1
|
Duy NN, Huong LTT, Ravel P, Huong LTS, Dwivedi A, Kister G, Gavotte L, Devaux CA, Thiem VD, Thanh NTH, Duong TN, Hien NT, Cornillot E, Frutos R. Monitoring the Influence of Hand, Foot, and Mouth Disease: New Guidelines on Patient Care during the 2011-2012 Multiwaves and Multivariant Outbreak in Hai Phong City, Vietnam. Pathogens 2024; 13:777. [PMID: 39338968 PMCID: PMC11435139 DOI: 10.3390/pathogens13090777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
From 2011 to 2012, Northern Vietnam suffered its first large-scale hand, foot, and mouth disease (HFMD) epidemic. Two sets of official guidelines were issued during the outbreak to handle the HFMD crisis. The city of Hai Phong was used as a model to analyze the impact of the released guidelines. A total of 9621 HFMD cases were reported in Hai Phong city from April 2011 to December 2012. Three distinct waves of HFMD occurred. Enterovirus A71 and Coxsackievirus A16 were successively associated with the epidemics. Two periods, before and after the guidelines' release, could be distinguished and characterized by different patient patterns. The time to admission and severity changed notably. Guideline publications help the health system refocus on the 0.5-3 years age group with the highest incidence of the disease. The three waves showed different special distribution, but the main routes of infection were rivers and local secondary roads, most likely through local trade and occupational movements of people.
Collapse
Affiliation(s)
- Nghia Ngu Duy
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi 100000, Vietnam; (N.N.D.); (L.T.T.H.); (V.D.T.); (N.T.H.T.); (T.N.D.); (N.T.H.)
| | - Le Thi Thanh Huong
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi 100000, Vietnam; (N.N.D.); (L.T.T.H.); (V.D.T.); (N.T.H.T.); (T.N.D.); (N.T.H.)
| | - Patrice Ravel
- Institut de Recherche en Cancérologie de Montpellier (U1194), IRCM, Université de Montpellier, Campus Val d’Aurelle, CEDEX 5, 34298 Montpellier, France; (P.R.); (A.D.); (E.C.)
| | - Le Thi Song Huong
- Hai Phong Preventive Medicine Center, Hai Phong City 180000, Vietnam;
| | - Ankit Dwivedi
- Institut de Recherche en Cancérologie de Montpellier (U1194), IRCM, Université de Montpellier, Campus Val d’Aurelle, CEDEX 5, 34298 Montpellier, France; (P.R.); (A.D.); (E.C.)
| | - Guilhem Kister
- Faculty of Pharmacy, University of Montpellier, 15 av Charles Flahault, BP14491, CEDEX 5, 34093 Montpellier, France;
| | - Laurent Gavotte
- Espace-DEV, Université de Montpellier, 500 Rue Jean François Breton, 34090 Montpellier, France;
| | | | - Vu Dinh Thiem
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi 100000, Vietnam; (N.N.D.); (L.T.T.H.); (V.D.T.); (N.T.H.T.); (T.N.D.); (N.T.H.)
| | - Nguyen Thi Hien Thanh
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi 100000, Vietnam; (N.N.D.); (L.T.T.H.); (V.D.T.); (N.T.H.T.); (T.N.D.); (N.T.H.)
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi 100000, Vietnam; (N.N.D.); (L.T.T.H.); (V.D.T.); (N.T.H.T.); (T.N.D.); (N.T.H.)
| | - Nguyen Tran Hien
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi 100000, Vietnam; (N.N.D.); (L.T.T.H.); (V.D.T.); (N.T.H.T.); (T.N.D.); (N.T.H.)
| | - Emmanuel Cornillot
- Institut de Recherche en Cancérologie de Montpellier (U1194), IRCM, Université de Montpellier, Campus Val d’Aurelle, CEDEX 5, 34298 Montpellier, France; (P.R.); (A.D.); (E.C.)
| | - Roger Frutos
- CIRAD, UMR 17, Intertryp, TA-A17/G, Campus International de Baillarguet, CEDEX 5, 34398 Montpellier, France
- Faculty of Medicine-Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
2
|
Zhou J, Zhao Y, Yang R, Zhang Z, Jin Y, Wang L, Huang M. Structure-based virtual screening and fragment replacement to design novel inhibitors of Coxsackievirus A16 (CVA16). J Biomol Struct Dyn 2023; 42:11677-11689. [PMID: 37811547 DOI: 10.1080/07391102.2023.2263890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
Numerous studies have shown that hand, foot and mouth disease (HFMD) pathogen Coxsackievirus A16 (CVA16) can also cause severe neurological complications and even death. Currently, there is no effective drugs and vaccines for CVA16. Therefore, developing a drug against CVA16 has become critical. In this study, we conducted two strategies-virtual screening (VS) and fragment replacement to obtain better candidates than the known drug GPP3. Through VS, 37 candidate drugs were screened (exhibiting a lower binding energy than GPP3). After toxicity evaluations, we obtained five candidates, analysed their binding modes and found that four candidates could enter the binding pocket of the GPP3. In another strategy, we analysed the four positions in GPP3 structures by the FragRep webserver and obtained a large number of candidates after replacing different functional groups, we obtained eight candidates (that target the four positions above) with the combined binding score and synthetic accessibility evaluations. AMDock software was uniformly utilized to perform molecular docking evaluation of the candidates with binding activity superior to that of GPP3. Finally, the selected top three molecules (Lapatinib, B001 and C001) and its interaction with CAV16 were validated by molecular dynamics (MD) simulation. The results indicated that all three molecules retain inside the pocket of CAV16 receptor throughout the simulation process, and he binding energy calculated from the MD simulation trajectories also support the strong affinity of the top three molecules towards the CVA16. These results will provide new ideas and technical guidance for designing and applying CVA16 therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yangyang Zhao
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ruizhe Yang
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhong Zhang
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Jin
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Wang
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Min Huang
- Department of Prevention and Healthcare, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Liu Q, Yan W, Qin C, Du M, Wang Y, Liu M, Liu J. Incidence and mortality trends of neglected tropical diseases and malaria in China and ASEAN countries from 1990 to 2019 and its association with the socio-demographic index. Glob Health Res Policy 2023; 8:22. [PMID: 37349771 PMCID: PMC10288805 DOI: 10.1186/s41256-023-00306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND People in China and the countries in the Association of Southeast Asian Nations (ASEAN) are affected by neglected tropical diseases and malaria (NTDM). In this study, we aimed to assess the current status and trends of NTDM burden from 1990 to 2019 in China and ASEAN countries, and also explore the association of NTDM burden with socio-demographic index (SDI). METHODS The data from the Global Burden of Diseases Study 2019 (GBD 2019) results were used. Absolute incidence and death number, and age-standardized incidence and mortality rate (ASIR and ASMR) of NTDM in China and ASEAN were extracted. The estimated annual percentage change (EAPC) and join-point regression in the rates quantified the trends. Nonlinear regression (second order polynomial) was used to explore the association between SDI and ASRs. RESULTS The ASIR of NTDM increased in China, Philippines, Singapore and Brunei, at a speed of an average 4.15% (95% CI 3.83-4.47%), 2.15% (1.68-2.63%), 1.03% (0.63-1.43%), and 0.88% (0.60-1.17%) per year. Uptrends of ASIR of NTDM in recent years were found in China (2014-2017, APC = 10.4%), Laos (2005-2013, APC = 3.9%), Malaysia (2010-2015, APC = 4.3%), Philippines (2015-2019, APC = 4.2%), Thailand (2015-2019, APC = 2.4%), and Vietnam (2014-2017, APC = 3.2%, all P < 0.05). Children < 5 had relatively low incidences but unexpectedly high mortality rates of NTDM in most ASEAN countries. Both incidence and mortality rates of NTDM were higher in older people. ASIR and ASMR of NTDM had a U-shaped association with SDI. CONCLUSIONS The burden of NTDM in China and ASEAN countries was still huge and affects vulnerable and impoverished populations' livelihoods, including children under the age of 5 and people aged 60 and older. Facing with the large burden and complex situation of NTDM in China and ASEAN countries, regional cooperating strategies are needed to reduce the burden of NTDM, so as to achieve the goal of elimination in the world.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Wenxin Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Chenyuan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yaping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, No. 5 Yiheyuan Road, Haidian, Beijing, 100871, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China.
- Institute for Global Health and Development, Peking University, No. 5 Yiheyuan Road, Haidian, Beijing, 100871, China.
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
4
|
Rajamoorthy Y, Tin OH, Taib NM, Munusamy S, Wagner AL, Mudatsir M, Khin AA, Anwar S, Sidique SF, Harapan H. Parents’ knowledge and awareness towards hand foot mouth disease in Malaysia: A survey in Selangor. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2022. [DOI: 10.1016/j.cegh.2022.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Swain SK, Gadnayak A, Mohanty JN, Sarangi R, Das J. Does enterovirus 71 urge for effective vaccine control strategies? Challenges and current opinion. Rev Med Virol 2022; 32:e2322. [PMID: 34997684 DOI: 10.1002/rmv.2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is an infectious virus affecting all age groups of people around the world. It is one of the major aetiologic agents for HFMD (hand, foot and mouth disease) identified globally. It has led to many outbreaks and epidemics in Asian countries. Infection caused by this virus that can lead to serious psychological problems, heart diseases and respiratory issues in children younger than 10 years of age. Many studies are being carried out on the pathogenesis of the virus, but little is known. The host immune response and other molecular responses against the virus are also not clearly determined. This review deals with the interaction between the host and the EV71 virus. We discuss how the virus makes use of its proteins to affect the host's immunity and how the viral proteins help their replication. Additionally, we describe other useful resources that enable the virus to evade the host's immune responses. The knowledge of the viral structure and its interactions with host cells has led to the discovery of various drug targets for the treatment of the virus. Additionally, this review focusses on the antiviral drugs and vaccines developed by targeting various viral surface molecules during their infectious period. Furthermore, it is asserted that the improvement of prevailing vaccines will be the simplest method to manage EV71 infection swiftly. Therefore, we summarise numerous vaccines candidate for the EV71, such as the use of an inactivated complete virus, recombinant VP1 protein, artificial peptides, VLPs (viral-like particles) and live attenuated vaccines for combating the viral outbreaks promptly.
Collapse
Affiliation(s)
- Subrat Kumar Swain
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Ayushman Gadnayak
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Jatindra Nath Mohanty
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Jayashankar Das
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
6
|
Xu B, Wang J, Yan B, Xu C, Yin Q, Yang D. Global spatiotemporal transmission patterns of human enterovirus 71 from 1963 to 2019. Virus Evol 2021; 7:veab071. [PMID: 36819972 PMCID: PMC9927877 DOI: 10.1093/ve/veab071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/24/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) can cause large outbreaks of hand, foot, and mouth disease (HFMD) and severe neurological diseases, which is regarded as a major threat to public health, especially in Asia-Pacific regions. However, the global spatiotemporal spread of this virus has not been identified. In this study, we used large sequence datasets and a Bayesian phylogenetic approach to compare the molecular epidemiology and geographical spread patterns of different EV71 subgroups globally. The study found that subgroups of HFMD presented global spatiotemporal variation, subgroups B0, B1, and B2 have caused early infections in Europe and America, and then subgroups C1, C2, C3, and C4 replaced B0-B2 as the predominant genotypes, especially in Asia-Pacific countries. The dispersal patterns of genotype B and subgroup C4 showed the complicated routes in Asia and the source might in some Asian countries, while subgroups C1 and C2 displayed more strongly supported pathways globally, especially in Europe. This study found the predominant subgroup of EV71 and its global spatiotemporal transmission patterns, which may be beneficial to reveal the long-term global spatiotemporal transmission patterns of human EV71 and carry out the HFMD vaccine development.
