1
|
Sakazume T, Satoh Y, Ohkoshi S. Stimulation of the center of the lateral reticular nucleus suppresses the swallowing reflex in rats. Neurosci Lett 2023; 794:136998. [PMID: 36496035 DOI: 10.1016/j.neulet.2022.136998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Morphological studies have demonstrated that the lateral reticular nucleus (LRt) receives fibers projected from sites that are related to control of the swallowing reflex. Although the LRt may therefore be related to control of the swallowing reflex, the functional role of the LRt in the swallowing reflex remains unknown. The present study examined whether the swallowing reflex is modulated by stimulation of the LRt. These experiments were performed on rats anesthetized by urethane. The swallowing reflex was evoked by repetitive electrical stimulation of the superior laryngeal nerve (SLN) and was identified by electromyographic activities from the mylohyoid muscle. Electrical stimulation was applied to the LRt or glutamate was injected into the LRt. The number of swallows was reduced, and the latency of the onset of the first swallow was increased during electrical stimulation near the middle of the rostrocaudal direction of the LRt. The number of swallows was reduced, and the latency of onset of the first swallow increased after microinjection of glutamate near the rostrocaudal center of the LRt. The present study suggests that the LRt is involved in control of the swallowing reflex.
Collapse
Affiliation(s)
- Tomohito Sakazume
- Clinical Examination, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Course of Clinical Science, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| | - Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan.
| | - Shogo Ohkoshi
- Clinical Examination, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Course of Clinical Science, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan; Department of Internal Medicine, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| |
Collapse
|
2
|
Satoh Y, Tsuji K. Suppression of the Swallowing Reflex during Rhythmic Jaw Movements Induced by Repetitive Electrical Stimulation of the Dorsomedial Part of the Central Amygdaloid Nucleus in Rats. LIFE (BASEL, SWITZERLAND) 2020; 10:life10090190. [PMID: 32927817 PMCID: PMC7554838 DOI: 10.3390/life10090190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
A previous study indicated that the swallowing reflex is inhibited during rhythmic jaw movements induced by electrical stimulation of the anterior cortical masticatory area. Rhythmic jaw movements were induced by electrical stimulation of the central amygdaloid nucleus (CeA). The swallowing central pattern generator is the nucleus of the solitary tract (NTS) and the lateral reticular formation in the medulla. Morphological studies have reported that the CeA projects to the NTS and the lateral reticular formation. It is therefore likely that the CeA is related to the control of the swallowing reflex. The purpose of this study was to determine if rhythmic jaw movements driven by CeA had inhibitory roles in the swallowing reflex induced by electrical stimulation of the superior laryngeal nerve (SLN). Rats were anesthetised with urethane. The SLN was solely stimulated for 10 s, and the swallowing reflex was recorded (SLN stimulation before SLN + CeA stimulation). Next, the SLN and the CeA were electrically stimulated at the same time for 10 s, and the swallowing reflex was recorded during rhythmic jaw movements (SLN + CeA stimulation). Finally, the SLN was solely stimulated (SLN stimulation following SLN + CeA stimulation). The number of swallows was reduced during rhythmic jaw movements. The onset latency of the first swallow was significantly longer in the SLN + CeA stimulation than in the SLN stimulation before SLN + CeA stimulation and SLN stimulation following SLN + CeA stimulation. These results support the idea that the coordination of swallowing reflex with rhythmic jaw movements could be regulated by the CeA.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Correspondence: ; Tel.: +81-25-267-1500; Fax: +81-25-267-1134
| | | |
Collapse
|
3
|
Abstract
