1
|
Gencer Culha S, Dogan M. Evaluation of nasal functions in Behçet's and neuro-Behçet's patients. Acta Otolaryngol 2025; 145:436-442. [PMID: 40022560 DOI: 10.1080/00016489.2025.2470981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Behçet's disease (BD) is a multisystemic inflammatory disease. OBJECTIVES The aim of our study is to investigate whether BD and neuro-Behçet's disease (ND) cause any changes in nasal and olfactory functions. MATERIALS AND METHODS Our study included 20 patients with BD (group BD), 17 patients with ND (group NB), and a control group of 20 healthy volunteers (group C). Participants underwent nasal endoscopic examination, peak nasal inspiratory flow (PNIF) test to assess nasal airway patency, saccharin test to measure mucociliary clearance and Sniffin' Sticks smell test to assess olfactory dysfunction. RESULTS In our study, when the groups were examined in terms of saccharin values, it was found to be statistically significantly longer in group BD and group NB (p < .001). In the odor discrimination test, a statistically significant difference was found only between group NB and group C. The odor identification test and total scores were found to be lower in group BD and group NB. CONCLUSIONS AND SIGNIFICANCE The results obtained in this study demonstrate that mucociliary activity and olfactory functions are significantly impaired in both the BD and NB groups.
Collapse
Affiliation(s)
- Sumeyye Gencer Culha
- Department of Otorhinolaryngology, Kilis Prof. Dr. Alaeddin Yavasca State Hospital, Kilis, Turkey
| | - Mansur Dogan
- Department of Otorhinolaryngology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
2
|
Morales-Primo AU, Becker I, Pedraza-Zamora CP, Zamora-Chimal J. Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms. Immune Netw 2024; 24:e14. [PMID: 38725676 PMCID: PMC11076297 DOI: 10.4110/in.2024.24.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 05/12/2024] Open
Abstract
The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.
Collapse
Affiliation(s)
- Abraham U. Morales-Primo
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Ingeborg Becker
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Claudia Patricia Pedraza-Zamora
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Jaime Zamora-Chimal
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| |
Collapse
|
3
|
Al Mahmud A, Shafayet Ahmed Siddiqui, Karim MR, Al-Mamun MR, Akhter S, Sohel M, Hasan M, Bellah SF, Amin MN. Clinically proven natural products, vitamins and mineral in boosting up immunity: A comprehensive review. Heliyon 2023; 9:e15292. [PMID: 37089292 PMCID: PMC10079597 DOI: 10.1016/j.heliyon.2023.e15292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND and Purposes: The terminology "immune boost-up" was the talk of the topic in this Covid-19 pandemic. A significant number of the people took initiative to increase the body's defense capacity through boosting up immunity worldwide. Considering this, the study was designed to explain the natural products, vitamins and mineral that were proved by clinical trail as immunity enhancer. METHODS Information was retrieved from SciVerse Scopus ® (Elsevier Properties S. A, USA), Web of Science® (Thomson Reuters, USA), and PubMed based on immunity, nutrients, natural products in boosting up immunity, minerals and vitamins in boosting up immunity, and immune booster agents. RESULT A well-defined immune cells response provide a-well functioning defense system for the human physiological system. Cells of the immune system must require adequate stimulation so that these cells can prepare themselves competent enough to fight against any unintended onslaught. Several pharmacologically active medicinal plants and plants derived probiotics or micronutrients have played a pivotal role in enhancing the immune boost-up process. Their role has been well established from the previous study. Immune stimulating cells, especially cells of acquired immunity are closely associated with the immune-boosting up process because all the immunological reactions and mechanisms are mediated through these cells. CONCLUSION This article highlighted the mechanism of action of different natural products, vitamins and mineral in boosting up the immunity of the human body and strengthening the body's defense system. Therefore, it is recommended that until the specific immune-boosting drugs are available in pharma markets, anyone can consider the mentioned products as dietary supplements to boost up the immunity.
Collapse
Affiliation(s)
- Abdullah Al Mahmud
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Md Rezaul Karim
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | | | - Shammi Akhter
- Department of Pharmacy, Varendra University, Rajshahi, 6204, Bangladesh
| | - Md Sohel
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, 1213, Bangladesh
| | - Mahedi Hasan
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Sm Faysal Bellah
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Mohammad Nurul Amin
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
| |
Collapse
|
4
|
Smerchek DT, Branine ME, McGill JL, Hansen SL. Effects of supplemental Zn concentration and trace mineral source on immune function and associated biomarkers of immune status in weaned beef calves received into a feedlot. J Anim Sci 2023; 101:6966915. [PMID: 36588522 PMCID: PMC9910396 DOI: 10.1093/jas/skac428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Low-risk, weaned Angus-crossbred steers (n = 72; 284 ± 25 kg) were used in a 42-d receiving study. Steers were housed in pens (n = 6 steers per pen) equipped with GrowSafe bunks for determination of individual animal feed disappearance. Dietary treatments (n = 24 steers per treatment) included: 1) trace minerals (TM) from an organic source (Availa4; Zinpro Corp., Eden Prairie, MN) at 7 g·steer-1·d-1; for 42 d (ORG); 2) ORG for entire 42-d plus AvailaZn (Zn amino acid complex, Zinpro Corp., Eden Prairie, MN) to provide 1,000 mg Zn·steer-1·d-1 for first 14 d (ORG+Z); 3) inorganic TM sources to supplemented at equivalent concentration as in ORG for 42-d (ING). Cattle were weighed on day -1, 0, 14, 41, and 42. Whole blood was collected (n = 72 steers) on day 0, 14, and 42. Liver biopsies were conducted (n = 36 steers; 3 steers per pen) on day 0, 14, and 42. Flow cytometry measures were conducted using whole blood on day 1, 14, and 42 for determination of circulating frequencies of immune cell populations. There was a tendency for improved overall average daily gain (P = 0.07) where both ORG and ORG+Z were greater than ING. Final body weight did not differ (P = 0.21) and overall dry matter intake was unaffected by dietary treatment (P ≥ 0.18). However, overall gain-to-feed ratio was improved (P = 0.01) in steers supplemented organic TM (ORG and ORG+Z) compared to ING. Plasma Zn concentration did not differ at any time point during the study (P ≥ 0.20). Liver Zn concentration did not differ between treatments on day 0 or 42; however, on day 14 ING tended (P = 0.09) to be greater than ORG+Z with ORG being intermediate. Plasma Cu was unaffected by dietary treatment (P ≥ 0.34) on day 0, 14, and 42. Plasma Fe did not differ on day 0 or 42 but tended to be greater in ORG and ORG+Z compared to ING (P = 0.08) on day 14. Dietary treatment did not alter (P ≥ 0.22) liver Fe or Mn concentration at any time point. Frequency of total circulating natural killer (NK) and CD8 T cells measured on day 0, 14, and 42 did not differ (P ≥ 0.07). However, cell surface markers of activation (CD16, CD44, and CD8) on NK cells measured on day 14 did differ because of treatment (P ≤ 0.05). Results presented herein indicate TM from an organic source supplemented to steers during receiving can positively influence growth rate and feed efficiency. Regardless of source, TM supplementation affected markers of immune function but did not influence the prevalence of circulating NK and CD8 T-cell populations.
Collapse
Affiliation(s)
- Dathan T Smerchek
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Jodi L McGill
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
5
|
Zafari R, Razi S, Rezaei N. The role of dendritic cells in neuroblastoma: Implications for immunotherapy. Immunobiology 2022; 227:152293. [DOI: 10.1016/j.imbio.2022.152293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022]
|
6
|
Correia MP, Stojanovic A, Wels WS, Cerwenka A. Innate-like NKp30 +CD8 + T cells armed with TCR/CAR target tumor heterogeneity. Oncoimmunology 2022; 10:1973783. [PMID: 35036073 PMCID: PMC8758178 DOI: 10.1080/2162402x.2021.1973783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Intratumoral heterogeneity is frequently associated with tumor immune escape, with MHC-class I and antigen expression loss rendering tumor cells invisible to T cell killing, representing a major challenge for the design of successful adoptive transfer protocols for cancer immunotherapy. While CD8+ T cell recognition of tumor cells is based on the detection of MHC-peptide complexes via specific T cell receptors (TCRs), Natural Killer (NK) cells detect tumor-associated NK ligands by an array of NK receptors. We have recently identified a population of innate-like CD8+ T cells marked by the expression of NKp30, a potent natural cytotoxicity activating NK receptor, whose tumor ligand, B7H6, is frequently upregulated on several cancer types. Here, we harnessed the dual-recognition potential of NKp30+CD8+ T cells, by arming these cells with TCRs or chimeric antigen receptors (CARs) targeting Epidermal Growth Factor Receptor 2 (ErbB2, or HER2), a tumor-associated target overexpressed in several malignancies. HER2-specific NKp30+CD8+ T cells killed not only HER2-expressing target cell lines, but also eliminated tumor cells in the absence of MHC-class I or antigen expression, making them especially effective in eliminating heterogeneous tumor cell populations. Our results show that NKp30+CD8+ T cells equipped with a specific TCR or CAR display a dual capacity to recognize and kill target cells, combining the anti-tumor activity of both CD8+ T and NK cells. This dual-recognition capacity allows these effector cells to target tumor heterogeneity, thus improving therapeutic strategies against tumor escape.
