expressed Ca(v)1.2 voltage-activated calcium channels. METHODS CaBP5 knockout (Cabp5(-/-)) mice were generated. The retinal morphology and visual function of 6-week-old Cabp5(-/-) mice were analyzed by confocal and electron microscopy, single-flash electroretinography, and whole-cell patch-clamp recordings of retinal ganglion cells. The interaction and modulation of Ca(v)1.2 channels by CaBP5 were analyzed using affinity chromatography, gel overlay assays, and patch-clamp recordings of transfected HEK293 cells. RESULTS No evidence of morphologic changes and no significant difference in the amplitude of the ERG responses were observed in CaBP5 knockout mice compared with wild-type mice. However, the sensitivity of retinal ganglion cell light responses was reduced by approximately 50% in Cabp5(-/-) mice. CaBP5 directly interacted with the CaM-binding domain of Ca(v)1.2 and colocalized with Ca(v)1.2 in rod bipolar cells. In transfected HEK293T cells, CaBP5 suppressed calcium-dependent inactivation of Ca(v)1.2 and shifted the voltage dependence of activation to more depolarized membrane potentials. CONCLUSIONS This study provides evidence that lack of CaBP5 results in reduced sensitivity of rod-mediated light responses of retinal ganglion cells, suggestive of a role for CaBP5 in the normal transmission of light signals throughout the retinal circuitry. The interaction, colocalization, and modulation of Ca(v)1.2 by CaBP5 suggest that CaBP5 can alter retinal sensitivity through the modulation of voltage-gated calcium channels.
Collapse
Affiliation(s)
- Fred Rieke
- Department of 2Physiology and Biophysics, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
10
|
Abstract
Detailed biochemical, structural and physiological studies of the role of Ca2(+)-binding proteins in mammalian retinal neurons have yielded new insights into the function of these proteins in normal and pathological states. In phototransduction, a biochemical process that is responsible for the conversion of light into an electrical impulse, guanylate cyclases (GCs) are regulated by GC-activating proteins (GCAPs). These regulatory proteins respond to changes in cytoplasmic Ca2+ concentrations. Disruption of Ca2+ homeostasis in photoreceptor cells by genetic and environmental factors can result ultimately in degeneration of these cells. Pathogenic mutations in GC1 and GCAP1 cause autosomal recessive Leber congenital amaurosis and autosomal dominant cone dystrophy, respectively. This report provides a recent account of the advances, challenges, and possible future prospects of studying this important step in visual transduction that transcends to other neuronal Ca2+ homeostasis processes.
Collapse
|
11
|
Mikhaylova M, Sharma Y, Reissner C, Nagel F, Aravind P, Rajini B, Smalla KH, Gundelfinger ED, Kreutz MR. Neuronal Ca2+ signaling via caldendrin and calneurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1229-37. [PMID: 17055077 DOI: 10.1016/j.bbamcr.2006.08.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 08/22/2006] [Accepted: 08/30/2006] [Indexed: 11/22/2022]
Abstract
The calcium sensor protein caldendrin is abundantly expressed in neurons and is thought to play an important role in different aspects of synapto-dendritic Ca2+ signaling. Caldendrin is highly abundant in the postsynaptic density of a subset of excitatory synapses in brain and its distinct localization raises several decisive questions about its function. Previous work suggests that caldendrin is tightly associated with Ca2+ - and Ca2+ release channels and might be involved in different aspects of the organization of the postsynaptic scaffold as well as with synapse-to-nucleus communication. In this report we introduce two new EF-hand calcium sensor proteins termed calneurons that apart from calmodulin represent the closest homologues of caldendrin in brain. Calneurons have a different EF-hand organization than other calcium sensor proteins, are prominently expressed in neurons and will presumably bind Ca2+ with higher affinity than caldendrin. Despite some significant structural differences it is conceivable that they are involved in similar Ca2+ regulated processes like caldendrin and neuronal calcium sensor proteins.
Collapse
Affiliation(s)
- Marina Mikhaylova
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stephen R, Palczewski K, Sousa MC. The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies. J Mol Biol 2006; 359:266-75. [PMID: 16626734 PMCID: PMC4291230 DOI: 10.1016/j.jmb.2006.03.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/15/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Absorption of light by visual pigments initiates the phototransduction pathway that results in degradation of the intracellular pool of cyclic-GMP (cGMP). This hydrolysis promotes the closing of cGMP-gated cation channels and consequent hyperpolarization of rod and cone photoreceptor cell membranes. Guanylate cyclase-activating proteins (GCAPs) are a family of proteins that regulate retinal guanylate cyclase (GC) activity in a Ca2+-dependent manner. At high [Ca2+], typical of the dark-adapted state (approximately 500 nM), GCAPs inhibit retinal GCs. At the low [Ca2+] (approximately 50 nM) that occurs after the closing of cGMP-gated channels, GCAPs activate retinal GCs to replenish dark-state cGMP levels. Here, we report the crystal structure of unmyristoylated human GCAP3 with Ca2+ bound. GCAP3 is an EF-hand Ca2+-binding protein with Ca2+ bound to EF2, 3 and 4, while Ca2+ binding to EF-hand 1 is disabled. GCAP3 contains two domains with the EF-hand motifs arranged in a tandem array similar to GCAP2 and members of the recoverin subfamily of Ca2+-binding proteins. Residues not involved in Ca2+ binding, but conserved in all GCAPs, cluster around EF1 in the N-terminal domain and may represent the interface with GCs. Five point mutations in the closely related GCAP1 have been linked to the etiology of cone dystrophies. These residues are conserved in GCAP3 and the structure suggests important roles for these amino acids. We present a homology model of GCAP1 based on GCAP3 that offers insight into the molecular mechanism underlying the autosomal dominant cone dystrophies produced by GCAP1 mutations.