Collapse
Affiliation(s)
- Bing Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, 277, Yanta West Road, Xi’an, 710061, China
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
- Key Clinical Discipline by National Health Commission, 277, Yanta West Road, Xi’an, 710061, China
| | - Jinfeng Wang
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
| | - Bin Yan
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
| | - Chengdong Xu
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Qian Yin
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Deyan Yang
- College of Oceanography and Space Informatics, China University of Petroleum, 66 Changjiangxi Road, Huangdao District, Qingdao, 266580, China
| |
Collapse
|
7
|
Wang F, Qiang X, Jiang S, Shao J, Fang B, Zhou L. The fluid management and hemodynamic characteristics of PiCCO employed on young children with severe hand, foot, and mouth disease-a retrospective study. BMC Infect Dis 2021; 21:208. [PMID: 33632141 PMCID: PMC7905911 DOI: 10.1186/s12879-021-05889-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is an acute infectious disease caused by human enterovirus 71 (EV71), coxsackievirus, or echovirus, which is particularly common in preschool children. Severe HFMD is prone to cause pulmonary edema before progressing to respiratory and circulatory failure; thus hemodynamic monitoring and fluid management are important to the treatment process. METHODS We did a review of young patients who had been successfully treated in our department for severe HFMD, which had been caused by EV71. A total of 20 patients met the inclusion criteria. Eight cases were monitored by the pulse indicator continuous cardiac output (PiCCO) technique, and fluid management was administered according to its parameters. With regard to the treatment with PiCCO monitoring, patients were divided into two groups: the PiCCO group (8 patients) and the control group (12 patients). The groups were then compared comprehensively to evaluate whether PiCCO monitoring could improve patients' clinical outcomes. RESULTS After analysis, the findings informed that although PiCCO failed to shorten the length of ICU stay, reduce the days of vasoactive drug usage, or lower the number of cases which required mechanical ventilation, PiCCO did reduce the incidence of fluid overload (p = 0.085) and shorten the days of mechanical ventilation (p = 0.028). After effective treatment, PiCCO monitoring indicated that the cardiac index (CI) increased gradually(p < 0.0001), in contrast to their pulse (P, p < 0.0001), the extra vascular lung water index (EVLWI, p < 0.0001), the global end diastolic volume index (GEDVI, p = 0.0043), and the systemic vascular resistance index (SVRI, p < 0.0001), all of which decreased gradually. CONCLUSION Our study discovered that PiCCO hemodynamic monitoring in young children with severe HFMD has some potential benefits, such as reducing fluid overload and the duration of mechanical ventilation. However, whether it can ameliorate the severity of the disease, reduce mortality, or prevent multiple organ dysfunction remain to be further investigated.
Collapse
Affiliation(s)
- Fengyun Wang
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Lingnan Avenue North 81, Shiwan, Chancheng, Foshan, 528000, China
| | - Xinhua Qiang
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Lingnan Avenue North 81, Shiwan, Chancheng, Foshan, 528000, China
| | - Suhua Jiang
- Department of Pediatric Intensive Care Units, The First People's Hospital of Foshan, Foshan, China
| | - Jingsong Shao
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Lingnan Avenue North 81, Shiwan, Chancheng, Foshan, 528000, China
| | - Bin Fang
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Lingnan Avenue North 81, Shiwan, Chancheng, Foshan, 528000, China.
| | - Lixin Zhou
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Lingnan Avenue North 81, Shiwan, Chancheng, Foshan, 528000, China.
| |
Collapse
|
8
|
Luo C, Ma Y, Liu Y, Lv Q, Yin F. The burden of childhood hand-foot-mouth disease morbidity attributable to relative humidity: a multicity study in the Sichuan Basin, China. Sci Rep 2020; 10:19394. [PMID: 33173087 PMCID: PMC7656260 DOI: 10.1038/s41598-020-76421-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022] Open
Abstract
Hand, foot and mouth disease (HFMD) is a growing threat to children's health, causing a serious public health burden in China. The relationships between associated meteorological factors and HFMD have been widely studied. However, the HFMD burden due to relative humidity from the perspective of attributable risk has been neglected. This study investigated the humidity-HFMD relationship in three comprehensive perspectives, humidity-HFMD relationship curves, effect modification and attributable risks in the Sichuan Basin between 2011 and 2017. We used multistage analyses composed of distributed lag nonlinear models (DLNMs), a multivariate meta-regression model and the calculations of attributable risk to quantify the humidity-HFMD association. We observed a J-shaped pattern for the pooled cumulative humidity-HFMD relationship, which presented significant heterogeneity relating to the geographical region and number of primary school students. Overall, 27.77% (95% CI 25.24–30.02%) of HFMD infections were attributed to humidity. High relative humidity resulted in the greatest burden of HFMD infections. The proportion of high humidity-related HFMD in the southern basin was higher than that in the northern basin. The findings provide evidence from multiple perspectives for public health policy formulation and health resource allocation to develop priorities and targeted policies to ease the HFMD burden associated with humidity.
Collapse
Affiliation(s)
- Caiying Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaqiong Liu
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Qiang Lv
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Beclin1 Binds to Enterovirus 71 3D Protein to Promote the Virus Replication. Viruses 2020; 12:v12070756. [PMID: 32674313 PMCID: PMC7411969 DOI: 10.3390/v12070756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogen causing hand-foot-mouth disease (HFMD) in infants and children, which can also lead to severe neurological diseases and even death. Therefore, understanding the replication mechanism of EV71 is of great significance for the prevention and control of EV71-induced diseases. Beclin1 (BECN1, a mammalian homologue of ATG6 in yeast) is an important core protein for the initiation and the normal process of autophagy in cells. In addition to its involvement in autophagy, Beclin1 has also been reported to play an important role in cancer and innate immune signaling pathways. However, the role of Beclin1 in EV71 replication remains elusive. Here, we primarily found that Beclin1 facilitates EV71 replication in human rhabdomyosarcoma (RD) cells and the autophagy was actually induced, but Beclin1 was not significantly affected at either mRNA level or protein level during early EV71 infection. Further studies discovered that Beclin1 could interacts with EV71 non-structural protein 3D mainly through its evolutionary conserved domain (ECD) and coiled-coiled domain (CCD), thus promoting the replication of EV71 in human rhabdomyosarcoma (RD) cells and human astroglioma (U251) cells. Collectively, we reveal a novel regulatory mechanism associated with Beclin1 to promote EV71 replication, thus providing a potential therapeutic target for the prevention and control of EV71-associated diseases.
Collapse
|
10
|
Mandary MB, Masomian M, Ong SK, Poh CL. Characterization of Plaque Variants and the Involvement of Quasi-Species in a Population of EV-A71. Viruses 2020; 12:E651. [PMID: 32560288 PMCID: PMC7354493 DOI: 10.3390/v12060651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Viral plaque morphologies in human cell lines are markers for growth capability and they have been used to assess the viral fitness and selection of attenuated mutants for live-attenuated vaccine development. In this study, we investigate whether the naturally occurring plaque size variation reflects the virulence of the variants of EV-A71. Variants of two different plaque sizes (big and small) from EV-A71 sub-genotype B4 strain 41 were characterized. The plaque variants displayed different in vitro growth kinetics compared to the parental wild type. The plaque variants showed specific mutations being present in each variant strain. The big plaque variants showed four mutations I97L, N104S, S246P and N282D in the VP1 while the small plaque variants showed I97T, N237T and T292A in the VP1. No other mutations were detected in the whole genome of the two variants. The variants showed stable homogenous small plaques and big plaques, respectively, when re-infected in rhabdomyosarcoma (RD) and Vero cells. The parental strain showed faster growth kinetics and had higher viral RNA copy number than both the big and small plaque variants. Homology modelling shows that both plaque variants have differences in the structure of the VP1 protein due to the presence of unique spontaneous mutations found in each plaque variant This study suggests that the EV-A71 sub-genotype B4 strain 41 has at least two variants with different plaque morphologies. These differences were likely due to the presence of spontaneous mutations that are unique to each of the plaque variants. The ability to maintain the respective plaque morphology upon passaging indicates the presence of quasi-species in the parental population.
Collapse
Affiliation(s)
- Madiiha Bibi Mandary
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia; (M.B.M.); (M.M.)
| | - Malihe Masomian
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia; (M.B.M.); (M.M.)
| | - Seng-Kai Ong
- Department of Biological Science, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia; (M.B.M.); (M.M.)
| |
Collapse
|
11
|
Liu HB, Yu L, Zhang J, Huang XQ, Yang ZQ, Liao GY, Sun H, Ma SH. A 5-year molecular epidemiology survey of human enterovirus 71 before vaccine application in Yunnan Province, China. J Med Virol 2020; 92:1085-1092. [PMID: 31850595 DOI: 10.1002/jmv.25657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/11/2019] [Indexed: 01/22/2023]
Abstract
Enterovirus A71 (EV-A71) infection is known to cause hand, foot, and mouth disease (HFMD). Last year, an inactivated EV-A71 whole virus vaccine was used to prevent this disease in Yunnan, China. To obtain a viral genetic background for evaluating vaccine protection and monitor the adaptive evolution of the virus after the vaccination, a 5-year molecular epidemiology survey was performed before the vaccination. Twenty-six EV-A71 strains were separated from 561 stool specimens of patients with serious HFMD. The whole-genomic sequences of these strains were sequenced. Phylogenetic trees were constructed, and the mutation spectra were analyzed based on these viral sequences. There was no obvious mutation for the circular EV-A71 strains of the same year. Pathogenic EV-A71 strains may arise from a "subgroup" randomly each year. Whole-genomic analyses showed that a hotspot nonsynonymous substitution potentially affecting the immunogenicity of vaccines was found in the 2A gene, but not in genes of the viral capsid proteins, and the genetic diversity of whole viral genomes associated with the incidence of HFMD. Therefore, it will be valuable to monitor the genome-wide changes of EV-A71 to detect the adaptive mutations affecting immunogenicity or perform investigations using genetic diversity as a parameter.
Collapse
Affiliation(s)
- Hong-Bo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Liang Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Jie Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Xiao-Qin Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Zhao-Qing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Guo-Yang Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Shao-Hui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
12
|
Huang SW, Cheng D, Wang JR. Enterovirus A71: virulence, antigenicity, and genetic evolution over the years. J Biomed Sci 2019; 26:81. [PMID: 31630680 PMCID: PMC6802317 DOI: 10.1186/s12929-019-0574-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
As a neurotropic virus, enterovirus A71 (EV-A71) emerge and remerge in the Asia-Pacific region since the 1990s, and has continuously been a threat to global public health, especially in children. Annually, EV-A71 results in hand-foot-and-mouth disease (HFMD) and occasionally causes severe neurological disease. Here we reviewed the global epidemiology and genotypic evolution of EV-A71 since 1997. The natural selection, mutation and recombination events observed in the genetic evolution were described. In addition, we have updated the antigenicity and virulence determinants that are known to date. Understanding EV-A71 epidemiology, genetic evolution, antigenicity, and virulence determinants can expand our insights of EV-A71 pathogenesis, which may benefit us in the future.
