1
|
Maillard M, Stephant N, Tanaka A, Tirichine L. Comprehensive protocol for preparing diatom cell samples and associated bacterial consortia for scanning electron microscopy. STAR Protoc 2024; 5:103380. [PMID: 39487979 PMCID: PMC11566858 DOI: 10.1016/j.xpro.2024.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024] Open
Abstract
Meticulous sample preparation and strict adherence to preservation procedures are essential for electron microscopy investigations, which enable accurate capture of organisms' morphology, size, and potential interactions within the sample. Here, we present a protocol for preserving cells of the model diatom Phaeodactylum tricornutum and its native bacterial community. We describe steps for diatom fixation and coverslip preparation and washing. We then detail procedures for dehydrating, drying, and metallizing samples followed by observation using scanning electron microscopy.
Collapse
Affiliation(s)
| | - Nicolas Stephant
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 44000 Nantes, France
| | - Atsuko Tanaka
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Leïla Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France; Institute for Marine and Antarctic Studies (IMAS), Ecology and Biodiversity Centre, University of Tasmania, Hobart, TAS 7004, Australia.
| |
Collapse
|
2
|
Hua W, Nylund IE, Cova F, Svensson AM, Blanco MV. Insights on microstructural evolution and capacity fade on diatom [Formula: see text] anodes for lithium-ion batteries. Sci Rep 2023; 13:20447. [PMID: 37993603 PMCID: PMC10665416 DOI: 10.1038/s41598-023-47355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
[Formula: see text] is a promising material for developing high-capacity anodes for lithium-ion batteries (LIBs). However, microstructural changes of [Formula: see text] anodes at the particle and electrode level upon prolonged cycling remains unclear. In this work, the causes leading to capacity fade on [Formula: see text] anodes were investigated and simple strategies to attenuate anode degradation were explored. Nanostructured [Formula: see text] from diatomaceous earth was integrated into anodes containing different quantities of conductive carbon in the form of either a conductive additive or a nanometric coating layer. Galvanostatic cycling was conducted for 200 cycles and distinctive trends on capacity fade were identified. A thorough analysis of the anodes at selected cycle numbers was performed using a toolset of characterization techniques, including electrochemical impedance spectroscopy, FIB-SEM cross-sectional analysis and TEM inspections. Significant fragmentation of [Formula: see text] particles surface and formation of filigree structures upon cycling are reported for the first time. Morphological changes are accompanied by an increase in impedance and a loss of electroactive surface area. Carbon-coating is found to restrict particle fracture and to increase capacity retention to 66%, compared to 47% for uncoated samples after 200 cycles. Results provide valuable insights to improve cycling stability of [Formula: see text] anodes for next-generation LIBs.
Collapse
Affiliation(s)
- Weicheng Hua
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Inger-Emma Nylund
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Federico Cova
- BL31 FaXToR Beamline, CELLS- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona Spain
| | - Ann Mari Svensson
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Maria Valeria Blanco
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
3
|
Kolovi S, Fois GR, Lanouar S, Chardon P, Miallier D, Baker LA, Bailly C, Beauger A, Biron DG, David K, Montavon G, Pilleyre T, Schoefs B, Breton V, Maigne L, with the TIRAMISU Collaboration. Assessing radiation dosimetry for microorganisms in naturally radioactive mineral springs using GATE and Geant4-DNA Monte Carlo simulations. PLoS One 2023; 18:e0292608. [PMID: 37824461 PMCID: PMC10569590 DOI: 10.1371/journal.pone.0292608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Mineral springs in Massif Central, France can be characterized by higher levels of natural radioactivity in comparison to the background. The biota in these waters is constantly under radiation exposure mainly from the α-emitters of the natural decay chains, with 226Ra in sediments ranging from 21 Bq/g to 43 Bq/g and 222Rn activity concentrations in water up to 4600 Bq/L. This study couples for the first time micro- and nanodosimetric approaches to radioecology by combining GATE and Geant4-DNA to assess the dose rates and DNA damages to microorganisms living in these naturally radioactive ecosystems. It focuses on unicellular eukaryotic microalgae (diatoms) which display an exceptional abundance of teratological forms in the most radioactive mineral springs in Auvergne. Using spherical geometries for the microorganisms and based on γ-spectrometric analyses, we evaluate the impact of the external exposure to 1000 Bq/L 222Rn dissolved in the water and 30 Bq/g 226Ra in the sediments. Our results show that the external dose rates for diatoms are significant (9.7 μGy/h) and comparable to the threshold (10 μGy/h) for the protection of the ecosystems suggested by the literature. In a first attempt of simulating the radiation induced DNA damage on this species, the rate of DNA Double Strand Breaks per day is estimated to 1.11E-04. Our study confirms the significant mutational pressure from natural radioactivity to which microbial biodiversity has been exposed since Earth origin in hydrothermal springs.
Collapse
Affiliation(s)
- Sofia Kolovi
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Giovanna-Rosa Fois
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
| | - Sarra Lanouar
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
| | - Patrick Chardon
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Didier Miallier
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Lory-Anne Baker
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire Microorganismes: Génome Environnement (LMGE) - UMR6023, CNRS, Université Clermont Auvergne, Clermont–Ferrand, France
- Laboratoire de Géographie Physique et Environnementale (GEOLAB) - UMR6042, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Céline Bailly
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire de Physique Subatomique et des Technologies Associées (SUBATECH) - UMR6457, CNRS/IN2P3/IMT Atlantique/Université de Nantes, Nantes, France
| | - Aude Beauger
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire Microorganismes: Génome Environnement (LMGE) - UMR6023, CNRS, Université Clermont Auvergne, Clermont–Ferrand, France
| | - David G. Biron
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire Microorganismes: Génome Environnement (LMGE) - UMR6023, CNRS, Université Clermont Auvergne, Clermont–Ferrand, France
| | - Karine David
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire de Physique Subatomique et des Technologies Associées (SUBATECH) - UMR6457, CNRS/IN2P3/IMT Atlantique/Université de Nantes, Nantes, France
| | - Gilles Montavon
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Laboratoire de Physique Subatomique et des Technologies Associées (SUBATECH) - UMR6457, CNRS/IN2P3/IMT Atlantique/Université de Nantes, Nantes, France
| | - Thierry Pilleyre
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Benoît Schoefs
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
- Metabolism, Molecular Engineering of Microalgae and Applications, Laboratoire de Biologie des Organismes, Stress, Santé Environnement, IUML FR3473, CNRS, Le Mans University, Le Mans, France
| | - Vincent Breton
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | - Lydia Maigne
- Laboratoire de Physique de Clermont (LPC) - UMR6533, CNRS/IN2P3 Université Clermont Auvergne, Aubière, France
- LTSER “Zone Atelier Territoires Uranifères”, Clermont-Ferrand, France
| | | |
Collapse
|
4
|
Patel M, Parikh H, Dave G. Chitosan flakes-mediated diatom harvesting from natural water sources. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1732-1746. [PMID: 37051794 DOI: 10.2166/wst.2023.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Diatom is a unicellular photosynthetic microalga that is found in diverse environments. These are decorated with siliceous cell walls called frustules. Diatoms have long been favoured by grazers such as microscopic protozoa and dinoflagellates. However, grazers typically remain intact in laboratory culturing and feed on diatom in culturing vessels and reducing biomass yield. The isolation and cultivation of diatoms in laboratories hamper diatoms' diversity and vast industrial potential. Chitosan, a biopolymer, has been widely used with other polyelectrolytes to flocculate various organic and inorganic colloids at acidic pH. Dissolved chitosan (acidic pH) has been used in various natural water samples and wastewater system for dewatering. However, untreated chitosan flakes have never been evaluated in a heterogeneous natural water environment. Since diatoms have silica surfaces, we tested chitosan for diatom separation and optimized chitosan concentration and other parameters to obtain grazer-free diatom starter culture from raw water. We also elucidated the mechanism for chitosan flakes-mediated diatom flocculation through adsorption kinetics and molecular dynamic simulation analysis. The results of this study are statistically optimized and validated, with a significant R2 value of 0.99 for the proposed model.