Collapse
Affiliation(s)
- Ricardo Stephen
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
13
|
Sherry DM, Mitchell R, Li H, Graham DR, Ash JD. Leukemia inhibitory factor inhibits neuronal development and disrupts synaptic organization in the mouse retina. J Neurosci Res 2006; 82:316-32. [PMID: 16206277 DOI: 10.1002/jnr.20619] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leukemia inhibitory factor (LIF) belongs to the interleukin-6 cytokine family, all members of which signal through the common gp130 receptor. Neurotrophic members of this cytokine family are known to arrest photoreceptor maturation and are likely to regulate maturation of other retinal neurons as well. We have used transgenic mice that constitutively express LIF beginning in embryonic development to determine its effects on synaptic organization and molecular maturation of all classes of retinal neurons. LIF reduced the numbers of cells showing markers characteristic of mature cells of all neuronal classes and caused synaptic ectopia. The net effect was disrupted morphological development and disturbed synaptic organization. Our study suggests that cytokines signaling through gp130 are capable of regulating many aspects of neuronal differentiation in the retina, including synaptic targeting.
Collapse
Affiliation(s)
- David M Sherry
- University of Houston College of Optometry, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
14
|
Maeda T, Lem J, Palczewski K, Haeseleer F. A critical role of CaBP4 in the cone synapse. Invest Ophthalmol Vis Sci 2005; 46:4320-7. [PMID: 16249514 PMCID: PMC1351246 DOI: 10.1167/iovs.05-0478] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE CaBP4, a photoreceptor-specific protein of the rods and cones, is essential for the development and maintenance of the mouse photoreceptor synapse. In this study, double CaBP4/rod alpha-transducin knockout (Cabp4(-/-)Gnat1(-/-)) mice lacking the rod-mediated component of electrophysiologic responses were generated and analyzed to investigate the role of CaBP4 in cones. METHODS The retinal morphology and physiologic function of 2-month-old Cabp4(-/-)Gnat1(-/-) mice were analyzed using immunocytochemistry, electron microscopy, and single-flash and flicker electroretinography (ERG). RESULTS The thickness of the outer plexiform layer and the number of photoreceptor terminals in Cabp4(-/-)Gnat1(-/-) mice were reduced to levels similar to those of Cabp4(-/-) mice. Single-flash and flicker ERG showed that the amplitude and sensitivity of the b-wave in the Cabp4(-/-)Gnat1(-/-) mice were severely attenuated compared with those in wild-type and Gnat1(-/-) mice. CONCLUSIONS Results indicate that the cone synaptic function in Cabp4(-/-)Gnat1(-/-) mice was severely disrupted, whereas the morphologic defects observed in Cabp4(-/-)Gnat1(-/-) mice were similar to those of single Cabp4(-/-) knockout mice. This and a previous study reveal that CaBP4 is critical for signal transmission from rods and cones to second-order neurons.
Collapse
Affiliation(s)
| | - Janis Lem
- Departments of Ophthalmology and Molecular Cardiology, Tufts–New England Med Center, Boston, Massachusetts
| | - Krzysztof Palczewski
- From the Departments of Ophthalmology
- Pharmacology, and
- Chemistry, University of Washington, Seattle, Washington; and the
| | | |
Collapse
|
15
|
Sokal I, Dupps WJ, Grassi MA, Brown J, Affatigato LM, Roychowdhury N, Yang L, Filipek S, Palczewski K, Stone EM, Baehr W. A novel GCAP1 missense mutation (L151F) in a large family with autosomal dominant cone-rod dystrophy (adCORD). Invest Ophthalmol Vis Sci 2005; 46:1124-32. [PMID: 15790869 PMCID: PMC1352313 DOI: 10.1167/iovs.04-1431] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To elucidate the phenotypic and biochemical characteristics of a novel mutation associated with autosomal dominant cone-rod dystrophy (adCORD). METHODS Twenty-three family members of a CORD pedigree underwent clinical examinations, including visual acuity tests, standardized full-field ERG, and fundus photography. Genomic DNA was screened for mutations in GCAP1 exons using DNA sequencing and single-strand conformational polymorphism (SSCP) analysis. Function and stability of recombinant GCAP1-L151F were tested as a function of [Ca(2+)], and its structure was probed by molecular dynamics. RESULTS Affected family members experienced dyschromatopsia, hemeralopia, and reduced visual acuity by the second to third decade of life. Electrophysiology revealed a nonrecordable photopic response with later attenuation of the scotopic response. Affected family members harbored a C-->T transition in exon 4 of the GCAP1 gene, resulting in an L151F missense mutation affecting the EF hand motif 4 (EF4). This change was absent in 11 unaffected family members and in 100 unrelated normal subjects. GCAP1-L151F stimulation of photoreceptor guanylate cyclase was not completely inhibited at high physiological [Ca(2+)], consistent with a lowered affinity for Ca(2+)-binding to EF4. CONCLUSIONS A novel L151F mutation in the EF4 hand domain of GCAP1 is associated with adCORD. The clinical phenotype is characterized by early cone dysfunction and a progressive loss of rod function. The biochemical phenotype is best described as persistent stimulation of photoreceptor guanylate cyclase, representing a gain of function of mutant GCAP1. Although a conservative substitution, molecular dynamics suggests a significant change in Ca(2+)-binding to EF4 and EF2 and changes in the shape of L151F-GCAP1.
