1
|
Anderson CE, Hernandez J, Hanif S, Owens L, Crider Y, Billington SL, Lepech M, Boehm AB, Benjamin-Chung J. Evaluating the survival and removal of Escherichia coli from surfaces made with traditional and sustainable cement-based materials in field-relevant conditions. Appl Environ Microbiol 2025; 91:e0213124. [PMID: 40062896 PMCID: PMC12016513 DOI: 10.1128/aem.02131-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/18/2025] [Indexed: 04/24/2025] Open
Abstract
Soil household floors are common in low- and middle-income countries (LMICs) and can serve as reservoirs of enteric pathogens. Cement-based floors may interrupt pathogen transmission, but little is known about pathogen survival or removal from cement-based surfaces. This study investigated the survival of Escherichia coli, an indicator of fecal contamination, on cement-based surfaces and evaluated its reduction through common household activities (mopping, sweeping, and walking). We compared E. coli fate on three mixes: (i) ordinary Portland cement (OPC) concrete (used in the United States), (ii) OPC mortar (used in Bangladesh), and (iii) OPC mortar with fly ash (a sustainable alternative to the Bangladesh mix). Additionally, we compared outcomes on cement-based surfaces with and without soil and at two temperatures representing the dry and wet seasons in Bangladesh. After 4 hours on the cement-based surfaces, E. coli decayed more than 1.1 log10(C/Co) under all conditions tested, which is significantly faster than in bulk soils. The higher temperature increased the decay rate constant (P = 5.56 × 10-8) while soil presence decreased it (P = 2.80 × 10-6). Sweeping and mopping resulted in high levels of removal for all mixes, with a mean removal of 71% and 78%, respectively, versus 22% for walking. The concrete and mortar mix designs did not impact E. coli survival or removal (P > 0.20). Cement-based floors made with a fly ash mix performed similarly to traditional cement-based floors, supporting their potential use as a more sustainable intervention to reduce fecal contamination in rural LMIC household settings. IMPORTANCE Cement-based surfaces may serve as a health intervention to reduce the fecal-oral transmission of pathogens in household settings, but there is a critical lack of evidence about the fate of indicator organisms on these surfaces, especially in field-relevant conditions. This study provides some of the first insights into Escherichia coli survival on cement-based surfaces and the effectiveness of daily activities for removing E. coli. Additionally, this study explores the fate of E. coli on cement-based surfaces made with fly ash (which contributes fewer CO2 emissions) versus traditional cement mixes. We found that E. coli had similar survival and removal efficiencies across all mix designs, demonstrating that fly ash mixes are feasible for use in household settings (e.g., in floors). The findings enhance understanding of fecal-oral transmission pathways and support the use of fly ash mixes in cement-based flooring in future epidemiologic studies assessing effects on enteric disease burdens.
Collapse
Affiliation(s)
- Claire E. Anderson
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Jason Hernandez
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Suhi Hanif
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
| | - Lauren Owens
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Yoshika Crider
- King Center on Global Development, Stanford University, Stanford, California, USA
| | - Sarah L. Billington
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Michael Lepech
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Jade Benjamin-Chung
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
2
|
Xiong ZR, Gabriel E, Gutierrez A, East C, Kniel KE, Danyluk MD, Jay-Russell M, Sharma M. Biological soil amendments can support survival of pathogenic and non-pathogenic Escherichia coli in soils and sporadic transfer to Romaine lettuce. Int J Food Microbiol 2025; 434:111147. [PMID: 40056530 DOI: 10.1016/j.ijfoodmicro.2025.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Biological soil amendments (BSAs) are essential agricultural inputs that provide critical nutrients in organic leafy green production. Heat-treated poultry pellets (HTPP) and seabird guano (SBG), which have been treated to reduce microbial pathogen loads, are gaining popularity among growers. Using these BSAs in the process of side-dressing, providing nutrients to crops while growing, may provide opportunities for externally introduced bacterial pathogens to survive in soil. In this study, Romaine lettuce was grown in soils in a controlled environmental growth chamber. Soils were side-dressed twice with different combinations of treated BSAs: HTPP, SBG, and corn steep liquor (CSL). Soils were co-inoculated with non-pathogenic E. coli and two E. coli O157:H7 strains at the second of two side-dressing events. Survival of E. coli in soils over 28 days was evaluated. On day 28 post inoculation, two heads of Romaine lettuce from each planter were harvested, and the presence of E. coli on leaves was determined. Four nonlinear statistical models were fit to predict survival of E. coli in soils. In all soils regardless of BSA treatment, E. coli TVS 353 declined by 4.08-4.51 log CFU/g soil over 28 days, and E. coli O157:H7 declined by 2.77-4.3 log CFU/g soil over 28 days. E. coli TVS 353 and O157:H7 were recovered from 13.3 % (6/45) and 11.1 % (5/45) of plants, respectively. Transfer of E. coli from soils to Romaine lettuce was low, sporadic, and could not be measured quantitatively. Side-dressing with treated BSAs used in organic lettuce production supported but did not enhance survival of E. coli in side-dressed soils under controlled environmental conditions.