Collapse
Affiliation(s)
- Mainavi Patel
- P. D. Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand, Gujarat 388421, India E-mail:
| | - Hirak Parikh
- P. D. Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand, Gujarat 388421, India E-mail:
| | - Gayatri Dave
- P. D. Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand, Gujarat 388421, India E-mail:
| |
Collapse
|
5
|
Mujtaba M, Fernández-Marín R, Robles E, Labidi J, Yilmaz BA, Nefzi H. Understanding the effects of copolymerized cellulose nanofibers and diatomite nanocomposite on blend chitosan films. Carbohydr Polym 2021; 271:118424. [PMID: 34364565 DOI: 10.1016/j.carbpol.2021.118424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/20/2021] [Accepted: 07/07/2021] [Indexed: 01/11/2023]
Abstract
Chitosan films lack various important physicochemical properties and need to be supplemented with reinforcing agents to bridge the gap. Herein, we have produced chitosan composite films supplemented with copolymerized (with polyacrylonitrile monomers) cellulose nanofibers and diatomite nanocomposite at different concentrations. The incorporation of CNFs and diatomite enhanced the physicochemical properties of the films. The mechanical characteristics and hydrophobicity of the films were observed to be improved after incorporating the copolymerized CNFs/diatomite composite at different concentrations (CNFs: 1%, 2% and 5%; diatomite: 10% and 30%). The antioxidant activity gradually increased with an increasing concentration (1-5% and 10-30%) of copolymerized CNFs/diatomite composite in the chitosan matrix. Moreover, the water solubility decreased from 30% for chitosan control film (CH-0) to 21.06% for films containing 30% diatomite and 5% CNFs (CNFs-D30-5). The scanning electron micrographs showed an overall uniform distribution of copolymerized CNFs/diatomite composite in the chitosan matrix with punctual agglomerations.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Institute of Biotechnology, Ankara University, Ankara 06110, Turkey; Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Rut Fernández-Marín
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Eduardo Robles
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain; University of Pau and the Adour Region, E2S UPPA, CNRS, Institute of Analytical and Physicochemical Sciences for the Environment and Materials (IPREM-UMR 5254), 371 Rue du Ruisseau, 40004 Mont de Marsan, France
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Bahar Akyuz Yilmaz
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Houwaida Nefzi
- Laboratory of Materials, Molecules and Applications, IPEST, Preparatory Institute of Scientific and Technical Studies of Tunis, Tunisia
| |
Collapse
|
6
|
Rabiee N, Khatami M, Jamalipour Soufi G, Fatahi Y, Iravani S, Varma RS. Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomater Sci Eng 2021; 7:3053-3068. [PMID: 34152742 DOI: 10.1021/acsbiomaterials.1c00475] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diatoms are unicellular microalga found in soil and almost every aquatic environment (marine and fresh water). Biogenic silica and diatoms are attractive for biotechnological and industrial applications, especially in the field of biomedicine, industrial/synthetic manufacturing processes, and biomedical/pharmaceutical sciences. Deposition of silica by diatoms allows them to create micro- or nanoscale structures which may be utilized in nanomedicine and especially in drug/gene delivery. Diatoms with their unique architectures, good thermal stability, suitable surface area, simple chemical functionalization/modification procedures, ease of genetic manipulations, optical/photonic characteristics, mechanical resistance, and eco-friendliness, can be utilized as smart delivery platforms. The micro- to nanoscale properties of the diatom frustules have garnered a great deal of attention for their application in diverse areas of nanotechnology and biotechnology, such as bioimaging/biosensing, biosensors, drug/gene delivery, photodynamic therapy, microfluidics, biophotonics, solar cells, and molecular filtrations. Additionally, the genetically engineered diatom microalgae-derived nanoporous biosilica have enabled the targeted anticancer drug delivery to neuroblastoma and B-lymphoma cells as well as the mouse xenograft model of neuroblastoma. In this perspective, current trends and recent advances related to the applications of diatoms for the synthesis of nanoparticles, gene/drug delivery, biosensing determinations, biofuel production, and remediation of heavy metals are deliberated, including the underlying significant challenges and future perspectives.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
7
|
Hamida RS, Ali MA, Abdelmeguid NE, Al-Zaban MI, Baz L, Bin-Meferij MM. Lichens-A Potential Source for Nanoparticles Fabrication: A Review on Nanoparticles Biosynthesis and Their Prospective Applications. J Fungi (Basel) 2021; 7:291. [PMID: 33921411 PMCID: PMC8069866 DOI: 10.3390/jof7040291] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Green synthesis of nanoparticles (NPs) is a safe, eco-friendly, and relatively inexpensive alternative to conventional routes of NPs production. These methods require natural resources such as cyanobacteria, algae, plants, fungi, lichens, and naturally extracted biomolecules such as pigments, vitamins, polysaccharides, proteins, and enzymes to reduce bulk materials (the target metal salts) into a nanoscale product. Synthesis of nanomaterials (NMs) using lichen extracts is a promising eco-friendly, simple, low-cost biological synthesis process. Lichens are groups of organisms including multiple types of fungi and algae that live in symbiosis. Until now, the fabrication of NPs using lichens has remained largely unexplored, although the role of lichens as natural factories for synthesizing NPs has been reported. Lichens have a potential reducible activity to fabricate different types of NMs, including metal and metal oxide NPs and bimetallic alloys and nanocomposites. These NPs exhibit promising catalytic and antidiabetic, antioxidant, and antimicrobial activities. To the best of our knowledge, this review provides, for the first time, an overview of the main published studies concerning the use of lichen for nanofabrication and the applications of these NMs in different sectors. Moreover, the possible mechanisms of biosynthesis are discussed, together with the various optimization factors influencing the biological synthesis and toxicity of NPs.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt; (R.S.H.); (N.E.A.)
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh 11543, Saudi Arabia;
- Plant Production Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| | - Nabila Elsayed Abdelmeguid
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt; (R.S.H.); (N.E.A.)
| | - Mayasar Ibrahim Al-Zaban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11543, Saudi Arabia;
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11543, Saudi Arabia;
| |
Collapse
|
8
|
Effect of pluronic block polymers and N-acetylcysteine culture media additives on growth rate and fatty acid composition of six marine microalgae species. Appl Microbiol Biotechnol 2021; 105:2139-2156. [PMID: 33576880 PMCID: PMC7907027 DOI: 10.1007/s00253-021-11147-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 11/13/2022]
Abstract
Abstract The efficiency of microalgal biomass production is a determining factor for the economic competitiveness of microalgae-based industries. N-acetylcysteine (NAC) and pluronic block polymers are two compounds of interest as novel culture media constituents because of their respective protective properties against oxidative stress and shear-stress-induced cell damage. Here we quantify the effect of NAC and two pluronic (F127 and F68) culture media additives upon the culture productivity of six marine microalgal species of relevance to the aquaculture industry (four diatoms-Chaetoceros calcitrans, Chaetoceros muelleri, Skeletonema costatum, and Thalassiosira pseudonana; two haptophytes-Tisochrysis lutea and Pavlova salina). Algal culture performance in response to the addition of NAC and pluronic, singly or combined, is dosage- and species-dependent. Combined NAC and pluronic F127 algal culture media additives resulted in specific growth rate increases of 38%, 16%, and 24% for C. calcitrans, C. muelleri, and P. salina, respectively. Enhanced culture productivity for strains belonging to the genus Chaetoceros was paired with an ~27% increase in stationary-phase cell density. For some of the species examined, culture media enrichments with NAC and pluronic resulted in increased omega-3-fatty acid content of the algal biomass. Larval development (i.e., growth and survival) of the Pacific oyster (Crassostrea gigas) was not changed when fed a mixture of microalgae grown in NAC- and F127-supplemented culture medium. Based upon these results, we propose that culture media enrichment with NAC and pluronic F127 is an effective and easily adopted approach to increase algal productivity and enhance the nutritional quality of marine microalgal strains commonly cultured for live-feed applications in aquaculture. Key points • Single and combined NAC and pluronic F127 culture media supplementation significantly enhanced the productivity of Chaetoceros calcitrans and Chaetoceros muelleri cultures. • Culture media enrichments with NAC and F127 can increase omega-3-fatty acid content of algal biomass. • Microalgae grown in NAC- and pluronic F127-supplemented culture media are suitable for live-feed applications. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11147-8.