Collapse
Affiliation(s)
| | | | | | - Jeremiah Brown
- Department of Ophthalmology and Visual Sciences, and the
| | | | | | - Lili Yang
- Departments of Ophthalmology and Visual Sciences
| | - Slawomir Filipek
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Palczewski
- From the Departments of Ophthalmology
- Pharmacology, and
- Chemistry, University of Washington, Seattle, Washington; the
| | - Edwin M. Stone
- Department of Ophthalmology and Visual Sciences, and the
- Howard Hughes Medical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa; the
| | - Wolfgang Baehr
- Departments of Ophthalmology and Visual Sciences
- Biology, and
- Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah; and the
| |
Collapse
|
16
|
Imanishi Y, Yang L, Sokal I, Filipek S, Palczewski K, Baehr W. Diversity of guanylate cyclase-activating proteins (GCAPs) in teleost fish: characterization of three novel GCAPs (GCAP4, GCAP5, GCAP7) from zebrafish (Danio rerio) and prediction of eight GCAPs (GCAP1-8) in pufferfish (Fugu rubripes). J Mol Evol 2005; 59:204-217. [PMID: 15486694 PMCID: PMC1351297 DOI: 10.1007/s00239-004-2614-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 02/16/2004] [Indexed: 11/25/2022]
Abstract
The guanylate cyclase-activating proteins (GCAPs) are Ca(2+)-binding proteins of the calmodulin (CaM) gene superfamily that function in the regulation of photoreceptor guanylate cyclases (GCs). In the mammalian retina, two GCAPs (GCAP 1-2) and two transmembrane GCs have been identified as part of a complex regulatory system responsive to fluctuating levels of free Ca(2+). A third GCAP, GCAP3, is expressed in human and zebrafish (Danio rerio) retinas, and a guanylate cyclase-inhibitory protein (GCIP) has been shown to be present in frog cones. To explore the diversity of GCAPs in more detail, we searched the pufferfish (Fugu rubripes) and zebrafish (Danio rerio) genomes for GCAP-related gene sequences (fuGCAPs and zGCAPs, respectively) and found that at least five additional GCAPs (GCAP4-8) are predicted to be present in these species. We identified genomic contigs encoding fuGCAPl-8, fuGCIP, zGCAPl-5, zGCAP7 and zGCIP. We describe cloning, expression and localization of three novel GCAPs present in the zebrafish retina (zGCAP4, zGCAP5, and zGCAP7). The results show that recombinant zGCAP4 stimulated bovine rod outer segment GC in a Ca(2+)-dependent manner. RT-PCR with zGCAP specific primers showed specific expression of zGCAPs and zGCIP in the retina, while zGCAPl mRNA is also present in the brain. In situ hybridization with anti-sense zGCAP4, zGCAP5 and zGCAP7 RNA showed exclusive expression in zebrafish cone photoreceptors. The presence of at least eight GCAP genes suggests an unexpected diversity within this subfamily of Ca(2+)-binding proteins in the teleost retina, and suggests additional functions for GCAPs apart from stimulation of GC. Based on genome searches and EST analyses, the mouse and human genomes do not harbor GCAP4-8 or GCIP genes.
Collapse
Affiliation(s)
- Yoshikazu Imanishi
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | - Lili Yang
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Izabela Sokal
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | - Slawomir Filipek
- International Institute of Molecular and Cell Biology, Warsaw, PL 02109, Poland
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Wolfgang Baehr
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Ophthalmology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
Nishiguchi KM, Sokal I, Yang L, Roychowdhury N, Palczewski K, Berson EL, Dryja TP, Baehr W. A novel mutation (I143NT) in guanylate cyclase-activating protein 1 (GCAP1) associated with autosomal dominant cone degeneration. Invest Ophthalmol Vis Sci 2004; 45:3863-70. [PMID: 15505030 PMCID: PMC1475955 DOI: 10.1167/iovs.04-0590] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify pathogenic mutations in the guanylate cyclase-activating protein 1 (GCAP1) and GCAP2 genes and to characterize the biochemical effect of mutation on guanylate cyclase (GC) stimulation. METHODS The GCAP1 and GCAP2 genes were screened by direct sequencing for mutations in 216 patients and 421 patients, respectively, with various hereditary retinal diseases. A mutation in GCAP1 segregating with autosomal dominant cone degeneration was further evaluated biochemically by employing recombinant proteins, immunoblotting, Ca2+-dependent stimulation of GC, fluorescence emission spectra, and limited proteolysis in the absence and presence of Ca2+. RESULTS A novel GCAP1 mutation, I143NT (substitution of Ile at codon 143 by Asn and Thr), affecting the EF4 Ca2+-binding loop, was identified in a heterozygote father and son with autosomal dominant cone degeneration. Both patients had much greater loss of cone function versus rod function; previous histopathologic evaluation of the father's eyes at autopsy (age 75 years) showed no foveal cones but a few, scattered cones remaining in the peripheral retina. Biochemical analysis showed that the GCAP1-I143NT mutant adopted a conformation susceptible to proteolysis, and the mutant inhibited GC only partially at high Ca2+ concentrations. Individual patients with atypical or recessive retinitis pigmentosa (RP) had additional heterozygous GCAP1-T114I and GCAP2 gene changes (V85M and F150C) of unknown pathogenicity. CONCLUSIONS A novel GCAP1 mutation, I143NT, caused a form of autosomal dominant cone degeneration that destroys foveal cones by mid-life but spares some cones in the peripheral retina up to 75 years. Properties of the GCAP1-I143NT mutant protein suggested that it is incompletely inactivated by high Ca2+ concentrations as should occur with dark adaptation. The continued activity of the mutant GCAP1 likely results in higher-than-normal scotopic cGMP levels which may, in turn, account for the progressive loss of cones.