Collapse
Affiliation(s)
- Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Dayna Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Jen-Ren Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, One, University Road, Tainan, 701, Taiwan. .,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
13
|
Enterovirus 71 3C Protease Does Not Disrupt Interferon Type I Signaling Pathway. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.91745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Huang R, Ning H, He T, Bian G, Hu J, Xu G. Impact of PM 10 and meteorological factors on the incidence of hand, foot, and mouth disease in female children in Ningbo, China: a spatiotemporal and time-series study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17974-17985. [PMID: 29961907 DOI: 10.1007/s11356-018-2619-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is a viral illness that is considered a critical public health challenge worldwide. Previous studies have demonstrated that meteorological parameters are significantly related to the incidence of HFMD in children; however, few studies have focused only on female children. This study quantified the associations of HFMD incidence with meteorological parameters and PM10 (particulate matter with an aerodynamic diameter of 10 μm) among female children. Data were collected on daily HFMD cases, meteorological variables, and PM10 levels in Ningbo, China, from January 2012 to December 2016. Data were assessed using a distributed lag nonlinear model (DLNM) with Poisson distribution. A total of 59,809 female children aged 0-15 years with HFMD were enrolled. The results showed that highest relative risk (RR) of HFMD for temperature was 3 °C and the lag effect was 3 days. The highest RR for PM10 was 80 mg/m3 and the lag effect was 5 days. Spatial analysis showed that female HFMD incidence was mainly concentrated in the suburban of Ningbo city indicating that female children in this area should be more paid attention on avoiding this disease outbreak. Our findings suggest that HFMD prevention strategies should focus more attention on local meteorological parameters.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China
| | - Huacheng Ning
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China
| | - Tianfeng He
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Guolin Bian
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Jianan Hu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan Province, China.
| | - Guozhang Xu
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China.
| |
Collapse
|
15
|
Apostol LN, Shimizu H, Suzuki A, Umami RN, Jiao MMA, Tandoc A, Saito M, Lupisan S, Oshitani H. Molecular characterization of enterovirus-A71 in children with acute flaccid paralysis in the Philippines. BMC Infect Dis 2019; 19:370. [PMID: 31046684 PMCID: PMC6498601 DOI: 10.1186/s12879-019-3955-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 04/08/2019] [Indexed: 12/03/2022] Open
Abstract
Background Several inactivated enterovirus-A71 (EV-A71) vaccines are currently licensed in China; however, the development of additional EV-A71 vaccines is ongoing, necessitating extensive analysis of the molecular epidemiology of the virus worldwide. Until 2012, laboratory confirmation of EV-A71 for hand, foot, and mouth disease (HFMD) and other associated diseases had not occurred in the Philippines. Because EV-A71 has been linked with cases of acute flaccid paralysis (AFP), AFP surveillance is one strategy for documenting its possible circulation in the country. To expand current knowledge on EV-A71, molecular epidemiologic analysis and genetic characterization of EV-A71 isolates were performed in this study. Methods A retrospective study was performed to identify and characterize nonpolio enteroviruses (NPEVs) associated with AFP in the Philippines, and nine samples were found to be EV-A71–positive. Following characterization of these EV-A71 isolates, the complete viral protein 1 (VP1) gene was targeted for phylogenetic analysis. Results Nine EV-A71 isolates detected in 2000 (n = 2), 2002 (n = 4), 2005 (n = 2), and 2010 (n = 1) were characterized using molecular methods. Genomic regions spanning the complete VP1 region were amplified and sequenced using specific primers. Phylogenetic analysis of the full-length VP1 region identified all nine EV-A71 Philippine isolates as belonging to the genogroup C lineage, specifically the C2 cluster. The result indicated a genetic linkage with several strains isolated in Japan and Taiwan, suggesting that strains in the C2 cluster identified in the Asia-Pacific region were circulating in the Philippines. Conclusion The study presents the genetic analysis of EV-A71 in the Philippines. Despite some limitations, the study provides additional genetic data on the circulating EV-A71 strains in the Asia-Pacific region, in which information on EV-A71 molecular epidemiology is incomplete. Considering that EV-A71 has a significant public health impact in the region, knowledge of its circulation in each country is important, especially for formulating vaccines covering a wide variety of strains.
Collapse
Affiliation(s)
- Lea Necitas Apostol
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines.
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Akira Suzuki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| | - Rifqiyah Nur Umami
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.,Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, 16911, Indonesia
| | - Maria Melissa Ann Jiao
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Amado Tandoc
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Mariko Saito
- Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| | - Socorro Lupisan
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| |
Collapse
|
16
|
Nie W, Zhao C, Guo X, Sun L, Meng T, Liu Y, Song X, Xu K, Wang J, Li J. Preparation and identification of chicken egg yolk immunoglobulins against human enterovirus 71 for diagnosis of hand-foot-and-mouth disease. Anal Biochem 2019; 573:44-50. [PMID: 30831098 DOI: 10.1016/j.ab.2019.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 01/29/2023]
Abstract
Human enterovirus 71 (EV71) is one of the major pathogens that causes hand-foot-and mouth disease, and there is an urgent need for rapid diagnosis of EV71 virus infection for early antiviral treatment. The aim of this study was to prepare chicken egg yolk immunoglobulin Y (IgY) for the diagnosis of enterovirus type 71 infection. The antibodies were raised by intramuscular immunization of laying hens with inactivated human EV71 and isolated from the egg yolk by multiple steps of polyethylene glycol 6000 extraction. The average concentration of IgY antibody was 26.60 mg/mL during the whole immunization. After the first immunization, the IgY titer gradually increased, and reached the peak on the 55th days. Meanwhile, the use of western blotting test demonstrated that specific IgY binds specifically to capsid proteins VP2 and VP3 of EV71 virus. Furthermore, a facile one-step method based on turn-on fluorescence sensing was developed by using IgY antibodies, which can detect EV71 virus at low concentrations of 104 PFU/mL and was 94.44% coincidence with RT-PCR in 30 clinical samples. These findings indicate that EV71-IgY antibodies are an easily prepared and rich source of antibodies that offers a potential alternative strategy for routine screening of EV71 infection.
Collapse
Affiliation(s)
- Wei Nie
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiaoxiao Guo
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Liwei Sun
- Research Laboratory, Changchun Children's Hospital, Changchun, Jilin, China
| | - Tingyu Meng
- Research Laboratory, Changchun Children's Hospital, Changchun, Jilin, China
| | - Yushen Liu
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiuling Song
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kun Xu
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Juan Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Noisumdaeng P, Korkusol A, Prasertsopon J, Sangsiriwut K, Chokephaibulkit K, Mungaomklang A, Thitithanyanont A, Buathong R, Guntapong R, Puthavathana P. Longitudinal study on enterovirus A71 and coxsackievirus A16 genotype/subgenotype replacements in hand, foot and mouth disease patients in Thailand, 2000-2017. Int J Infect Dis 2019; 80:84-91. [PMID: 30639624 DOI: 10.1016/j.ijid.2018.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/29/2018] [Accepted: 12/15/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the major causative agents of hand, foot and mouth disease (HFMD) worldwide, particularly in the Asia-Pacific region. Several strains have emerged, circulated, and faded out over time in recent decades. This study investigated the EV-A71 and CV-A16 circulating strains and replacement of genotypes/subgenotypes in Thailand during the years 2000-2017. METHODS The complete VP1 regions of 92 enteroviruses obtained from 90 HFMD patients, one asymptomatic adult contact case, and one encephalitic case were sequenced and investigated for serotypes, genotypes, and subgenotypes using a phylogenetic analysis. RESULTS The 92 enterovirus isolates were identified as 67 (72.8%) EV-A71 strains comprising subgenotypes B4, B5, C1, C2, C4a, C4b and C5, and 25 (27.2%) CV-A16 strains comprising subgenotypes B1a and B1b. Genotypic/subgenotypic replacements were evidenced during the study period. EV-A71 B5 and C4a have been the major circulating strains in Thailand for more than a decade, and CV-A16 B1a has been circulating for almost two decades. CONCLUSIONS This study provides chronological data on the molecular epidemiology of EV-A71 and CV-A16 subgenotypes in Thailand. Subgenotypic replacement frequently occurred with EV-A71, but not CV-A16. Monitoring for viral genetic and subgenotypic changes is important for molecular diagnosis, vaccine selection, and vaccine development.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University (Rangsit Center), Khlong Luang, Pathum Thani 12121, Thailand
| | - Achareeya Korkusol
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand
| | - Jarunee Prasertsopon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kantima Sangsiriwut
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand
| | - Anek Mungaomklang
- Debaratana Nakhon Ratchasima Hospital, Ministry of Public Health, Nakhon Ratchasima 30280, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rome Buathong
- Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Pilaipan Puthavathana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand; Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
18
|
Rasti M, Khanbabaei H, Teimoori A. An update on enterovirus 71 infection and interferon type I response. Rev Med Virol 2019; 29:e2016. [PMID: 30378208 PMCID: PMC7169063 DOI: 10.1002/rmv.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Enteroviruses are members of Pichornaviridae family consisting of human enterovirus group A, B, C, and D as well as nonhuman enteroviruses. Hand, foot, and mouth disease (HFMD) is a serious disease which is usually seen in the Asia-Pacific region in children. Enterovirus 71 and coxsackievirus A16 are two important viruses responsible for HFMD which are members of group A enterovirus. IFN α and β are two cytokines, which have a major activity in the innate immune system against viral infections. Most of the viruses have some weapons against these cytokines. EV71 has two main proteases called 2A and 3C, which are important for polyprotein processing and virus maturation. Several studies have indicated that they have a significant effect on different cellular pathways such as interferon production and signaling pathway. The aim of this study was to investigate the latest findings about the interaction of 2A and 3C protease of EV71 and IFN production/signaling pathway and their inhibitory effects on this pathway.
Collapse
Affiliation(s)
- Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hashem Khanbabaei
- Medical Physics Department, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ali Teimoori
- Department of Virology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
19
|
Noisumdaeng P, Sangsiriwut K, Prasertsopon J, Klinmalai C, Payungporn S, Mungaomklang A, Chokephaibulkit K, Buathong R, Thitithanyanont A, Puthavathana P. Complete genome analysis demonstrates multiple introductions of enterovirus 71 and coxsackievirus A16 recombinant strains into Thailand during the past decade. Emerg Microbes Infect 2018; 7:214. [PMID: 30552334 PMCID: PMC6294798 DOI: 10.1038/s41426-018-0215-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/03/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
Abstract
Hand, foot, and mouth disease (HFMD) caused by enteroviruses remains a public health threat, particularly in the Asia-Pacific region during the past two decades. Moreover, the introduction of multiple subgenotypes and the emergence of recombinant viruses is of epidemiological importance. Based on either the full genome or VP1 sequences, 32 enteroviruses (30 from HFMD patients, 1 from an encephalitic patient, and 1 from an asymptomatic contact case) isolated in Thailand between 2006 and 2014 were identified as 25 enterovirus 71 (EV71) isolates (comprising 20 B5, 1 C2, 2 C4a, and 2 C4b subgenotypes) and 7 coxsackievirus A16 (CA16) isolates (comprising 6 B1a and 1 B1b subgenotypes). The EV71 subgenotype C4b was introduced into Thailand for the first time in 2006 and was replaced by subgenotype C4a strains in 2009. Phylogenetic, similarity plot and bootscan analyses of the complete viral genomes identified 12 recombinant viruses among the 32 viral isolates. Only one EV71-B5 isolate out of 20 was a recombinant virus with one region of intratypic or intertypic recombination, while all four EV71-C4 isolates were recombinant viruses having undergone double recombination, and all seven CA16 isolates were recombinant viruses. The recombination breakpoints of these recombinants are located solely within the P2 and P3 regions. Surveillance for circulating strains and subgenotype replacement are important with respect to molecular epidemiology and the selection of the upcoming EV71 vaccine. In addition, the clinical importance of recombinant viruses needs to be further explored.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University (Rangsit center), Khlong Luang, Pathum Thani, 12121, Thailand
| | - Kantima Sangsiriwut
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, 10700, Thailand
| | - Jarunee Prasertsopon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon, Pathom, 73170, Thailand
| | - Chompunuch Klinmalai
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anek Mungaomklang
- Debaratana Nakhon Ratchasima Hospital, Ministry of Public Health, Nakhon Ratchasima, 30280, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, 10700, Thailand
| | - Rome Buathong
- Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon, Pathom, 73170, Thailand. .,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, 10700, Thailand.
| |
Collapse
|
20
|
Immunocompetent and Immunodeficient Mouse Models for Enterovirus 71 Pathogenesis and Therapy. Viruses 2018; 10:v10120674. [PMID: 30487421 PMCID: PMC6316343 DOI: 10.3390/v10120674] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research.