Collapse
|
9
|
Bonneure E, De Baets A, De Decker S, Van den Berge K, Clement L, Vyverman W, Mangelinckx S. Altering the Sex Pheromone Cyclo(l-Pro-l-Pro) of the Diatom Seminavis robusta towards a Chemical Probe. Int J Mol Sci 2021; 22:1037. [PMID: 33494376 PMCID: PMC7865345 DOI: 10.3390/ijms22031037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
As a major group of algae, diatoms are responsible for a substantial part of the primary production on the planet. Pennate diatoms have a predominantly benthic lifestyle and are the most species-rich diatom group, with members of the raphid clades being motile and generally having heterothallic sexual reproduction. It was recently shown that the model species Seminavis robusta uses multiple sexual cues during mating, including cyclo(l-Pro-l-Pro) as an attraction pheromone. Elaboration of the pheromone-detection system is a key aspect in elucidating pennate diatom life-cycle regulation that could yield novel fundamental insights into diatom speciation. This study reports the synthesis and bio-evaluation of seven novel pheromone analogs containing small structural alterations to the cyclo(l-Pro-l-Pro) pheromone. Toxicity, attraction, and interference assays were applied to assess their potential activity as a pheromone. Most of our analogs show a moderate-to-good bioactivity and low-to-no phytotoxicity. The pheromone activity of azide- and diazirine-containing analogs was unaffected and induced a similar mating behavior as the natural pheromone. These results demonstrate that the introduction of confined structural modifications can be used to develop a chemical probe based on the diazirine- and/or azide-containing analogs to study the pheromone-detection system of S. robusta.
Collapse
Affiliation(s)
- Eli Bonneure
- Department of Green Chemistry and Technology—SynBioC, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (E.B.); (A.D.B.)
| | - Amber De Baets
- Department of Green Chemistry and Technology—SynBioC, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (E.B.); (A.D.B.)
| | - Sam De Decker
- Department of Biology—Protistology and Aquatic Ecology, Faculty of Sciences, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium; (S.D.D.); (W.V.)
| | - Koen Van den Berge
- Department of Applied Mathematics, Computer Science and Statistics, Faculty of Sciences, Ghent University, Krijgslaan 281/S9, 9000 Ghent, Belgium; (K.V.d.B.); (L.C.)
| | - Lieven Clement
- Department of Applied Mathematics, Computer Science and Statistics, Faculty of Sciences, Ghent University, Krijgslaan 281/S9, 9000 Ghent, Belgium; (K.V.d.B.); (L.C.)
| | - Wim Vyverman
- Department of Biology—Protistology and Aquatic Ecology, Faculty of Sciences, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium; (S.D.D.); (W.V.)
| | - Sven Mangelinckx
- Department of Green Chemistry and Technology—SynBioC, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (E.B.); (A.D.B.)
| |
Collapse
|
10
|
Ishihara T, Ohkochi T, Yamaguchi A, Kotani Y, Oura M. Visualization of elemental distributions and local analysis of element-specific chemical states of an Arachnoidiscus sp. frustule using soft X-ray spectromicroscopy. PLoS One 2020; 15:e0243874. [PMID: 33326474 PMCID: PMC7743981 DOI: 10.1371/journal.pone.0243874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
Using soft X-ray (SX) spectromicroscopy, we show maps of the spatial distribution of constituent elements and local analysis of the density of states (DOS) related to the element-specific chemical states of diatom frustules, which are composed of naturally grown nanostructured hydrogenated amorphous silica. We applied X-ray photoemission electron microscopy (X-PEEM) as well as microprobe X-ray fluorescence (μXRF) analysis to characterize the surfaces of diatom frustules by means of X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES). We successfully demonstrated that SX spectromicroscopy is able to participate in potential observation tools as a new method to spectroscopically investigate diatom frustules.
Collapse
Affiliation(s)
- Tomoko Ishihara
- Soft X-ray Spectroscopy Instrumentation Team, Physical and Chemical Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Takuo Ohkochi
- Soft X-ray Spectroscopy Instrumentation Team, Physical and Chemical Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
- Spectroscopic Analysis Group II, Spectroscopy and Imaging Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo, Japan
| | - Akinobu Yamaguchi
- Soft X-ray Spectroscopy Instrumentation Team, Physical and Chemical Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
- Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, Ako-gun, Hyogo, Japan
| | - Yoshinori Kotani
- Spectroscopic Analysis Group II, Spectroscopy and Imaging Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo, Japan
| | - Masaki Oura
- Soft X-ray Spectroscopy Instrumentation Team, Physical and Chemical Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
- * E-mail:
| |
Collapse
|
11
|
Dai R, Xiong Y, Ma Y, Tang T. Algae removal performance of UV-radiation-enhanced coagulation for two representative algal species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141013. [PMID: 32721610 DOI: 10.1016/j.scitotenv.2020.141013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Algal blooms severely impact the ecological environment and human health, as well as drinking water supplies and treatment systems. This study investigated UV-radiation-enhanced aluminum (Al)-based coagulation for the removal of two representative algal species (Microcystis aeruginosa and Cyclotella sp.) which are responsible for most fresh water algal bloom in different seasons. The results demonstrated that the UV-Al process can enhance algae removal, and simultaneously control algal organic matter (AOM) release. Comparing with Microcystis aeruginosa, Cyclotella sp. was more sensitive to UV irradiation and its activity was severely inhibited by 240 s of UV irradiation; intracellular reactive oxygen species (ROS) increased sharply then decreased rapidly, and SEM images showed cell walls exhibited substantial compression. UV irradiation decreased the zeta potential, which might have contributed to algae removal. Approximately 93.5% of Microcystis aeruginosa cells and 91.4% of Cyclotella sp. cells were removed after 240 s of UV irradiation with 0.4 mmol/L Al. The MCs concentrations after Al coagulation were low (<100 ng/L). The DOC of Microcystis aeruginosa and Cyclotella sp. was also lower (1.2 and 1.6 mg/L, respectively) than the national standard level after UV-Al process. This study highlights the practical application of UV irradiation for enhancing algae removal and simultaneously controlling AOM release in water treatment plants, which is a simple and promising technology. This result also indicates that the water treatment parameters should be adjusted according to the algae species present in different seasons, especially for diatom which needs low UV irradiation and Al dosage.