Collapse
Affiliation(s)
- Margareta P Correia
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
7
|
Quatrini L, Della Chiesa M, Sivori S, Mingari MC, Pende D, Moretta L. Human NK cells, their receptors and function. Eur J Immunol 2021; 51:1566-1579. [PMID: 33899224 PMCID: PMC9292411 DOI: 10.1002/eji.202049028] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
NK cells are cytotoxic components of innate lymphoid cells (ILC) that provide a first line of defense against viral infections and contribute to control tumor growth and metastasis. Their function is finely regulated by an array of HLA-specific and non-HLA-specific inhibitory and activating receptors which allow to discriminate between healthy and altered cells. Human NK cells gained a major attention in recent years because of the important progresses in understanding their biology and of some promising data in tumor therapy. In this review, we will outline well-established issues of human NK cells and discuss some of the open questions, debates, and recent advances regarding their origin, differentiation, and tissue distribution. Newly defined NK cell specializations, including the impact of inhibitory checkpoints on their function, their crosstalk with other cell types, and the remarkable adaptive features acquired in response to certain virus infections will also be discussed.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Immunology Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Pende
- Immunology Laboratory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
8
|
Bruijnesteijn J, de Groot NG, Bontrop RE. The Genetic Mechanisms Driving Diversification of the KIR Gene Cluster in Primates. Front Immunol 2020; 11:582804. [PMID: 33013938 PMCID: PMC7516082 DOI: 10.3389/fimmu.2020.582804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
The activity and function of natural killer (NK) cells are modulated through the interactions of multiple receptor families, of which some recognize MHC class I molecules. The high level of MHC class I polymorphism requires their ligands either to interact with conserved epitopes, as is utilized by the NKG2A receptor family, or to co-evolve with the MHC class I allelic variation, which task is taken up by the killer cell immunoglobulin-like receptor (KIR) family. Multiple molecular mechanisms are responsible for the diversification of the KIR gene system, and include abundant chromosomal recombination, high mutation rates, alternative splicing, and variegated expression. The combination of these genetic mechanisms generates a compound array of diversity as is reflected by the contraction and expansion of KIR haplotypes, frequent birth of fusion genes, allelic polymorphism, structurally distinct isoforms, and variegated expression, which is in contrast to the mainly allelic nature of MHC class I polymorphism in humans. A comparison of the thoroughly studied human and macaque KIR gene repertoires demonstrates a similar evolutionarily conserved toolbox, through which selective forces drove and maintained the diversified nature of the KIR gene cluster. This hypothesis is further supported by the comparative genetics of KIR haplotypes and genes in other primate species. The complex nature of the KIR gene system has an impact upon the education, activity, and function of NK cells in coherence with an individual’s MHC class I repertoire and pathogenic encounters. Although selection operates on an individual, the continuous diversification of the KIR gene system in primates might protect populations against evolving pathogens.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Mariotti FR, Quatrini L, Munari E, Vacca P, Tumino N, Pietra G, Mingari MC, Moretta L. Inhibitory checkpoints in human natural killer cells: IUPHAR Review 28. Br J Pharmacol 2020; 177:2889-2903. [PMID: 32335915 PMCID: PMC7279970 DOI: 10.1111/bph.15081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized cancer therapy leading to exceptional success. However, there is still the need to improve their efficacy in non‐responder patients. Natural killer (NK) cells represent the first line of defence against tumours, due to their ability to release immunomodulatory cytokines and kill target cells that have undergone malignant transformation. Harnessing NK cell response will open new possibilities to improve control of tumour growth. In this respect inhibitory checkpoints expressed on these innate lymphocytes represents a promising target for next‐generation immunotherapy. In this review, we will summarize recent evidences on the expression of NK cells receptors in cancer, with a focus on the inhibitory checkpoint programmed cell death protein 1 (PD‐1). We will also highlight the strength and limitations of the blockade of PD‐1 inhibitory pathway and suggest new combination strategies that may help to unleash more efficiently NK cell anti‐tumour response.
Collapse
Affiliation(s)
- F R Mariotti
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - L Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - E Munari
- Department of Pathology, Sacro Cuore Don Calabria, Negrar, Italy
| | - P Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - N Tumino
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - G Pietra
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DIMES), Università di Genova, Genoa, Italy
| | - M C Mingari
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DIMES), Center of Excellence for Biomedical Research, Università di Genova, Genoa, Italy
| | - L Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
10
|
Jacquemont L, Tilly G, Yap M, Doan-Ngoc TM, Danger R, Guérif P, Delbos F, Martinet B, Giral M, Foucher Y, Brouard S, Degauque N. Terminally Differentiated Effector Memory CD8 + T Cells Identify Kidney Transplant Recipients at High Risk of Graft Failure. J Am Soc Nephrol 2020; 31:876-891. [PMID: 32165419 DOI: 10.1681/asn.2019080847] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Identifying biomarkers to predict kidney transplant failure and to define new therapeutic targets requires more comprehensive understanding of the immune response to chronic allogeneic stimulation. METHODS We investigated the frequency and function of CD8+ T cell subsets-including effector memory (EM) and terminally differentiated EM (TEMRA) CD8+ T cells-in blood samples from 284 kidney transplant recipients recruited 1 year post-transplant and followed for a median of 8.3 years. We also analyzed CD8+ T cell reactivity to donor-specific PBMCs in 24 patients who had received living-donor kidney transplants. RESULTS Increased frequency of circulating TEMRA CD8+ T cells at 1 year post-transplant associated with increased risk of graft failure during follow-up. This association remained after adjustment for a previously reported composite of eight clinical variables, the Kidney Transplant Failure Score. In contrast, increased frequency of EM CD8+ T cells associated with reduced risk of graft failure. A distinct TEMRA CD8+ T cell subpopulation was identified that was characterized by expression of FcγRIIIA (CD16) and by high levels of proinflammatory cytokine secretion and cytotoxic activity. Although donor-specific stimulation induced a similar rapid, early response in EM and TEMRA CD8+ T cells, CD16 engagement resulted in selective activation of TEMRA CD8+ T cells, which mediated antibody-dependent cytotoxicity. CONCLUSIONS At 1 year post-transplant, the composition of memory CD8+ T cell subsets in blood improved prediction of 8-year kidney transplant failure compared with a clinical-variables score alone. A subpopulation of TEMRA CD8+ T cells displays a novel dual mechanism of activation mediated by engagement of the T-cell receptor or of CD16. These findings suggest that TEMRA CD8+ T cells play a pivotal role in humoral and cellular rejection and reveal the potential value of memory CD8+ T cell monitoring for predicting risk of kidney transplant failure.
Collapse
Affiliation(s)
- Lola Jacquemont
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Nantes, France.,CHU Nantes, Université de Nantes, ITUN, Nantes, France
| | - Gaëlle Tilly
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Nantes, France.,CHU Nantes, Université de Nantes, ITUN, Nantes, France
| | - Michelle Yap
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Nantes, France.,CHU Nantes, Université de Nantes, ITUN, Nantes, France
| | - Tra-My Doan-Ngoc
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Nantes, France.,CHU Nantes, Université de Nantes, ITUN, Nantes, France
| | - Richard Danger
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Nantes, France.,CHU Nantes, Université de Nantes, ITUN, Nantes, France
| | | | | | - Bernard Martinet
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Nantes, France.,CHU Nantes, Université de Nantes, ITUN, Nantes, France
| | - Magali Giral
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Nantes, France.,CHU Nantes, Université de Nantes, ITUN, Nantes, France
| | - Yohann Foucher
- INSERM, Université de Nantes, methodS in Patient-centered outcomes and HEalth ResEarch (SPHERE), UMR1246, Nantes, France
| | - Sophie Brouard
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Nantes, France.,CHU Nantes, Université de Nantes, ITUN, Nantes, France
| | - Nicolas Degauque
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie (CRTI), UMR 1064, Nantes, France; .,CHU Nantes, Université de Nantes, ITUN, Nantes, France
| |
Collapse
|
11
|
Wang C, Li Z, Zhu Z, Chai Y, Wu Y, Yuan Z, Chang Z, Wang Z, Zhang M. Allogeneic dendritic cells induce potent antitumor immunity by activating KLRG1 +CD8 T cells. Sci Rep 2019; 9:15527. [PMID: 31664180 PMCID: PMC6820535 DOI: 10.1038/s41598-019-52151-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
The graft-versus-leukemia effect reminds us to observe the allogeneic cell elicited anti-tumor immune responses. Here we immunized recipient B6 mice with different types of allogenic leukocytes and found that vaccination with allogenic dendritic cells (alloDC) elicited the most efficient protection against broad-spectrum tumors. The recipient lymphocytes were analyzed and the data showed that CD8 T cells increased significantly after immunization and expressed effector memory T cell marker KLRG1. Functional evaluation demonstrated that these KLRG1+CD8 T cells could kill tumor cells in vitro and in vivo in Granzyme B- and Fas/FasL-dependent manners with no tumor antigen specificity, and tend to migrate into tumor sites by high expression of heparanase. Adoptive transfer of these cells could provide antitumor protection against tumors. AlloDC could also treat mice with residual tumors and combination of anti-PD1 antibody could enhance this effects. Together, our study showed that alloDC-immunization could induce potent antitumor effect through the expansion of KLRG1+CD8 T cells, which can work as both preventive and therapeutic tumor vaccines.
Collapse
Affiliation(s)
- Chao Wang
- School of Medicine, Tsinghua University, Beijing, 100084, China.,Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhengyuan Li
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhongli Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Yijie Chai
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yiqing Wu
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhenglong Yuan
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Zhao Wang
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, 100084, China. .,The Central Laboratory, The First Hospital of Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
The impact of KIR/HLA genes on the risk of developing multibacillary leprosy. PLoS Negl Trop Dis 2019; 13:e0007696. [PMID: 31525196 PMCID: PMC6762192 DOI: 10.1371/journal.pntd.0007696] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/26/2019] [Accepted: 08/08/2019] [Indexed: 11/19/2022] Open
Abstract
Background Killer-cell immunoglobulin-like receptors (KIRs) are a group of regulatory molecules able to activate or inhibit natural killer cells upon interaction with human leukocyte antigen (HLA) class I molecules. Combinations of KIR and HLA may contribute to the occurrence of different immunological and clinical responses to infectious diseases. Leprosy is a chronic neglected disease, both disabling and disfiguring, caused mainly by Mycobacterium leprae. In this case–control study, we examined the influence of KIRs and HLA ligands on the development of multibacillary leprosy. Methodology/Principal findings Genotyping of KIR and HLA genes was performed in 264 multibacillary leprosy patients and 518 healthy unrelated controls (238 healthy household contacts and 280 healthy subjects). These are unprecedented results in which KIR2DL2/KIR2DL2/C1/C2 and KIR2DL3/2DL3/C1/C1 indicated a risk for developing lepromatous and borderline leprosy, respectively. Concerning to 3DL2/A3/A11+, our study demonstrated that independent of control group (contacts or healthy subjects), this KIR receptor and its ligand act as a risk factor for the borderline clinical form. Conclusions/Significance Our finding suggests that synergetic associations of activating and inhibitory KIR genes may alter the balance between these receptors and thus interfere in the progression of multibacillary leprosy. Leprosy is a neglected disease with the highest worldwide prevalence, and remains a public health problem in Brazil. The innate immune mechanisms are determinants in the management of leprosy and its different clinical manifestations. Accordingly, genetic association study provides information about the contribution of host genetic factors and the environment in which the individual lives on the development of leprosy. The individuals considered most affected and associated with a major risk for developing leprosy are household contacts with an intimate relation to patients living in crowded households. For this reason, we chose the contacts as one of our control groups, since they are more exposed to infection compared to the general population. We investigated the influence of KIR and HLA genes on the susceptibility to multibacillary leprosy. Our results reinforce the importance of host genetic background in the susceptibility to leprosy demonstrating that, independent from the control group (contacts or healthy subjects) the KIR and HLA act as risk factors in the development of lepromatous and borderline leprosy.
