1
|
Blay V, Tolani B, Ho SP, Arkin MR. High-Throughput Screening: today's biochemical and cell-based approaches. Drug Discov Today 2020; 25:1807-1821. [PMID: 32801051 DOI: 10.1016/j.drudis.2020.07.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
High-throughput screening (HTS) provides starting chemical matter in the adventure of developing a new drug. In this review, we survey several HTS methods used today for hit identification, organized in two main flavors: biochemical and cell-based assays. Biochemical assays discussed include fluorescence polarization and anisotropy, FRET, TR-FRET, and fluorescence lifetime analysis. Binding-based methods are also surveyed, including NMR, SPR, mass spectrometry, and DSF. On the other hand, cell-based assays discussed include viability, reporter gene, second messenger, and high-throughput microscopy assays. We devote some emphasis to high-content screening, which is becoming very popular. An advisable stage after hit discovery using phenotypic screens is target deconvolution, and we provide an overview of current chemical proteomics, in silico, and chemical genetics tools. Emphasis is made on recent CRISPR/dCas-based screens. Lastly, we illustrate some of the considerations that inform the choice of HTS methods and point to some areas with potential interest for future research.
Collapse
Affiliation(s)
- Vincent Blay
- Division of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Sunita P Ho
- Division of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Gabriel J, Höfner G, Wanner KT. A Library Screening Strategy Combining the Concepts of MS Binding Assays and Affinity Selection Mass Spectrometry. Front Chem 2019; 7:665. [PMID: 31637233 PMCID: PMC6787468 DOI: 10.3389/fchem.2019.00665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 01/16/2023] Open
Abstract
The primary objective of early drug development is to identify hits and leads for a target of interest. To achieve this aim, rapid, and reliable screening techniques for a huge number of compounds are needed. Mass spectrometry based binding assays (MS Binding Assays) represent a well-established technique for library screening based on competitive binding experiments revealing active sublibraries due to reduced binding of a reporter ligand and following hit identification for active libraries by deconvolution in further competitive binding experiments. In the present study, we combined the concepts of MS Binding Assays and affinity selection mass spectrometry (ASMS) to improve the efficiency of the hit identification step. In that case, only a single competitive binding experiment is performed that is in the first step analyzed for reduced binding of the reporter ligand and—only if a sublibrary is active—additionally for specific binding of individual library components. Subsequently, affinities of identified hits as well as activities of reduced sublibraries (i.e., all sublibrary components without hit) are assessed in additional competitive binding experiments. We exemplified this screening concept for the identification of ligands addressing the most widespread GABA transporter subtype in the brain (GAT1) studying in the beginning a library composed of 128 and further on a library of 1,280 well-characterized GAT1 inhibitors, drug substances, and pharmacological tool compounds. Determination of sublibraries' activities was done by quantification of bound NO711 as reporter ligand and hit identification for the active ones achieved in a further LC-ESI-MS/MS run in the multiple reaction monitoring mode enabling detection of all sublibrary components followed by hit verification and investigation of reduced sublibraries in further competitive binding experiments. In this way, we could demonstrate that all GAT1 inhibitors reducing reporter ligand binding below 50% at a concentration of 1 μM are detected reliably without generation of false positive or false negative hits. As the described strategy is apart from its reliability also highly efficient, it can be assumed to become a valuable tool in early drug research, especially for membrane integrated drug targets that are often posing problems in established screening techniques.
Collapse
Affiliation(s)
- Jürgen Gabriel
- Department of Pharmacy, Faculty of Chemistry and Pharmacy, Ludwig Maximilian University München, Munich, Germany
| | - Georg Höfner
- Department of Pharmacy, Faculty of Chemistry and Pharmacy, Ludwig Maximilian University München, Munich, Germany
| | - Klaus T Wanner
- Department of Pharmacy, Faculty of Chemistry and Pharmacy, Ludwig Maximilian University München, Munich, Germany
| |
Collapse
|
3
|
Kehe J, Kulesa A, Ortiz A, Ackerman CM, Thakku SG, Sellers D, Kuehn S, Gore J, Friedman J, Blainey PC. Massively parallel screening of synthetic microbial communities. Proc Natl Acad Sci U S A 2019; 116:12804-12809. [PMID: 31186361 PMCID: PMC6600964 DOI: 10.1073/pnas.1900102116] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microbial communities have numerous potential applications in biotechnology, agriculture, and medicine. Nevertheless, the limited accuracy with which we can predict interspecies interactions and environmental dependencies hinders efforts to rationally engineer beneficial consortia. Empirical screening is a complementary approach wherein synthetic communities are combinatorially constructed and assayed in high throughput. However, assembling many combinations of microbes is logistically complex and difficult to achieve on a timescale commensurate with microbial growth. Here, we introduce the kChip, a droplets-based platform that performs rapid, massively parallel, bottom-up construction and screening of synthetic microbial communities. We first show that the kChip enables phenotypic characterization of microbes across environmental conditions. Next, in a screen of ∼100,000 multispecies communities comprising up to 19 soil isolates, we identified sets that promote the growth of the model plant symbiont Herbaspirillum frisingense in a manner robust to carbon source variation and the presence of additional species. Broadly, kChip screening can identify multispecies consortia possessing any optically assayable function, including facilitation of biocontrol agents, suppression of pathogens, degradation of recalcitrant substrates, and robustness of these functions to perturbation, with many applications across basic and applied microbial ecology.