Collapse
Affiliation(s)
- Ruihua Dai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Yiming Xiong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yingxiao Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Tingting Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Heintze C, Formanek P, Pohl D, Hauptstein J, Rellinghaus B, Kröger N. An intimate view into the silica deposition vesicles of diatoms. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s42833-020-00017-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractDiatoms are single-celled microalgae that produce silica-based cell walls with intricate nano- and micropatterns. Biogenesis of diatom biosilica is a bottom-up process that occurs in large intracellular compartments termed silica deposition vesicles (SDVs). Investigating the mechanisms of silica morphogenesis has so far been severely limited by the lack of methods for imaging the entire volume of an SDV with high spatial resolution during all stages of development. Here we have developed a method that allows for rapid identification and electron microscopy imaging of many different, full sized SDVs that are in the process of producing biosilica valves. This enabled visualizing the development of characteristic morphological biosilica features with unprecedented spatio-temporal resolution. During early to mid-term development, valve SDVs contained ~ 20 nm sized particles that were primarily associated with the radially expanding rib-like biosilica structures. The results from electron dispersive X-ray analysis suggests that the immature biosilica patterns are silica-organic composites. This supports the hypothesis that silica morphogenesis is dependent on organic biomolecules inside the SDV lumen.
Collapse
|
13
|
Kolbe F, Daus F, Geyer A, Brunner E. Phosphate-Silica Interactions in Diatom Biosilica and Synthetic Composites Studied by Rotational Echo Double Resonance (REDOR) NMR Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4332-4338. [PMID: 32233513 DOI: 10.1021/acs.langmuir.0c00336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biosilica is a biogenic composite material produced by organisms like diatoms. Various biomolecules are tightly attached or incorporated into biosilica. Examples are special proteins termed silaffins and long-chain polyamines (LCPAs). Presumably, these biomolecules are involved in the biosilica formation process. Silaffins are highly phosphorylated zwitterions with LCPAs post-translationally attached to lysine residues. In the present work, we use distance-dependent solid-state NMR experiments, especially the 31P{29Si} Rotational Echo Double Resonance (REDOR) technique, to study the environment of phosphate moieties in biosilica and in vitro synthesized SiO2-based composites. In contrast to the heterogeneous mixtures of biomolecules found in native biosilica, the described in vitro silicification experiments make use of a single synthetic phosphopeptide and an LCPA of well-defined and uniform structure. The heteronuclear correlations measured from these silica composites provide reliable 31P-29Si dipolar second moments and information about the distribution of the phosphopeptide within the silica material. The calculated second moment indicates close contact between phosphopeptides and silica. The phosphopeptides are incorporated into the silica composite in a disperse manner. Moreover, the REDOR data acquired for diatom biosilica also imply that phosphate groups are part of the silica-organic interface in this material.
Collapse
Affiliation(s)
- Felicitas Kolbe
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Fabian Daus
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Armin Geyer
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
14
|
Liu Q, Xing Y, Li Y, Wang H, Mi T, Zhen Y, Yu Z. Carbon fixation gene expression in Skeletonema marinoi in nitrogen-, phosphate-, silicate-starvation, and low-temperature stress exposure. JOURNAL OF PHYCOLOGY 2020; 56:310-323. [PMID: 31628865 DOI: 10.1111/jpy.12936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Diatoms are unicellular algae with a set of extraordinary genes, metabolic pathways, and physiological functions acquired by secondary endosymbiosis, especially for their efficient photosynthetic carbon fixation mechanisms, which can be a reason for their successful environmental adaptation and great contribution to primary production. Based on the available genomic information, the expression patterns of carbon fixation genes were analyzed using transcriptomic sequencing and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in Skeletonema marinoi. Meanwhile, suitable reference genes applying to specific experimental treatments were selected. In our results, carbon fixation genes were standardized by actin and TATA box-binding protein-coding genes in growth phase samples and stress conditions, respectively. It was found that a series of carbon fixation genes, such as the pyruvate orthophosphate dikinase (PPDK)-coding gene, had significantly up-regulated expression in nitrogen-starvation, phosphate-starvation, and low-temperature conditions, but consistently down-regulated in silicate-starvation treatment. These carbon fixation genes exhibited variable expression levels in different conditions and will be useful for investigating gene expression mechanisms in S. marinoi and improve our understanding of diatom carbon fixation pathways.
Collapse
Affiliation(s)
- Qian Liu
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Yongze Xing
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Sciences Academy, Beihai, 536000, China
| | - Ying Li
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hualong Wang
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Tiezhu Mi
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yu Zhen
- Key laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao, 266100, China
| |
Collapse
|
15
|
Wang J, Zhao D, Liu Z, Chen H, Zhou Y, Zhou Y, Zhu B. Effects of biomass diatom frustule on structure and properties of polyurethane elastomer. J Appl Polym Sci 2020. [DOI: 10.1002/app.48452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan 430081 China
| | - Dan Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan 430081 China
| | - Zhiqiang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan 430081 China
| | - Hongxiang Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan 430081 China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and Technology Wuhan 430081 China
| | - Yang Zhou
- School of Textile Science and Engineering, National Engineering, Laboratory for Advanced Yarn and Clean ProductionWuhan Textile University Wuhan 430200 China
| | - Bailin Zhu
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials and MetallurgyWuhan University of Science and Technology Wuhan 430081 China
| |
Collapse
|
16
|
Cu2-xS loaded diatom nanocomposites as novel photocatalysts for efficient photocatalytic degradation of organic pollutants. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.11.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Mitra S, Kumar R, Roy P, Basu S, Barik S, Goswami A. Naturally Occurring and Synthetic Mesoporous Nanosilica: Multimodal Applications in Frontier Areas of Science. INTERNATIONAL JOURNAL OF NANOSCIENCE 2019. [DOI: 10.1142/s0219581x18500278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have gained attention worldwide due to their structural versatility for diverse applications in a number of frontier areas of sciences. The intrinsic chemical, textural and structural features of MSNs allow fabricating versatile multifunctional nanosystems. The present review provides an overview of the research progress in artificial and biological production of MSNs, their properties and various applications in cutting edge areas of sciences.
Collapse
Affiliation(s)
- Sutanuka Mitra
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
| | - Pradip Roy
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
| | - Satakshi Basu
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
| | - Samarendra Barik
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
| | - Arunava Goswami
- Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
| |
Collapse
|
18
|
Pytlik N, Klemmed B, Machill S, Eychmüller A, Brunner E. In vivo uptake of gold nanoparticles by the diatom Stephanopyxis turris. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Panwar V, Dutta T. Diatom Biogenic Silica as a Felicitous Platform for Biochemical Engineering: Expanding Frontiers. ACS APPLIED BIO MATERIALS 2019; 2:2295-2316. [DOI: 10.1021/acsabm.9b00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Varsha Panwar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tanmay Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
20
|
Carpio RB, Zhang Y, Kuo CT, Chen WT, Schideman LC, de Leon RL. Characterization and thermal decomposition of demineralized wastewater algae biomass. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.101399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Tamburaci S, Tihminlioglu F. Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:274-291. [DOI: 10.1016/j.msec.2018.05.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 01/06/2023]
|
22
|
Pytlik N, Butscher D, Machill S, Brunner E. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites? Z PHYS CHEM 2018. [DOI: 10.1515/zpch-2018-1141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biosynthesis by diatoms provides a green approach for nanoparticle (NP) production. However, reproducible and homogeneous shapes are essential for their application. To improve these characteristics during biosynthesis, the underlying synthesis mechanisms as well as involved substances need to be understood. The first essential step for suitable analyses is the purification of Au-silica-nanocomposites from organic biomass. Succesfully cleaned nanocomposites could, for example, be useful as catalysts. In combination with the biosynthesized NPs, this material presents a “green” catalyst and could contribute to the currently thriving green nanochemistry. In this work, we compare different purification agents with respect to their ability to purify cells of the diatom Stephanopyxis turris without separating the biosynthesized Au-silica-nanocomposites from the diatom cell walls. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) are used to localize and identify Au-silica-nanocomposites around the cells. The amount of remaining organic compounds on the purified cell is detected by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Furthermore, inductively coupled plasma optical emission spectrometry (ICP-OES) is used to track the “gold path” during cell growth and the different purifications steps.