Collapse
|
13
|
Dysregulation of the TOX-RUNX3 pathway in cutaneous T-cell lymphoma. Oncotarget 2019; 10:3104-3113. [PMID: 31139323 PMCID: PMC6517103 DOI: 10.18632/oncotarget.5742] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/18/2015] [Indexed: 12/31/2022] Open
Abstract
Studies have examined gene expression changes in Sézary syndrome (SS), but disease pathogenesis remains largely unknown, and diagnosis and treatment are difficult. TOX is a transcription factor involved in CD4+ T-cell development with downstream effects on RUNX3, a known tumor suppressor gene. We sought to identify genes involved in SS disease pathogenesis with the potential to enable diagnosis and treatment. We utilized previously reported transcriptome sequencing data to construct a list of candidate genes, which was narrowed using pathway analysis. qRT-PCR confirmed TOX upregulation (>7 fold increase) in SS (n = 5), as well as two established markers, PLS3 and KIRD3DL2. We also evaluated expression of members of the TOX-RUNX3 pathway and confirmed downregulation of RUNX3 (0.59 fold decrease) and upregulation of GATA3 (2 fold increase). Moreover, TOX and RUNX3 expression were significantly inversely proportional. Using siRNA to suppress TOX, we demonstrated that TOX knockdown rescues RUNX3 expression and reduces cell viability. We evaluated TOX protein expression in paraffin-embedded skin biopsies with immunohistochemistry, showing nuclear staining of CTCL infiltrates, suggesting it is a candidate diagnostic biomarker. Further studies validating our findings and evaluating the TOX-RUNX3 pathway and the role of TOX as a disease marker and therapeutic target are warranted.
Collapse
|
14
|
Bruijnesteijn J, van der Wiel MKH, de Groot N, Otting N, de Vos-Rouweler AJM, Lardy NM, de Groot NG, Bontrop RE. Extensive Alternative Splicing of KIR Transcripts. Front Immunol 2018; 9:2846. [PMID: 30564240 PMCID: PMC6288254 DOI: 10.3389/fimmu.2018.02846] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
The killer-cell Ig-like receptors (KIR) form a multigene entity involved in modulating immune responses through interactions with MHC class I molecules. The complexity of the KIR cluster is reflected by, for instance, abundant levels of allelic polymorphism, gene copy number variation, and stochastic expression profiles. The current transcriptome study involving human and macaque families demonstrates that KIR family members are also subjected to differential levels of alternative splicing, and this seems to be gene dependent. Alternative splicing may result in the partial or complete skipping of exons, or the partial inclusion of introns, as documented at the transcription level. This post-transcriptional process can generate multiple isoforms from a single KIR gene, which diversifies the characteristics of the encoded proteins. For example, alternative splicing could modify ligand interactions, cellular localization, signaling properties, and the number of extracellular domains of the receptor. In humans, we observed abundant splicing for KIR2DL4, and to a lesser extent in the lineage III KIR genes. All experimentally documented splice events are substantiated by in silico splicing strength predictions. To a similar extent, alternative splicing is observed in rhesus macaques, a species that shares a close evolutionary relationship with humans. Splicing profiles of Mamu-KIR1D and Mamu-KIR2DL04 displayed a great diversity, whereas Mamu-KIR3DL20 (lineage V) is consistently spliced to generate a homolog of human KIR2DL5 (lineage I). The latter case represents an example of convergent evolution. Although just a single KIR splice event is shared between humans and macaques, the splicing mechanisms are similar, and the predicted consequences are comparable. In conclusion, alternative splicing adds an additional layer of complexity to the KIR gene system in primates, and results in a wide structural and functional variety of KIR receptors and its isoforms, which may play a role in health and disease.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marit K H van der Wiel
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Nanine de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Nel Otting
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | - Neubury M Lardy
- Department of Immunogenetics, Sanquin, Amsterdam, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Distinct human circulating NKp30 +FcεRIγ +CD8 + T cell population exhibiting high natural killer-like antitumor potential. Proc Natl Acad Sci U S A 2018; 115:E5980-E5989. [PMID: 29895693 DOI: 10.1073/pnas.1720564115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CD8+ T cells are considered prototypical cells of adaptive immunity. Here, we uncovered a distinct CD8+ T cell population expressing the activating natural killer (NK) receptor NKp30 in the peripheral blood of healthy individuals. We revealed that IL-15 could de novo induce NKp30 expression in a population of CD8+ T cells and drive their differentiation toward a broad innate transcriptional landscape. The adaptor FcεRIγ was concomitantly induced and was shown to be crucial to enable NKp30 cell-surface expression and function in CD8+ T cells. FcεRIγ de novo expression required promoter demethylation and was accompanied by acquisition of the signaling molecule Syk and the "innate" transcription factor PLZF. IL-15-induced NKp30+CD8+ T cells exhibited high NK-like antitumor activity in vitro and were able to synergize with T cell receptor signaling. Importantly, this population potently controlled tumor growth in a preclinical xenograft mouse model. Our study, while blurring the borders between innate and adaptive immunity, reveals a unique NKp30+FcεRIγ+CD8+ T cell population with high antitumor therapeutic potential.
Collapse
|
16
|
He Y, Bunn PA, Zhou C, Chan D. KIR 2D (L1, L3, L4, S4) and KIR 3DL1 protein expression in non-small cell lung cancer. Oncotarget 2018; 7:82104-82111. [PMID: 27893413 PMCID: PMC5347678 DOI: 10.18632/oncotarget.13486] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Background Nature killer (NK) cells are the immune system's first line of defense against both viral infections and tumors. Killer cell immunoglobulin-like receptors (KIRs) are associated with susceptibility to different types of cancers. We investigated KIR 2D (L1, L3, L4, S4) and KIR 3DL1 protein expression and their association with survival in non-small cell lung cancer (NSCLC). Methods The expression of KIR 2D (L1, L3, L4, S4) (BC032422/ ADQ31987/ NP_002246/ NP_036446, ABCAM) and KIR 3DL1 (AA 1-444, ABCAM) protein was assessed by immunohistochemistry (IHC) in 62 NSCLC patients. Results KIR 2D (L1, L3, L4, S4) and KIR 3DL1 were expressed both on NSCLC tumor cells and tumor infiltrating lymphocytes (TILs). Fourteen samples (22.6%) stained positive for KIR 2D (L1, L3, L4, S4) on the tumor cells, and 10 (16.1%) had positive expression on the TILs. Thirty-three samples (53.2%) stained positive for KIR 3DL1 on the tumor cells, and 31 (50.0%) had positive expression on the TILs. Patients with negative KIR 2D (L1, L3, L4, S4) expression on tumor cells or TILs had longer overall survival (OS) than patients who are KIR 2D (L1, L3, L4, S4) positive on tumor cells (40.70 weeks, 95% CI 24.76-56.65 vs. 7.10 weeks, 95% CI 0.00-19.38, P = 0.014) or TILs (40.70 weeks, 95% CI 24.05-57.35 vs. 3.90 weeks, 95% CI 0.00-9.17, P < 0.001). Likewise, longer OS was significantly correlated with negative expression of KIR 3DL1 on tumor cells (62.30 weeks, 95% CI 0.00-177.37 vs. 13.10 weeks, 95% CI 3.42-22.78, P < 0.001) or TILs (62.30 weeks, 95% CI 0.00-152.05 vs. 12.10 weeks, 95% CI 2.61-21.59, P < 0.001). Cox regression analysis showed that KIR 2D (L1, L3, L4, S4) on TILs was correlated with OS (P = 0.032, Odds Ratio 2.628 95%CI 1.089-6.340). Conclusions KIR 2D (L1, L3, L4, S4) and KIR 3DL1 expression was correlated with poor prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Yayi He
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Paul A Bunn
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Dan Chan
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, Feng Y, Pan Z. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med 2016; 12:3941-3947. [PMID: 28105126 PMCID: PMC5228376 DOI: 10.3892/etm.2016.3857] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/06/2016] [Indexed: 12/19/2022] Open
Abstract
High mobility group box 1 (HMGB1) protein has been previously been detected in the inflammatory microenvironment of bone fractures. It is well known that HMGB1 acts as a chemoattractant to mesenchymal stem cells (MSCs). In the present study, the effects of HMGB1 on cytokine secretion from MSCs were determined, and the molecular mechanisms underlying these effects of HMGB1 on osteogenic differentiation were elucidated. To detect cytokine secretion, antibody array assays were performed, which demonstrated that HGMB1 induced the differential secretion of cytokines that are predominantly associated with cell development, regulation of growth and cell migration, stress responses, and immune system functions. Moreover, the secretion of epidermal growth factor receptor (EGFR) was significantly upregulated by HMGB1. The EGFR-activated Ras/MAPK pathway regulates the osteogenic differentiation of MSCs. These results suggested that HMGB1 enhances the secretion of various cytokines by MSCs and promotes osteogenic differentiation via the Ras/MAPK signaling pathway. The present study may provide a theoretical basis for the development of novel techniques for the treatment of bone fractures in the future.
Collapse
Affiliation(s)
- Lin Feng
- Department of Orthopedics, The First People's Hospital of Xiaoshan, Hangzhou, Zhejiang 311200, P.R. China
| | - Deting Xue
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiang Gao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiawei Yu
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yadong Feng
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhijun Pan
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
18
|
Drylewicz J, Schellens IMM, Gaiser R, Nanlohy NM, Quakkelaar ED, Otten H, van Dorp S, Jacobi R, Ran L, Spijkers S, Koning D, Schuurman R, Meijer E, Pietersma FL, Kuball J, van Baarle D. Rapid reconstitution of CD4 T cells and NK cells protects against CMV-reactivation after allogeneic stem cell transplantation. J Transl Med 2016; 14:230. [PMID: 27484705 PMCID: PMC4971638 DOI: 10.1186/s12967-016-0988-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epstein-Barr virus and Cytomegalovirus reactivations frequently occur after allogeneic stem cell transplantation (SCT). METHODS Here we investigated the role of immune cell reconstitution in the onset and subsequent severity of EBV- and CMV-reactivation. To this end, 116 patients were prospectively sampled for absolute T cell (CD4 and CD8), B-cell (CD19) and NK-cell (CD16 and CD56) numbers weekly post-SCT during the first 3 months and thereafter monthly until 6 months post-SCT. Viral load was monitored in parallel. RESULTS In contrast to the general belief, we found that early T-cell reconstitution does not play a role in the onset of viral reactivation. CMV reactivation in the first 7 weeks after SCT however resulted in higher absolute CD8(+) T-cell numbers 6 months post-SCT in patients with high-level reactivation, many of which were CMV-specific. Interestingly, rapid reconstitution of CD4(+) T-cells, as well as NK cells and the presence of donor KIR3DL1, are associated with the absence of CMV-reactivation after SCT, suggestive of a protective role of these cells. In contrast, EBV-reactivations were not affected in any way by the level of immune reconstitution after SCT. CONCLUSION In conclusion, these data suggest that CD4(+) T-cells and NK cells, rather than CD8(+) T-cells, are associated with protection against CMV-reactivation.