Collapse
Affiliation(s)
- Jared Kehe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Anthony Kulesa
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Anthony Ortiz
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Sri Gowtham Thakku
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Program in Health Sciences and Technology, MIT and Harvard, Cambridge, MA 02139
| | - Daniel Sellers
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155
| | - Seppe Kuehn
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel 76100
| | - Paul C Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
4
|
Han S, Bae HJ, Kim SD, Park W, Kwon S. An encoded viral micropatch for multiplex cell-based assays through localized gene delivery. LAB ON A CHIP 2017; 17:2435-2442. [PMID: 28555213 DOI: 10.1039/c7lc00372b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The increasing number of potential drug targets and compounds has led to the development of high-throughput cell-based assays. Simultaneous processing of multiple targets in the same experiment based on localized target gene expression is a very efficient strategy for this purpose. To address this need, we present an adenoviral vector-immobilized microparticle with two-dimensional (2D) shape-encoding properties that allows localized patch-like gene delivery to monolayer-cultured cells. This format conveniently achieves multiplexed gene delivery compatible with both high-throughput cellular assays and fluorescence high-content imaging instruments. A multiplex G protein-coupled receptor (GPCR) internalization assay was developed to demonstrate the compatibility of this system with high-throughput image-based cellular assays.
Collapse
Affiliation(s)
- Sangkwon Han
- QuantaMatrix Inc., Seoul National University Hospital, Daehak-ro, Jongno-gu, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Medium to High Throughput Screening: Microfabrication and Chip-Based Technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:181-209. [DOI: 10.1007/978-1-4614-3055-1_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Neuroglobin: A Novel Target for Endogenous Neuroprotection. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
8
|
Nam SH, Lee HJ, Son KJ, Koh WG. Non-positional cell microarray prepared by shape-coded polymeric microboards: A new microarray format for multiplex and high throughput cell-based assays. BIOMICROFLUIDICS 2011; 5:32001-3200110. [PMID: 22662027 PMCID: PMC3364815 DOI: 10.1063/1.3608130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/19/2011] [Indexed: 05/27/2023]
Abstract
A non-positional (or suspension) cell microarray was developed using shape-coded SU-8 photoresist microboards for potential application in multiplex and high-throughput cell-based assays. A conventional photolithography process on glass slides produced various shapes of SU-8 micropatterns that had a lateral dimension of 200 μm and a thickness of 40 μm. The resultant micropatterns were detached from the slides by sonication and named "microboards" due to the fact that had a much larger lateral dimension than thickness. The surfaces of the SU-8 microboards were modified with collagen to promote cell adhesion, and it was confirmed that collagen-coated SU-8 microboards supported cell adhesion and proliferation. Seeding of cells into poly(ethylene glycol)(PEG) hydrogel-coated well plates containing collagen-modified microboards resulted in selective cell adhesion onto the microboards due to the non-adhesiveness of PEG hydrogel toward cells, thereby creating non-positional arrays of microboards carrying cells. Finally, two different cell types (fibroblasts and HeLa cells) were separately cultured on different shapes of microboards and subsequently mixed together to create a non-positional cell microarray consisting of multiple cell types where each cell could be easily identified by the shape of the microboard to which they had adhered. Because numerous unique shapes of microboards can be fabricated using this method by simply changing the photomask designs, high throughput and multiplex cell-based assays would be easily achieved with this system in the future.
Collapse
Affiliation(s)
- Seung Hee Nam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Sinchon-Dong, Seodaemoon-Gu, Seoul 120-749, South Korea
| | | | | | | |
Collapse
|
9
|
|
10
|
Akanda N, Molnar P, Stancescu M, Hickman JJ. Analysis of toxin-induced changes in action potential shape for drug development. ACTA ACUST UNITED AC 2010; 14:1228-35. [PMID: 19801532 DOI: 10.1177/1087057109348378] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The generation of an action potential (AP) is a complex process in excitable cells that involves the temporal opening and closing of several voltage-dependent ion channels within the cell membrane. The shape of an AP can carry information concerning the state of the involved ion channels as well as their relationship to cellular processes. Alteration of these ion channels by the administration of toxins, drugs, and biochemicals can change the AP's shape in a specific way, which can be characteristic for a given compound. Thus, AP shape analysis could be a valuable tool for toxin classification and the measurement of drug effects based on their mechanism of action. In an effort to begin classifying the effect of toxins on the shape of intracellularly recorded APs, patch-clamp experiments were performed on NG108-15 hybrid cells in the presence of veratridine, tetraethylammonium, and quinine. To analyze the effect, the authors generated a computer model of the AP mechanism to determine to what extent each ion channel was affected during compound administration based on the changes in the model parameters. This work is a first step toward establishing a new assay system for toxin detection and identification by AP shape analysis.