Trigeminal spinal subnucleus caudalis (Vc) neurons that project to the ventral posteromedial thalamic nucleus (VPM) and parabrachial nucleus (PBN) are critical for orofacial pain processing. We hypothesized that persistent trigeminal nerve injury differentially alters the proportion of Vc neurons that project to VPM and PBN in a modality-specific manner. Neuroanatomical approaches were used to quantify the number of Vc neurons projecting to VPM or PBN after chronic constriction injury of the infraorbital nerve (ION-CCI) and subsequent upper-lip stimulation. Male rats received injections of retrograde tracer fluorogold into the contralateral VPM or PBN on day 7 after ION-CCI, and at 3 days after that, either capsaicin injection or noxious mechanical stimulation was applied to the upper lip ipsilateral to nerve injury. Infraorbital nerve chronic constriction injury rats displayed greater forelimb wiping to capsaicin injection and mechanical allodynia of the lip than sham rats. Total cell counts for phosphorylated extracellular signal-regulated kinase-immunoreactive (pERK-IR) neurons after capsaicin or mechanical lip stimuli were higher in ION-CCI than sham rats as was the percentage of pERK-IR PBN projection neurons. However, the percentage of pERK-IR VPM projection neurons was also greater in ION-CCI than sham rats after capsaicin but not mechanical lip stimuli. The present findings suggest that persistent trigeminal nerve injury increases the number of Vc neurons activated by capsaicin or mechanical lip stimuli. By contrast, trigeminal nerve injury modifies the proportion of Vc nociceptive neurons projecting to VPM and PBN in a stimulus modality-specific manner and may reflect differential involvement of ascending pain pathways receiving C fiber and mechanosensitive afferents.
Collapse
|
4
|
Okada S, Katagiri A, Saito H, Lee J, Ohara K, Iinuma T, Iwata K. Functional involvement of nucleus tractus solitarii neurons projecting to the parabrachial nucleus in trigeminal neuropathic pain. J Oral Sci 2019; 61:370-378. [PMID: 31217389 DOI: 10.2334/josnusd.18-0355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Peripheral nerve injury can induce neuroplastic changes in the central nervous system and result in neuropathic pain. This study investigated functional involvement in dorsal paratrigeminal nucleus (dPa5) and nucleus tractus solitarii (NTS) neurons projecting to the parabrachial nucleus (PBN) after trigeminal nerve injury. Anatomical quantification was performed based on phosphorylated extracellular signal-regulated kinase (pERK) expression underlying orofacial neuropathic pain associated with infraorbital nerve chronic constriction injury (ION-CCI) in rats. ION-CCI rats exhibited heat and mechanical hypersensitivity in the ipsilateral upper lip. After injection of retrograde tracer fluorogold (FG) into the contralateral PBN, ION-CCI rats received capsaicin or noxious mechanical stimulation to the upper lip. The total number of FG-labeled neurons in dPa5 and NTS did not change after ION-CCI, and pERK expression in dPa5 did not differ between sham and ION-CCI rats. In the NTS contralateral to ION-CCI, the number of pERK-immunoreactive neurons and percentage of pERK-immunoreactive FG-labeled PBN projection neurons were increased after capsaicin stimulation in ION-CCI rats. The present findings suggest that enhanced noxious inputs from the NTS to the PBN after trigeminal nerve injury modulates PBN neuron activity, which accompanies the affective components of orofacial neuropathic pain.
Collapse
Affiliation(s)
- Shinji Okada
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry.,Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Hiroto Saito
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
5
|
Satoh Y, Tsuji K, Tsujimura T, Ishizuka K, Inoue M. Suppression of the swallowing reflex by stimulation of the red nucleus. Brain Res Bull 2015; 116:25-33. [PMID: 26012722 DOI: 10.1016/j.brainresbull.2015.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 01/02/2023]
Abstract
We study whether the red nucleus is involved in control of swallowing. The swallowing reflex was induced in anesthetized rats by repetitive electrical stimulation of the superior laryngeal nerve. The electromyographic activities of the mylohyoid and thyrohyoid muscles were recorded in order to identify the swallowing reflex. Repetitive electrical stimulation applied to the red nucleus reduced the number of swallows. The onset latency of the first swallow was increased during repetitive electrical stimulation applied to the magnocellular part of the red nucleus. Microinjection of monosodium glutamate into the red nucleus also reduced the number of swallows. The onset latency of the first swallow was increased after microinjection of monosodium glutamate into the magnocellular part of the red nucleus. These results imply that the red nucleus is involved in the control of swallowing.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580 Japan.