Collapse
Affiliation(s)
- Julia Drylewicz
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands.,Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Ingrid M M Schellens
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands
| | - Rogier Gaiser
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands
| | - Nening M Nanlohy
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands
| | - Esther D Quakkelaar
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands
| | - Henny Otten
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands
| | - Suzanne van Dorp
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands.,Department of Haematology, Utrecht, The Netherlands
| | - Ronald Jacobi
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands
| | - Leonie Ran
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands
| | - Sanne Spijkers
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands
| | - Dan Koning
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands
| | | | - Ellen Meijer
- Department of Haematology, VUMC, Amsterdam, The Netherlands
| | - Floortje L Pietersma
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands
| | - Jurgen Kuball
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands.,Department of Haematology, Utrecht, The Netherlands
| | - Debbie van Baarle
- Laboratory of Translational Immunology, Department of Immunology, Utrecht, The Netherlands. .,Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands. .,Department of Immune Mechanisms, National Institute for Public Health and the environment (RIVM), Center for Infectious Disease Control, Antonie van leeuwenhoeklaan 9, Bilthoven, The Netherlands.
| |
Collapse
|
19
|
Lin F, Xue D, Xie T, Pan Z. HMGB1 promotes cellular chemokine synthesis and potentiates mesenchymal stromal cell migration via Rap1 activation. Mol Med Rep 2016; 14:1283-9. [PMID: 27314424 DOI: 10.3892/mmr.2016.5398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 04/08/2016] [Indexed: 11/06/2022] Open
Abstract
The migration of mesenchymal stem cells (MSCs) and osteogenic differentiation occupy an important role in fracture healing. High mobility group box 1 (HMGB1), a widely distributed inflammatory factor in fractures, has been confirmed to act as a chemoattractant to MSCs. To investigate the effect of HMGB1 on MSC migration and the underlying mechanism, the synthesis of MSC chemokines, and the consequent activation of signaling pathways following HMGB1 stimulation, were evaluated. A Quantibody® array was performed to determine which chemokines were secreted from MSCs with or without treatment with HMGB1. The results indicated differential chemokine synthesis by MSCs following treatment with HMGB1, including that of CCL4 and CCL13. In addition, the Ras‑associated protein‑1 (Rap1) signaling pathway was markedly activated in the HMGB1‑treated groups, suggesting that HMGB1 may enhance the migrational ability of MSCs via Rap1 activation. Furthermore, HMGB1 was able to promote the secretion of various chemokines derived from MSCs, which would, in turn, increase the mobility of MSCs. Taken together, these results provide a mechanistic basis for developing novel approaches to promote fracture healing.
Collapse
Affiliation(s)
- Feng Lin
- Department of Orthopedics, The First People's Hospital of Xiaoshan, Hangzhou, Zhejiang 311200, P.R. China
| | - Deting Xue
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Tao Xie
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhijun Pan
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
20
|
Yahng SA, Jeon YW, Yoon JH, Shin SH, Lee SE, Cho BS, Eom KS, Kim YJ, Lee S, Min CK, Cho SG, Kim DW, Lee JW, Min WS, Kim HJ. Negative Impact of Unidirectional Host-versus-Graft Killer Cell Immunoglobulin-like Receptor Ligand Mismatch on Transplantation Outcomes after Unmanipulated Haploidentical Peripheral Blood Stem Cell Transplantation for Acute Myeloid Leukemia. Biol Blood Marrow Transplant 2016; 22:316-323. [PMID: 26415557 DOI: 10.1016/j.bbmt.2015.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
This study explored the influence of mismatched inhibitory killer cell immunoglobulin-like receptor (KIR) ligands on the outcome of haploidentical transplantation using T cell-replete, granulocyte colony-stimulating factor-mobilized peripheral blood stem cells in adult patients with acute myeloid leukemia (AML). Three groups were examined: unidirectional graft-versus-host KIR ligand mismatched (GVH-KIR-MM; n = 33), bidirectional KIR ligand matched (KIR-M; n = 41), and unidirectional host-versus-graft KIR ligand mismatched (HVG-KIR-MM; n = 26). All recipients were treated with the same conditioning regimen (800 cGy total body irradiation, fludarabine, busulfan, and antithymocyte globulin). After a median follow-up of 26 months, the 2-year cumulative incidence of relapse was significantly higher in HVG-KIR-MM (40.3% ± 10.3%) versus others (18.9% ± 4.8%, P = .044). In the standard-risk group, the 2-year disease-free survival (DFS) was significantly lower in HVG-KIR-MM (51.8% ± 11.2%) compared with GVH-KIR-MM (88% ± 8.1%, P = .025). Multivariate analysis showed that HVG-KIR-MM was significantly associated with higher relapse (hazard ratio [HR], 10.7; P = .002) and lower DFS (HR, 3.4; P = .012). Subgroup analysis revealed increased DFS with higher doses of CD3(+)CD8(+) and CD3(-)CD56(+) grafts in GVH-KIR-MM (90.9% ± 8.7%, P = .006); there was no such effect in the other groups. Although our conclusions are limited by the absence of donor KIR genotype data, our study suggests unidirectional KIR ligand incompatibility in the host-versus-graft vector has a detrimental effect on T cell-replete haploidentical transplantation outcomes in adult patients with AML.
Collapse
Affiliation(s)
- Seung-Ah Yahng
- Department of Hematology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Woo Jeon
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Ho Yoon
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Hwan Shin
- Department of Hematology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Eun Lee
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Sik Cho
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Seong Eom
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo-Jin Kim
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Lee
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang-Ki Min
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Wook Kim
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Wook Lee
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo-Sung Min
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Catholic Blood and Marrow Transplantation Center, Department of Hematology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Cancer Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Abstract
The spondyloarthropathies comprise ankylosing spondylitis (AS), reactive arthritis, psoriatic arthritis (PsA) and arthritis associated with inflammatory bowel disease. In this Perspectives article, we describe how Behçet disease and several clinically distinct spondyloarthropathies-all associated with MHC class I (MHC-I) alleles such as HLA-B(*)51, HLA-C(*)0602 and HLA-B(*)27 and epistatic ERAP-1 interactions-have a shared immunopathogenetic basis. As a unifying concept, we propose that barrier dysfunction in environmentally exposed organs such as the skin, and aberrant innate immune reactions at sites of mechanical stress, can often trigger secondary adaptive immune CD8(+) T-cell responses with prominent neutrophilic inflammation that culminate in exacerbation and recurrence of these diseases. Of note, these 'MHC-I-opathies' show a differential immunopathology, probably reflecting antigenic differences within target tissues: HLA-B(*)51 is linked to ocular and mucocutaneous disease but not gut involvement, and HLA-C(*)0602 is linked to type I psoriasis but not scalp or nail disease.
Collapse
|
22
|
The effect of KIR2D-HLA-C receptor-ligand interactions on clinical outcome in a HIV-1 CRF01_AE-infected Thai population. AIDS 2015; 29:1607-15. [PMID: 26372271 DOI: 10.1097/qad.0000000000000747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Class I human leukocyte antigen (HLA) alleles interact with both cytotoxic T lymphocytes through their T-cell receptors, and natural killer cells through their killer immunoglobulin-like receptors (KIRs). Compared with the reported protective effect of KIR3DL1/S1-HLA-Bw4 interactions in HIV-infected patients, the effect of KIR2D-HLA-C combinations on HIV control remains unclear. Here, we investigate the effect of KIR2D-HLA-C combinations on HIV disease progression. DESIGN We performed a cross-sectional and longitudinal analysis of a Thai HIV cohort. METHODS Two hundred and nine HIV-1 CRF01_AE-infected, treatment-naive Thai patients (CD4 T-cell counts of >200/μl) and 104 exposed seronegatives were studied. The effect of KIR-HLA receptor-ligand combinations on viral transmission and survival rate was statistically analyzed. RESULTS We found the following results: higher frequency of patients expressing both KIR2DL3 and HLA-C1 among infected patients compared with exposed seronegative (odds ratio 4.8, P = 0.004), higher viral load in patients expressing HLA-C1 with KIR2DL3 compared with those without this receptor-ligand combination (median 4.8 vs. 4.2 log copies/ml, P = 0.033), higher numbers of KIR2DL3-HLA-C1 interactions was associated with a higher viral load (β = 0.13, P = 0.039 by linear regression model), and higher mortality rate in carriers of the KIR2DL3-HLA-C1 combination (adjusted hazard ratio 1.9, P = 0.012 by Cox hazard model). CONCLUSION We have identified a deleterious effect of the KIR2DL3-HLA-C1 receptor-ligand combination on HIV clinical outcomes in a Thai cohort. Further investigation into mechanisms underlying this susceptibility may aid the understanding of the role of natural killer cells in HIV disease control and pathogenesis.
Collapse
|
23
|
Dulmage BO, Geskin LJ. Lessons learned from gene expression profiling of cutaneous T-cell lymphoma. Br J Dermatol 2014; 169:1188-97. [PMID: 23937674 DOI: 10.1111/bjd.12578] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 12/14/2022]
Abstract
Gene expression studies of cutaneous T-cell lymphoma (CTCL) span a decade, yet the pathogenesis is poorly understood and diagnosis remains a challenge. This review examines the varied approaches to gene expression analysis of CTCL, with emphasis on cell populations, control selection and expression data collection. Despite discordant results, several dysregulated genes have been identified across multiple studies, including PLS3, KIR3DL2, TWIST1 and STAT4. Here, we provide an overview of the most consistently expressed genes across different studies and bring them together through common pathways biologically relevant to CTCL. Four pathways - evasion of activation-induced cell death, T helper 2 lymphocyte differentiation, transforming growth factor-β receptor expression, and tumour necrosis factor receptor ligands - appear to encompass the most frequently affected genes, hypothetically providing insight into the disease pathogenesis.