Collapse
Affiliation(s)
- Nathalie Pytlik
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| | - Daniel Butscher
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| | - Susanne Machill
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| | - Eike Brunner
- Faculty of Chemistry and Food Chemistry, Bioanalytical Chemistry , TU Dresden , 01062 Dresden , Germany
| |
Collapse
|
23
|
Annenkov VV, Danilovtseva EN, Pal'shin VA, Verkhozina ON, Shishlyannikova TA, Hickman GJ, Perry CC. Fluorescently-tagged polyamines for the staining of siliceous materials. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:205-211. [PMID: 29475086 DOI: 10.1016/j.plaphy.2018.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Siliceous frustules of diatom algae contain unique long-chain polyamines, including those having more than six nitrogen atoms. These polyamines participate in the formation of the siliceous frustules of the diatoms but their precise physiological role is not clear. The main hypotheses include formation of a polyamine and polyphosphate supramolecular matrix. We have synthesized novel fluorescent dyes from a synthetic oligomeric mixture of polyamines and the fluorophore 7-nitro-2,1,3-benzoxadiazole. The long polyamine chain ensures the high affinity of these dyes to silica, which allows their application in the staining of siliceous materials, such as valves of diatom algae and fossilized samples from sediments. The fluorescently stained diatom valves were found to be promising liquid flow tracers in hydrodynamic tests. Furthermore, complexation of the polyamine component of the dyes with carbonic polymeric acids results in changes to the visible spectrum of the fluorophore, which allows study of the stability of the complex vs the length of the polyamine chain. Using poly (vinyl phosphonic acid) as a model for phosphate functionality in silaffins (a potential matrix in the formation of biogenic silica) little complexation with the polyamine fluorophores was observed, bringing into question the role of a polyamine - polymeric phosphate matrix in biosilicification.
Collapse
Affiliation(s)
- Vadim V Annenkov
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Bator Str., Irkutsk, 664033, Russia.
| | - Elena N Danilovtseva
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Bator Str., Irkutsk, 664033, Russia
| | - Viktor A Pal'shin
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Bator Str., Irkutsk, 664033, Russia
| | - Olga N Verkhozina
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Bator Str., Irkutsk, 664033, Russia
| | - Tatyana A Shishlyannikova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Bator Str., Irkutsk, 664033, Russia
| | - Graham J Hickman
- Interdisciplinary Biomedical Research Centre, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| |
Collapse
|
24
|
Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties. Int J Biol Macromol 2017; 105:1401-1411. [DOI: 10.1016/j.ijbiomac.2017.08.161] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/24/2017] [Indexed: 11/18/2022]
|
25
|
Albert K, Huang XC, Hsu HY. Bio-templated silica composites for next-generation biomedical applications. Adv Colloid Interface Sci 2017; 249:272-289. [PMID: 28499603 DOI: 10.1016/j.cis.2017.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
Abstract
Silica-based materials have extensive biomedical applications owing to their unique physical, chemical, and biological properties. Recently, increasing studies have examined the mechanisms involved in biosilicification to develop novel, fine-tunable, eco-friendly materials and/or technologies. In this review, we focus on recent developments in bio-templated silica synthesis and relevant applications in drug delivery systems, tissue engineering, and biosensing.
Collapse
Affiliation(s)
- Karunya Albert
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Xin-Chun Huang
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Hsin-Yun Hsu
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan; Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan.
| |
Collapse
|
26
|
Bauer J, Meza LR, Schaedler TA, Schwaiger R, Zheng X, Valdevit L. Nanolattices: An Emerging Class of Mechanical Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28873250 DOI: 10.1002/adma.201701850] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/23/2017] [Indexed: 05/12/2023]
Abstract
In 1903, Alexander Graham Bell developed a design principle to generate lightweight, mechanically robust lattice structures based on triangular cells; this has since found broad application in lightweight design. Over one hundred years later, the same principle is being used in the fabrication of nanolattice materials, namely lattice structures composed of nanoscale constituents. Taking advantage of the size-dependent properties typical of nanoparticles, nanowires, and thin films, nanolattices redefine the limits of the accessible material-property space throughout different disciplines. Herein, the exceptional mechanical performance of nanolattices, including their ultrahigh strength, damage tolerance, and stiffness, are reviewed, and their potential for multifunctional applications beyond mechanics is examined. The efficient integration of architecture and size-affected properties is key to further develop nanolattices. The introduction of a hierarchical architecture is an effective tool in enhancing mechanical properties, and the eventual goal of nanolattice design may be to replicate the intricate hierarchies and functionalities observed in biological materials. Additive manufacturing and self-assembly techniques enable lattice design at the nanoscale; the scaling-up of nanolattice fabrication is currently the major challenge to their widespread use in technological applications.
Collapse
Affiliation(s)
- Jens Bauer
- Department of Mechanical and Aerospace Engineering, University of California Irvine, CA, 92697, USA
- Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Lucas R Meza
- Engineering Department, Trumpington Street, Cambridge, CB2 1PZ, UK
| | | | - Ruth Schwaiger
- Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Xiaoyu Zheng
- Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Lorenzo Valdevit
- Department of Mechanical and Aerospace Engineering, University of California Irvine, CA, 92697, USA
| |
Collapse
|
27
|
Leonardo S, Garibo D, Fernández-Tejedor M, O'Sullivan CK, Campàs M. Addressed immobilization of biofunctionalized diatoms on electrodes by gold electrodeposition. Biofabrication 2017; 9:015027. [DOI: 10.1088/1758-5090/aa6400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- S Leonardo
- IRTA, Carretera de Poble Nou, km 5.5, E-43540 Sant Carles de la Ràpita, Spain
| | | | | | | | | |
Collapse
|
28
|
Cicco SR, Vona D, Gristina R, Sardella E, Ragni R, Lo Presti M, Farinola GM. Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells. Bioengineering (Basel) 2016; 3:E35. [PMID: 28952597 PMCID: PMC5597278 DOI: 10.3390/bioengineering3040035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
In the past decade, mesoporous silica nanoparticles (MSNs) with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. Here we propose biosilica from diatoms as an alternative source of mesoporous materials in the field of multifunctional supports for cell growth: the biosilica surfaces were chemically modified by traditional silanization methods resulting in diatom silica microparticles functionalized with 3-mercaptopropyl-trimethoxysilane (MPTMS) and 3-aminopropyl-triethoxysilane (APTES). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the -SH or -NH₂ were successfully grafted onto the biosilica surface. The relationship among the type of functional groups and the cell viability was established as well as the interaction of the cells with the nanoporosity of frustules. These results show that diatom microparticles are promising natural biomaterials suitable for cell growth, and that the surfaces, owing to the mercapto groups, exhibit good biocompatibility.