| | - Kojun Tsuji
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514 Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514 Japan
| | - Ken'Ichi Ishizuka
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580 Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514 Japan
| |
Collapse
|
6
|
Qi J, Zhang H, Guo J, Yang L, Wang W, Chen T, Li H, Wu SX, Li YQ. Synaptic connections of the neurokinin 1 receptor-like immunoreactive neurons in the rat medullary dorsal horn. PLoS One 2011; 6:e23275. [PMID: 21858052 PMCID: PMC3157358 DOI: 10.1371/journal.pone.0023275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/10/2011] [Indexed: 01/17/2023] Open
Abstract
The synaptic connections between neurokinin 1 (NK1) receptor-like immunoreactive (LI) neurons and γ-aminobutyric acid (GABA)-, glycine (Gly)-, serotonin (5-HT)- or dopamine-β-hydroxylase (DBH, a specific marker for norepinephrinergic neuronal structures)-LI axon terminals in the rat medullary dorsal horn (MDH) were examined under electron microscope by using a pre-embedding immunohistochemical double-staining technique. NK1 receptor-LI neurons were observed principally in laminae I and III, only a few of them were found in lamina II of the MDH. GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were densely encountered in laminae I and II, and sparsely in lamina III of the MDH. Some of these GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were observed to make principally symmetric synapses with NK1 receptor-LI neuronal cell bodies and dendritic processes in laminae I, II and III of the MDH. The present results suggest that neurons expressing NK1 receptor within the MDH might be modulated by GABAergic and glycinergic inhibitory intrinsic neurons located in the MDH and 5-HT- or norepinephrine (NE)-containing descending fibers originated from structures in the brainstem.
Collapse
Affiliation(s)
- Jian Qi
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Hua Zhang
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jun Guo
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | - Le Yang
- Undergraduate Student of the 2007 in Pharmacology, The Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Hui Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Sheng-Xi Wu
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
- * E-mail:
| |
Collapse
|
7
|
Wu SX, Wang W, Li H, Wang YY, Feng YP, Li YQ. The synaptic connectivity that underlies the noxious transmission and modulation within the superficial dorsal horn of the spinal cord. Prog Neurobiol 2010; 91:38-54. [DOI: 10.1016/j.pneurobio.2010.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 01/27/2023]
|
8
|
Polgár E, Wright LL, Todd AJ. A quantitative study of brainstem projections from lamina I neurons in the cervical and lumbar enlargement of the rat. Brain Res 2009; 1308:58-67. [PMID: 19854164 PMCID: PMC2828548 DOI: 10.1016/j.brainres.2009.10.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022]
Abstract
Lamina I of the rat spinal cord contains neurons that project to various brain areas including thalamus, periaqueductal grey matter (PAG), lateral parabrachial area (LPb), caudal ventrolateral medulla and a region in dorsal medulla that includes the nucleus tractus solitarius and dorsal reticular nucleus. We have shown that spinothalamic lamina I neurons are infrequent in rat lumbar enlargement, where they constitute approximately 5% of the estimated 400 projection neurons on each side of the L4 segment (Al-Khater and Todd, 2009). They are more numerous in cervical enlargement, but the total number of lamina I projection neurons in this region was not known. Here we have used paired injections of retrograde tracers into the brainstem to estimate the number of lamina I projection cells in the C7 segment. Our results suggest that there are approximately 215 lamina I projection cells per side, and that spinothalamic cells therefore make up approximately 42% of this population. The proportion of lamina I projection neurons labelled from PAG is higher in cervical than lumbar enlargement, while the proportion labelled from dorsal medulla is similar in the two regions. We also found that lamina I cells in L4 that project to the dorsal medulla are included in the population retrogradely labelled from LPb, thus confirming the estimate that there are around 400 lamina I projection cells in this segment.