Collapse
Affiliation(s)
- B O Dulmage
- Department of Dermatology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15213, U.S.A
| | | |
Collapse
|
24
|
Norell H, Moretta A, Silva-Santos B, Moretta L. At the Bench: Preclinical rationale for exploiting NK cells and γδ T lymphocytes for the treatment of high-risk leukemias. J Leukoc Biol 2013; 94:1123-39. [PMID: 24108703 DOI: 10.1189/jlb.0613312] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NK cells and γδ T lymphocytes display potent cytolytic activity against leukemias and CMV-infected cells and are thus, promising immune effector cells in the context of allo-HSCT. NK cells express HLA class I-specific inhibitory receptors and preferentially kill HLA class I(low) tumors or virus-infected cells. Killing occurs upon engagement of activating NKRs with ligands that are up-regulated on tumors and infected cells. A similar activating receptor/ligand interaction strategy is used by γδ T cells, which in addition, use their TCRs for recognition of phosphorylated antigens and still largely undefined ligands on tumor cells. In the haploidentical allo-HSCT setting, alloreactive NK cells, derived from donor HSCs, can exert potent antileukemia activity and kill residual patient DCs and T cells, thus preventing GvHD and graft rejection. However, generation of KIR(+) alloreactive NK cells from HSCs requires many weeks, during which leukemia relapses, and life-threatening infections may occur. Importantly, mature NK cells and γδ T cells can control certain infectious agents efficiently, in particular, limit CMV reactivation, and infusion of such donor cells at the time of HSCT has been implemented. Development of novel, cell-based immunotherapies, allowing improved trafficking and better targeting, will endow NK cells and γδ T lymphocytes with enhanced anti-tumor activity, also making them key reagents for therapies against solid tumors. The clinical aspects of using NK cells and γδ T lymphocytes against hematological malignancies, including the allo-HSCT context, are reviewed in the related side-by-side paper by Locatelli and colleagues [1].
Collapse
|
25
|
Elemans M, Seich al Basatena NK, Asquith B. The efficiency of the human CD8+ T cell response: how should we quantify it, what determines it, and does it matter? PLoS Comput Biol 2012; 8:e1002381. [PMID: 22383867 PMCID: PMC3285570 DOI: 10.1371/journal.pcbi.1002381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Multidisciplinary techniques, in particular the combination of theoretical and experimental immunology, can address questions about human immunity that cannot be answered by other means. From the turnover of virus-infected cells in vivo, to rates of thymic production and HLA class I epitope prediction, theoretical techniques provide a unique insight to supplement experimental approaches. Here we present our opinion, with examples, of some of the ways in which mathematics has contributed in our field of interest: the efficiency of the human CD8+ T cell response to persistent viruses.
Collapse
Affiliation(s)
- Marjet Elemans
- Section of Immunology, Imperial College School of Medicine, London, United Kingdom
| | | | - Becca Asquith
- Section of Immunology, Imperial College School of Medicine, London, United Kingdom
| |
Collapse
|
26
|
Seich al Basatena NK, MacNamara A, Vine AM, Thio CL, Astemborski J, Usuku K, Osame M, Kirk GD, Donfield SM, Goedert JJ, Bangham CR, Carrington M, Khakoo SI, Asquith B. KIR2DL2 enhances protective and detrimental HLA class I-mediated immunity in chronic viral infection. PLoS Pathog 2011; 7:e1002270. [PMID: 22022261 PMCID: PMC3192839 DOI: 10.1371/journal.ppat.1002270] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/01/2011] [Indexed: 12/14/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) influence both innate and adaptive immunity. But while the role of KIRs in NK-mediated innate immunity is well-documented, the impact of KIRs on the T cell response in human disease is not known. Here we test the hypothesis that an individual's KIR genotype affects the efficiency of their HLA class I-mediated antiviral immune response and the outcome of viral infection. We show that, in two unrelated viral infections, hepatitis C virus and human T lymphotropic virus type 1, possession of the KIR2DL2 gene enhanced both protective and detrimental HLA class I-restricted anti-viral immunity. These results reveal a novel role for inhibitory KIRs. We conclude that inhibitory KIRs, in synergy with T cells, are a major determinant of the outcome of persistent viral infection.
Collapse
MESH Headings
- Female
- Genes, MHC Class I
- HTLV-I Infections/genetics
- HTLV-I Infections/immunology
- HTLV-I Infections/virology
- Hepacivirus/immunology
- Hepacivirus/physiology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Histocompatibility Antigens Class I/immunology
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/physiology
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Male
- Receptors, KIR/immunology
- Receptors, KIR2DL2/genetics
- Receptors, KIR2DL2/metabolism
- T-Lymphocytes/immunology
- Viral Load
Collapse
Affiliation(s)
| | | | | | - Chloe L. Thio
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | | | | | - Gregory D. Kirk
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - James J. Goedert
- National Cancer Institute, Rockville, Maryland, United States of America
| | | | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | | | | |
Collapse
|
27
|
Wieërs G, Demotte N, Godelaine D, van der Bruggen P. Immune suppression in tumors as a surmountable obstacle to clinical efficacy of cancer vaccines. Cancers (Basel) 2011; 3:2904-54. [PMID: 24212939 PMCID: PMC3759179 DOI: 10.3390/cancers3032904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 02/07/2023] Open
Abstract
Human tumors are usually not spontaneously eliminated by the immune system and therapeutic vaccination of cancer patients with defined antigens is followed by tumor regressions only in a small minority of the patients. The poor vaccination effectiveness could be explained by an immunosuppressive tumor microenvironment. Because T cells that infiltrate tumor metastases have an impaired ability to lyse target cells or to secrete cytokine, many researchers are trying to decipher the underlying immunosuppressive mechanisms. We will review these here, in particular those considered as potential therapeutic targets. A special attention will be given to galectins, a family of carbohydrate binding proteins. These lectins have often been implicated in inflammation and cancer and may be useful targets for the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Grégoire Wieërs
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Nathalie Demotte
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Danièle Godelaine
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| |
Collapse
|
28
|
Sivori S, Falco M, Moretta L, Moretta A. Extending killer Ig-like receptor function: from HLA class I recognition to sensors of microbial products. Trends Immunol 2010; 31:289-94. [PMID: 20630802 DOI: 10.1016/j.it.2010.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/25/2010] [Accepted: 05/28/2010] [Indexed: 12/20/2022]
Abstract
Killer Ig-like receptors (KIRs) are human natural killer (NK) receptors that recognize allotypic determinants of human leukocyte antigen (HLA) class I. Inhibitory KIRs discriminate normal cells from tumour or virus-infected cells that have lost or reduced HLA class I expression. Donor NK cell "alloeffector" responses are exploited in haploidentical haematopoietic stem cell transplantation to treat leukaemia. NK cells also express several toll-like receptors (TLRs) that increase NK cell cytotoxicity and cytokine release in response to ligands. Surprisingly, KIR3DL2 binds the TLR ligand CpG-oligodexynucleotides, and together, they are co-internalized and translocated to TLR9-rich early endosomes. This novel KIR-associated function offers clues to understanding the NK cell response to microbial infection, and extends the role played by KIRs in immune defence.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Italy
| | | | | | | |
Collapse
|
29
|
Pietra G, Romagnani C, Manzini C, Moretta L, Mingari MC. The emerging role of HLA-E-restricted CD8+ T lymphocytes in the adaptive immune response to pathogens and tumors. J Biomed Biotechnol 2010; 2010:907092. [PMID: 20634877 PMCID: PMC2896910 DOI: 10.1155/2010/907092] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 05/04/2010] [Indexed: 11/18/2022] Open
Abstract
Human leukocyte antigen (HLA)-E is a nonclassical major histocompatibility complex (MHC) class I molecule of limited sequence variability that is expressed by most tissues albeit at low levels. HLA-E has been first described as the ligand of CD94/NKG2 receptors expressed mainly by natural killer (NK) cells, thus confining its role to the regulation of NK-cell function. However, recent evidences obtained by our and other groups indicate that HLA-E complexed with peptides can interact with alphabeta T-cell receptor (TCR) expressed on CD8(+) T cells. Although, HLA-E displays a selective preference for nonameric peptides, derived from the leader sequence of various HLA class I alleles, several reports indicate that it can present also "noncanonical" peptides derived from both stress-related and pathogen-associated proteins. Because HLA-E displays binding specificity for innate CD94/NKG2 receptors, as well as all the features of an antigen-presenting molecule, its role in both natural and acquired immune responses has recently been re-evaluated.
Collapse
Affiliation(s)
- Gabriella Pietra
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16132 Genova, Italy
| | - Chiara Romagnani
- Clinical Immunology Group, German Rheumatism Research Centre, 10117 Berlin, Germany
| | - Claudia Manzini
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16132 Genova, Italy
| | - Lorenzo Moretta
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16132 Genova, Italy
- Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Maria Cristina Mingari
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, 16132 Genova, Italy
- Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova, Italy
| |
Collapse
|
30
|
Correia MP, Cardoso EM, Pereira CF, Neves R, Uhrberg M, Arosa FA. Hepatocytes and IL-15: a favorable microenvironment for T cell survival and CD8+ T cell differentiation. THE JOURNAL OF IMMUNOLOGY 2009; 182:6149-59. [PMID: 19414768 DOI: 10.4049/jimmunol.0802470] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human intrahepatic lymphocytes are enriched in CD1d-unrestricted T cells coexpressing NKR. Although the origin of this population remains controversial, it is possible to speculate that the hepatic microenvironment, namely epithelial cells or the cytokine milieu, may play a role in its shaping. IL-15 is constitutively expressed in the liver and has a key role in activation and survival of innate and tissue-associated immune cells. In this in vitro study, we examined whether hepatocyte cell lines and/or IL-15 could play a role in the generation of NK-like T cells. The results show that both HepG2 cells and a human immortalized hepatocyte cell line increase survival and drive basal proliferation of T cells. In addition, IL-15 was capable of inducing Ag-independent up-regulation of NKR, including NKG2A, Ig-like receptors, and de novo expression of CD56 and NKp46 in CD8(+)CD56(-) T cells. In conclusion, our study suggests that hepatocytes and IL-15 create a favorable microenvironment for T cells to growth and survive. It can be proposed that the increased percentage of intrahepatic nonclassical NKT cells could be in part due to a local CD8(+) T cell differentiation.