Collapse
Affiliation(s)
- Koji M. Nishiguchi
- Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Izabela Sokal
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Lili Yang
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - Nirmalya Roychowdhury
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of Washington, Seattle, Washington
- Department of Pharmacology, University of Washington, Seattle, Washington
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Eliot L. Berson
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Thaddeus P. Dryja
- Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
- Department of Biology, University of Utah, Salt Lake City, Utah
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Palczewski K, Sokal I, Baehr W. Guanylate cyclase-activating proteins: structure, function, and diversity. Biochem Biophys Res Commun 2004; 322:1123-30. [PMID: 15336959 DOI: 10.1016/j.bbrc.2004.07.122] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Indexed: 10/26/2022]
Abstract
The guanylate cyclase-activating proteins (GCAPs), Ca2+-binding proteins of the calmodulin gene superfamily, function as regulators of photoreceptor guanylate cyclases. In contrast to calmodulin, which is active in the Ca2+-bound form, GCAPs stimulate GCs in the [Ca2+]-free form and inhibit GCs upon Ca2+ binding. In vertebrate retinas, at least two GCAP1 and two GCs are present, a third GCAP3 is expressed in humans and fish, and at least five additional GCAP4-8 genes have been identified or are predicted in zebrafish and pufferfish. Missense mutations in GCAP1 (Y99C, I143NT, E155G, and P50L) have been associated with autosomal dominant cone dystrophy. Absence of GCAP1/2 in mice delays recovery of the photoresponse, a phenotype consistent with delay in cGMP synthesis. In the absence of GCAP2, GCAP1 supports the generation of wild-type flash responses in both rod and cone cells. Recent progress revealed an unexpected complexity of the GC-GCAP system, pointing, out a number of unsolved questions.
Collapse
|
19
|
Affiliation(s)
- Ernesto Carafoli
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35121 Padua, Italy.
| |
Collapse
|
20
|
Subbaraya I, Zhao C, Duda T. Structure and Ca2+ regulation of frog photoreceptor guanylate cyclase, ROS-GC1. Mol Cell Biochem 2004; 254:9-19. [PMID: 14674678 DOI: 10.1023/a:1027311811807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rod outer segment membrane guanylate cyclase (ROS-GC) is a critical component of the vertebrate phototransduction machinery. In response to photoillumination, it senses a decline in free Ca(2+) levels from 500 to below 100 nM, becomes activated, and replenishes the depleted cyclic GMP pool to restore the dark state of the photoreceptor cell. It exists in two forms, ROS-GC1 and ROS-GC2. In outer segments, ROS-GCs sense fluctuations in Ca(2+) via two Ca(2+)-binding proteins, which have been termed GCAP1 and GCAP2. In the present study we report on the cloning of two ROS-GCs from the frog retinal cDNA library. These cyclases are the structural and functional counterparts of the mammalian ROS-GC1 and ROS-GC2. There is, however, an important difference between the regulation of mammalian and frog ROS-GC1: In contrast to the mammalian, the frog form does not require the myristoylated form of GCAP1 for its Ca(2+)-dependent modulation. This feature is not dependent upon the ability of frog GCAP1 to bind Ca(2+) because unmyristoylated GCAP1 mutants which do not bind Ca(2+), activate frog ROS-GC1. The findings establish frog as a suitable phototransduction model and show a facet of frog ROS-GC signaling, which is not shared by the mammalian form.