Collapse
|
21
|
Siji Antiviral Mixture Protects against CA16 Induced Brain Injury through Inhibiting PERK/STAT3/NF- κB Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8475463. [PMID: 30186868 PMCID: PMC6116463 DOI: 10.1155/2018/8475463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/21/2018] [Accepted: 07/11/2018] [Indexed: 01/21/2023]
Abstract
Coxsackievirus 16 (CA16) causes hand, foot, and mouth disease (HFMD) in young children and infants, and it can lead to fatal neurological complications. This study investigated antiviral effects of Siji Antiviral Mixture (SAM) on CA16 in neonatal mice and the protective effects of SAM on CA16 induced brain injuries. Neonatal BALB/c mice and SH-SY5Y cells were used and injected with CA16 stains to study the efficacy. ELISA and Western blotting were used to measure the cytokines levels and proteins expression. Genes transduction was also used to verify interaction mechanism. As the results shown, SAM could reduce the clinical scores at the beginning and delay disease development in vivo. Treatment with SAM decreased the levels of LDH, CK-MB, caspase 3 and Bax, ER stress, and inflammatory reaction induced by CA16 infection. Further siRNA transfection results showed that CA16 induced ER stress and inflammatory reaction through PERK/STAT3/NF-κB signaling and the protective effects of SAM might be through inhibiting PERK/STAT3/NF-κB signaling. HPLC analysis showed fingerprint profiles of SAM had 42 chromatographic peaks. Collectively, our study highlighted distinct roles of SAM in inhibiting CA16 infection and brain injury. The molecular mechanism of SAM might be through inhibiting PERK/STAT3/NF-κB signaling.
Collapse
|
22
|
The impact of hand, foot and mouth disease control policies in Singapore: A qualitative analysis of public perceptions. J Public Health Policy 2018; 38:271-287. [PMID: 28533530 PMCID: PMC7099256 DOI: 10.1057/s41271-017-0066-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hand foot and mouth disease (HFMD) is a widespread pediatric disease in Asia. Most cases are relatively mild and caused by Coxsackie viruses, but in epidemics caused by Enterovirus 71, severe complications can occur. In response to the deaths of dozens of children in a 1997 outbreak (Podin in BMC Public Health 6:180,1 Abubakar in Virus Res 61(1):1-9,2 WHO in3), Singapore practices childcare centre surveillance, case-isolation, and short-term closure of centres. We conducted 44 in-depth interviews with teachers, principals, and parents at four childcare centres in Singapore to better understand experiences with current control policies. We used applied thematic analysis to identify recurrent and unique themes. Participants were conflicted by perceiving HFMD as a severe illness and reported a sense of helplessness when hygiene and social-isolation efforts failed. They perceived that severity of HFMD influenced Singapore's choice of existing policies despite a lack of evidence of their effectiveness. Documenting stakeholders' perspectives clarifies the impact of control measures and how to communicate policy changes.
Collapse
|
23
|
Chen D, Tian X, Zou X, Xu S, Wang H, Zheng N, Wu Z. Harmine, a small molecule derived from natural sources, inhibits enterovirus 71 replication by targeting NF-κB pathway. Int Immunopharmacol 2018; 60:111-120. [DOI: 10.1016/j.intimp.2018.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 01/24/2023]
|
24
|
Hu Y, Zeng G, Chu K, Zhang J, Han W, Zhang Y, Li J, Zhu F. Five-year immunity persistence following immunization with inactivated enterovirus 71 type (EV71) vaccine in healthy children: A further observation. Hum Vaccin Immunother 2018; 14:1517-1523. [PMID: 29482422 PMCID: PMC6037439 DOI: 10.1080/21645515.2018.1442997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
The longevity of antibodies induced by inactivated enterovirus 71 type (EV71) vaccine is not well studied. To estimate the immunity persistence following two-dose vaccination of EV71 vaccine, a five-year follow-up study was conducted as an extension of a Phase III clinical trial. In this study, a sub-cohort of volunteers who was eligible for enrollment and randomly administrated either 2 dose EV71 vaccine or placebo in the phase III clinical trial was selected, and then further observed 64 months post the 1st vaccination. 211 Subjects (106 vaccine subjects and 105 placebo subjects) who provided a full series of blood samples (at all the sampling points) were included in the final analyzed population. Seropositive rate (SR) and geometric mean titer (GMT) of the neutralizing antibodies (NAb) was calculated to detect the dynamic profiles of EV71 vaccine-induced immunogenicity. SR at the 5th year remained 94.34% in the vaccine subjects, with a GMT of 141.42. The SR was 71.43% in the placebo subjects, with a GMT of 71.83. Despite natural infection consistently promoted the NAb increase in the placebo subjects, the SR and GMT in vaccine subjects remained significantly higher than that in the placebo subjects at all the sampling points. The inactivated EV71 vaccine-induced immunity had a good persistence, within 5 years following the primary vaccination.
Collapse
Affiliation(s)
- Yuemei Hu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Gang Zeng
- Sinovac Biotech Co., LTD., Beijing, China
- Beijing Engineering Research Center, Beijing, China
| | - Kai Chu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Jing Zhang
- Sheyang County Center for Disease Control and Prevention, China
| | | | - Ying Zhang
- Sinovac Biotech Co., LTD., Beijing, China
| | - Jing Li
- Sinovac Biotech Co., LTD., Beijing, China
| | - Fengcai Zhu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
25
|
Thanongsaksrikul J, Srimanote P, Tongtawe P, Glab-Ampai K, Malik AA, Supasorn O, Chiawwit P, Poovorawan Y, Chaicumpa W. Identification and production of mouse scFv to specific epitope of enterovirus-71 virion protein-2 (VP2). Arch Virol 2018; 163:1141-1152. [PMID: 29356992 DOI: 10.1007/s00705-018-3731-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/19/2017] [Indexed: 12/01/2022]
Abstract
Enterovirus-71 (EV71) and coxsackievirus-A16 (CA16) frequently cause hand-foot-mouth disease (HFMD) epidemics among infants and young children. CA16 infections are usually mild, while EV71 disease may be fatal due to neurologic complications. As such, the ability to rapidly and specifically recognize EV71 is needed to facilitate proper case management and epidemic control. Accordingly, the aim of this study was to generate antibodies to EV71-virion protein-2 (VP2) by phage display technology for further use in specific detection of EV71. A recombinant peptide sequence of EV71-VP2, carrying a predicted conserved B cell epitope fused to glutathione-S-transferase (GST) (designated GST-EV71-VP2/131-160), was produced. The fusion protein was used as bait in in-solution biopanning to separate protein-bound phages from a murine scFv (MuscFv) phage display library constructed from an immunoglobulin gene repertoire from naïve ICR mice. Three phage-transformed E. coli clones (clones 63, 82, and 83) produced MuscFvs that bound to the GST-EV71-VP2/131-160 peptide. The MuscFv of clone 83 (MuscFv83), which produced the highest ELISA signal to the target antigen, was further tested. MuscFv83 also bound to full-length EV71-VP2 and EV71 particles, but did not bind to GST, full-length EV71-VP1, or the antigenically related CA16. MuscFv83 could be a suitable reagent for rapid antigen-based immunoassay, such as immunochromatography (ICT), for the specific detection and/or diagnosis of EV71 infection as well as epidemic surveillance.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus Infections/diagnosis
- Enterovirus Infections/virology
- Epitopes/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Escherichia coli/genetics
- Hand, Foot and Mouth Disease/diagnosis
- Hand, Foot and Mouth Disease/virology
- Humans
- Mice
- Mice, Inbred ICR
- Peptide Library
- Recombinant Fusion Proteins/immunology
- Single-Chain Antibodies/biosynthesis
- Single-Chain Antibodies/immunology
Collapse
Affiliation(s)
- Jeeraphong Thanongsaksrikul
- Graduate Programme in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand.
| | - Potjanee Srimanote
- Graduate Programme in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Pongsri Tongtawe
- Graduate Programme in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Kittirat Glab-Ampai
- Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Nakhon Pathom, Thailand
| | - Oratai Supasorn
- Graduate Programme in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Phatcharaporn Chiawwit
- Graduate Programme in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, 99 Moo 18 Paholyothin Road, Klong Luang, Rangsit, Pathum Thani, 12120, Thailand
| | - Yong Poovorawan
- Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| |
Collapse
|
26
|
Association of Interleukin-17F gene polymorphisms with susceptibility to severe enterovirus 71 infection in Chinese children. Arch Virol 2018; 163:1933-1939. [PMID: 29549443 PMCID: PMC7086816 DOI: 10.1007/s00705-018-3807-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/06/2018] [Indexed: 11/06/2022]
Abstract
Enterovirus 71 (EV71) is a single-strand RNA virus that causes hand, foot and mouth disease (HFMD) in infants and young children, leading to neurological complications with significant morbidity and mortality. Unfortunately, the pathogenesis of EV71 infection is not well understood. In this study, we investigated the IL-17F rs1889570 and rs4715290 gene polymorphisms in a Chinese Han population. Severe cases and cases with EV71 encephalitis had a significantly higher frequency of the rs1889570 T/T genotype and T allele. The serum IL-17F levels in rs1889570 T/T and C/T genotypes were also significantly elevated when compared to C/C genotypes. However, there was no significant difference observed in rs4715290 genotype distribution and allele frequency. These findings suggest that IL-17F rs1889570 gene polymorphisms are significantly associated with the susceptibility to severe EV71 infection in Chinese Han children.
Collapse
|
27
|
Wang C, Zhou S, Xue W, Shen L, Huang W, Zhang Y, Li X, Wang J, Zhang H, Ma X. Comprehensive virome analysis reveals the complexity and diversity of the viral spectrum in pediatric patients diagnosed with severe and mild hand-foot-and-mouth disease. Virology 2018; 518:116-125. [PMID: 29471150 DOI: 10.1016/j.virol.2018.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
The management of hand-foot-and-mouth disease(HFMD) epidemic is difficult due to the frequent emergence of non-EV71 and non-CVA16 enteroviruses and some cases testing negative for HFMD-associated causative agents. To clarify the virus spectrum of mild and severe HFMD, a comprehensive virome analysis of 238 samples was performed using next-generation sequencing (NGS). The data revealed total thirteen mammalian- and plant- virus families and diverse viral populations including enteroviruses, common respiratory viruses, diarrhea-related viruses, plant viruses and anelloviruses. A total of 18 viruses from 7 virus families were identified in severe cases, versus 37 viruses from 12 virus families in mild cases. Moreover, complicated mixed-infections of enteroviruses with common respiratory viruses were mainly found in severe cases(P = 0.013), while diarrhea-related viruses were mainly found in mild cases(P < 0.001). This study provides the preliminary understanding of viromes both in mild and severe cases, which may benefit the detection of etiologic agents and prevention of HFMD.