Collapse
Affiliation(s)
- Zirui Ray Xiong
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States of America; Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States of America
| | - Ellen Gabriel
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States of America
| | - Alan Gutierrez
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States of America
| | - Cheryl East
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States of America
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States of America
| | - Michelle D Danyluk
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Michele Jay-Russell
- Western Center for Food Safety, University of California, Davis, Davis, CA, United States of America
| | - Manan Sharma
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States of America.
| |
Collapse
|
3
|
Chen W, Zhang JW, Qin BX, Xie HT, Zhang Z, Qiao XZ, Li SK, Asif M, Guo S, Cui LX, Wang PP, Dong LH, Guo QG, Jiang WJ, Ma P, Xia ZY, Lu CH, Zhang LQ. Quantitative detection of the Ralstonia solanacearum species complex in soil by qPCR combined with a recombinant internal control strain. Microbiol Spectr 2023; 11:e0021023. [PMID: 37966217 PMCID: PMC10715031 DOI: 10.1128/spectrum.00210-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE DNA-based detection and quantification of soil-borne pathogens, such as the Ralstonia solanacearum species complex (RSSC), plays a vital role in risk assessment, but meanwhile, precise quantification is difficult due to the poor purity and yield of the soil DNA retrieved. The internal sample process control (ISPC) strain RsPC we developed solved this problem and significantly improved the accuracy of quantification of RSSC in different soils. ISPC-based quantitative PCR detection is a method especially suitable for the quantitative detection of microbes in complex matrices (such as soil and sludge) containing various PCR inhibitors and for those not easy to lyse (like Gram-positive bacteria, fungi, and thick-wall cells like resting spores). In addition, the use of ISPC strains removes additional workload on the preparation of high-quality template DNA and facilitates the development of high-throughput quantitative detection techniques for soil microbes.
Collapse
Affiliation(s)
- Wei Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Jun-Wei Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Bi-Xia Qin
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Xixiangtang District, Nanning, China
| | - Hui-Ting Xie
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Xixiangtang District, Nanning, China
| | - Zhi Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Xiu-Ze Qiao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Shan-Kui Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Muhammad Asif
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Song Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Li-Xian Cui
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Xixiangtang District, Nanning, China
| | - Pei-Pei Wang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Centre of Hebei Province, Lianchi District, Baoding, China
| | - Li-Hong Dong
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Centre of Hebei Province, Lianchi District, Baoding, China
| | - Qing-Gang Guo
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Centre of Hebei Province, Lianchi District, Baoding, China
| | - Wen-Jun Jiang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| | - Ping Ma
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Centre of Hebei Province, Lianchi District, Baoding, China
| | - Zhen-Yuan Xia
- Yunnan Academy of Tobacco Agricultural Sciences, Wuhua District, Kunming, China
| | - Can-Hua Lu
- Yunnan Academy of Tobacco Agricultural Sciences, Wuhua District, Kunming, China
| | - Li-Qun Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
4
|
Zhao Y, Haley OC, Xu X, Jaberi-Douraki M, Rivard C, Pliakoni ED, Nwadike L, Bhullar M. The Potential for Cover Crops to Reduce the Load of Escherichia coli in Contaminated Agricultural Soil. J Food Prot 2023; 86:100103. [PMID: 37172906 DOI: 10.1016/j.jfp.2023.100103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Cover crops are plants seeded before or after cash crops to improve soil health, reduce weed pressure, and prevent erosion. Cover crops also produce various antimicrobial secondary metabolites (i.e., glucosinolates, quercetin), yet the role of cover crops in moderating the population of human pathogens in the soil has rarely been investigated. This study aims to determine the antimicrobial capacity of three cover crop species to reduce the population of generic Escherichia coli (E. coli) in contaminated agricultural soil. Four-week-old mustard greens (Brassicajuncea), sunn hemp (Crotalaria juncea), and buckwheat (Fagopyrum esculentum) were mixed into autoclaved soil and inoculated with rifampicin-resistant generic E. coli to achieve a starting concentration of 5 log CFU/g. The surviving microbial populations on days 0, 4, 10, 15, 20, 30, and 40 were enumerated. All three cover crops significantly reduced the population of generic E. coli compared to the control (p < 0.0001), particularly between days 10 and to 30. Buckwheat resulted in the highest reduction (3.92 log CFU/g). An inhibitory effect (p < 0.0001) on microbial growth was also observed in soils containing mustard greens and sunn hemp. This study provides evidence for the bacteriostatic and bactericidal effect of particular cover crops. More research regarding the secondary metabolites produced by certain cover crops and their potential as a bio mitigation strategy to improve on-farm produce safety is warranted.