Collapse
Affiliation(s)
- Iswari Subbaraya
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
21
|
Seidenbecher CI, Landwehr M, Smalla KH, Kreutz M, Dieterich DC, Zuschratter W, Reissner C, Hammarback JA, Böckers TM, Gundelfinger ED, Kreutz MR. Caldendrin but not calmodulin binds to light chain 3 of MAP1A/B: an association with the microtubule cytoskeleton highlighting exclusive binding partners for neuronal Ca(2+)-sensor proteins. J Mol Biol 2004; 336:957-70. [PMID: 15095872 DOI: 10.1016/j.jmb.2003.12.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 12/15/2003] [Accepted: 12/18/2003] [Indexed: 11/19/2022]
Abstract
Caldendrin is a neuronal Ca(2+)-sensor protein (NCS), which represents the closest homologue of calmodulin (CaM) in nerve cells. It is tightly associated with the somato-dendritic cytoskeleton of neurons and highly enriched in the postsynaptic cytomatrix. Here, we report that caldendrin specifically associates with the microtubule cytoskeleton via an interaction with light chain 3 (LC3), a microtubule component with sequence homology to the GABAA receptor-associated protein (GABARAP), which is, like LC3, probably involved in cellular transport processes. Interestingly, two binding sites exist in LC3 for caldendrin from which only one exhibits a strict Ca(2+)-dependency for the interaction to take place but both require the presence of the first two EF-hands of caldendrin. CaM, however, is not capable of binding to LC3 at both sites despite its high degree of primary structure similarity with caldendrin. Computer modelling suggests that this might be explained by an altered distribution of surface charges at the first two EF-hands rendering each molecule, in principle, specific for a discrete set of binding partners. These findings provide molecular evidence that NCS can transduce signals to a specific target interaction irrespective of Ca(2+)-concentrations and CaM-levels.
Collapse
Affiliation(s)
- Constanze I Seidenbecher
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestr. 6 39118 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Newbold RJ, Deery EC, Payne AM, Wilkie SE, Hunt DM, Warren MJ. Guanylate cyclase activating proteins, guanylate cyclase and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:411-38. [PMID: 12596936 DOI: 10.1007/978-1-4615-0121-3_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A range of cone and cone-rod dystrophies (CORD) have been observed in man, caused by mutations in retinal guanylate cyclase 1 (RetGC1) and guanylate cyclase activating protein 1 (GCAP 1). The CORD causing mutations in RetGC1 are located at a mutation "hot spot" within the dimerisation domain, where R838 is the key residue. Three disease causing mutations have been found in human GCAP1, resulting in cone or cone-rod degeneration. All three mutations are dominant in their effect although the mechanism by which the P50L mutation exerts its influence remains unclear although it might act due to a haplo-insufficiency, arising from increased susceptibility to protease activity and increased thermal instability. In contrast, loss of Ca2+ sensitivity appears to be the main cause of the diseased state for the Y99C and E155G mutations. The cone and cone-rod dystrophies that are caused by mutations in RetGC1 or GCAP1 arise from a perturbation of the delicate balance of Ca2+ and cGMP within the photoreceptor cells and it is this disruption that is believed to cause cell death. The diseases caused by mutations in RetGC1 and GCAP1 prominently affect cones, consistent with the higher concentrations of these proteins in cone cells.
Collapse
Affiliation(s)
- Richard J Newbold
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | | | | | | | | | | |
Collapse
|
23
|
Mendez A, Chen J. Mouse models to study GCAP functions in intact photoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:361-88. [PMID: 12596933 DOI: 10.1007/978-1-4615-0121-3_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In photoreceptor cells cGMP is the second messenger that transduces light into an electrical response. Regulation of cGMP synthesis by Ca2+ is one of the key mechanisms by which Ca2+ exerts negative feedback to the phototransduction cascade in the process of light adaptation. This Ca2+ feedback to retinal guanylyl cyclases (Ret-GCs) is conferred by the guanylate cyclase-activating proteins (GCAPs). Mutations in GCAP1 that disrupt the Ca2+ regulation of Ret-GCs in vitro have been associated with severe human vision disorders. This chapter focuses on recent data obtained from biochemical and electrophysiological studies of GCAP1/GCAP2 knockout mice and other GCAP transgenic mice, addressing: 1. the quantitative aspects of the Ca2+-feedback to Ret-GCs in regulating the light sensitivity and adaptation in intact rods; 2. functional differences between GCAP1 and GCAP2 in intact rod photoreceptors; and 3. whether GCAP mutants with impaired Ca2+ binding lead to retinal disease in vivo by constitutive activation of Ret-GCs and elevation of intracellular cGMP, as predicted from in vitro studies.
Collapse
Affiliation(s)
- Ana Mendez
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9112, USA
| | | |
Collapse
|
24
|
Haeseleer F, Palczewski K. Calmodulin and Ca2+-binding proteins (CaBPs): variations on a theme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:303-17. [PMID: 12596929 DOI: 10.1007/978-1-4615-0121-3_18] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ca2+ is a ubiquitous second messenger that frequently exerts its effects through Ca2+-binding proteins. In response to changes in the intracellular [Ca2+], Ca2+-binding proteins modulate the cellular activities of enzymes, channels and structural proteins. Multiple Ca2+-binding proteins are expressed in the retina and, in most cases, in a unique cellular and sub-cellular manner. CaBPs are retinal Ca2+-binding proteins displaying a high similarity to calmodulin (CaM). CaBPs are able to mimic some of the interactions of CaM with effector enzymes, although their physiological role has not yet been resolved. CaBPs could be cell-type specific proteins that play a key role in the Ca2+ signaling of specialized retinal neurons.