Collapse
Affiliation(s)
- Stefania Roberta Cicco
- Italian National Council for Research-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM)-Bari, Bari 70126, Italy.
| | - Danilo Vona
- Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari 70121, Italy.
| | | | | | - Roberta Ragni
- Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari 70121, Italy.
| | - Marco Lo Presti
- Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari 70121, Italy.
| | | |
Collapse
|
29
|
Kotzsch A, Pawolski D, Milentyev A, Shevchenko A, Scheffel A, Poulsen N, Shevchenko A, Kröger N. Biochemical Composition and Assembly of Biosilica-associated Insoluble Organic Matrices from the Diatom Thalassiosira pseudonana. J Biol Chem 2016; 291:4982-97. [PMID: 26710847 PMCID: PMC4777836 DOI: 10.1074/jbc.m115.706440] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/23/2015] [Indexed: 11/06/2022] Open
Abstract
The nano- and micropatterned biosilica cell walls of diatoms are remarkable examples of biological morphogenesis and possess highly interesting material properties. Only recently has it been demonstrated that biosilica-associated organic structures with specific nanopatterns (termed insoluble organic matrices) are general components of diatom biosilica. The model diatom Thalassiosira pseudonana contains three types of insoluble organic matrices: chitin meshworks, organic microrings, and organic microplates, the latter being described in the present study for the first time. To date, little is known about the molecular composition, intracellular assembly, and biological functions of organic matrices. Here we have performed structural and functional analyses of the organic microrings and organic microplates from T. pseudonana. Proteomics analysis yielded seven proteins of unknown function (termed SiMat proteins) together with five known silica biomineralization proteins (four cingulins and one silaffin). The location of SiMat1-GFP in the insoluble organic microrings and the similarity of tyrosine- and lysine-rich functional domains identifies this protein as a new member of the cingulin protein family. Mass spectrometric analysis indicates that most of the lysine residues of cingulins and the other insoluble organic matrix proteins are post-translationally modified by short polyamine groups, which are known to enhance the silica formation activity of proteins. Studies with recombinant cingulins (rCinY2 and rCinW2) demonstrate that acidic conditions (pH 5.5) trigger the assembly of mixed cingulin aggregates that have silica formation activity. Our results suggest an important role for cingulins in the biogenesis of organic microrings and support the hypothesis that this type of insoluble organic matrix functions in biosilica morphogenesis.
Collapse
Affiliation(s)
| | | | - Alexander Milentyev
- the Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Anna Shevchenko
- the Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - André Scheffel
- the Max-Planck-Institute of Plant Physiology, 14476 Potsdam, Germany
| | | | - Andrej Shevchenko
- the Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Nils Kröger
- From the B CUBE Center for Molecular Bioengineering and the Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01307 Dresden, Germany,
| |
Collapse
|
30
|
Alipour L, Hamamoto M, Nakashima S, Harui R, Furiki M, Oku O. Infrared Microspectroscopy of Bionanomaterials (Diatoms) with Careful Evaluation of Void Effects. APPLIED SPECTROSCOPY 2016; 70:427-442. [PMID: 26823543 DOI: 10.1177/0003702815626665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 07/13/2015] [Indexed: 06/05/2023]
Abstract
In order to characterize a representative natural bionanomaterial, present day centric diatom samples (diameter, 175-310 µm) have been analyzed and imaged by infrared (IR) micro-spectroscopy and scanning electron microscopy (SEM). Because diatom silica frustules have complex microscopic morphology, including many void areas such as micro- or nano-pores, the effects of voids on the spectral band shapes were first evaluated. With increasing void area percentage, 1220 cm(-1)/1070 cm(-1) peak height ratio (Si-O polymerization index) increases and 950 cm(-1)/800 cm(-1) peak height ratio (Si-OH/Si-O-Si) decreases, both approaching 1. Based on the void area percentage of representative diatom samples determined using SEM image analyses (51.5% to 20.5%) and spectral simulation, the 1220 cm(-1)/1070 cm(-1) ratios of diatom samples are sometimes affected by the void effect, but the 950 cm(-1)/800 cm(-1) ratios can indicate real structural information of silica. This void effect should be carefully evaluated for IR micro-spectroscopy of micro-nano-porous materials. Maturity of diatom specimens may be evaluated from: (1) void area percentages determined by SEM; (2) average thicknesses determined by optical microscope; and (3) average values of 1220 cm(-1)/1070 cm(-1) peak height ratios (opposite trend to the void effect) determined by IR micro-spectroscopy. Microscopic heterogeneities of chemical structures of silica were obtained by IR micro-spectroscopic mapping of four representative diatoms. The 950 cm(-1)/800 cm(-1) ratios show that large regions of some diatoms consist of hydrated amorphous immature silica. The successful analysis of diatoms by IR micro-spectroscopic data with careful void effect evaluation may be applied to physicochemical structures of many other bionanomaterials.
Collapse
Affiliation(s)
- Leila Alipour
- Department of Earth and Space Science, Osaka University, Toyonaka, Japan
| | - Mai Hamamoto
- Department of Earth and Space Science, Osaka University, Toyonaka, Japan
| | - Satoru Nakashima
- Department of Earth and Space Science, Osaka University, Toyonaka, Japan
| | - Rika Harui
- Thermo Fisher Scientific Corp., Nishinakajima 6-3-14, Osaka, Japan
| | - Masanari Furiki
- Hitachi High Technologies Corp., Miyahara 3-3-31, Osaka, Japan
| | - Osamu Oku
- Micro World Service. Minami-Otsuka 1-3-25-301, Tokyo, Japan
| |
Collapse
|
31
|
Li A, Zhang W, Ghaffarivardavagh R, Wang X, Anderson SW, Zhang X. Towards uniformly oriented diatom frustule monolayers: Experimental and theoretical analyses. MICROSYSTEMS & NANOENGINEERING 2016; 2:16064. [PMID: 31057843 PMCID: PMC6444733 DOI: 10.1038/micronano.2016.64] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/16/2016] [Accepted: 07/31/2016] [Indexed: 05/12/2023]
Abstract
Diatoms are unicellular, photosynthetic algae that are ubiquitous in aquatic environments. Their unique, three-dimensional (3D) structured silica exoskeletons, also known as frustules, have drawn attention from a variety of research fields due to their extraordinary mechanical properties, enormous surface area, and unique optical properties. Despite their promising use in a range of applications, without methods to uniformly control the frustules' alignment/orientation, their full potential in technology development cannot be realized. In this paper, we realized and subsequently modeled a simple bubbling method for achieving large-area, uniformly oriented Coscinodiscus species diatom frustules. With the aid of bubble-induced agitations, close-packed frustule monolayers were achieved on the water-air interface with up to nearly 90% of frustules achieving uniform orientation. The interactions between bubble-induced agitations were modeled and analyzed, demonstrating frustule submersion and an adjustment of the orientation during the subsequent rise towards the water's surface to be fundamental to the experimentally observed uniformity. The method described in this study holds great potential for frustules' engineering applications in a variety of technologies, from sensors to energy-harvesting devices.
Collapse
Affiliation(s)
- Aobo Li
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Wenqiang Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Xiaoning Wang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Stephan W. Anderson
- Department of Radiology, Boston University Medical Center, Boston, MA 02118, USA
- ()
| | - Xin Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- ()
| |
Collapse
|
32
|
Terracciano M, Shahbazi MA, Correia A, Rea I, Lamberti A, De Stefano L, Santos HA. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery. NANOSCALE 2015; 7:20063-20074. [PMID: 26568517 DOI: 10.1039/c5nr05173h] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.
Collapse
Affiliation(s)
- Monica Terracciano
- Institute for Microelectronics and Microsystems, National Research Council, Naples, 80131, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Romann J, Valmalette JC, Chauton MS, Tranell G, Einarsrud MA, Vadstein O. Wavelength and orientation dependent capture of light by diatom frustule nanostructures. Sci Rep 2015; 5:17403. [PMID: 26627680 PMCID: PMC4667171 DOI: 10.1038/srep17403] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/29/2015] [Indexed: 11/09/2022] Open
Abstract
The ecological success of diatoms is emphasized by regular blooms of many different species in all aquatic systems, but the reason behind their success is not fully understood. A special feature of the diatom cell is the frustule, a nano-patterned cell encasement made of amorphous biosilica. The optical properties of a cleaned single valve (one half of a frustule) from the diatom Coscinodiscus centralis were studied using confocal micro-spectroscopy. A photonic crystal function in the frustule was observed, and analysis of the hyperspectral mapping revealed an enhancement of transmitted light around 636 and 663 nm. These wavelengths match the absorption maxima of chlorophyll a and c, respectively. Additionally, we demonstrate that a highly efficient light trapping mechanism occurred, resulting from strong asymmetry between the cribrum and foramen pseudo-periodic structures. This effect may prevent transmitted light from being backscattered and in turn enhance the light absorption. Based on our results, we hypothesize that the multi-scaled layered structure of the frustule improves photosynthetic efficiency by these three mechanisms. The optical properties of the frustule described here may contribute to the ecological success of diatoms in both lentic and marine ecosystems, and should be studies further in vivo.