Collapse
Affiliation(s)
- Erika Polgár
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
9
|
Potts JT, Fong AY, Anguelov PI, Lee S, McGovern D, Grias I. Targeted deletion of neurokinin-1 receptor expressing nucleus tractus solitarii neurons precludes somatosensory depression of arterial baroreceptor-heart rate reflex. Neuroscience 2007; 145:1168-81. [PMID: 17293052 PMCID: PMC1905828 DOI: 10.1016/j.neuroscience.2007.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/18/2006] [Accepted: 01/01/2007] [Indexed: 12/17/2022]
Abstract
Neurokinin-1 receptor (NK1-R) expressing neurons are densely distributed throughout the nucleus tractus solitarii (NTS). However, their fundamental role in arterial baroreflex function remains debated. Previously, our group has shown that activation of contraction-sensitive somatic afferents evoke substance P (SP) release in the NTS and resets the arterial baroreflex via activation of a GABAergic NTS circuit. Based on these findings, we hypothesized that modulation of arterial baroreflex function by somatic afferents is mediated by NK1-R dependent inhibition of barosensitive NTS circuits. In the present study, SP-conjugated saporin toxin (SP-SAP) was used to ablate NK1-R expressing NTS neurons. Contraction-sensitive somatic afferents were activated by electrically-evoked muscle contraction and the arterial baroreceptor-heart rate reflex was assessed by constructing reflex curves using a decerebrate, arterially-perfused preparation. Baseline baroreflex sensitivity was significantly attenuated in SP-SAP-treated rats compared with control rats receiving either unconjugated SAP or vehicle. Muscle contraction significantly attenuated baroslope in SAP and vehicle-treated animals and shifted the baroreflex curves to higher systemic pressure. In contrast, somatic afferent stimulation failed to alter baroslope or shift the baroreflex curves in SP-SAP-treated animals. Moreover, when reflex sensitivity was partially restored in SP-SAP animals, somatic stimulation failed to attenuate baroreflex bradycardia. In contrast, SP-SAP and somatic stimulation failed to blunt the reflex bradycardia evoked by the peripheral chemoreflex. Immunohistochemistry revealed that pretreatment with SP-SAP significantly reduced the number of NK1-R expressing neurons in the caudal NTS, while sparing NK1-R expressing neurons rostral to the injection site. This was accompanied by a significant reduction in the number of glutamic acid decarboxylase (GAD67) expressing neurons at equivalent levels of the NTS. These findings indicate that immunolesioning of NK1-R expressing NTS neurons selectively abolishes the depressive effect of somatosensory input on arterial baroreceptor-heart rate reflex function.
Collapse
Affiliation(s)
- J T Potts
- Department of Biomedical Science, College of Veterinary Medicine, Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA. <>
| | | | | | | | | | | |
Collapse
|
10
|
Aita M, Seo K, Fujiwara N, Takagi R, Maeda T. Postnatal changes in the spatial distributions of substance P and neurokinin-1 receptor in the trigeminal subnucleus caudalis of mice. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 155:33-41. [PMID: 15763273 DOI: 10.1016/j.devbrainres.2004.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 12/01/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
Nociceptive afferent signals from the orofacial area are transmitted to the trigeminal subnucleus caudalis (Vc) through the release of glutamate and/or substance P (SP). Although nociceptive transmission and/or modulating mechanisms are known to develop during the postnatal period, the specific developmental changes in nociception and/or modulation remain unclear. The present study examined postnatal changes in the spatial relationship between SP and its receptor, the NK1 receptor (NK1R), in the mouse Vc by immunohistochemistry and quantitative analysis. The medulla was removed from C57BL/6N mice (1, 2, 4, and 8 weeks of age) after perfusion and fixation, and cut horizontally at a thickness of 40 mum. The relative densities of SP- and NK1R-immunoreactive areas and their changes with age were assessed statistically. One- and 2-week-old mice showed relatively high densities of SP-positive structures in the marginal layer (Mar) and the deep part of the magnocellular layer (Mag). The SP distribution in the superficial Vc remained unchanged, but the density in the deep Mag gradually decreased with age, resulting in a complete loss after postnatal week 4. The NK1R-immunoreactivity exhibited a similar distribution pattern to that of SP, but the pattern remained unchanged during the postnatal period. Double-immunofluorescence staining for SP and NK1R demonstrated only moderate direct contact of SP-positive structures with NK1R in the superficial area. These separate distributions and the postnatal changes in SP and NK1R suggest the possibility of another nociceptive afferent transmission mechanism, that is, volume transmission, in the Vc other than synapse-mediated transmission.