Collapse
Affiliation(s)
- Nesar Akanda
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | |
Collapse
|
11
|
|
12
|
Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R. Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications. MICROFLUIDICS BASED MICROSYSTEMS 2010. [DOI: 10.1007/978-90-481-9029-4_17] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 2010; 39:1153-82. [PMID: 20179830 DOI: 10.1039/b820557b] [Citation(s) in RCA: 794] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel Mark
- HSG-IMIT-Institut für Mikro- und Informationstechnik, Wilhelm-Schickard-Strasse 10, 78052 Villingen-Schwenningen, Germany
| | | | | | | | | |
Collapse
|
14
|
Vogt A, Cholewinski A, Shen X, Nelson S, Lazo JS, Tsang M, Hukriede NA. Automated image-based phenotypic analysis in zebrafish embryos. Dev Dyn 2009; 238:656-63. [PMID: 19235725 PMCID: PMC2861575 DOI: 10.1002/dvdy.21892] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Presently, the zebrafish is the only vertebrate model compatible with contemporary paradigms of drug discovery. Zebrafish embryos are amenable to automation necessary for high-throughput chemical screens, and optical transparency makes them potentially suited for image-based screening. However, the lack of tools for automated analysis of complex images presents an obstacle to using the zebrafish as a high-throughput screening model. We have developed an automated system for imaging and analyzing zebrafish embryos in multi-well plates regardless of embryo orientation and without user intervention. Images of fluorescent embryos were acquired on a high-content reader and analyzed using an artificial intelligence-based image analysis method termed Cognition Network Technology (CNT). CNT reliably detected transgenic fluorescent embryos (Tg(fli1:EGFP)(y1)) arrayed in 96-well plates and quantified intersegmental blood vessel development in embryos treated with small molecule inhibitors of anigiogenesis. The results demonstrate it is feasible to adapt image-based high-content screening methodology to measure complex whole organism phenotypes.
Collapse
Affiliation(s)
- Andreas Vogt
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Xiaoqiang Shen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15213
| | - Scott Nelson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15213
| | - John S. Lazo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Michael Tsang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Neil A. Hukriede
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
15
|
Hong J, Edel JB, deMello AJ. Micro- and nanofluidic systems for high-throughput biological screening. Drug Discov Today 2008; 14:134-46. [PMID: 18983933 DOI: 10.1016/j.drudis.2008.10.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 01/09/2023]
Abstract
High-throughput screening (HTS) is a method of scientific experimentation widely used in drug discovery and relevant to the fields of biology. The development of micro- and nanofluidic systems for use in the biological sciences has been driven by a range of fundamental attributes that accompany miniaturization and massively parallel experimentation. We review recent advances in both arraying strategies based on nano/microfluidics and novel nano/microfluidic devices with high analytical throughput rates.
Collapse
Affiliation(s)
- Jongin Hong
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
16
|
Koehn FE. High impact technologies for natural products screening. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 65:175, 177-210. [PMID: 18084916 DOI: 10.1007/978-3-7643-8117-2_5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Natural products have historically been a rich source of lead molecules in drug discovery. However, natural products have been de-emphasized as high throughput screening resources in the recent past, in part because of difficulties in obtaining high quality natural products screening libraries, or in applying modern screening assays to these libraries. In addition, natural products programs based on screening of extract libraries, bioassay-guided isolation, structure elucidation and subsequent production scale-up are challenged to meet the rapid cycle times that are characteristic of the modern HTS approach. Fortunately, new technologies in mass spectrometry, NMR and other spectroscopic techniques can greatly facilitate the first components of the process - namely the efficient creation of high-quality natural products libraries, bimolecular target or cell-based screening, and early hit characterization. The success of any high throughput screening campaign is dependent on the quality of the chemical library. The construction and maintenance of a high quality natural products library, whether based on microbial, plant, marine or other sources is a costly endeavor. The library itself may be composed of samples that are themselves mixtures - such as crude extracts, semi-pure mixtures or single purified natural products. Each of these library designs carries with it distinctive advantages and disadvantages. Crude extract libraries have lower resource requirements for sample preparation, but high requirements for identification of the bioactive constituents. Pre-fractionated libraries can be an effective strategy to alleviate interferences encountered with crude libraries, and may shorten the time needed to identify the active principle. Purified natural product libraries require substantial resources for preparation, but offer the advantage that the hit detection process is reduced to that of synthetic single component libraries. Whether the natural products library consists of crude or partially fractionated mixtures, the library contents should be profiled to identify the known components present - a process known as dereplication. The use of mass spectrometry and HPLC-mass spectrometry together with spectral databases is a powerful tool in the chemometric profiling of bio-sources for natural product production. High throughput, high sensitivity flow NMR is an emerging tool in this area as well. Whether by cell based or biomolecular target based assays, screening of natural product extract libraries continues to furnish novel lead molecules for further drug development, despite challenges in the analysis and prioritization of natural products hits. Spectroscopic techniques are now being used to directly screen natural product and synthetic libraries. Mass spectrometry in the form of methods such as ESI-ICRFTMS, and FACS-MS as well as NMR methods such as SAR by NMR and STD-NMR have been utilized to effectively screen molecular libraries. Overall, emerging advances in mass spectrometry, NMR and other technologies are making it possible to overcome the challenges encountered in screening natural products libraries in today's drug discovery environment. As we apply these technologies and develop them even further, we can look forward to increased impact of natural products in the HTS based drug discovery.