Collapse
Affiliation(s)
- Francoise Haeseleer
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195-6485, USA.
| | | |
Collapse
|
25
|
Seidenbecher CI, Reissner C, Kreutz MR. Caldendrins in the inner retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:451-63. [PMID: 12596938 DOI: 10.1007/978-1-4615-0121-3_27] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Caldendrin is the first member of a novel family of Ca2+-binding proteins (CaBPs). Its unique two-domain structure is composed of a calmodulin-homologous teminus and an unrelated N-terminal part. The latter is thought to mediate the tight association of caldendrin with the subsynaptic cytoskeleton. Caldendrin is expressed in forebrain regions with a laminar cytoarchitecture as well as in the inner retina where it is localized to OFF cone bipolar and a subset of amacrine and ganlion cells. In addition, caldendrin is prominently present in processes and synapses of the inner plexiform layer. Thus, caldendrin-immunoreactivity is displayed by ubpopulations of most retinal cell classes, with the exception of glial cells. Caldendrin is most likely involved in dendritic Ca2+-signaling, one of the functions of its close relative, calmodulin. However, several lines of evidence suggest that due to its unique properties caldendrin might not merely substitute for calmodulin. t is speculated that either the specific enrichment in cellular micro-compartments like the postsynaptic cytomatrix, the unique two-domain structure or the altered distribution of surface charges renders caldendrin specific for distinct binding partners or certain Ca2+-triggered signaling events.
Collapse
Affiliation(s)
- Constanze I Seidenbecher
- AG Molecular of Plasicity, Department of Neurochemistry/Molecular Biology, Leibnitz Institute for Neurobiology, 39118 Magdeburg, Germany.
| | | | | |
Collapse
|
26
|
Sokal I, Hu G, Liang Y, Mao M, Wensel TG, Palczewski K. Identification of protein kinase C isozymes responsible for the phosphorylation of photoreceptor-specific RGS9-1 at Ser475. J Biol Chem 2003; 278:8316-25. [PMID: 12499365 DOI: 10.1074/jbc.m211782200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of the visual G-protein transducin by GTP hydrolysis is regulated by the GTPase-accelerating protein (GAP) RGS9-1. Regulation of RGS9-1 itself is poorly understood, but we found previously that it is subject to a light- and Ca(2+)-sensitive phosphorylation on Ser(475). Because there are much higher RGS9-1 levels in cones than in rods, we investigated whether Ser(475) is phosphorylated in rods using Coneless mice and found that both the phosphorylation and its regulation by light occur in rods. Therefore, we used rod outer segments as the starting material for the purification of RGS9-1 kinase activity. Two major peaks of activity corresponded to protein kinase C (PKC) isozymes, PKCalpha and PKCtheta. A synthetic peptide corresponding to the Ser(475) RGS9-1 sequence and RGS9-1 were substrates for recombinant PKCalpha and PKCtheta. This phosphorylation was removed efficiently by protein phosphatase 2A, an endogenous phosphatase in rod outer segments, but not by PP1 or PP2B. Phosphorylation of RGS9-1 by PKC had little effect on its activity in solution but significantly decreased its affinity for its membrane anchor protein and GAP enhancer, RGS9-1 anchor protein (R9AP). PKCtheta immunostaining was at higher levels in cone outer segments than in rod outer segments, as was found for the components of the RGS9-1 GAP complex. Thus, PKC-mediated phosphorylation of RGS9-1 represents a potential mechanism for feedback control of the kinetics of photoresponse recovery in both rods and cones, with this mechanism probably especially important in cones.
Collapse
Affiliation(s)
- Izabela Sokal
- Department of Ophthalmology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
27
|
Ohya S, Horowitz B. Differential transcriptional expression of Ca2+ BP superfamilies in murine gastrointestinal smooth muscles. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1290-7. [PMID: 12388203 DOI: 10.1152/ajpgi.00101.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calmodulin (Cal) plays important roles for contractile activity in smooth muscles. Recently, two distinct Ca(2+)-binding protein superfamilies with sequence similarities to Cal have been identified in neuronal cells: neuronal Ca(2+)-binding proteins (NCBPs) and Cal-like Ca(2+)-binding proteins (CaBPs). Some NCBPs and CaBPs play significant roles for Ca(2+)-dependent cellular signaling in the nervous system. In gastrointestinal smooth muscles (GISMs), Cal functions as the regulator of contractile behavior and electrical rhythmicity. However, the molecular identification of NCBPs and CaBPs has not been elucidated in GISMs. Here, we have identified NCBPs and CaBPs expressed in GISMs and determined the expression levels of their transcripts by quantitative RT-PCR. Of 12 NCBPs, the transcripts for neuronal Ca(2+) sensor 1, neural visinin-like proteins 1, 2, and 3, and K(+) channel-interacting proteins 1 and 3 were detected in proximal colon, gastric fundus, gastric antrum, and jejunum. On the other hand, of seven CaBPs including alternatively spliced variants, only CaBP1L transcripts were detected in GISMs.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA
| | | |
Collapse
|
28
|
Sienaert I, Nadif Kasri N, Vanlingen S, Parys JB, Callewaert G, Missiaen L, de Smedt H. Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 2002; 365:269-77. [PMID: 11955285 PMCID: PMC1222651 DOI: 10.1042/bj20020144] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Revised: 03/18/2002] [Accepted: 04/16/2002] [Indexed: 11/17/2022]
Abstract