Collapse
Affiliation(s)
- Yeqi Zhao
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS 66061, USA
| | - Olivia C Haley
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS 66061, USA
| | - Xuan Xu
- 1DATA Consortium, Kansas State University Olathe, Olathe, KS 66061, USA; Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
| | - Majid Jaberi-Douraki
- 1DATA Consortium, Kansas State University Olathe, Olathe, KS 66061, USA; Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
| | - Cary Rivard
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS 66061, USA
| | - Eleni D Pliakoni
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS 66061, USA
| | - Londa Nwadike
- Food Science Institute, Kansas State University, Manhattan, KS 66506, USA; Kansas State Research and Extension, Kansas State University, Olathe, KS 66061, USA; University of Missouri Extension, Kansas City, MO 64106, USA
| | - Manreet Bhullar
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS 66061, USA; Food Science Institute, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
5
|
Alegbeleye O, Sant'Ana AS. Survival of Salmonella spp. under varying temperature and soil conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163744. [PMID: 37142008 DOI: 10.1016/j.scitotenv.2023.163744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
Soils can serve as suitable reservoirs for or barriers against microbial contamination of water resources and plant produce. The magnitude of water or food contamination risks through soil depends on several factors, including the survival potential of microorganisms in the soil. This study assessed and compared the survival/persistence of 14 Salmonella spp. strains in loam and sandy soils at 5, 10, 20, 25, 30, 35, 37 °C and under uncontrolled ambient temperature conditions in Campinas Sao Paulo. The ambient temperature ranged from 6 °C (minimum) to 36 °C (maximum). Bacterial population densities were determined by the conventional culture method (plate counts) and monitored for 216 days. Statistical differences among the test parameters were determined by Analysis of Variance, while relationships between temperature and soil type were evaluated using Pearson correlation analysis. Similarly, relationships between time and temperature for survival of the various strains were evaluated using Pearson correlation analysis. Results obtained indicate that temperature and soil type influence the survival of Salmonella spp. in soils. All 14 strains survived for up to 216 days in the organic-rich loam soil under at least three of the temperature conditions evaluated. However, comparatively lower survival rates were recorded in sandy soil, especially at lower temperature. The optimum temperature for survival varied among the strains, where some survived best at 5 °C and others between 30 and 37 °C. Under uncontrolled temperature conditions, the Salmonella strains survived better in loam than in sandy soils. Bacterial growth over post inoculation storage period was overall more impressive in loam soil. In general, the results indicate that temperature and soil type can interact to influence the survival of Salmonella spp. strains in soil. For the survival of some strains, there were significant correlations between soil type and temperature, while for some others, no significant relationship between soil and temperature was determined. A similar trend was observed for the correlation between time and temperature.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
6
|
Bhowmik A, Shah SMT, Goswami S, Sirajee AS, Ahsan S. Predominance of Multidrug Resistant Escherichia coli of Environmental Phylotype in Different Environments of Dhaka, Bangladesh. Trop Med Infect Dis 2023; 8:tropicalmed8040226. [PMID: 37104351 PMCID: PMC10145502 DOI: 10.3390/tropicalmed8040226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
Considering the ecological diversity of E. coli, the main aim of this study was to determine the prevalence, phylogroup diversity, and antimicrobial susceptibility of E. coli isolated from 383 different clinical and environmental sources. In total, varied prevalence was observed of the 197 confirmed E. coli that were isolated (human-100%, animal-67.5%, prawn-49.23%, soil-30.58%, and water-27.88%). Of these isolates, 70 (36%) were multidrug-resistant (MDR). MDR E. coli was significantly associated with their sources (χ2 = 29.853, p = 0.001). Humans (51.67%) and animals (51.85%) carried more MDR E. coli than other environments. The eae gene indicative of recent fecal contamination was not detected in any isolate, indicating that these E. coli isolates could be present in these environments for a long time and became naturalized. Phylogroup B1 (48.22%) was the predominant group, being present in all hosts analyzed and with the commensal E. coli group A (26.9%) representing the second predominant group. According to chi-square analysis, phylogroup B1 was significantly associated with E. coli from humans (p = 0.024), soil (p < 0.001) and prawn samples (p < 0.001). Human samples were significantly associated with phylogroup B1 (p = 0.024), D (p < 0.001), and F (p = 0.016) of E. coli strains, whereas phylogroup A (p < 0.001), C (p < 0.001), and E (p = 0.015) were associated with animal samples. Correspondence analysis results also indicated the association of these phylogroups with their hosts/sources. The findings of this study exhibited a non-random distribution of phylogenetic groups, though the diversity index was highest for human E. coli phylogroups.