Collapse
Affiliation(s)
- Chunhua Wang
- National Institutes for Food and Drug Control, Beijing 100050, China; Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuaifeng Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, 410005, China
| | - Wanhua Xue
- Dezhou People's Hospital, Dezhou, Shandong, 253056, China
| | - Liang Shen
- Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wei Huang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, 410005, China
| | - Yi Zhang
- Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xuguang Li
- Biologics and Genetic Therapies Directorate, Health Canada, Tunney's Pasture, Ottawa, AL 2201C, Canada
| | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Hong Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, 410005, China.
| | - Xuejun Ma
- Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
28
|
Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP. Immunopathogenesis and Virus-Host Interactions of Enterovirus 71 in Patients with Hand, Foot and Mouth Disease. Front Microbiol 2017; 8:2249. [PMID: 29238324 PMCID: PMC5713468 DOI: 10.3389/fmicb.2017.02249] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Enterovirus 71 (EV71) is a global infectious disease that affects millions of people. The virus is the main etiological agent for hand, foot, and mouth disease with outbreaks and epidemics being reported globally. Infection can cause severe neurological, cardiac, and respiratory problems in children under the age of 5. Despite on-going efforts, little is known about the pathogenesis of EV71, how the host immune system responds to the virus and the molecular mechanisms behind these responses. Moreover, current animal models remain limited, because they do not recapitulate similar disease patterns and symptoms observed in humans. In this review the role of the host-viral interactions of EV71 are discussed together with the various models available to examine: how EV71 utilizes its proteins to cleave host factors and proteins, aiding virus replication; how EV71 uses its own viral proteins to disrupt host immune responses and aid in its immune evasion. These discoveries along with others, such as the EV71 crystal structure, have provided possible targets for treatment and drug interventions.
Collapse
Affiliation(s)
- Jonathan A. Cox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Julian A. Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Mong-How Ooi
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Samarahan, Malaysia
- Department of Paediatrics, Sarawak General Hospital, Kuching, Malaysia
| | - Lisa F. P. Ng
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| |
Collapse
|
29
|
Zhang Y, Ke X, Zheng C, Liu Y, Xie L, Zheng Z, Wang H. Development of a luciferase-based biosensor to assess enterovirus 71 3C protease activity in living cells. Sci Rep 2017; 7:10385. [PMID: 28871120 PMCID: PMC5583365 DOI: 10.1038/s41598-017-10840-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 11/23/2022] Open
Abstract
Enterovirus 71 (EV71) is a major pathogen of hand, foot, and mouth disease (HFMD). To date, no antiviral drug has been approved to treat EV71 infection. Due to the essential role that EV71 3 C protease (3Cpro) plays in the viral life cycle, it is generally considered as a highly appealing target for antiviral drug development. In this study, we present a transgene-encoded biosensor that can accurately, sensitively and quantitatively report the proteolytic activity of EV71 3Cpro. This biosensor is based on the catalyzed activity of a pro-interleukin (IL)-1β-enterovirus 3Cpro cleavage site-Gaussia Luciferase (GLuc) fusion protein that we named i-3CS-GLuc. GLuc enzyme is inactive in the fusion protein because of aggregation caused by pro-IL-1β. However, the 3Cpro of EV71 and other enteroviruses, such as coxsackievirus A9 (CVA9), coxsackievirus B3 (CVB3), and poliovirus can recognize and process the canonical enterovirus 3Cpro cleavage site between pro-IL-1β and GLuc, thereby releasing and activating GLuc and resulting in increased luciferase activity. The high sensitivity, ease of use, and applicability as a transgene in cell-based assays of i-3CS-GLuc biosensor make it a powerful tool for studying viral protease proteolytic events in living cells and for achieving high-throughput screening of antiviral agents.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xianliang Ke
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China
| | - Caishang Zheng
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China
| | - Yan Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Li Xie
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
30
|
Duy NN, Huong LTT, Ravel P, Huong LTS, Dwivedi A, Sessions OM, Hou Y, Chua R, Kister G, Afelt A, Moulia C, Gubler DJ, Thiem VD, Thanh NTH, Devaux C, Duong TN, Hien NT, Cornillot E, Gavotte L, Frutos R. Valine/isoleucine variants drive selective pressure in the VP1 sequence of EV-A71 enteroviruses. BMC Infect Dis 2017; 17:333. [PMID: 28482808 PMCID: PMC5422960 DOI: 10.1186/s12879-017-2427-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 04/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In 2011-2012, Northern Vietnam experienced its first large scale hand foot and mouth disease (HFMD) epidemic. In 2011, a major HFMD epidemic was also reported in South Vietnam with fatal cases. This 2011-2012 outbreak was the first one to occur in North Vietnam providing grounds to study the etiology, origin and dynamic of the disease. We report here the analysis of the VP1 gene of strains isolated throughout North Vietnam during the 2011-2012 outbreak and before. METHODS The VP1 gene of 106 EV-A71 isolates from North Vietnam and 2 from Central Vietnam were sequenced. Sequence alignments were analyzed at the nucleic acid and protein level. Gene polymorphism was also analyzed. A Factorial Correspondence Analysis was performed to correlate amino acid mutations with clinical parameters. RESULTS The sequences were distributed into four phylogenetic clusters. Three clusters corresponded to the subgenogroup C4 and the last one corresponded to the subgenogroup C5. Each cluster displayed different polymorphism characteristics. Proteins were highly conserved but three sites bearing only Isoleucine (I) or Valine (V) were characterized. The isoleucine/valine variability matched the clusters. Spatiotemporal analysis of the I/V variants showed that all variants which emerged in 2011 and then in 2012 were not the same but were all present in the region prior to the 2011-2012 outbreak. Some correlation was found between certain I/V variants and ethnicity and severity. CONCLUSIONS The 2011-2012 outbreak was not caused by an exogenous strain coming from South Vietnam or elsewhere but by strains already present and circulating at low level in North Vietnam. However, what triggered the outbreak remains unclear. A selective pressure is applied on I/V variants which matches the genetic clusters. I/V variants were shown on other viruses to correlate with pathogenicity. This should be investigated in EV-A71. I/V variants are an easy and efficient way to survey and identify circulating EV-A71 strains.
Collapse
Affiliation(s)
- Nghia Ngu Duy
- National Institute of Hygiene and Epidemiology, 1 Pho Yersin Street, Hanoi, 10000, Vietnam. .,University of Montpellier, ISEM, CC063, Place E. Bataillon, 34095, Montpellier Cedex 5, France. .,Cirad, UMR 17, Intertryp, TA-A17/G, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France.
| | - Le Thi Thanh Huong
- National Institute of Hygiene and Epidemiology, 1 Pho Yersin Street, Hanoi, 10000, Vietnam
| | - Patrice Ravel
- Institut de Recherche en Cancérologie de Montpellier (U1194), Campus Val d'Aurelle, 34298, Montpellier Cedex 5, France
| | | | - Ankit Dwivedi
- Institut de Biologie Computationnelle, MMVE, La Galera, CC6005, 95 rue de la Galera, 34095, Montpellier, France
| | | | - Yan'An Hou
- DUKE-NUS Graduate Medical School, 8 College Road, Singapore, Singapore
| | - Robert Chua
- DUKE-NUS Graduate Medical School, 8 College Road, Singapore, Singapore
| | - Guilhem Kister
- Faculty of Pharmacy, University of Montpellier, 15 av Charles Flahault, BP14491, 34093, Montpellier Cedex 5, France
| | - Aneta Afelt
- Faculty of Geography and Regional Studies, University of Warsaw, Krakowskie Przedmiescie 26/28, 00-927, Warsaw, Poland
| | - Catherine Moulia
- University of Montpellier, ISEM, CC063, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Duane J Gubler
- DUKE-NUS Graduate Medical School, 8 College Road, Singapore, Singapore
| | - Vu Dinh Thiem
- National Institute of Hygiene and Epidemiology, 1 Pho Yersin Street, Hanoi, 10000, Vietnam
| | - Nguyen Thi Hien Thanh
- National Institute of Hygiene and Epidemiology, 1 Pho Yersin Street, Hanoi, 10000, Vietnam
| | - Christian Devaux
- Institut de Recherche pour le Développement (IRD), Le Sextant, 44, bd de Dunkerque, CS 90009, 13572, Marseille cedex 02, France
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, 1 Pho Yersin Street, Hanoi, 10000, Vietnam
| | - Nguyen Tran Hien
- National Institute of Hygiene and Epidemiology, 1 Pho Yersin Street, Hanoi, 10000, Vietnam
| | - Emmanuel Cornillot
- Institut de Recherche en Cancérologie de Montpellier (U1194), Campus Val d'Aurelle, 34298, Montpellier Cedex 5, France.,Institut de Biologie Computationnelle, MMVE, La Galera, CC6005, 95 rue de la Galera, 34095, Montpellier, France
| | - Laurent Gavotte
- University of Montpellier, ISEM, CC063, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Roger Frutos
- Cirad, UMR 17, Intertryp, TA-A17/G, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France. .,Université de Montpellier, IES - Institut d'Electronique et des Systèmes, UMR 5214, CNRS-UM, 860 rue St. Priest, Bt. 5, 34095, Montpellier, France.
| |
Collapse
|
31
|
Feng C, Fu Y, Chen D, Wang H, Su A, Zhang L, Chang L, Zheng N, Wu Z. miR-127-5p negatively regulates enterovirus 71 replication by directly targeting SCARB2. FEBS Open Bio 2017; 7:747-758. [PMID: 28593131 PMCID: PMC5458453 DOI: 10.1002/2211-5463.12197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/27/2016] [Accepted: 01/16/2017] [Indexed: 12/27/2022] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent of hand‐foot‐and‐mouth disease in young children and can cause severe cerebral and pulmonary complications and even fatality. This study aimed at elucidating whether and how EV71 infection is regulated by a cellular microRNA, miR‐127‐5p. We found that miR‐127‐5p can downregulate the expression of SCARB2, a main receptor of EV71, by targeting two potential sites in its 3′ UTR region and inhibit EV71 infection. Meanwhile, miR‐127‐5p expression was upregulated during EV71 infection. Notably, transfecting cells with miR‐127‐5p mimics led to a significant decrease in viral replication, while inhibition of endogenous miR‐127‐5p facilitated viral replication. Furthermore, our evidence showed that miR‐127‐5p did not affect postentry viral replication. Taken together, these results indicated that miR‐127‐5p inhibited EV71 replication by targeting the SCARB2 mRNA.