Collapse
Affiliation(s)
- Frank E Koehn
- Natural Products Discovery Research - Chemical and Screening Sciences, Wyeth Research, Pearl River, NY 10965, USA.
| |
Collapse
|
17
|
Application of novel imaging techniques for early clinical trials. EJC Suppl 2007. [DOI: 10.1016/j.ejcsup.2007.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Esposito A, Dohm CP, Bähr M, Wouters FS. Unsupervised Fluorescence Lifetime Imaging Microscopy for High Content and High Throughput Screening. Mol Cell Proteomics 2007; 6:1446-54. [PMID: 17510051 DOI: 10.1074/mcp.t700006-mcp200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proteomics and cellomics clearly benefit from the molecular insights in cellular biochemical events that can be obtained by advanced quantitative microscopy techniques like fluorescence lifetime imaging microscopy and Förster resonance energy transfer imaging. The spectroscopic information detected at the molecular level can be combined with cellular morphological estimators, the analysis of cellular localization, and the identification of molecular or cellular subpopulations. This allows the creation of powerful assays to gain a detailed understanding of the molecular mechanisms underlying spatiotemporal cellular responses to chemical and physical stimuli. This work demonstrates that the high content offered by these techniques can be combined with the high throughput levels offered by automation of a fluorescence lifetime imaging microscope setup capable of unsupervised operation and image analysis. Systems and software dedicated to image cytometry for analysis and sorting represent important emerging tools for the field of proteomics, interactomics, and cellomics. These techniques could soon become readily available both to academia and the drug screening community by the application of new all-solid-state technologies that may results in cost-effective turnkey systems. Here the application of this screening technique to the investigation of intracellular ubiquitination levels of alpha-synuclein and its familial mutations that are causative for Parkinson disease is shown. The finding of statistically lower ubiquitination of the mutant alpha-synuclein forms supports a role for this modification in the mechanism of pathological protein aggregation.
Collapse
Affiliation(s)
- Alessandro Esposito
- Cell Biophysics Group, European Neuroscience Institute-Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | | | | | | |
Collapse
|
19
|
Bakker RA, Nicholas MW, Smith TT, Burstein ES, Hacksell U, Timmerman H, Leurs R, Brann MR, Weiner DM. In vitro pharmacology of clinically used central nervous system-active drugs as inverse H(1) receptor agonists. J Pharmacol Exp Ther 2007; 322:172-9. [PMID: 17403993 DOI: 10.1124/jpet.106.118869] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human histamine H(1) receptor (H(1)R) is a prototypical G protein-coupled receptor and an important, well characterized target for the development of antagonists to treat allergic conditions. Many neuropsychiatric drugs are also known to potently antagonize this receptor, underlying aspects of their side effect profiles. We have used the cell-based receptor selection and amplification technology assay to further define the clinical pharmacology of the human H(1)R by evaluating >130 therapeutic and reference drugs for functional receptor activity. Based on this screen, we have reported on the identification of 8R-lisuride as a potent stereospecific partial H(1)R agonist (Mol Pharmacol 65:538-549, 2004). In contrast, herein we report on a large number of varied clinical and chemical classes of drugs that are active in the central nervous system that display potent H(1)R inverse agonist activity. Absolute and rank order of functional potency of these clinically relevant brain-penetrating drugs may possibly be used to predict aspects of their clinical profiles, including propensity for sedation.
Collapse
Affiliation(s)
- R A Bakker
- Department of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang SH, Wang X, Jong A. The evolving role of infectomics in drug discovery. Expert Opin Drug Discov 2007; 2:961-975. [PMID: 23484816 DOI: 10.1517/17460441.2.7.961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Signatures of infectomes, which are encoded by both host and microbial genomes, and mirror the interplay between pathogens and their hosts, provide invaluable knowledge in the search for novel antimicrobial drugs. Infectomics is the study of infectomes by using systems biology and high-throughput omic approaches. There are three types of infectomic approaches that can be used for drug discovery: ecological infectomics, immunoinfectomics and chemical infectomics. Ecological infectomics, which is the ecological study of infectomes, explores symbiotic solutions to microbial infections. Research on drug discovery using infectomic signatures and immunomic approaches falls within the field of immunoinfectomics. Advances in chemical infectomics will lead to the development of a new generation of chemical drugs for therapeutics for microbial infections.