Collapse
Affiliation(s)
- Megumi Aita
- Division of Oral and Maxillofacial Surgery, Department of Oral Health Sciences, Japan
| | | | | | | | | |
Collapse
|
11
|
Gamboa-Esteves FO, McWilliam PN, Batten TFC. Substance P (NK1) and somatostatin (sst2A) receptor immunoreactivity in NTS-projecting rat dorsal horn neurones activated by nociceptive afferent input. J Chem Neuroanat 2004; 27:251-66. [PMID: 15261332 DOI: 10.1016/j.jchemneu.2004.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 02/17/2004] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
Spinal neurones that receive inputs from primary afferent fibres and have axons projecting supraspinally to the medulla oblongata may represent a pathway through which nociceptive and non-nociceptive peripheral stimuli are able to modulate cardiorespiratory reflexes. Expression of the neurokinin-1 (NK1) receptor is believed to be an indicator of lamina I cells that receive nociceptive inputs from substance P releasing afferents, and similarly, sst2A receptor expression may be a marker for neurones receiving somatostatinergic inputs. In this study, immunoreactivity for these two receptors was investigated in rat spinal neurones retrogradely labelled by injections of cholera toxin B or Fluorogold into the nucleus of the solitary tract (NTS). In addition, nociceptive activation of these labelled cells was studied by immunodetection of Fos protein in response to cutaneous and visceral noxious chemical stimuli. NK1 and sst2A receptors in lamina I were localised to mainly separate populations of retrogradely labelled cells with fusiform, flattened and pyramidal morphologies. Examples of projection neurones expressing both receptors were, however observed. With visceral stimulation, many retrogradely labelled cells expressing c-fos were immunoreactive for the NK1 receptor, and a smaller population was sst2A positive. In contrast, with cutaneous stimulation, only NK1 positive retrogradely labelled cells showed c-fos expression. These data provide evidence that lamina I neurones receiving noxious cutaneous and visceral stimuli via NK1 receptor activation project to NTS and so may be involved in coordinating nociceptive and cardiorespiratory responses. Moreover, a subpopulation of projection neurones that respond to visceral stimuli may receive somatostatinergic inputs of peripheral, local or supraspinal origins.
Collapse
Affiliation(s)
- Filomena O Gamboa-Esteves
- Institute for Cardiovascular Research, School of Medicine, Worsley Building, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
12
|
Liu JH, Li J, Yan J, Chang XR, Cui RF, He JF, Hu JM. Expression of c-fos in the nucleus of the solitary tract following electroacupuncture at facial acupoints and gastric distension in rats. Neurosci Lett 2004; 366:215-9. [PMID: 15276250 DOI: 10.1016/j.neulet.2004.05.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 05/15/2004] [Accepted: 05/18/2004] [Indexed: 12/16/2022]
Abstract
Clinical practice has shown that acupuncture at facial acupoints has curative effects on some visceral diseases (especially gastrointestinal diseases). However, the physiological basis has not been clarified yet. In the present study, expression of c-fos in the nucleus of the solitary tract (NTS) of rats following gastric distension and electroacupuncture (EA) at Yangbai (GB14) and Sibai (ST2) as well as Jiache (ST6) acupoints was observed by using immunohistochemistry technique. After EA at the three facial acupoints, c-fos immunoreactive (c-fos-IR) neurons were mainly distributed in the medial (mNTS) and intermediate subnucleus of the NTS, and a few were scatteredly distributed in the dorsalmedial and commissural subnucleus of the NTS. Furthermore, there is difference in the number of c-fos-IR neurons in the mNTS following EA at the three facial acupoints. The number in the EA at ST2 and GB14 group is the highest and the lowest, respectively. Gastric distension induces obviously the expression of c-fos, which is mainly confined in the mNTS. The results suggest that the noxious visceral and somatic afferent information from the stomach and face may converge in the mNTS, which may be involved in the effect of EA at facial acupoints on the gastrointestinal pain.