Collapse
Affiliation(s)
- Chunhong Feng
- Center for Public Health Research Medical School Nanjing University China.,School of life sciences Nanjing University China
| | - Yuxuan Fu
- Center for Public Health Research Medical School Nanjing University China
| | - Deyan Chen
- Center for Public Health Research Medical School Nanjing University China
| | - Huanru Wang
- Center for Public Health Research Medical School Nanjing University China
| | - Airong Su
- Center for Public Health Research Medical School Nanjing University China
| | - Li Zhang
- Center for Public Health Research Medical School Nanjing University China
| | - Liang Chang
- Center for Public Health Research Medical School Nanjing University China
| | - Nan Zheng
- Center for Public Health Research Medical School Nanjing University China.,State Key Lab of Analytical Chemistry for Life Science Nanjing University China.,Medical School and Jiangsu Key Laboratory of Molecular Medicine Nanjing University China
| | - Zhiwei Wu
- Center for Public Health Research Medical School Nanjing University China.,State Key Lab of Analytical Chemistry for Life Science Nanjing University China.,Medical School and Jiangsu Key Laboratory of Molecular Medicine Nanjing University China
| |
Collapse
|
32
|
Zhou JF, Chen ZY, Yang SM, Chen JZ, Zhou LY, Wang YF, Wang G, Yu XJ, Zhang WH. Clinical Features and Peripheral Blood T Lymphocyte Subsets in Hand, Foot, and Mouth Disease According to Different Pathogens. Indian J Pediatr 2017; 84:124-127. [PMID: 27465820 DOI: 10.1007/s12098-016-2198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 07/07/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the changes in lymphocyte subsets that are caused by infection with different pathogens in children with hand, foot, and mouth disease. METHODS T lymphocyte subsets were measured in the patients' peripheral blood, and serum, throat swab, and fecal samples were tested for enterovirus. RESULTS Fecal and throat swab samples exhibited similar positive detection rates, and were significantly more likely to be positive, compared to serum samples (P < 0.01). The EV71-positive group exhibited significantly lower CD4 + TM cell counts (QR: 1.058), compared to the CD4 + TM cell counts in the CoxA16-positive group (QR: 1.391; P < 0.05). CONCLUSIONS Throat swab and fecal samples exhibited significantly higher positive detection rates, compared to serum samples. In addition, EV71-infected children exhibited significantly lower CD4+ T-cell counts, compared to CoxA16-infected children, which suggests that EV71 infection may be associated with a poorer prognosis.
Collapse
Affiliation(s)
- Jian-Fang Zhou
- Department of Infectious Diseases, Fenghua People's Hospital, Fenghua, Zhejiang Province, 315500, China.
| | - Zhi-Yong Chen
- Department of Infectious Diseases, The Affiliated Huashan Hospital of Fudan University, Shanghai, China
| | - Shan-Ming Yang
- Department of Infectious Diseases, Fenghua People's Hospital, Fenghua, Zhejiang Province, 315500, China
| | - Jia-Zhen Chen
- Department of Infectious Diseases, Fenghua People's Hospital, Fenghua, Zhejiang Province, 315500, China
| | - Ling-Ye Zhou
- Department of Infectious Diseases, Fenghua People's Hospital, Fenghua, Zhejiang Province, 315500, China
| | - Ya-Fen Wang
- Department of Infectious Diseases, Fenghua People's Hospital, Fenghua, Zhejiang Province, 315500, China
| | - Gang Wang
- Department of Infectious Diseases, Fenghua People's Hospital, Fenghua, Zhejiang Province, 315500, China
| | - Xia-Jian Yu
- Department of Infectious Diseases, Fenghua People's Hospital, Fenghua, Zhejiang Province, 315500, China
| | - Wen-Hong Zhang
- Department of Infectious Diseases, The Affiliated Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
33
|
Jetsadawisut W, Nutho B, Meeprasert A, Rungrotmongkol T, Kungwan N, Wolschann P, Hannongbua S. Susceptibility of inhibitors against 3C protease of coxsackievirus A16 and enterovirus A71 causing hand, foot and mouth disease: A molecular dynamics study. Biophys Chem 2016; 219:9-16. [PMID: 27668727 DOI: 10.1016/j.bpc.2016.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 10/21/2022]
Abstract
Hand foot and mouth disease (HFMD) epidemic has occurred in many countries. Coxsackievirus A16 (CV-A16) and Enterovirus A71 (EV-A71) are the main causes of HFMD. Up to now, there are no anti-HFMD drugs available. Rupintrivir, a broad-spectrum inhibitor, is a drug candidate for HFMD treatment, while other HFMD inhibitors designed from several studies have a relatively low efficiency. Therefore, in this work we aim to study the binding mechanisms of rupintrivir and a peptidic α,β-unsaturated ethyl ester (SG85) against both CV-A16 and EV-A71 3C proteases (3Cpro) using all-atoms molecular dynamics simulation. The obtained results indicate that SG85 shows a stronger binding affinity than rupintrivir against CV-A16. Both inhibitors exhibit a comparable affinity against EV-A71 3Cpro. The molecular information of the binding of the two inhibitors to the proteases will be elucidated. Thus, it is implied that these two compounds may be used as leads for further anti-HFMD drug design and development.
Collapse
Affiliation(s)
- W Jetsadawisut
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - B Nutho
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - A Meeprasert
- Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - T Rungrotmongkol
- Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - N Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200, Thailand
| | - P Wolschann
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria; Institute of Theoretical Chemistry, University of Vienna, Vienna 1090, Austria
| | - S Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
34
|
Chen X, Qin B, Shi M, Zhu L, Sun M, Liu X, Zhang J. Immunoreactivity Analysis of the Nonstructural Proteins of Human Enterovirus 71. Viral Immunol 2016; 30:106-110. [PMID: 27870604 DOI: 10.1089/vim.2016.0110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human enterovirus 71 (EV-A71) is one of the main etiological agents of hand, foot, and mouth disease (HFMD), which has been prevalent mainly in the Asia-Pacific region in the past several decades. The nonstructural proteins of EV-A71 will be expressed significantly during viral replication in host cells after EV-A71 infection. For the determination of the antibodies response against nonstructural proteins of EV-A71, in this study, the complete 2ABC, 3ABC, and 3D proteins were expressed in Escherichia coli and were then studied for their immunoreactivity by immunoblot assay and indirect enzyme-linked immunosorbent assay (ELISA), respectively. Three His-tagged fusion proteins were expressed effectively in E. coli, which were in agreement with the expected molecular mass. The results from immunoblot assay and indirect ELISA showed that all three purified fusion proteins can react with IgG antibodies from EV-A71-infected patients, but can hardly be recognized by IgG antibodies derived from mice or rabbits immunized by inactivated EV-A71 virus particles. The IgG antibody response against nonstructural proteins of EV-A71 is associated with viral infection or replication, which indicate that these nonstructural proteins could be used as candidate antigen for early diagnosis of EV-A71 infection, or to distinguish the EV-A71-specific antibodies after viral infection from inactivated vaccine immunization.
Collapse
Affiliation(s)
- Xuyan Chen
- 1 Department of Laboratory Medicine, School of Medicine, Shaoxing University , Shaoxing, Zhejiang, People's Republic of China
| | - Bo Qin
- 2 Clinical Laboratory Center , Shaoxing People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Min Shi
- 1 Department of Laboratory Medicine, School of Medicine, Shaoxing University , Shaoxing, Zhejiang, People's Republic of China
| | - Longying Zhu
- 1 Department of Laboratory Medicine, School of Medicine, Shaoxing University , Shaoxing, Zhejiang, People's Republic of China
| | - Menglin Sun
- 1 Department of Laboratory Medicine, School of Medicine, Shaoxing University , Shaoxing, Zhejiang, People's Republic of China
| | - Xufeng Liu
- 1 Department of Laboratory Medicine, School of Medicine, Shaoxing University , Shaoxing, Zhejiang, People's Republic of China
| | - Jianhua Zhang
- 1 Department of Laboratory Medicine, School of Medicine, Shaoxing University , Shaoxing, Zhejiang, People's Republic of China
| |
Collapse
|
35
|
SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication. J Virol 2016; 90:10472-10485. [PMID: 27630238 DOI: 10.1128/jvi.01756-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against enteroviruses may be developed. As a dynamic cellular process of posttranslational modification, SUMOylation regulates global cellular protein localization, interaction, stability, and enzymatic activity. However, little is known concerning how SUMOylation directly influences virus replication by targeting viral polymerase. Here, we found that EV71 polymerase 3D was SUMOylated during EV71 infection and in vitro Moreover, the SUMOylation sites were determined, and in vitro polymerase assays indicated that mutations at SUMOylation sites could impair polymerase synthesis. Importantly, 3D is ubiquitinated in a SUMOylation-dependent manner that enhances the stability of the viral polymerase. Our findings indicate that the two modifications likely cooperatively enhance virus replication. Our study may offer a new therapeutic strategy against virus replication.
Collapse
|
36
|
Aw-Yong KL, Sam IC, Koh MT, Chan YF. Immunodominant IgM and IgG Epitopes Recognized by Antibodies Induced in Enterovirus A71-Associated Hand, Foot and Mouth Disease Patients. PLoS One 2016; 11:e0165659. [PMID: 27806091 PMCID: PMC5091889 DOI: 10.1371/journal.pone.0165659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/26/2016] [Indexed: 01/20/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). Unlike other enteroviruses that cause HFMD, EV-A71 is more frequently associated with severe neurological complications and fatality. To date, no effective licensed antivirals are available to combat EV-A71 infection. Little is known about the immunogenicity of viral non-structural proteins in humans. Previous studies have mainly focused on characterization of epitopes of EV-A71 structural proteins by using immunized animal antisera. In this study, we have characterized human antibody responses against the structural and non-structural proteins of EV-A71. Each viral protein was cloned and expressed in either bacterial or mammalian systems, and tested with antisera by western blot. Results revealed that all structural proteins (VP1-4), and non-structural proteins 2A, 3C and 3D were targets of EV-A71 IgM, whereas EV-A71 IgG recognized all the structural and non-structural proteins. Sixty three synthetic peptides predicted to be immunogenic in silico were synthesized and used for the characterization of EV-A71 linear B-cell epitopes. In total, we identified 22 IgM and four IgG dominant epitopes. Synthetic peptide PEP27, corresponding to residues 142-156 of VP1, was identified as the EV-A71 IgM-specific immunodominant epitope. PEP23, mapped to VP1 41-55, was recognized as the EV-A71 IgG cross-reactive immunodominant epitope. The structural protein VP1 is the major immunodominant site targeted by anti-EV-A71 IgM and IgG antibodies, but epitopes against non-structural proteins were also detected. These data provide new understanding of the immune response to EV-A71 infection, which benefits the development of diagnostic tools, potential therapeutics and subunit vaccine candidates.
Collapse
Affiliation(s)
- Kam Leng Aw-Yong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mia Tuang Koh
- Department of Paediatrics, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Lin H, Huang L, Zhou J, Lin K, Wang H, Xue X, Xia C. Efficacy and safety of interferon-α2b spray in the treatment of hand, foot, and mouth disease: a multicenter, randomized, double-blind trial. Arch Virol 2016; 161:3073-80. [PMID: 27518403 DOI: 10.1007/s00705-016-3012-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/07/2016] [Indexed: 12/22/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a common infectious enterovirus disease, occurring mostly in infants and children younger than 7 years with potentially fatal complications. Therefore, we evaluated the clinical efficacy and safety of recombinant human interferon (IFN)-α2b spray for treating mild HFMD in 400 patients in a randomized, open, controlled clinical trial. The patients were randomized to the IFN-α2b spray and placebo groups, and their temperature, skin rash, oral lesions, and appetite were monitored, while pathogen levels and safety were evaluated with a 7-day follow-up. The mean age of the patients was 20.1 ± 10.2 months. The median duration of fever, oral ulcers or vesicles (or both), and skin rash in addition to median time to regain appetite in the IFN-α2b spray group were shorter than they were in the placebo group. The number of virus-positive cases differed statistically between the two groups for the three follow-up detections. Additionally, the incidences of adverse events (AEs) and severe AEs (SAEs) were not significantly different between the two groups, and the SAEs were evidently unrelated to the IFN-α2b spray or placebo. Therefore, the IFN-α2b spray is suitable for topical treatment of HFMD, and it rapidly relieved fever, promoted oral lesions and subsidence of rash, enhanced appetite, promoted disease recovery, and was safe for application.