Calmodulin (CaM) is a ubiquitous protein that plays a critical role in regulating cellular functions by altering the activity of a large number of proteins, including the d-myo-inositol 1,4,5-trisphosphate (IP3) receptor (IP3R). CaM inhibits IP3 binding in both the presence and absence of Ca2+ and IP3-induced Ca2+ release in the presence of Ca2+. We have now mapped and characterized a Ca2+-independent CaM-binding site in the N-terminal part of the type 1 IP3R (IP3R1). This site could be responsible for the inhibitory effects of CaM on IP3 binding. We therefore expressed the N-terminal 581 amino acids of IP3R1 as a His-tagged recombinant protein, containing the functional IP3-binding pocket. We showed that CaM, both in the presence and absence of Ca2+, inhibited IP3 binding to this recombinant protein with an IC50 of approx. 2 microM. Deletion of the N-terminal 225 amino acids completely abolished the effects of both Ca2+ and CaM on IP3 binding. We mapped the Ca2+-independent CaM-binding site to a recombinant glutathione S-transferase fusion protein containing the first 159 amino acids of IP3R1 and then made different synthetic peptides overlapping this region. We demonstrated that two synthetic peptides matching amino acids 49-81 and 106-128 bound CaM independently of Ca2+ and could reverse the inhibition of IP3 binding caused by CaM. This suggests that these sequences are components of a discontinuous Ca2+-independent CaM-binding domain, which is probably involved in the inhibition of IP3 binding by CaM.
Collapse
Affiliation(s)
- Ilse Sienaert
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven Campus Gasthuisberg O/N, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
29
|
Yang J, McBride S, Mak DOD, Vardi N, Palczewski K, Haeseleer F, Foskett JK. Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca(2+) release channels. Proc Natl Acad Sci U S A 2002; 99:7711-6. [PMID: 12032348 PMCID: PMC124329 DOI: 10.1073/pnas.102006299] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inositol trisphosphate (InsP(3)) receptor (InsP(3)R) is a ubiquitously expressed intracellular Ca(2+) channel that mediates complex cytoplasmic Ca(2+) signals, regulating diverse cellular processes, including synaptic plasticity. Activation of the InsP(3)R channel is normally thought to require binding of InsP(3) derived from receptor-mediated activation of phosphatidylinositol lipid hydrolysis. Here we identify a family of neuronal Ca(2+)-binding proteins as high-affinity protein agonists of the InsP(3)R, which bind to the channel and activate gating in the absence of InsP(3). CaBP/caldendrin, a subfamily of the EF-hand-containing neuronal calcium sensor family of calmodulin-related proteins, bind specifically to the InsP(3)-binding region of all three InsP(3)R channel isoforms with high affinity (K(a) approximately 25 nM) in a Ca(2+)-dependent manner (K(a) approximately 1 microM). Binding activates single-channel gating as efficaciously as InsP(3), dependent on functional EF-hands in CaBP. In contrast, calmodulin neither bound with high affinity nor activated channel gating. CaBP1 and the type 1 InsP(3)R associate in rat whole brain and cerebellum lysates, and colocalize extensively in subcellular regions in cerebellar Purkinje neurons. Thus, InsP(3)R-mediated Ca(2+) signaling in cells is possible even in the absence of InsP(3) generation, a process that may be particularly important in responding to and shaping changes in intracellular Ca(2+) concentration by InsP(3)-independent pathways and for localizing InsP(3)-mediated Ca(2+) signals to individual synapses.
Collapse
Affiliation(s)
- Jun Yang
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
An experiment performed in London nearly 120 years ago, which by today's standards would be considered unacceptably sloppy, marked the beginning of the calcium (Ca(2+)) signaling saga. Sidney Ringer [Ringer, S. (1883) J. Physiol. 4, 29-43] was studying the contraction of isolated rat hearts. In earlier experiments, Ringer had suspended them in a saline medium for which he admitted to having used London tap water, which is hard: The hearts contracted beautifully. When he proceeded to replace the tap water with distilled water, he made a startling finding: The beating of the hearts became progressively weaker, and stopped altogether after about 20 min. To maintain contraction, he found it necessary to add Ca(2+) salts to the suspension medium. Thus, Ringer had serendipitously discovered that Ca(2+), hitherto exclusively considered as a structural element, was active in a tissue that has nothing to do with bone or teeth, and performed there a completely novel function: It carried the signal that initiated heart contraction. It was a landmark observation, which should have immediately aroused wide interest. Unexpectedly, however, for decades it attracted no particular attention. Occasionally, farsighted pioneers argued forcefully for a messenger role of Ca(2+), offering compelling experimental evidence. Among them, one could quote L. V. Heilbrunn [Heilbrunn, L. V. (1940) Physiol. Zool. 13, 88-94], who contracted frog muscle fibers by applying Ca(2+) salts to their cut ends, but not to their surfaces. Heilbrunn correctly concluded that Ca(2+) had diffused from the cut ends to the internal contractile elements to elicit their contraction. One could also quote K. Bailey [Bailey, K. (1942) Biochem. J. 36, 121-139], who showed that the ATPase activity of myosin was strongly activated by Ca(2+) (but not by Mg(2+)), and concluded that the liberation of Ca(2+) in the neighborhood of the myosin controlled muscle contraction. Clearly, enough evidence was there, but only a handful of people had the vision to see it and to foresee its far-reaching implications. Perhaps no better example of clairvoyance can be offered than the quip by O. Loewy in 1959: "Ja Kalzium, das ist alles!"