Collapse
|
31
|
Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H, Sekeres MA, Wang XF, McDevitt MA, Maciejewski JP. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 2009; 68:10349-57. [PMID: 19074904 DOI: 10.1158/0008-5472.can-08-2754] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two types of acquired loss of heterozygosity are possible in cancer: deletions and copy-neutral uniparental disomy (UPD). Conventionally, copy number losses are identified using metaphase cytogenetics, whereas detection of UPD is accomplished by microsatellite and copy number analysis and as such, is not often used clinically. Recently, introduction of single nucleotide polymorphism (SNP) microarrays has allowed for the systematic and sensitive detection of UPD in hematologic malignancies and other cancers. In this study, we have applied 250K SNP array technology to detect previously cryptic chromosomal changes, particularly UPD, in a cohort of 301 patients with myelodysplastic syndromes (MDS), overlap MDS/myeloproliferative disorders (MPD), MPD, and acute myeloid leukemia. We show that UPD is a common chromosomal defect in myeloid malignancies, particularly in chronic myelomonocytic leukemia (CMML; 48%) and MDS/MPD-unclassifiable (38%). Furthermore, we show that mapping minimally overlapping segmental UPD regions can help target the search for both known and unknown pathogenic mutations, including newly identified missense mutations in the proto-oncogene c-Cbl in 7 of 12 patients with UPD11q. Acquired mutations of c-Cbl E3 ubiquitin ligase may explain the pathogenesis of a clonal process in a subset of MDS/MPD, including CMML.
Collapse
Affiliation(s)
- Andrew J Dunbar
- Department of Hematologic Oncology and Blood Disorders, Experimental Hematology and Hematopoiesis Section, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ear, nose and throat manifestations of Behçet's disease: a review. The Journal of Laryngology & Otology 2008; 122:1279-83. [PMID: 18616840 DOI: 10.1017/s0022215108002703] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To review Behçet's disease and to describe its clinical features in the head, neck and upper respiratory tract. METHOD A literature review was undertaken, following a Medline search of publications over a 30-year period, and utilising the expert knowledge of one of the authors (RJM) with a specialist interest in Behçet's disease. RESULTS Twenty-seven articles with ENT relevance were obtained. Otorhinolaryngological manifestations included symptoms and signs in the mouth, nose, sinus, larynx and ear. CONCLUSION Behçet's disease is usually considered to be a condition affecting the oral cavity, eyes and genitals. This article shows that most patients will also exhibit other ENT symptoms, hearing loss in particular. Indeed, Behçet's disease may present with features other than the classic triad of symptoms. Raised awareness of the clinical features within the head and neck region will hopefully enable early diagnosis and treatment of this potentially serious condition.
Collapse
|
33
|
Abstract
Inhibitory killer Ig-like receptors (KIR), expressed by human natural killer cells and effector memory CD8(+) T-cell subsets, bind HLA-C molecules and suppress cell activation through recruitment of the Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1). To further analyze the still largely unclear role of inhibitory KIR receptors on CD4(+) T cells, KIR2DL1 transfectants were obtained from a CD4(+) T-cell line and primary cells. Transfection of CD4(+) T cells with KIR2DL1 dramatically increased the T-cell receptor (TCR)-induced production of interleukin-2 independently of ligand binding but inhibited TCR-induced activation after ligation. KIR-mediated costimulation of TCR activation involves intact KIR2DL1-ITIM phosphorylation, SHP-2 recruitment, and PKC- phosphorylation. Synapses leading to activation were characterized by an increase in the recruitment of p-Tyr, SHP-2, and p-PKC-, but not of SHP-1. Interaction of KIR2DL1 with its ligand led to a strong synaptic accumulation of KIR2DL1 and the recruitment of SHP-1/2, inhibiting TCR-induced interleukin-2 production. KIR2DL1 may induce 2 opposite signaling outputs in CD4(+) T cells, depending on whether the KIR receptor is bound to its ligand. These data highlight unexpected aspects of the regulation of T cells by KIR2DL1 receptors, the therapeutic manipulation of which is currently being evaluated.
Collapse
|
34
|
Slingluff CL. Immunology of Cancer. Surgery 2008. [DOI: 10.1007/978-0-387-68113-9_94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Guntupalli JNR, Padala S, Gummuluri AVRM, Muktineni RK, Byreddy SR, Sreerama L, Kedarisetti PC, Angalakuduru DP, Satti BR, Venkatathri V, Pullela VBRL, Gavarasana S. Trace elemental analysis of normal, benign hypertrophic and cancerous tissues of the prostate gland using the particle-induced X-ray emission technique. Eur J Cancer Prev 2007; 16:108-15. [PMID: 17297386 DOI: 10.1097/01.cej.0000228409.75976.b6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trace elemental analysis was carried out in the tissue samples of normal, benign hypertrophic and carcinoma prostate using the particle-induced X-ray emission technique. A proton beam of 3 MeV energy was used to excite the samples. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, and Br were identified and their concentrations were estimated. It is observed that in benign tissues the concentrations of Cl, K, Zn, and Se are lower (P<0.05) and those of Cr, Fe, Ni, and Cu are higher (P<0.05 ) than in normal tissues. The concentrations of K, Ca, Zn, Se, and Br are lower (P<0.01) and those of Ti, Cr, Mn, Fe, Ni, and Cu are significantly higher (P<0.0005) in cancerous tissues than in normal tissues. Free radicals generated by elevated levels of Cr, Fe, Ni, and Cu possibly initiate and promote prostate cancer by oxidative DNA damage. The excess Cu levels in cancerous tissues support the fact that Cu promotes cancer through angiogenesis. The higher levels of Fe observed in cancerous tissues might be a consequence of tumor growth through angiogenesis. Significantly higher levels of Ni and Cr observed in carcinoma tissues support the well-established role of Ni and Cr as carcinogens. It is likely that the observed low levels of Zn and Se in cancerous tissues lead to the development of prostate cancer owing to a decrease in antioxidative defense capacity and impaired immune function of cells and also suggest that the inability to retain high levels of Zn and Se may possibly be an important factor in the development and progression of malignant prostate cells. In order to substantiate the observed elevated or deficient levels of trace elements in initiating, promoting, and inhibiting prostate cancer, several cellular and molecular studies are required.
Collapse
Affiliation(s)
- J Naga Raju Guntupalli
- Swami Jnanananda Laboratories for Nuclear Research, Andhra University, Andhra Pradesh, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Baesso I, Pavan L, Boscaro E, Miorin M, Facco M, Trentin L, Agostini C, Zambello R, Semenzato G. T-cell type lymphoproliferative disease of granular lymphocytes (LDGL) is equipped with a phenotypic pattern typical of effector cytotoxic cells. Leuk Res 2007; 31:371-7. [PMID: 16982092 DOI: 10.1016/j.leukres.2006.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/27/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
By analyzing the expression of several cytotoxic markers, killer-immunoglobulin-like receptors (KIRs), CD94/CD159, CD314 and natural cytotoxicity receptors (NCRs), in 22 CD3+ lymphoproliferative disease of granular lymphocyte (LDGL) patients we investigated whether granular lymphocytes (GLs) displayed the phenotype of fully differentiated cytotoxic cells. Our results demonstrate that GLs express a pattern consistent with fully differentiated CTLs. KIRs are expressed only in a fraction of patients (7/22), as is CD94/CD159 (5/22). In conclusion, GLs in CD3+ LDGL patients typically show the phenotype of fully differentiated CTL, whereas the expression of NK receptors does not represent a common feature of the proliferating clone.
Collapse
Affiliation(s)
- Ilenia Baesso
- Padua University School of Medicine, Department of Clinical and Experimental Medicine, Hematology and Clinical Immunology Branch, University of Padua, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sáez-Borderías A, Gumá M, Angulo A, Bellosillo B, Pende D, López-Botet M. Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur J Immunol 2007; 36:3198-206. [PMID: 17109473 DOI: 10.1002/eji.200636682] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The human NKG2D killer lectin-like receptor (KLR) is coupled by the DAP10 adapter to phosphoinositide 3-kinase (PI3 K) and specifically interacts with different stress-inducible molecules (i.e. MICA, MICB, ULBP) displayed by some tumour and virus-infected cells. This KLR is commonly expressed by human NK cells as well as TCRgammadelta(+) and TCRalphabeta(+)CD8(+) T lymphocytes, but it has been also detected in CD4(+) T cells from rheumatoid arthritis and cancer patients. In the present study, we analysed NKG2D expression in human cytomegalovirus (HCMV)-specific CD4(+) T lymphocytes. In vitro stimulation of peripheral blood mononuclear cells (PBMC) from healthy seropositive individuals with HCMV promoted variable expansion of CD4(+)NKG2D(+) T lymphocytes that coexpressed perforin. NKG2D was detected in CD28(-) and CD28(dull )subsets and was not systematically associated with the expression of other NK cell receptors (i.e. KIR, CD94/NKG2 and ILT2). Engagement of NKG2D with specific mAb synergized with TCR-dependent activation of CD4(+) T cells, triggering proliferation and cytokine production (i.e. IFN-gamma and TNF-alpha). Altogether, the data support the notion that NKG2D functions as a prototypic costimulatory receptor in a subset of HCMV-specific CD4(+) T lymphocytes and thus may have a role in the response against infected HLA class II(+) cells displaying NKG2D ligands.
Collapse
|
38
|
Fischer L, Hummel M, Burmeister T, Schwartz S, Thiel E. Skewed expression of natural-killer (NK)-associated antigens on lymphoproliferations of large granular lymphocytes (LGL). Hematol Oncol 2006; 24:78-85. [PMID: 16598823 DOI: 10.1002/hon.777] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Killer-immunoglobulin-like receptors (KIR) or C-type lectin-like receptors are heterogeneously expressed on NK cells and small subsets of T cells and might provide a new diagnostic tool for LGL lymphoproliferations (LGLL). We investigated the diagnostic impact of these cell surface molecules in T- and NK-type LGLL. Using three-color flow cytometry we examined the expression patterns of KIR (CD158a/b/e/i), CD85j, lectin-like receptors (CD94, CD161, NKG2A/D) and natural cytotoxicity receptors (NKp30/44/46) in 13 patients with LGLL (10 T-, 3 NK-LGLL) and compared them to those of the corresponding lymphocyte subsets in 20 control subjects. The presence of clonal TCR-gamma rearrangements and of Epstein Barr virus- (EBV) DNA were evaluated by PCR. All patients exhibited an altered expression of NK-associated markers. KIR were either lacking (6/13) or overexpressed (7/13). CD94 expression was significantly higher in all LGLL. NKG2A expression was significantly higher in NK-LGLL. Absence or overexpression was observed for NKG2A in T-LGLL and CD161 in most T/NK-LGLL. In NK-LGLL expression of NKp30 and NKp46 was significantly decreased, whereas CD85j was overexpressed. We consistently found a skewed expression pattern of novel NK markers as a pathological feature of LGLL. These antigens should be included in the diagnostic workup of this rare disease.