Collapse
Affiliation(s)
- Hailong Lin
- Department of Pediatric Infection, The Second Affiliated Hospital of Wenzhou Medical University, 109th Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Leting Huang
- Department of Pediatric Infection, The Second Affiliated Hospital of Wenzhou Medical University, 109th Xueyuanxi Road, Wenzhou, Zhejiang, China
| | - Jian Zhou
- Department of Pediatrics, The first people's Hospital of Yongkang, Jinhua, China
| | - Kaichun Lin
- Department of Pediatrics, The first people's Hospital of Yongkang, Jinhua, China
| | - Hongjiao Wang
- Department of Pediatrics, The Affiliated Children's Hospital of Zhejiang University Medical College, Hangzhou, China
| | - Xia Xue
- Department of Pediatrics, The Affiliated Children's Hospital of Zhejiang University Medical College, Hangzhou, China
| | - Chan Xia
- Department of Pediatric Infection, The Second Affiliated Hospital of Wenzhou Medical University, 109th Xueyuanxi Road, Wenzhou, Zhejiang, China.
| |
Collapse
|
38
|
Nonlinear and Interactive Effects of Temperature and Humidity on Childhood Hand, Foot and Mouth Disease in Hefei, China. Pediatr Infect Dis J 2016; 35:1086-91. [PMID: 27276180 DOI: 10.1097/inf.0000000000001238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Hand, foot and mouth disease (HFMD) is one of the major infectious diseases among children and remains a health threat, especially among Asian countries. Many epidemiologic studies suggested significant association of air temperature and humidity with childhood HFMD; however, evidence on the temperature effects on childhood HFMD in temperate cities is limited, and the interactive effects of temperature and humidity have not been studied yet. METHODS Daily counts of HFMD in children younger than 15 years of age and daily meteorologic variables during 2010 to 2012 were obtained in Hefei, China. A distributed lag nonlinear model was applied to estimate the potential nonlinear association between temperature and childhood HFMD. The interactive effects between temperature and humidity on childhood HFMD were also investigated. RESULTS Temperature rise was associated with higher risk of childhood HFMD. Within the incubation period of HFMD, temperature rise appeared to have the acute effects on childhood HFMD, and a 5°C increase of temperature at lag 0-6 days was associated with 24.8% (95% confidence interval: 11.94%-39.10%) increase of childhood HFMD. Females and children of 0-4 years of agewere more vulnerable to temperature rise. Notably, there were obvious combined effects between temperature and humidity on childhood HFMD-the risk of childhood HFMD elevated at higher temperature and humidity level. CONCLUSIONS This study provides evidence that temperature and humidity may jointly affect childhood HFMD, and such interactive impact needs to be considered when evaluating the temperature-childhood HFMD relationship.
Collapse
|
39
|
Xu F, Zhao X, Hu S, Li J, Yin L, Mei S, Liu T, Wang Y, Ren L, Cen S, Zhao Z, Wang J, Jin Q, Liang C, Ai B, Guo F. Amphotericin B Inhibits Enterovirus 71 Replication by Impeding Viral Entry. Sci Rep 2016; 6:33150. [PMID: 27608771 PMCID: PMC5016833 DOI: 10.1038/srep33150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 12/03/2022] Open
Abstract
Enterovirus 71 (EV71) infection causes hand-foot-and-mouth disease that leads to cardiopulmonary complications and death in young children. There is thus an urgent need to find new treatments to control EV71 infection. In this study, we report potent inhibition of EV71 by a polyene antibiotic Amphotericin B. Amphotericin B profoundly diminished the expression of EV71 RNA and viral proteins in the RD cells and the HEK293 cells. As a result, EV71 production was inhibited by Amphotericin B with an EC50 (50% effective concentration) of 1.75 μM in RD cells and 0.32 μM in 293 cells. In addition to EV71, EV68 was also strongly inhibited by Amphotericin B. Results of mechanistic studies revealed that Amphotericin B targeted the early stage of EV71 infection through impairing the attachment and internalization of EV71 by host cells. As an effective anti-fungi drug, Amphotericin B thus holds the promise of formulating a novel therapeutic to treat EV71 infection.
Collapse
Affiliation(s)
- Fengwen Xu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xiaoxiao Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Siqi Hu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jian Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Lijuan Yin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Mei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Tingting Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ying Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Chen Liang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Lady Davis Institute, Jewish General Hospital, Montreal, Qc, Canada H3T 1E2
| | - Bin Ai
- Department of Medical Oncology, Beijing Hospital, Beijing, P. R. China
| | - Fei Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
40
|
Zhao G, Zhang X, Wang C, Wang G, Li F. Characterization of VP1 sequence of Coxsackievirus A16 isolates by Bayesian evolutionary method. Virol J 2016; 13:130. [PMID: 27464503 PMCID: PMC4963925 DOI: 10.1186/s12985-016-0578-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/29/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Coxsackievirus A16 (CV-A16), a major etiopathologic cause of pediatric hand, foot, and mouth disease (HFMD) worldwide, has been reported to have caused several fatalities. Revealing the evolutionary and epidemiologic dynamics of CV-A16 across time and space is central to understanding its outbreak potential. METHODS In this study, we isolated six CV-A16 strains in China's Jilin province and construct a maximum clade credibility (MCC) tree for CV-A16 VP1 gene by the Bayesian Markov Chain Monte Carlo method using 708 strains from GenBank with epidemiological information. The evolution characteristics of CV-A16 VP1 gene was also analysed dynamicly through Bayesian skyline plot. RESULTS All CV-A16 strains identified could be classified into five major genogroups, denoted by GI-GV. GIV and GV have co-circulated in China since 2007, and the CV-A16 epidemic strain isolated in the Jilin province, China, can be classified as GIV-3. The CV-A16 genogroups circulating recently in China have the same ancestor since 2007. The genetic diversity of the CV-A16 VP1 gene shows a continuous increase since the mid-1990s, with sharp increases in genetic diversity in 1997 and 2007 and reached peak in 2007. Very low genetic diversity existed after 2010. The CV-A16 VP1 gene evolutionary rate was 6.656E-3 substitutions per site per year. CONCLUSIONS We predicted the dynamic phylogenetic trends, which indicate outbreak trends of CV-A16, and provide theoretical foundations for clinical prevention and treatment of HFMD which caused by a CV-A16.
Collapse
Affiliation(s)
- Guolian Zhao
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, Norman Bethune College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China
| | - Xun Zhang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, Norman Bethune College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China
| | - Changmin Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, Norman Bethune College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, Norman Bethune College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, Norman Bethune College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
41
|
Effects of Meteorological Parameters and PM10 on the Incidence of Hand, Foot, and Mouth Disease in Children in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13050481. [PMID: 27171104 PMCID: PMC4881106 DOI: 10.3390/ijerph13050481] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a globally-prevalent infectious disease. However, few data are available on prevention measures for HFMD. The purpose of this investigation was to evaluate the impacts of temperature, humidity, and air pollution, particularly levels of particulate matter with an aerodynamic diameter 10 micrometers (PM10), on the incidence of HFMD in a city in Eastern China. Daily morbidity, meteorological, and air pollution data for Ningbo City were collected for the period from January 2012 to December 2014. A total of 86,695 HFMD cases were enrolled in this study. We used a distributed lag nonlinear model (DLNM) with Poisson distribution to analyze the nonlinear lag effects of daily mean temperature, daily humidity, and found significant relationships with the incidence of HFMD; in contrast, PM10 level showed no relationship to the incidence of HFMD. Our findings will facilitate the development of effective preventive measures and early forecasting of HFMD outbreaks.
Collapse
|
42
|
Liao J, Yu S, Yang F, Yang M, Hu Y, Zhang J. Short-Term Effects of Climatic Variables on Hand, Foot, and Mouth Disease in Mainland China, 2008-2013: A Multilevel Spatial Poisson Regression Model Accounting for Overdispersion. PLoS One 2016; 11:e0147054. [PMID: 26808311 PMCID: PMC4726563 DOI: 10.1371/journal.pone.0147054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/28/2015] [Indexed: 11/19/2022] Open
Abstract
Background Hand, Foot, and Mouth Disease (HFMD) is a worldwide infectious disease. In China, many provinces have reported HFMD cases, especially the south and southwest provinces. Many studies have found a strong association between the incidence of HFMD and climatic factors such as temperature, rainfall, and relative humidity. However, few studies have analyzed cluster effects between various geographical units. Methods The nonlinear relationships and lag effects between weekly HFMD cases and climatic variables were estimated for the period of 2008–2013 using a polynomial distributed lag model. The extra-Poisson multilevel spatial polynomial model was used to model the exact relationship between weekly HFMD incidence and climatic variables after considering cluster effects, provincial correlated structure of HFMD incidence and overdispersion. The smoothing spline methods were used to detect threshold effects between climatic factors and HFMD incidence. Results The HFMD incidence spatial heterogeneity distributed among provinces, and the scale measurement of overdispersion was 548.077. After controlling for long-term trends, spatial heterogeneity and overdispersion, temperature was highly associated with HFMD incidence. Weekly average temperature and weekly temperature difference approximate inverse “V” shape and “V” shape relationships associated with HFMD incidence. The lag effects for weekly average temperature and weekly temperature difference were 3 weeks and 2 weeks. High spatial correlated HFMD incidence were detected in northern, central and southern province. Temperature can be used to explain most of variation of HFMD incidence in southern and northeastern provinces. After adjustment for temperature, eastern and Northern provinces still had high variation HFMD incidence. Conclusion We found a relatively strong association between weekly HFMD incidence and weekly average temperature. The association between the HFMD incidence and climatic variables spatial heterogeneity distributed across provinces. Future research should explore the risk factors that cause spatial correlated structure or high variation of HFMD incidence which can be explained by temperature. When analyzing association between HFMD incidence and climatic variables, spatial heterogeneity among provinces should be evaluated. Moreover, the extra-Poisson multilevel model was capable of modeling the association between overdispersion of HFMD incidence and climatic variables.
Collapse
Affiliation(s)
- Jiaqiang Liao
- West China School of Public Health, Sichuan University, Chengdu, Sichuan Province, China
| | - Shicheng Yu
- Office of Epidemiology, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Fang Yang
- West China School of Public Health, Sichuan University, Chengdu, Sichuan Province, China
| | - Min Yang
- West China School of Public Health, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuehua Hu
- Office of Epidemiology, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Juying Zhang
- West China School of Public Health, Sichuan University, Chengdu, Sichuan Province, China
- * E-mail:
| |
Collapse
|
43
|
Abstract
We have identified circulation of 3 genogroups of enterovirus (EV) A71 in India. A new genogroup (proposed designation G) was discovered during this study. We isolated genogroups D and G in wide geographic areas but detected subgenogroup C1 only in 1 focus in western India. A systematic nationwide search for EV-A71 is warranted.
Collapse
|
44
|
Lei X, Cui S, Zhao Z, Wang J. Etiology, pathogenesis, antivirals and vaccines of hand, foot, and mouth disease. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Hand, foot, and mouth disease (HFMD), caused by enteroviruses, is a syndrome characterized by fever with vesicular eruptions mainly on the skin of the hands, feet, and oral cavity. HFMD primarily affects infants and young children. Although infection is usually self-limited, severe neurological complications in the central nervous system can present in some cases, which can lead to death. Widespread infection of HFMD across the Asia-Pacific region over the past two decades has made HFMD a major public health challenge, ranking first among the category C notifiable communicable diseases in China every year since 2008. This review summarizes our understanding of HFMD, focusing on the etiology and pathogenesis of the disease, as well as on progress toward antivirals and vaccines. The review also discusses the implications of these studies as they relate to the control and prevention of the disease.