Collapse
Affiliation(s)
- Ernesto Carafoli
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
31
|
Haeseleer F, Imanishi Y, Sokal I, Filipek S, Palczewski K. Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Commun 2002; 290:615-23. [PMID: 11785943 DOI: 10.1006/bbrc.2001.6228] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In all eukaryotic cells, and particularly in neurons, Ca(2+) ions are important second messengers in a variety of cellular signaling pathways. In the retina, Ca(2+) modulation plays a crucial function in the development of the visual system's neuronal connectivity and a regulatory role in the conversion of the light signal received by photoreceptors into an electrical signal transmitted to the brain. Therefore, the study of retinal Ca(2+)-binding proteins, which frequently mediate Ca(2+) signaling, has given rise to the important discovery of two subfamilies of these proteins, neuronal Ca(2+)-binding proteins (NCBPs) and calcium-binding proteins (CaBPs), that display similarities to calmodulin (CaM). These and other Ca(2+)-binding proteins are integral components of cellular events controlled by Ca(2+). Some members of these subfamilies also play a vital role in signal transduction outside of the retina. The expansion of the CaM-like protein family reveals diversification among Ca(2+)-binding proteins that evolved on the basis of the classic molecule, CaM. A large number of NCBP and CaBP subfamily members would benefit from their potentially specialized role in Ca(2+)-dependent cellular processes. Pinpointing the role of these proteins will be a challenging task for further research.
Collapse
Affiliation(s)
- Françoise Haeseleer
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
32
|
Sokal I, Li N, Klug|| CS, Filipek SB, Hubbell WL, Baehr W, Palczewski K. Calcium-sensitive regions of GCAP1 as observed by chemical modifications, fluorescence, and EPR spectroscopies. J Biol Chem 2001; 276:43361-73. [PMID: 11524415 PMCID: PMC1363678 DOI: 10.1074/jbc.m103614200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanylyl cyclase-activating proteins are EF-hand Ca(2+)-binding proteins that belong to the calmodulin superfamily. They are involved in the regulation of photoreceptor membrane-associated guanylyl cyclases that produce cGMP, a second messenger of vertebrate vision. Here, we investigated changes in GCAP1 structure using mutagenesis, chemical modifications, and spectroscopic methods. Two Cys residues of GCAP1 situated in spatially distinct regions of the N-terminal domain (positions 18 and 29) and two Cys residues located within the C-terminal lobe (positions 106 and 125) were employed to detect conformational changes upon Ca(2+) binding. GCAP1 mutants with only a single Cys residue at each of these positions, modified with N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine, an environmentally sensitive fluorophore, and with (1-oxy-2,2,5,5-tetramethylpyrroline-3-methyl)methanethiosulfonate, a spin label reagent, were studied using fluorescence and EPR spectroscopy, respectively. Only minor structural changes around Cys(18), Cys(29), Cys(106), and Cys(125) were observed as a function of Ca(2+) concentration. No Ca(2+)-dependent oligomerization of GCAP1 was observed at physiologically relevant Ca(2+) concentrations, in contrast to the observation reported by others for GCAP2. Based on these results and previous studies, we propose a photoreceptor activation model that assumes changes within the flexible central helix upon Ca(2+) dissociation, causing relative reorientation of two structural domains containing a pair of EF-hand motifs and thus switching its partner, guanylyl cyclase, from an inactive (or low activity) to an active conformation.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Calcium/chemistry
- Calcium/metabolism
- Calcium/pharmacology
- Calcium-Binding Proteins/chemistry
- Calcium-Binding Proteins/metabolism
- Cattle
- Chromatography, Gel
- Cyclic N-Oxides/pharmacology
- Cysteine/chemistry
- Dose-Response Relationship, Drug
- EF Hand Motifs
- Electron Spin Resonance Spectroscopy/methods
- Electrophoresis, Polyacrylamide Gel
- Enzyme Activation
- Eye/metabolism
- Fluorescent Dyes/pharmacology
- Guanylate Cyclase/chemistry
- Guanylate Cyclase-Activating Proteins
- Mesylates/pharmacology
- Models, Biological
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Oxadiazoles/pharmacology
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Spectrometry, Fluorescence
- Spin Labels
- Sulfur/chemistry
Collapse
Affiliation(s)
| | - Ning Li
- Department of Ophthalmology, Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84112-5330, the
| | - Candice S. Klug||
- Jules Stein Eye Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, and the
| | - SBawomir Filipek
- Department of Chemistry, University of Warsaw, 1 Pasteur St, PL-02093 Warsaw, Poland
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, and the
| | - Wolfgang Baehr
- Department of Ophthalmology, Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84112-5330, the
| | - Krzysztof Palczewski
- From the Departments of Ophthalmology
- Pharmacology, and
- Chemistry, University of Washington, Seattle, Washington 98195, the
| |
Collapse
|