Collapse
Affiliation(s)
- Julien Romann
- Department of Material Science and Engineering, Norwegian University of Science and Technology NTNU, NO-7491 Trondheim, Norway
| | | | - Matilde Skogen Chauton
- Department of Biotechnology, Norwegian University of Science and Technology NTNU, NO-7491 Trondheim, Norway
| | - Gabriella Tranell
- Department of Material Science and Engineering, Norwegian University of Science and Technology NTNU, NO-7491 Trondheim, Norway
| | - Mari-Ann Einarsrud
- Department of Material Science and Engineering, Norwegian University of Science and Technology NTNU, NO-7491 Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology, Norwegian University of Science and Technology NTNU, NO-7491 Trondheim, Norway
| |
Collapse
|
34
|
Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK. Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2015. [DOI: 10.1016/j.jscs.2014.06.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Krishna Priya K, Ramesh M, Saravanan M, Ponpandian N. Ecological risk assessment of silicon dioxide nanoparticles in a freshwater fish Labeo rohita: Hematology, ionoregulation and gill Na(+)/K(+) ATPase activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:295-302. [PMID: 26094035 DOI: 10.1016/j.ecoenv.2015.05.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
The fate and effect of nanomaterials in the environment has raised concern about their environmental risk to aquatic organisms. Silica nanoparticles (SiO2-NPs) find its uses in various fields and are inevitably released into the environment. However, the ecotoxicological effects of SiO2-NPs on the freshwater fish remain poorly understood. The aim of this study was to evaluate the effect of different concentrations (1, 5 and 25mgL(-1)) of SiO2-NPs on certain hematological, ionoregulatory and enzymological profiles of a freshwater teleost fish Labeo rohita. Hematological parameters such as hemoglobin (Hb), hematocrit (Hct), red blood cells (RBC), white blood cells (WBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) values were altered in SiO2-NPs treated groups. Likewise, plasma electrolytes such as plasma sodium (Na(+)), potassium (K(+)) and chloride (Cl(-)) levels and Na(+)/K(+) ATPase activity in gill of SiO2-NPs treated groups were altered in all concentrations throughout the study period (96h). The alterations of these parameters were found to be dependent on dose and exposure period. The results of the present study indicate that the alterations of these parameters may relate to physiological stress system to SiO2-NPs toxicity and also demonstrate that manufactured metal oxide NPs in aquatic environment may affect the health condition of the aquatic organisms.
Collapse
Affiliation(s)
- K Krishna Priya
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - M Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - M Saravanan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
36
|
Gügi B, Le Costaouec T, Burel C, Lerouge P, Helbert W, Bardor M. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms. Mar Drugs 2015; 13:5993-6018. [PMID: 26393622 PMCID: PMC4584364 DOI: 10.3390/md13095993] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/12/2022] Open
Abstract
Diatoms are marine organisms that represent one of the most important sources of biomass in the ocean, accounting for about 40% of marine primary production, and in the biosphere, contributing up to 20% of global CO₂ fixation. There has been a recent surge in developing the use of diatoms as a source of bioactive compounds in the food and cosmetic industries. In addition, the potential of diatoms such as Phaeodactylum tricornutum as cell factories for the production of biopharmaceuticals is currently under evaluation. These biotechnological applications require a comprehensive understanding of the sugar biosynthesis pathways that operate in diatoms. Here, we review diatom glycan and polysaccharide structures, thus revealing their sugar biosynthesis capabilities.
Collapse
Affiliation(s)
- Bruno Gügi
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
| | - Tinaïg Le Costaouec
- CNRS, Centre de Recherches sur les Macromolécules Végétales (CERMAV), Université Grenoble Alpes, CERMAV, F-38000 Grenoble, France.
| | - Carole Burel
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
| | - Patrice Lerouge
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
| | - William Helbert
- CNRS, Centre de Recherches sur les Macromolécules Végétales (CERMAV), Université Grenoble Alpes, CERMAV, F-38000 Grenoble, France.
| | - Muriel Bardor
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
- Institut Universitaire de France (IUF), 75005 Paris, France.
| |
Collapse
|
37
|
Javalkote VS, Pandey AP, Puranik PR, Deshmukh PK. Magnetically responsive siliceous frustules for efficient chemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 50:107-16. [DOI: 10.1016/j.msec.2015.01.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/06/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
38
|
Meng F, Gao G, Jia Z. Study on tribological mechanism for multi-layer porous structure of diatom frustule. MICROBIAL ECOLOGY 2015; 69:45-58. [PMID: 25204749 DOI: 10.1007/s00248-014-0485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
Tribological mechanism of the diatom frustule with multi-layers of pores is studied with the liquid-solid interaction (FSI) method. Based on the reconstructed representative Coscinodiscus sp. frustule with two-layer porous structure, the tribological performances for the diatom frustule at its different pore diameter ratios, pore depth ratios, and velocities are solved through governing equations involved with FSI method. The numerical result shows that the existence of the two-layer porous structure of the diatom helps to reduce the friction between it and ambient water, and to increase its ability to resist the ambient water pressure. The two-layer porous structure effectively improve the tribological performances for the diatom frustule due to the change in the frustule velocity.
Collapse
Affiliation(s)
- Fanming Meng
- The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400044, China,
| | | | | |
Collapse
|
39
|
Chao JT, Biggs MJP, Pandit AS. Diatoms: a biotemplating approach to fabricating drug delivery reservoirs. Expert Opin Drug Deliv 2014; 11:1687-95. [PMID: 25146231 DOI: 10.1517/17425247.2014.935336] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biotemplating is a rapidly expanding subfield that utilizes nature-inspired systems and structures to create novel functional materials, and it is through these methods that the limitations of current engineering practices may be advanced. The diatom is an exceptional template for drug delivery applications, owing largely to its highly-ordered pores, large surface area, species-specific architecture, and flexibility for surface modifications. Diatoms have been studied in a wide range of biomedical applications and their potential as the next frontier of drug delivery has yet to be fully exploited. In this editorial, the authors aim to review the use of diatoms in the delivery of poorly water-soluble drugs as reported in the literature, discuss the progress and advancements that have been made thus far, identify the shortcomings and limitations in the field, and, lastly, present their expert opinion and convey the future outlook on biotemplating approaches for drug delivery.
Collapse
Affiliation(s)
- Joshua T Chao
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland , Biosciences Building, Corrib Village, Dangan, Galway , Ireland +353 91 49 5833 ; +353 91 49 5585 ;
| | | | | |
Collapse
|
40
|
Javaheri N, Dries R, Kaandorp J. Understanding the sub-cellular dynamics of silicon transportation and synthesis in diatoms using population-level data and computational optimization. PLoS Comput Biol 2014; 10:e1003687. [PMID: 24945622 PMCID: PMC4063665 DOI: 10.1371/journal.pcbi.1003687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/09/2014] [Indexed: 01/10/2023] Open
Abstract
Controlled synthesis of silicon is a major challenge in nanotechnology and material science. Diatoms, the unicellular algae, are an inspiring example of silica biosynthesis, producing complex and delicate nano-structures. This happens in several cell compartments, including cytoplasm and silica deposition vesicle (SDV). Considering the low concentration of silicic acid in oceans, cells have developed silicon transporter proteins (SIT). Moreover, cells change the level of active SITs during one cell cycle, likely as a response to the level of external nutrients and internal deposition rates. Despite this topic being of fundamental interest, the intracellular dynamics of nutrients and cell regulation strategies remain poorly understood. One reason is the difficulties in measurements and manipulation of these mechanisms at such small scales, and even when possible, data often contain large errors. Therefore, using computational techniques seems inevitable. We have constructed a mathematical model for silicon dynamics in the diatom Thalassiosira pseudonana in four compartments: external environment, cytoplasm, SDV and deposited silica. The model builds on mass conservation and Michaelis-Menten kinetics as mass transport equations. In order to find the free parameters of the model from sparse, noisy experimental data, an optimization technique (global and local search), together with enzyme related penalty terms, has been applied. We have connected population-level data to individual-cell-level quantities including the effect of early division of non-synchronized cells. Our model is robust, proven by sensitivity and perturbation analysis, and predicts dynamics of intracellular nutrients and enzymes in different compartments. The model produces different uptake regimes, previously recognized as surge, externally-controlled and internally-controlled uptakes. Finally, we imposed a flux of SITs to the model and compared it with previous classical kinetics. The model introduced can be generalized in order to analyze different biomineralizing organisms and to test different chemical pathways only by switching the system of mass transport equations.