Collapse
Affiliation(s)
- Xiaobo Lei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
45
|
Jia R, Chengjun S, Heng C, Chen Z, Yuanqian L, Yongxin L. Microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse-transcription polymerase chain reaction for the rapid detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens. J Sep Sci 2015; 38:2538-44. [PMID: 25953405 DOI: 10.1002/jssc.201500165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/18/2015] [Accepted: 04/24/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Ruan Jia
- West China School of Public Health; Sichuan University; Chengdu China
| | - Sun Chengjun
- West China School of Public Health; Sichuan University; Chengdu China
- Sichuan Province Key Laboratory of Food Safety Monitoring and Risk Assessment; Chengdu China
| | - Chen Heng
- Department of Microbiological Experiment; Chengdu Center for Disease Control and Prevention; Chengdu China
| | - Zhou Chen
- West China School of Public Health; Sichuan University; Chengdu China
| | - Li Yuanqian
- West China School of Public Health; Sichuan University; Chengdu China
| | - Li Yongxin
- West China School of Public Health; Sichuan University; Chengdu China
- Sichuan Province Key Laboratory of Food Safety Monitoring and Risk Assessment; Chengdu China
| |
Collapse
|
46
|
Zeng H, Lu J, Zheng H, Yi L, Guo X, Liu L, Rutherford S, Sun L, Tan X, Li H, Ke C, Lin J. The Epidemiological Study of Coxsackievirus A6 revealing Hand, Foot and Mouth Disease Epidemic patterns in Guangdong, China. Sci Rep 2015; 5:10550. [PMID: 25993899 PMCID: PMC4440203 DOI: 10.1038/srep10550] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/17/2015] [Indexed: 12/22/2022] Open
Abstract
Enterovirus A71 (EVA71) and Coxsackievirus A16 (CVA16) are regarded as the two major causative pathogens in hand, foot and mouth disease (HFMD) epidemics. However, CVA6, previously largely ignored, became the predominant pathogen in China in 2013. In this study, we describe the epidemiological trendsofCVA6 during the annual HFMD outbreaks from 2008 to 2013 in Guangdong, China. The study results show that CVA6 has been one of three major causative agents of HFMD epidemics since 2009. The periodic rotation and dominance of the three pathogens, EVA71, CVA16 and CVA6, may have contributed to the continuously increasing HFMD epidemics. Moreover, phylogenetic analysis of the VP1 gene shows that major circulating CVA6 strains collected from 2009 to 2013 are distinct from the earlier strains collected before 2009. In conclusion, the discovery from this research investigating epidemiological trends of CVA6 from 2008 to 2013 explains the possible pattern of the continuous HFMD epidemic in China. The etiological change pattern also highlights the need for improvement for pathogen surveillance and vaccine strategies for HFMD control in China.
Collapse
Affiliation(s)
- Hanri Zeng
- 1] Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China [2] WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou, 511430, China
| | - Jing Lu
- 1] Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China [2] Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China [3] WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou, 511430, China
| | - Huanying Zheng
- 1] Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China [2] WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou, 511430, China
| | - Lina Yi
- 1] Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China [2] Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China [3] WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou, 511430, China
| | - Xue Guo
- 1] Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China [2] WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou, 511430, China
| | - Leng Liu
- 1] Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China [2] WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou, 511430, China
| | - Shannon Rutherford
- Centre for Environment and Population Health, Nathan campus, Griffith University, 170 Kessels Road, Nathan Brisbane, Queensland 4111, Australia
| | - Limei Sun
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaohua Tan
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Hui Li
- 1] Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China [2] WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou, 511430, China
| | - Changwen Ke
- 1] Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China [2] WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou, 511430, China
| | - Jinyan Lin
- 1] Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China [2] WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou, 511430, China
| |
Collapse
|
47
|
Neglected tropical diseases among the Association of Southeast Asian Nations (ASEAN): overview and update. PLoS Negl Trop Dis 2015; 9:e0003575. [PMID: 25880767 PMCID: PMC4400050 DOI: 10.1371/journal.pntd.0003575] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ten member states of the Association of Southeast Asian Nations (ASEAN) constitute an economic powerhouse, yet these countries also harbor a mostly hidden burden of poverty and neglected tropical diseases (NTDs). Almost 200 million people live in extreme poverty in ASEAN countries, mostly in the low or lower middle-income countries of Indonesia, the Philippines, Myanmar, Viet Nam, and Cambodia, and many of them are affected by at least one NTD. However, NTDs are prevalent even among upper middle-income ASEAN countries such as Malaysia and Thailand, especially among the indigenous populations. The three major intestinal helminth infections are the most common NTDs; each helminthiasis is associated with approximately 100 million infections in the region. In addition, more than 10 million people suffer from either liver or intestinal fluke infections, as well as schistosomiasis and lymphatic filariasis (LF). Intestinal protozoan infections are widespread, while leishmaniasis has emerged in Thailand, and zoonotic malaria (Plasmodium knowlesi infection) causes severe morbidity in Malaysia. Melioidosis has emerged as an important bacterial NTD, as have selected rickettsial infections, and leptospirosis. Leprosy, yaws, and trachoma are still endemic in focal areas. Almost 70 million cases of dengue fever occur annually in ASEAN countries, such that this arboviral infection is now one of the most common and economically important NTDs in the region. A number of other arboviral and zoonotic viral infections have also emerged, including Japanese encephalitis; tick-borne viral infections; Nipah virus, a zoonosis present in fruit bats; and enterovirus 71 infection. There are urgent needs to expand surveillance activities in ASEAN countries, as well as to ensure mass drug administration is provided to populations at risk for intestinal helminth and fluke infections, LF, trachoma, and yaws. An ASEAN Network for Drugs, Diagnostics, Vaccines, and Traditional Medicines Innovation provides a policy framework for the development of new control and elimination tools. Together with prominent research institutions and universities, the World Health Organization (WHO), and its regional offices, these organizations could implement important public health improvements through NTD control and elimination in the coming decade.
Collapse
|
48
|
Tsou YL, Lin YW, Shao HY, Yu SL, Wu SR, Lin HY, Liu CC, Huang C, Chong P, Chow YH. Recombinant adeno-vaccine expressing enterovirus 71-like particles against hand, foot, and mouth disease. PLoS Negl Trop Dis 2015; 9:e0003692. [PMID: 25855976 PMCID: PMC4391779 DOI: 10.1371/journal.pntd.0003692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/10/2015] [Indexed: 12/24/2022] Open
Abstract
Enterovirus 71 (EV71) and coxsackieviruses (CV) are the major causative agents of hand, foot and mouth disease (HFMD). There is not currently a vaccine available against HFMD, even though a newly developed formalin-inactivated EV71 (FI-EV71) vaccine has been tested in clinical trial and has shown efficacy against EV71. We have designed and genetically engineered a recombinant adenovirus Ad-EVVLP with the EV71 P1 and 3CD genes inserted into the E1/E3-deleted adenoviral genome. Ad-EVVLP were produced in HEK-293A cells. In addition to Ad-EVVLP particles, virus-like particles (VLPs) formed from the physical association of EV71 capsid proteins, VP0, VP1, and VP3 expressed from P1 gene products. They were digested by 3CD protease and confirmed to be produced by Ad-EVVLP-producing cells, as determined using transmission electron microscopy and western blotting. Mouse immunogenicity studies showed that Ad-EVVLP-immunized antisera neutralized the EV71 B4 and C2 genotypes. Activation of VLP-specific CD4+ and CD8+/IFN-γ T cells associated with Th1/Th2-balanced IFN-ɣ, IL-17, IL-4, and IL-13 was induced; in contrast, FI-EV71 induced only Th2-mediated neutralizing antibody against EV71 and low VLP-specific CD4+ and CD8+ T cell responses. The antiviral immunity against EV71 was clearly demonstrated in mice vaccinated with Ad-EVVLP in a hSCARB2 transgenic (hSCARB2-Tg) mouse challenge model. Ad-EVVLP-vaccinated mice were 100% protected and demonstrated reduced viral load in both the CNS and muscle tissues. Ad-EVVLP successfully induced anti-CVA16 immunities. Although antisera had no neutralizing activity against CVA16, the 3C-specific CD4+ and CD8+/IFN-γ T cells were identified, which could mediate protection against CVA16 challenge. FI-EV71 did not induce 3C-mediated immunity and had no efficacy against the CVA16 challenge. These results suggest that Ad-EVVLP can enhance neutralizing antibody and protective cellular immune responses to prevent EV71 infection and cellular immune responses against CV infection.
Collapse
Affiliation(s)
- Yueh-Liang Tsou
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Wen Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiao-Yun Shao
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Ling Yu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Hsiao-Yu Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Chyi Liu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chieh Huang
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pele Chong
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
49
|
Proteomic analysis of human brain microvascular endothelial cells reveals differential protein expression in response to enterovirus 71 infection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:864169. [PMID: 25821824 PMCID: PMC4363668 DOI: 10.1155/2015/864169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/16/2015] [Indexed: 11/18/2022]
Abstract
2D DIGE technology was employed on proteins prepared from human brain microvascular endothelial cells (HBMEC), to study the differentially expressed proteins in cells at 0 h, 1 h, 16 h, and 24 h after infection. Proteins found to be differentially expressed were identified with matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDITOF/TOF MS) analysis. We identified 43 spots showing changes of at least 2.5 fold up- or downregulated expressions in EV71-infected cells at different time when comparing to control, and 28 proteins could be successfully identified by MALDI TOF/TOF mass spectrometry analysis. 4 proteins were significantly upregulated, and 6 proteins were downregulated, another 18 proteins were different expression at different incubation time. We identified changes in the expression of 12 cellular metabolism-related proteins, 5 molecules involved in cytoskeleton, 3 molecules involved in energy metabolism, 2 molecules involved in signal transduction, 1 molecule involved in the ubiquitin-proteasome pathway, 1 molecule involved in cell cycle, 1 molecule involved in apoptosis-related protein, 1 molecular chaperone, and 2 unknown proteins. These findings build up a comprehensive profile of the HBMEC proteome and provide a useful basis for further analysis of the pathogenic mechanism that underlies EV71 infections to induce severe neural complications.
Collapse
|
50
|
Case-fatality of hand, foot and mouth disease associated with EV71: a systematic review and meta-analysis. Epidemiol Infect 2015; 143:3094-102. [DOI: 10.1017/s095026881500028x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYHand, foot and mouth disease (HFMD) associated with enterovirus 71 (EV71) is a growing public health concern. This study aimed to estimate the case-fatality of HFMD associated with EV71 on the basis of a meta-analysis. We searched PubMed, Cochrane, Web of Science, Elsevier, CNKI, Wanfang, and VIP databases. Two authors independently selected relevant studies. The pooled estimate of case-fatality was calculated using a random-effects model. Potential sources of heterogeneity were explored using subgroup analysis, sensitivity analysis and meta-regression. We identified 14 eligible studies with a total population of 112 546. The random-effects pooled case-fatality was 1·7% (95% confidence interval 1·2–2·4). The funnel plot was asymmetrical. The estimate of case-fatality was highest in mainland China (1·8%). Removal of eight local Chinese studies decreased the original estimate. The pooled case-fatality in the period of 1998–2007 (1·5%) was lower than that in the period 2008–2012 (1·8%). Control measures for HFMD associated with EV71 are essential because of the increased case-fatality over time, especially in East Asia.
Collapse
|