Collapse
Affiliation(s)
- Sheng-He Huang
- University of Southern California, Division of Infectious Diseases, Childrens Hospital Los Angeles, Department of Pediatrics, School of Medicine, 4650 Sunset Blvd., Mailstop #51, Los Angeles, CA 90027, USA +1 323 669 4160 ; +1 323 660 2661 ;
| | | | | |
Collapse
|
21
|
Mathias PC, Ganesh N, Chan LL, Cunningham BT. Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface. APPLIED OPTICS 2007; 46:2351-60. [PMID: 17415405 DOI: 10.1364/ao.46.002351] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A 2D photonic crystal surface with a different period in each lateral direction is demonstrated to detect biomolecules using two distinct sensing modalities. The sensing mechanisms both rely on the generation of a resonant reflection peak at one of two specific wavelengths, depending on the polarization of light that is incident on the photonic crystal. One polarization results in a resonant reflection peak in the visible spectrum to coincide with the excitation wavelength of a fluorophore, while the orthogonal polarization results in a resonant reflection peak at an infrared wavelength which is used for label-free detection of adsorbed biomolecules. The photonic crystal resonance for fluorescence excitation causes enhanced near fields at the structure surface, resulting in increased signal from fluorophores within 100 nm of the device surface. Label-free detection is performed by illuminating the photonic crystal with white light and monitoring shifts in the peak reflected wavelength of the infrared resonance with a high-resolution imaging detection instrument. Rigorous coupled-wave analysis was used to determine optimal dimensions for the photonic crystal structure, and devices were fabricated using a polymer-based nanoreplica molding approach. Fluorescence-based and label-free detection were demonstrated using arrays of spots of dye-conjugated streptavidin. Quantification of the fluorescent signal showed that the fluorescence output from protein spots on the photonic crystal was increased by up to a factor of 35, and deposited spots were also imaged in the label-free detection mode.
Collapse
Affiliation(s)
- Patrick C Mathias
- Nano Sensors Group, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Micro and Nanotechnology Laboratory, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
22
|
Mohan DK, Molnar P, Hickman JJ. Toxin detection based on action potential shape analysis using a realistic mathematical model of differentiated NG108-15 cells. Biosens Bioelectron 2006; 21:1804-11. [PMID: 16460924 PMCID: PMC2970623 DOI: 10.1016/j.bios.2005.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/21/2005] [Accepted: 09/16/2005] [Indexed: 11/25/2022]
Abstract
The NG108-15 neuroblastoma/glioma hybrid cell line has been frequently used for toxin detection, pharmaceutical screening and as a whole-cell biosensor. However, detailed analysis of its action potentials during toxin or drug administration has not been accomplished previously using patch clamp electrophysiology. In order to explore the possibility of identifying toxins based on their effect on the shape of intracellularly or extracellularly detected action potentials, we created a computer model of the action potential generation of this cell type. To generate the experimental data to validate the model, voltage dependent sodium, potassium and high-threshold calcium currents, as well as action potentials, were recorded from NG108-15 cells with conventional whole-cell patch-clamp methods. Based on the classic Hodgkin-Huxley formalism and the linear thermodynamic description of the rate constants, ion-channel parameters were estimated using an automatic fitting method. Utilizing the established parameters, action potentials were generated in the model and were optimized to represent the actual recorded action potentials to establish baseline conditions. To demonstrate the applicability of the method for toxin detection and discrimination, the effect of tetrodotoxin (a sodium channel blocker) and tefluthrin (a pyrethroid that is a sodium channel opener) were studied. The two toxins affected the shape of the action potentials differently and their respective effects were identified based on the changes in the fitted parameters. Our results represent one of the first steps to establish a complex model of NG108-15 cells for quantitative toxin detection based on action potential shape analysis of the experimental results.
Collapse
Affiliation(s)
- Dinesh K Mohan
- Department of Electrical Engineering, Clemson University, Clemson, SC 29634, U.S.A
| | - Peter Molnar
- Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826
- Department of Electrical Engineering, Clemson University, Clemson, SC 29634, U.S.A
| | - James J. Hickman
- Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826
- Department of Electrical Engineering, Clemson University, Clemson, SC 29634, U.S.A
| |
Collapse
|
23
|
Böcker A, Derksen S, Schmidt E, Teckentrup A, Schneider G. A Hierarchical Clustering Approach for Large Compound Libraries. J Chem Inf Model 2005; 45:807-15. [PMID: 16045274 DOI: 10.1021/ci0500029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A modified version of the k-means clustering algorithm was developed that is able to analyze large compound libraries. A distance threshold determined by plotting the sum of radii of leaf clusters was used as a termination criterion for the clustering process. Hierarchical trees were constructed that can be used to obtain an overview of the data distribution and inherent cluster structure. The approach is also applicable to ligand-based virtual screening with the aim to generate preferred screening collections or focused compound libraries. Retrospective analysis of two activity classes was performed: inhibitors of caspase 1 [interleukin 1 (IL1) cleaving enzyme, ICE] and glucocorticoid receptor ligands. The MDL Drug Data Report (MDDR) and Collection of Bioactive Reference Analogues (COBRA) databases served as the compound pool, for which binary trees were produced. Molecules were encoded by all Molecular Operating Environment 2D descriptors and topological pharmacophore atom types. Individual clusters were assessed for their purity and enrichment of actives belonging to the two ligand classes. Significant enrichment was observed in individual branches of the cluster tree. After clustering a combined database of MDDR, COBRA, and the SPECS catalog, it was possible to retrieve MDDR ICE inhibitors with new scaffolds using COBRA ICE inhibitors as seeds. A Java implementation of the clustering method is available via the Internet (http://www.modlab.de).