Collapse
Affiliation(s)
- Lars Fischer
- Department of Hematology, Oncology and Transfusion Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany.
| | | | | | | | | |
Collapse
|
39
|
Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, Moretta A. Surface NK receptors and their ligands on tumor cells. Semin Immunol 2006; 18:151-8. [PMID: 16730454 DOI: 10.1016/j.smim.2006.03.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of MHC-class I-specific inhibitory receptors in humans and mice provided a first explanation of why NK cells can kill target cells that have lost or underexpress MHC-class I molecules but spare normal cells. However, the molecular basis of NK-mediated recognition and tumor cell killing revealed a higher degree of complexity. Thus, under pathological conditions, NK cells may express insufficient amounts of triggering receptors and target cells may or may not express ligands for such receptors. Here we briefly illustrate the main NK receptors and their cellular ligands and we delineate the major receptor/ligands interactions leading to NK cell activation and tumor cell lysis.
Collapse
|
40
|
Tsujimura K, Obata Y, Matsudaira Y, Nishida K, Akatsuka Y, Ito Y, Demachi-Okamura A, Kuzushima K, Takahashi T. Characterization of murine CD160+ CD8+ T lymphocytes. Immunol Lett 2006; 106:48-56. [PMID: 16764942 DOI: 10.1016/j.imlet.2006.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/21/2006] [Accepted: 04/23/2006] [Indexed: 01/09/2023]
Abstract
CD160 is an Ig-like glycoprotein expressed on NK, NKT and TCRgammadelta T cells, as well as intestinal intraepithelial T lymphocytes. In addition, a minor subset of CD8(+) but not CD4(+) T cells in the periphery is also known to express CD160, but the subset has not been fully characterized. In this study, we prepared anti-murine CD160 mAbs and investigated the expression profile of CD160 on various subsets of CD8(+) T cells. The amount of CD160 on almost all CD8(+) T cells was increased upon CD3-mediated stimulation in vitro, and soluble CD160 was found to be released. Flow cytometric analysis revealed most CD8(+) T cells expressing CD160 to show a CD44(high) phenotype in vivo. On further analysis, both CD44(high)CD62L(low) effector memory T cells (T(EM)) and CD44(high)CD62L(high) central memory T cells (T(CM)) expressed CD160 at an intermediate level. High levels were evident with recently activated CD8(+) T(EM). Naïve CD8(+) T cells presumably immediately after stimulation (CD44(low)CD62L(low)CD69(+)) also expressed CD160, but only at a low level. Purified CD160(+) CD8(+) T cells from OT-1 transgenic mice expressing TCR against OVA residues 257-264 presented by H-2K(b) produced IFN-gamma more rapidly than CD160(-) CD8(+) T cells upon antigen stimulation. These results together show that CD160 is expressed on the majority of CD8(+) memory T cells as well as recently activated CD8(+) T cells.
Collapse
Affiliation(s)
- Kunio Tsujimura
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liao YH, Jee SH, Sheu BC, Huang YL, Tseng MP, Hsu SM, Tsai TF. Increased expression of the natural killer cell inhibitory receptor CD94/NKG2A and CD158b on circulating and lesional T cells in patients with chronic plaque psoriasis. Br J Dermatol 2006; 155:318-24. [PMID: 16882169 DOI: 10.1111/j.1365-2133.2006.07301.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Psoriasis is a common inflammatory cutaneous disorder characterized by activated T-cell infiltration. T lymphocytes bearing natural killer cell receptors (NKRs) have been suggested to play an important role in the pathogenesis of psoriasis. However, the expression pattern of activating and inhibitory NKRs on T lymphocytes from psoriatic patients and its significance in psoriasis needs further study. OBJECTIVES To investigate the pathogenesis of NKR-expressing T cells in psoriasis. MATERIALS AND METHODS Thirty patients with chronic plaque psoriasis and 20 healthy controls were enrolled in this study. The immunophenotypic profiles of NKRs, including CD56, CD16 (activating NKRs), CD158a, CD158b, CD94 and NKG2A (inhibitory NKRs), were analysed in peripheral blood T lymphocytes, as well as psoriatic lesional infiltrating T cells, by triple-fluorescence flow cytometry. RESULTS A significant increase of inhibitory CD8+ CD158b+, CD4 CD8 CD158b+ and CD8+ CD94/NKG2A+ T cells was found in the peripheral blood of patients with psoriasis when compared with controls. Tissue-infiltrating T lymphocytes expressing inhibitory receptors CD158b, CD94 and NKG2A were found in psoriatic lesions. There was a significant positive correlation between the increased percentage of circulating CD8+ CD94/NKG2A+ T cells and the Psoriasis Area and Severity Index. CONCLUSIONS In the present study, we demonstrated increased proportions of particular subsets of inhibitory CD158b+ and/or CD94/NKG2A+ T cells in patients with psoriasis. The elevation of these inhibitory NKR-expressing T cells was correlated with disease severity, which may signify the possibility of chronic antigen-driven stimulation and dysregulated cytokine production in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Y H Liao
- Department of Obsterics and Gynecology, National Taiwan University Hospital, National Taiwan University College of Medicine, 7, Chung-Shan South Road, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
42
|
Chang WC, Huang SC, Torng PL, Chang DY, Hsu WC, Chiou SH, Chow SN, Sheu BC. Expression of inhibitory natural killer receptors on tumor-infiltrating CD8+ T lymphocyte lineage in human endometrial carcinoma. Int J Gynecol Cancer 2006; 15:1073-80. [PMID: 16343184 DOI: 10.1111/j.1525-1438.2005.00264.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To investigate the expression of natural killer receptors (NKRs) within the human tumor milieu, we directly examined the in vivo expressions of various NKRs on tumor-infiltrating lymphocytes (TILs) derived from human endometrial carcinoma (EC). In total, 22 patients with stage IA-IIIA EC were enrolled. TILs were isolated from tissue specimens by means of a mechanical dispersal technique. The subpopulations of immunocytes were quantified, and expressions of NKRs on CD8+ T cells were analyzed by triple-color flow cytometry. CD8+ T cells express higher ratios of CD94 and NKG2A in TILs than in peripheral blood mononuclear cells (PBMCs) in human EC. Flow cytometry reveals that 15.90% of CD3+CD8+ TILs compared with 2.10% of CD3+CD8+ PBMCs express the NKG2A molecules (P < 0.001). The percentage expressions of CD94 are 8.40% in CD3+CD8+ TILs and 3.80% in CD3+CD8+ PBMCs (P= 0.013). The numbers of CD8+ T cells expressing CD158b and NKB1 are higher in CD3+CD8+ PBMCs in EC than in normal (CD158b: 10.70% vs 2.60%, P < 0.001; NKB1: 2.20% vs 0.40%, P= 0.018, respectively). Increased expression of CD94/NKG2A restricted to tumor-infiltrating CD8+ T cell subsets may shape the cytotoxic responses, which indicate a possible role of tumor escape from host immunity in human EC.
Collapse
Affiliation(s)
- W-C Chang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, and Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gumá M, Angulo A, López-Botet M. NK cell receptors involved in the response to human cytomegalovirus infection. Curr Top Microbiol Immunol 2005; 298:207-23. [PMID: 16323417 DOI: 10.1007/3-540-27743-9_11] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human cytomegalovirus (HCMV) infection is a paradigm of the complexity reached by host-pathogen interactions. To avoid recognition by cytotoxic T lymphocytes (CTL) HCMV inhibits the expression of HLA class I molecules. As a consequence, engagement of inhibitory killer immunoglobulin-like receptors (KIR), CD94/NKG2A, and CD85j (ILT2 or LIR-1) natural killer cell receptors (NKR) specific for HLA class I molecules is impaired, and infected cells become vulnerable to an NK cell response driven by activating receptors. In addition to the well-defined role of the NKG2D lectin-like molecule, the involvement of other triggering receptors (i.e., activating KIR, CD94/NKG2C, NKp46, NKp44, and NKp30) in the response to HCMV is being explored. To escape from NK cell-mediated surveillance, HCMV interferes with the expression of NKG2D ligands in infected cells. In addition, the virus may keep NK inhibitory receptors engaged preserving HLA class I molecules with a limited role in antigen presentation (i.e., HLA-E) or, alternatively, displaying class I surrogates. Despite considerable progress in the field, a number of issues regarding the involvement of NKR in the innate immune response to HCMV remain uncertain.
Collapse
Affiliation(s)
- M Gumá
- Molecular Immunopathology Unit, DCEXS, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
| | | | | |
Collapse
|
44
|
van Rood JJ, Roelen DL, Claas FHJ. The effect of noninherited maternal antigens in allogeneic transplantation. Semin Hematol 2005; 42:104-11. [PMID: 15846576 DOI: 10.1053/j.seminhematol.2005.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Confrontation of the unborn child immune system with the noninherited maternal antigens (NIMAs) has a lifelong modulating impact on the immune response of the child against the NIMAs. In this review we summarize the clinical evidence for the existence of the NIMA effect, discuss the possible cellular and molecular basis of the phenomenon, and outline the necessity of further clinical research.