Collapse
Affiliation(s)
- Jian-Hua Liu
- Department of Analysis and Measurement Science, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Twenty-five years ago, very little was known about chemical communication in the afferent limb of the baroreceptor reflex arc. Subsequently, considerable anatomic and functional data exist to support a role for the tachykinin, substance P (SP), as a neuromodulator or neurotransmitter in baroreceptor afferent neurons. Substance P is synthesized and released from baroreceptor afferent neurons, and excitatory SP (NK1) receptors are activated by baroreceptive input to second-order neurons. SP appears to play a role in modulating the gain of the baroreceptor reflex. However, questions remain about the specific role and significance of SP in mediating baroreceptor information to the central nervous system (CNS), the nature of its interaction with glutaminergic transmission, the relevance of colocalized agents, and complex effects that may result from mediation of non-baroreceptive signals to the CNS.
Collapse
Affiliation(s)
- Cinda J Helke
- Neuroscience Program, and Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | | |
Collapse
|
14
|
Chen CY, Munch PA, Quail AW, Bonham AC. Postexercise hypotension in conscious SHR is attenuated by blockade of substance P receptors in NTS. Am J Physiol Heart Circ Physiol 2002; 283:H1856-62. [PMID: 12384463 DOI: 10.1152/ajpheart.00827.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In hypertensive subjects, a single bout of dynamic exercise results in an immediate lowering of blood pressure back toward normal. This postexercise hypotension (PEH) also occurs in the spontaneously hypertensive rat (SHR). In both humans and SHRs, PEH features a decrease in sympathetic nerve discharge, suggesting the involvement of central nervous system pathways. Given that substance P is released in the nucleus tractus solitarius (NTS) by activation of baroreceptor and skeletal muscle afferent fibers during muscle contraction, we hypothesized that substance P acting at neurokinin-1 (NK-1) receptors in the NTS might contribute to PEH. We tested the hypothesis by determining, in conscious SHRs, whether NTS microinjections of the NK-1 receptor antagonist SR-140333 before exercise attenuated PEH. The antagonist, in a dose (60 pmol) that blocked substance P- and spared D,L-homocysteic acid-induced depressor responses, significantly attenuated the PEH by 37%, whereas it had no effect on blood pressure during exercise. Vehicle microinjection had no effect. The antagonist also had no effect on heart rate responses during both exercise and the PEH period. The data suggest that a substance P (NK-1) receptor mechanism in the NTS contributes to PEH.
Collapse
Affiliation(s)
- Chao-Yin Chen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California-Davis, TB 172, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
15
|
Sewards TV, Sewards M. Separate, parallel sensory and hedonic pathways in the mammalian somatosensory system. Brain Res Bull 2002; 58:243-60. [PMID: 12128150 DOI: 10.1016/s0361-9230(02)00783-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We propose that separate sensory and hedonic representations exist in each of the primary structures of the somatosensory system, including brainstem, thalamic and cortical components. In the dorsal horn of the spinal cord, the hedonic representation, which consists primarily of nociceptive-specific, wide dynamic range, and thermoreceptive neurons, is located in laminae I and II, while the sensory representation, composed primarily by low-threshold and wide dynamic range neurons, is found in laminae III through V. A similar arrangement is found in the caudal spinal trigeminal nucleus. Based on the available anatomical and electrophysiological data, we then determine the corresponding hedonic and sensory representations in the area of the dorsal column nuclei, ventrobasal and posterior thalamic complex, and cortex. In rodent primary somatosensory cortex, a hedonic representation can be found in laminae Vb and VI. In carnivore and primate primary and secondary somatosensory cortical areas no hedonic representation exists, and the activities of neurons in both areas represent the sensory aspect exclusively. However, there is a hedonic representation in the posterior part of insular cortex, bordering on retroinsular cortex, that receives projections from two thalamic areas in which hedonics are represented. The functions of the segregated components of the system are discussed, especially in relation to the subjective awareness of pain.