Collapse
Affiliation(s)
- Alexander Böcker
- Johann Wolfgang Goethe-Universität, Institut für Organische Chemie und Chemische Biologie, Marie-Curie-Str. 11, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
24
|
Pick H, Schmid EL, Tairi AP, Ilegems E, Hovius R, Vogel H. Investigating cellular signaling reactions in single attoliter vesicles. J Am Chem Soc 2005; 127:2908-12. [PMID: 15740126 DOI: 10.1021/ja044605x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding cellular signaling mediated by cell surface receptors is key to modern biomedical research and drug development. The discovery of a growing number of potential molecular targets and therapeutic compounds requires downscaling and accelerated functional screening. Receptor-mediated cellular responses are typically investigated on single cells or cell populations. Here, we show how to monitor cellular signaling reactions at a yet unreached miniaturization level. On the basis of our observations, cytochalasin induces mammalian cells to extrude from their plasma membrane submicrometer-sized native vesicles. They comprise functional cell surface receptors correctly exposing their extracellular ligand binding sites on the outer vesicle surface and retaining cytosolic proteins in the vesicle interior. As a prototypical example, ligand binding to the ionotropic 5-HT(3) receptor and subsequent transmembrane Ca(2+) signaling were monitored in single attoliter vesicles. Thus, native vesicles are the smallest autonomous containers capable of performing cellular signaling reactions under physiological conditions. Because a single cell delivers about 50 native vesicles, which can be isolated and addressed as individuals, our concept allows multiple functional analyses of individual cells having a limited availability and opens new vistas for miniaturized bioanalytics.
Collapse
Affiliation(s)
- Horst Pick
- Laboratory of Physical Chemistry of Polymers and Membranes, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Ecublens, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Hillion JA, Takahashi K, Maric D, Ruetzler C, Barker JL, Hallenbeck JM. Development of an ischemic tolerance model in a PC12 cell line. J Cereb Blood Flow Metab 2005; 25:154-162. [PMID: 15647748 PMCID: PMC1378216 DOI: 10.1038/sj.jcbfm.9600003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although ischemic tolerance has been described in a variety of primary cell culture systems, no similar in vitro models have been reported with any cell line. A model of ischemic preconditioning in the rat pheochromocytoma PC12 cell line is described here. When compared to nonpreconditioned cells, preexposure of PC12 cells to 6 hours of oxygen and glucose deprivation (OGD) significantly increased cell viability after 15 hours of OGD 24 hours later. Flow cytometry analysis of cells labeled with specific markers for apoptosis, Annexin V, and Hoechst 33342, and of DNA content, revealed that apoptosis is involved in OGD-induced PC12 cell death and that preconditioning of the cells mainly counteracts the effect of apoptosis. Immunocytochemistry of caspase-3, a central executioner in the apoptotic process, further confirmed the activation of apoptotic pathways in OGD-induced PC12 cell death. This model may be useful to investigate the cellular mechanisms involved in neuronal transient tolerance following ischemia.
Collapse
Affiliation(s)
- Joëlle A Hillion
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenzo Takahashi
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dragan Maric
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Christl Ruetzler
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffery L Barker
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Brown ED, Wright GD. New Targets and Screening Approaches in Antimicrobial Drug Discovery. Chem Rev 2005; 105:759-74. [PMID: 15700964 DOI: 10.1021/cr030116o] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric D Brown
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
27
|
Davidsson R, Johansson B, Passoth V, Bengtsson M, Laurell T, Emneus J. Microfluidic biosensing systems. Part II. Monitoring the dynamic production of glucose and ethanol from microchip-immobilised yeast cells using enzymatic chemiluminescent micro-biosensors. LAB ON A CHIP 2004; 4:488-94. [PMID: 15472733 DOI: 10.1039/b400900b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A microfluidic flow injection (microFIA) system was employed for handling and monitoring of cell-released products from living cells immobilised on silicon microchips. The dynamic release of glucose and ethanol produced from sucrose by immobilised Saccharomyces cerevisiae cells was determined using microchip biosensors (micro-biosensors) with either co-immobilised glucose oxidase-horseradish peroxidase (GOX-HRP), or alcohol oxidase-horseradish peroxidase (AOX-HRP), catalysing a series of reactions ending up with chemiluminescence (CL) generated from HRP-catalysed oxidation of luminol in presence of p-iodophenol (PIP). The yeast cells were attached by first treating them with polyethylenimine (PEI) followed by adsorption to the microchip surface. The cell loss during assaying was evaluated qualitatively using scanning electron microscopy (SEM), showing that no cells were lost after 35 min liquid handling of the cell chip at 10 microl min(-1). The enzymes were immobilised on microchips via PEI-treatment followed by glutaraldehyde (GA) activation. The GOX-HRP micro-biosensors could be used during five days without any noticeable decrease in response, while the AOX-HRP micro-biosensors showed continuously decreasing activity, but could still be used employing calibration correction. The glucose and ethanol released from the immobilised yeast chips were quantitatively monitored, by varying the incubation time with sucrose, showing the possibilities and advantages of using a microfluidic system set-up for cell-based assays.