Collapse
Affiliation(s)
- Narjes Javaheri
- Section Computational Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Roland Dries
- Section Computational Science, University of Amsterdam, Amsterdam, The Netherlands
- FOM Institute AMOLF, Amsterdam, The Netherlands
| | - Jaap Kaandorp
- Section Computational Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 2014; 5:3831. [PMID: 24871200 DOI: 10.1038/ncomms4831] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Diatoms, a major group of photosynthetic microalgae, have a high biotechnological potential that has not been fully exploited because of the paucity of available genetic tools. Here we demonstrate targeted and stable modifications of the genome of the marine diatom Phaeodactylum tricornutum, using both meganucleases and TALE nucleases. When nuclease-encoding constructs are co-transformed with a selectable marker, high frequencies of genome modifications are readily attained with 56 and 27% of the colonies exhibiting targeted mutagenesis or targeted gene insertion, respectively. The generation of an enhanced lipid-producing strain (45-fold increase in triacylglycerol accumulation) through the disruption of the UDP-glucose pyrophosphorylase gene exemplifies the power of genome engineering to harness diatoms for biofuel production.
Collapse
|
42
|
Evolving marine biomimetics for regenerative dentistry. Mar Drugs 2014; 12:2877-912. [PMID: 24828293 PMCID: PMC4052322 DOI: 10.3390/md12052877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 12/16/2022] Open
Abstract
New products that help make human tissue and organ regeneration more effective are in high demand and include materials, structures and substrates that drive cell-to-tissue transformations, orchestrate anatomical assembly and tissue integration with biology. Marine organisms are exemplary bioresources that have extensive possibilities in supporting and facilitating development of human tissue substitutes. Such organisms represent a deep and diverse reserve of materials, substrates and structures that can facilitate tissue reconstruction within lab-based cultures. The reason is that they possess sophisticated structures, architectures and biomaterial designs that are still difficult to replicate using synthetic processes, so far. These products offer tantalizing pre-made options that are versatile, adaptable and have many functions for current tissue engineers seeking fresh solutions to the deficiencies in existing dental biomaterials, which lack the intrinsic elements of biofunctioning, structural and mechanical design to regenerate anatomically correct dental tissues both in the culture dish and in vivo.
Collapse
|
43
|
Mao L, Liu J, Zhu S, Zhang D, Chen Z, Chen C. Sonochemical fabrication of mesoporous TiO2 inside diatom frustules for photocatalyst. ULTRASONICS SONOCHEMISTRY 2014; 21:527-534. [PMID: 24075849 DOI: 10.1016/j.ultsonch.2013.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Mesoporous titanium dioxide (TiO2) has been assembled inside the macropores of diatom frustules by sonochemical condensation of titania precursor, and then thermal treated at an elevated temperature. The resulting hierarchical macro/mesoporous-structures of the TiO2 inside diatom were confirmed by characterizations of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The amount of TiO2 inside the periodic macropores of diatom was controlled by varying the sonication time. It was found that the resultant composite with only 30 wt% TiO2 loading delivered a high photocatalytic performance, even better than that of pure P25. This is attributed to its hierarchical macro/mesoporous structure as it provides a large number of accessible active sites for efficient transportations of guest species to framework binding sites. Other macro/mesoporous structures with a nearly endless variety of functional chemistries and shapes are expected to be produced, leading to a range of novel applications in remediation, molecular transportation and environmental field by using this facile strategy.
Collapse
Affiliation(s)
- Lin Mao
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 200240 Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Belegratis MR, Schmidt V, Nees D, Stadlober B, Hartmann P. Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms. BIOINSPIRATION & BIOMIMETICS 2014; 9:016004. [PMID: 24343246 DOI: 10.1088/1748-3182/9/1/016004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The diatoms are ubiquitous, exist in large numbers and show a great diversity of features on their porous silica structures. Therefore, they inspire the fabrication of nanostructured templates for nanoimprint processes (NIL), where large structured areas with nanometer precision are required. In this study, two approaches regarding the respective challenges and potential exploitations are followed and discussed: the first one takes advantage of a template that is directly made of natural occurring diatoms. Here, two replication steps via soft lithography are needed to obtain a template which is subsequently used for NIL. The second approach exploits the technical capabilities of the precise 3D laser lithography (3DLL) based on two-photon polymerization of organic materials. This method enables the fabrication of arbitrary artificial diatom-inspired micro- and nanostructures and the design of an inverse structure. Therefore, only one replication step is needed to obtain a template for NIL. In both approaches, a replication technique for true 3D structures is shown.
Collapse
Affiliation(s)
- M R Belegratis
- Institute for Surface Technologies and Photonics, Joanneum Research, Franz-Pichler Straße 30, A-8160 Weiz, Austria
| | | | | | | | | |
Collapse
|
45
|
Pan J, Wang Y, Cai J, Li A, Zhang H, Jiang Y, Zhang D. Bonding of diatom frustules and Si substrates assisted by hydrofluoric acid. NEW J CHEM 2014. [DOI: 10.1039/c3nj01061a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Vlachakis D, Pavlopoulou A, Kazazi D, Kossida S. Unraveling microalgal molecular interactions using evolutionary and structural bioinformatics. Gene 2013; 528:109-19. [PMID: 23900196 DOI: 10.1016/j.gene.2013.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/08/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
Microalgae are unicellular microorganisms indispensible for environmental stability and life on earth, because they produce approximately half of the atmospheric oxygen, with simultaneously feeding on the harmful greenhouse gas carbon dioxide. Using gene fusion analysis, a series of five fusion/fission events was identified, that provided the basis for critical insights to their evolutionary history. Moreover, the three-dimensional structures of both the fused and the component proteins were predicted, allowing us to envisage putative protein-protein interactions that are invaluable for the efficient usage, handling and exploitation of microalgae. Collectively, our proposed approach on the five fusion/fission alga protein events contributes towards the expansion of the microalgae knowledgebase, bridging protein evolution of the ancient microalgal species and the rapidly evolving, modern, bioinformatics field.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, Athens 11527, Greece
| | | | | | | |
Collapse
|
47
|
|
48
|
Kumeria T, Bariana M, Altalhi T, Kurkuri M, Gibson CT, Yang W, Losic D. Graphene oxide decorated diatom silica particles as new nano-hybrids: towards smart natural drug microcarriers. J Mater Chem B 2013; 1:6302-6311. [DOI: 10.1039/c3tb21051k] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Wu MC, Coca JJP, Chang GRL, Suen SY, Lin CF, Chou HN, Lai SY, Wang MY. Chemical modification of Nitzschia panduriformis's frustules for protein and viral nanoparticle adsorption. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Wang Y, Cai J, Jiang Y, Jiang X, Zhang D. Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives. Appl Microbiol Biotechnol 2012. [DOI: 10.1007/s00253-012-4568-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|