Collapse
Affiliation(s)
- J J van Rood
- Europdonor Foundation, Plesmanlaan 1b, 2333 BZ Leiden, The Netherlands.
| | | | | |
Collapse
|
45
|
Gumá M, Busch LK, Salazar-Fontana LI, Bellosillo B, Morte C, García P, López-Botet M. The CD94/NKG2C killer lectin-like receptor constitutes an alternative activation pathway for a subset of CD8+ T cells. Eur J Immunol 2005; 35:2071-80. [PMID: 15940674 DOI: 10.1002/eji.200425843] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The CD94/NKG2C killer lectin-like receptor (KLR) specific for HLA-E is coupled to the KARAP/DAP12 adapter in a subset of NK cells, triggering their effector functions. We have studied the distribution and function of this KLR in T lymphocytes. Like other NK cell receptors (NKR), CD94/NKG2C was predominantly expressed by a CD8(+) T cell subset, though TCRgammadelta(+) NKG2C(+) and rare CD4(+) NKG2C(+) cells were also detected in some individuals. Coculture with the 721.221 HLA class I-deficient lymphoma cell line transfected with HLA-E (.221-AEH) induced IL-2Ralpha expression in CD94/NKG2C+ NK cells and a minor subset of CD94/NKG2C(+) T cells, promoting their proliferation; moreover, a similar response was triggered upon selective engagement of CD94/NKG2C with a specific mAb. CD8(+) TCRalphabeta CD94/NKG2C(+) T cell clones, that displayed different combinations of KIR and CD85j receptors, expressed KARAP/DAP12 which was co-precipitated by an anti-CD94 mAb. Specific engagement of the KLR triggered cytotoxicity and cytokine production in CD94/NKG2C(+) T cell clones, inducing as well IL-2Ralpha expression and a proliferative response. Altogether these results support that CD94/NKG2C may constitute an alternative T cell activation pathway capable of driving the expansion and triggering the effector functions of a CTL subset.
Collapse
Affiliation(s)
- Mónica Gumá
- Molecular Immunopathology Unit, Universitat Pompeu Fabra (DCEXS), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang C, Zhang J, Sun R, Feng J, Wei H, Tian Z. Opposing effect of IFNγ and IFNα on expression of NKG2 receptors: Negative regulation of IFNγ on NK cells. Int Immunopharmacol 2005; 5:1057-67. [PMID: 15829421 DOI: 10.1016/j.intimp.2005.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 09/07/2004] [Accepted: 02/03/2005] [Indexed: 11/26/2022]
Abstract
The effector functions of natural killer (NK) cells are regulated by integrated signals across an array of stimulatory and inhibitory receptors interacting with target cell surface ligands. The regulatory effect of interferon-alpha (IFNalpha) and interferon-gamma (IFNgamma) on expression of the family of NKG2 receptors, stimulatory NKG2D receptor and inhibitory NKG2A receptor, and cytolysis of the target tumor cells (MICA+ and HLA-E+) were studied. Results show that IFNgamma and IFNalpha influence NK cell function differently. Interferon-alpha stimulates expression of stimulatory NKG2D receptors and inhibits the expression of inhibitory NKG2A receptors on NK cells. Contrary to the stimulatory effect of IFNalpha, IFNgamma inhibits cytolysis by NK cells of tumor cells expressing MICA or HLA-E cell surface proteins. Blocking NKG2D or NKG2A receptor activity with monoclonal antibodies partly attenuates the inhibitory effect of IFNgamma while promoting the effects of IFNalpha on NK cytolysis. These results show for the first time that IFNgamma negatively regulates NK cells through NKG2 receptors, and that the balance between stimulatory and inhibitory signals through the NKG2 family of receptors may be controlled by two opposing interferons. Modulating the balance between stimulatory and inhibitory signals through cell surface receptors on NK cells may open a new approach to NK cell-based biotherapy for cancer and infectious diseases.
Collapse
Affiliation(s)
- Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmacy, Shandong University 44 Wenhua Western Road, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
47
|
Sheu BC, Chiou SH, Lin HH, Chow SN, Huang SC, Ho HN, Hsu SM. Up-regulation of inhibitory natural killer receptors CD94/NKG2A with suppressed intracellular perforin expression of tumor-infiltrating CD8+ T lymphocytes in human cervical carcinoma. Cancer Res 2005; 65:2921-9. [PMID: 15805295 DOI: 10.1158/0008-5472.can-04-2108] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitory signals that govern the cytolytic functions of CD8(+) T lymphocytes have been linked to the expression of natural killer cell receptors (NKRs) on CTLs. There is limited knowledge about the induction of inhibitory NKR (iNKR) expression in vivo. Up-regulation of iNKRs has been linked to the modulation of the virus- and/or tumor-specific immune responses in animal models. In the present study, we directly examined the expression of various NKRs on tumor-infiltrating lymphocytes (TILs) derived from human cervical cancer. We found that in human cervical cancer, the percentage expression of immunoglobulin-like NKR(+)CD8(+) T lymphocytes were similar in gated CD8(+)-autologous TILs and peripheral blood mononuclear cells. On the contrary, cervical cancer-infiltrating CD8(+) T lymphocytes expressed up-regulated C-type lectin NKRs CD94/NKG2A compared with either peripheral blood CD8(+) T cells or normal cervix-infiltrating CD8(+) T lymphocytes. Dual NKR coexpression analyses showed that CD94 and NKG2A were mainly expressed on CD56(-)CD161(-)CD8(+) TILs within the cancer milieu. Immunohistochemical study showed that cervical cancer cells expressed abundant interleukin 15 (IL-15) and transforming growth factor-beta (TGF-beta). In kinetic coculture assay, cervical cancer cells can promote the expression of CD94/NKG2A on CD8(+) T lymphocytes. The cancer-derived effects can be reversed by addition of rIL-15Ralpha/Fc and anti-TGF-beta antibody. Functional analyses illustrated that intracellular perforin expression of CD8(+) T cells was minimal upon up-regulation of CD94/NKG2A. Kinetic cytotoxicity assays showed that up-regulated expressions of CD94/NKG2A restrain CD8(+) T lymphocyte cytotoxicity. Our study strongly indicated that cervical cancer cells could promote the expression of iNKRs via an IL-15- and possibly TGF-beta-mediated mechanism and abrogate the antitumor cytotoxicity of TILs.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cytotoxicity, Immunologic
- Female
- Humans
- Interleukin-15/pharmacology
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/immunology
- Lymphocyte Culture Test, Mixed
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/immunology
- NK Cell Lectin-Like Receptor Subfamily C
- NK Cell Lectin-Like Receptor Subfamily D
- Perforin
- Pore Forming Cytotoxic Proteins
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/immunology
- Receptors, Natural Killer Cell
- Recombinant Proteins/pharmacology
- T-Lymphocytes, Cytotoxic/immunology
- Transforming Growth Factor beta/pharmacology
- Up-Regulation
- Uterine Cervical Neoplasms/immunology
Collapse
Affiliation(s)
- Bor-Ching Sheu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Faber C, Gabriel P, Ibs KH, Rink L. Zinc in pharmacological doses suppresses allogeneic reaction without affecting the antigenic response. Bone Marrow Transplant 2005; 33:1241-6. [PMID: 15094748 DOI: 10.1038/sj.bmt.1704509] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Zinc is an essential trace element for the immune system. Previously it was shown that zinc inhibits alloreactivity. In our present in vitro experiments, it is shown that zinc maintains the antigenic potency of the host while blocking the allogeneic response. These results were observed in experiments using tetanus toxoid as a well-established recall antigen and the mixed lymphocyte culture as an in vitro model for allogeneic reaction. To prove the in vivo relevance, an ex vivo experimental setup was established. This involved participants taking zinc orally for 1 week. Here it is shown that in vivo zinc application induced the same effect of blocking the mixed lymphocyte culture without influencing tetanus toxoid stimulation. So far, no clinical application studies have been performed, but the observed selective suppression of allogeneic reaction by zinc is the first step towards a new generation of immunosuppressants.
Collapse
Affiliation(s)
- C Faber
- Institute of Immunology and Transfusion Medicine, University of Lübeck School of Medicine, Lübeck, Germany
| | | | | | | |
Collapse
|
49
|
Tanaka J, Asaka M, Imamura M. Potential Role of Natural Killer Cell Receptor-Expressing Cells in Immunotherapy for Leukemia. Int J Hematol 2005; 81:6-12. [PMID: 15717681 DOI: 10.1532/ijh97.04152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Natural killer cell receptor (NKR)-expressing cells have cytolytic activity against leukemic cells, and solid tumor cells escape from T-cell recognition because of the low expression levels of class I HLA molecules in both allogeneic and autologous settings. This characteristic feature of NK cell recognition of target cells in contrast with that of T-cells provides a strategy to overcome tolerance in the tumor-bearing host. Furthermore, inhibitory NKR-expressing cells may have cytolytic activity and immunoregulatory functions. Several methods can be used to expand NKR-expressing cells for adoptive immunotherapy for leukemia and other malignant diseases. We review recent developments in the biology and clinical application of NKR-expressing cells, such as NK cells, lymphokine-activated killer cells, cytokine-induced killer cells, NKT cells, and other NKR-expressing cells.
Collapse
Affiliation(s)
- Junji Tanaka
- Hematology and Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | |
Collapse
|
50
|
Gumá M, Angulo A, Vilches C, Gómez-Lozano N, Malats N, López-Botet M. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 2004; 104:3664-71. [PMID: 15304389 DOI: 10.1182/blood-2004-05-2058] [Citation(s) in RCA: 685] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Expression of the activating CD94/NKG2C killer lectin-like receptor (KLR) specific for HLA-E was analyzed in peripheral blood lymphocytes (PBLs) from healthy adult blood donors; the expression of other natural killer (NK) cell receptors (ie, CD94/NKG2A, KIR, CD85j, CD161, NKp46, NKp30, and NKG2D) was also studied. Human cytomegalovirus (HCMV) infection as well as the HLA-E and killer immunoglobulin-like receptor (KIR) genotypes were considered as potentially relevant variables associated with CD94/NKG2C expression. The proportion of NKG2C(+) lymphocytes varied within a wide range (<0.1% to 22.1%), and a significant correlation (r = 0.83; P < .001) between NKG2C(+) NK and T cells was noticed. The HLA-E genotype and the number of activating KIR genes of the donors were not significantly related to the percentage of NKG2C(+) lymphocytes. By contrast, a positive serology for HCMV, but not for other herpesviruses (ie, Epstein-Barr and herpes simplex), turned out to be strongly associated (P < .001) with increased proportions of NKG2C(+) NK and T cells. Remarkably, the CD94/NKG2C(+) population expressed lower levels of natural cytotoxicity receptors (NCRs) (ie, NKp30, NKp46) and included higher proportions of KIR(+) and CD85j(+) cells than CD94/NKG2A(+) cells. Altogether, these data support that HCMV infection selectively shapes the natural killer cell receptor (NKR) repertoire of NK and T cells from healthy carrier individuals.
Collapse
Affiliation(s)
- Mónica Gumá
- Molecular Immunopathology Unit, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|