Collapse
Affiliation(s)
- Richard Davidsson
- Department of Analytical Chemistry, Lund University, P. O. Box 124, SE-22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Klebl BM. Chemical kinomics - a target gene family approach in chemical biology. DRUG DISCOVERY TODAY. TECHNOLOGIES 2004; 1:25-34. [PMID: 24981264 DOI: 10.1016/j.ddtec.2004.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Traditionally, protein kinases have been regarded as non-druggable targets, instead they play a central role in physiological and pathophysiological processes. This changed when STI571, an inhibitor of the Bcr-Abl kinase, known as Gleevec, reached the market as the first designer drug. Ever since, kinase-directed research and development (R&D) expanded rapidly, leading to more than 45 clinically relevant kinase inhibitors. At a comparable pace the kinase-based technologies matured, cumulating in the development of sophisticated chemogenetic and chemoproteomic tools, which are referred to as chemical kinomics.:
Collapse
Affiliation(s)
- Bert M Klebl
- Axxima Pharmaceuticals AG, Max-Lebsche-Platz 32, 81377, Munich, Germany.
| |
Collapse
|
29
|
Davidsson R, Boketoft A, Bristulf J, Kotarsky K, Olde B, Owman C, Bengtsson M, Laurell T, Emnéus J. Developments toward a Microfluidic System for Long-Term Monitoring of Dynamic Cellular Events in Immobilized Human Cells. Anal Chem 2004; 76:4715-20. [PMID: 15307781 DOI: 10.1021/ac035249o] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A microfluidic system for long-term real-time monitoring of dynamic cellular events of immobilized human cells was investigated. The luciferase reporter gene activity in the reporter cell line HFF11, based on HeLa cells, was used as the model system. The cells were immobilized on silicon flow-through microchips and continuously supplied with a cell medium at 2 microL/min while maintaining the chip at 37 degrees C. The HFF11 cell line was designed for high-throughput screening of ligands for seven-transmembrane receptors. When a ligand binds, the receptor is activated and a cascade of intracellular reactions starts, ending with the synthesis of the reporter protein Photinus luciferase. The major goal was to develop a microfluidic system for continuous long-term assaying of the intracellular reporter gene activity in real time and determine the conditions, which could minimize cells stress and hence unspecific expression of the reporter gene. In the resulting microfluidic system and assay protocol, the cell microchip could be kept and assayed for a period up to 30 h. The developed system and data outcome was compared with a corresponding microtiter plate performed with the same cell line to highlight the advantages obtained in the microfluidic format.
Collapse
Affiliation(s)
- Richard Davidsson
- Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The number of technologies that enable high-throughput functional screening of G-protein-coupled receptors has expanded markedly over the past 5 years. Consequently, choosing the most appropriate technology can be a daunting task, particularly for Gi- or Gs-coupled receptors. The most common systems for cyclic AMP detection are reviewed, highlighting the practical and theoretical aspects that are important in their application to high-throughput screening. Current technologies can do the job, but it is likely that the future may require development of technologies that provide even greater biological information.
Collapse
Affiliation(s)
- Christine Williams
- Hit Discovery Group, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK.
| |
Collapse
|
31
|
Cacace A, Banks M, Spicer T, Civoli F, Watson J. An ultra-HTS process for the identification of small molecule modulators of orphan G-protein-coupled receptors. Drug Discov Today 2003; 8:785-92. [PMID: 12946641 DOI: 10.1016/s1359-6446(03)02809-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-protein-coupled receptors (GPCRs) are the most successful target proteins for drug discovery research to date. More than 150 orphan GPCRs of potential therapeutic interest have been identified for which no activating ligands or biological functions are known. One of the greatest challenges in the pharmaceutical industry is to link these orphan GPCRs with human diseases. Highly automated parallel approaches that integrate ultra-high throughput and focused screening can be used to identify small molecule modulators of orphan GPCRs. These small molecules can then be employed as pharmacological tools to explore the function of orphan receptors in models of human disease. In this review, we describe methods that utilize powerful ultra-high-throughput screening technologies to identify surrogate ligands of orphan GPCRs.