Collapse
|
16
|
Gamboa-Esteves FO, Kaye JC, McWilliam PN, Lima D, Batten TF. Immunohistochemical profiles of spinal lamina I neurones retrogradely labelled from the nucleus tractus solitarii in rat suggest excitatory projections. Neuroscience 2001; 104:523-38. [PMID: 11377852 DOI: 10.1016/s0306-4522(01)00071-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three morphologically distinct types of lamina I neurones, fusiform, flattened and pyramidal, project from the spinal cord to the caudal part of the nucleus tractus solitarii in the rat, and may represent a pathway whereby peripheral stimuli can modify autonomic functions. The neurochemistry of these three types of projection neurones was investigated using retrograde neuronal tracing with cholera toxin B-subunit combined with dual and triple immunofluorescence labelling for different neuroactive substances. None of the lamina I neurones with immunoreactivity for GABA or glycine were found to project to the nucleus tractus solitarii, whereas high levels of glutamate immunoreactivity, which may indicate a glutamatergic phenotype, were found in 18.4% of fusiform, 9.6% of pyramidal and 2.1% of flattened projection neurones. Immunoreactivity for calbindin-D28K was present in 34.9% of fusiform cells, 18.3% of pyramidal cells and 10.5% of flattened cells, and nitric oxide synthase immunoreactivity was detected in 13.8% of fusiform cells, 1.1% of pyramidal cells and 4.2% of flattened cells that had projections to the nucleus tractus solitarii. Calbindin immunoreactivity was co-localised in major subpopulations of projection neurones of each morphological type that contained glutamate immunoreactivity, whereas co-localisation of nitric oxide synthase immunoreactivity in these neurones was relatively uncommon. The pyramidal cell was the only retrogradely labelled cell type found to be immunoreactive for substance P, but few (<5%) of these neurones were immunolabelled. These data are consistent with the hypothesis that lamina I neurones projecting to the dorsal vagal complex are not inhibitory, and that some of them, belonging mostly to the fusiform and pyramidal types, may exert excitatory, glutamate- or substance P-mediated effects upon inhibitory interneurones in the nucleus tractus solitarii. Such excitatory pathways could be involved in the attenuation of the reflex control of blood pressure by both painful and innocuous peripheral stimuli, such as those arising in injury and exercise.
Collapse
Affiliation(s)
- F O Gamboa-Esteves
- Institute for Cardiovascular Research, School of Medicine, University of Leeds, LS2 9JT, Leeds, UK
| | | | | | | | | |
Collapse
|
17
|
Stout SC, Owens MJ, Nemeroff CB. Neurokinin(1) receptor antagonists as potential antidepressants. Annu Rev Pharmacol Toxicol 2001; 41:877-906. [PMID: 11264480 DOI: 10.1146/annurev.pharmtox.41.1.877] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selective, nonpeptide antagonists for tachykinin receptors first became available ten years ago. Of the three known tachykinin receptors, drug development has focused most intensively on the substance P-preferring receptor, neurokinin(1) (NK(1)). Although originally studied as potential analgesic compounds, recent evidence suggests that NK(1) receptor antagonists may possess antidepressant and anxiolytic properties. If confirmed by further controlled clinical studies, this will represent a mechanism of action distinct from all existing antidepressant agents. As reviewed in this chapter, the existing preclinical and clinical literature is suggestive of, but not conclusive, concerning a role of substance P and NK(1) receptors in the pathophysiology of depression and/or anxiety disorders. The ongoing clinical trials with NK(1) receptor antagonists have served as an impetus for much needed, basic research in this field.
Collapse
Affiliation(s)
- S C Stout
- Laboratory of Neuropsychopharmacology, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|