Collapse
Affiliation(s)
- Angela Cacace
- Department of Lead Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Chemical genomics approaches are evolving to overcome key problems limiting the efficiency of drug discovery in the postgenomic era. Many of these stem from the low success rates in finding drugs for novel genomics targets whose biochemical properties and therapeutic relevance is poorly understood. The fundamental objective of chemical genomics is to find and optimize chemical compounds that can be used to directly test the therapeutic relevance of new targets revealed through genome sequencing. An integrated approach to chemical genomics encompasses a diverse set of tools including quantitative affinity-based screens, computer-directed combinatorial chemistry, and structure-based drug design. The approach is most effectively applied across targets classes whose members are structurally related, and where some members are known to have bona fide therapeutic relevance.
Collapse
Affiliation(s)
- F Raymond Salemme
- 3-Dimensional Pharmaceuticals, Inc, Three Lower Makefield Corporate Center, 1020 Stony Hill Road, Suite 300, Yardley, PA 19067, USA.
| |
Collapse
|
33
|
Abstract
The large-scale application of combinatorial chemistry to drug discovery is an endeavor that is now more than ten years old. The growth of chemical libraries together with the influx of novel genomic targets has led to a reconstruction of the drug-screening paradigm. The drug discovery industry faces a post-genomic world where the interplay between tens-of-thousands of proteins must be addressed. To compound this complexity, there now exists the ability to screen millions of compounds against a single target. This review focuses on the practice and use of selecting individual compounds from large chemical libraries that act on targets relevant to signal transduction.
Collapse
|
34
|
Abstract
Chemical genomics represents a convergence of biology and chemistry in the era of global approaches to target identification and intervention. The success of genomics has led to a bottleneck in target validation that could be overcome by using small diverse organic compounds to interfere with biological processes. Because of the limitations of existing compound collections, this diversity can only fully be exploited using in silico design techniques to guide the selection of molecules with optimal binding properties. Structure-based design is used to create structures de novo that can be synthesized for use as chemical probes and drug leads.
Collapse
Affiliation(s)
- Edward D Zanders
- De Nove Pharmaceuticals, Compass House, Vision Park, Histon, Cambridge, UK CB4 9ZR.
| | | | | |
Collapse
|
35
|
Hacksell U, Nash N, Burstein ES, Piu F, Croston G, Brann MR. Chemical genomics: massively parallel technologies for rapid lead identification and target validation. Cytotechnology 2002; 38:3-10. [PMID: 19003080 PMCID: PMC3449916 DOI: 10.1023/a:1021169023731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chemical genomics is a new research paradigm with importantapplications in drug discovery. It links genomic targets withsmall-molecule chemistries thereby allowing for efficient targetvalidation and lead compound identification. ACADIA'schemical-genomics platform consists of a large and diverse small-moleculelibrary (800,000), a reference drug library (2,000), druggablegenomic targets (>300) and a cell-based functional assaytechnology (R-SAT(TM); Receptor Selection and AmplificationTechnology) that allows for ultra-high throughput screening(>500,000 data points/week) as well as high throughputpharmacology and profiling over a wide range of targets. Twoexamples are presented that illustrate the success of ourchemical-genomics approach: (i) The validation of inverse agonismat serotonin 5-HT(2A) receptors as an antipsychotic mechanismand the subsequent discovery of potent and selectively acting 5-HT(2A) inverse agonists, currently in preclinical development,and (ii) the discovery of the first ectopically binding subtype-selective muscarinic m1 agonist.
Collapse
Affiliation(s)
- Uli Hacksell
- ACADIA Pharmaceuticals Inc., 3911 Sorrento Valley Boulevard, San Diego, CA, 92121, USA,
| | | | | | | | | | | |
Collapse
|
36
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2448432 DOI: 10.1002/cfg.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
37
|
Hall SE. Bowel gas explosion during argon plasma coagulation. Drug Discov Today 1999; 11:495-502. [PMID: 16713900 DOI: 10.1016/j.drudis.2006.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/04/2006] [Accepted: 04/18/2006] [Indexed: 12/31/2022]
Abstract
The advent of multiple high-throughput technologies has brought drug discovery round almost full circle, from pharmacological testing of compounds in vivo to engineered molecular target assays and back to integrated phenotypic screens in cells and organisms. In the past, primary screens to identify new pharmacological agents involved administering compounds to an animal and monitoring a pharmacologic endpoint. For example, antihypertensive agents were identified by dosing spontaneously hypertensive rats with compounds and observing whether their blood pressure dropped. In taking this phenomenological approach, scientists were focused on the final goal, in this example lowering of blood pressure, rather than developing an understanding of the target, or targets, the compounds were impacting. With the evolution of rational target-based approaches, scientists were able to study the direct interaction of compounds with their intended targets, expecting that this would lead to more-selective and safer therapeutics. With the industrialization of screening, referred to as HTS, hundreds of thousands of compounds were screened in robot-driven assays against targets of interest (with this goal in mind). However, an unintentional outcome of the migration from in vivo primary screens to highly target-specific HTS assays was a reduction in biological context caused by the separation of the target from other cellular proteins and processes that might impact its function. Recognition of the potential consequences of this over-simplification drove the modification of HTS processes and equipment to be compatible with cellular assays.
Collapse
|