Collapse
Affiliation(s)
- Anindita Bhowmik
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - S M Tanjil Shah
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | - Sunjukta Ahsan
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Alegbeleye O, Sant'Ana AS. Survival behavior of six enterotoxigenic Escherichia coli strains in soil and biochar-amended soils. ENVIRONMENTAL RESEARCH 2023; 223:115443. [PMID: 36781014 DOI: 10.1016/j.envres.2023.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Some Escherichia coli serotypes are important human pathogens causing diarrhea or in some cases, life threatening diseases. E. coli is also a typical indicator microorganism, routinely used for assessing the microbiological quality of water especially to indicate fecal contamination. The soil is a sink and route of transmission to water and food resources and it is thus important to understand the survival of enterotoxigenic E. coli strains in soil. This study monitored the survival of six E. coli strains in sandy and loam soil. Furthermore, since biochar is a commonly used soil conditioner, the study investigated the impact of biochar amendment (15%) on the survival of the E. coli strains in (biochar-amended) sandy and loam soils. Addition of biochar affected the physicochemical properties of both soils, altering potassium levels, calcium, magnesium, sodium as well as levels of other metal ions. It increased the organic matter of loam soil from 44 g/dm3 to 52 g/dm3, and increased the pH of both sandy and loam soils. Survival and persistence of the E. coli strains generally varied according to soil type, with strains generally surviving better (P ≤ 0.05) in loam soil compared to in sandy soil. In loam soil and biochar amended loam soils, E. coli strains remained culturable until the 150th day with counts ranging between 3.00 and 5.94 ± 0.04 log CFU/g. The effects of biochar on the physicochemical properties of soil and the response of the E. coli strains to biochar amendment was variable depending on soil type.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
8
|
Wong YY, Lee CW, Chai SCY, Lim JH, Bong CW, Sim EUH, Narayanan K, Hii YS, Wang AJ. Distribution of faecal indicator bacteria in tropical waters of Peninsular Malaysia and their decay rates in tropical seawater. MARINE POLLUTION BULLETIN 2022; 185:114297. [PMID: 36327936 DOI: 10.1016/j.marpolbul.2022.114297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
We investigated the appropriateness of faecal indicator bacteria in tropical waters. We compared total coliform (undetectable to 7.2 × 105 cfu 100 mL-1), faecal coliform (undetectable to 6.1 × 105 cfu 100 mL-1) and enterococci (undetectable to 3.1 × 104 cfu 100 mL-1) distribution in Peninsular Malaysia. Faecal indicator bacteria was highest in freshwater, and lowest in seawater (q > 4.18, p < 0.01). We also measured the decay rates of Escherichia coli and Enterococcus faecium in microcosms. In seawater, average decay rate for E. coli was 0.084 ± 0.029 h-1, and higher than E. faecium (0.048 ± 0.024 h-1) (t = 2.527, p < 0.05). Grazing accounted for 54 % of both E. coli and E. faecium decay. E. coli decayed in the <0.02 μm seawater fraction (0.023 ± 0.012 h-1) but E. faecium sometimes grew. Seawater warming further uncoupled the response from both E. coli and E. faecium as E. faecium grew and E. coli decayed with warming. Our results suggested that the prevalence of faecal indicator bacteria in tropical waters was not due to faecal pollution alone, and this will have serious implications towards the use of these faecal indicator bacteria.
Collapse
Affiliation(s)
- Yi You Wong
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Choon Weng Lee
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Stanley Choon Yip Chai
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Joon Hai Lim
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chui Wei Bong
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Edmund Ui Hang Sim
- Faculty of Resource Sciences and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Kumaran Narayanan
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Yii Siang Hii
- Pakar Scieno TW Pte. Ltd., 40150 Shah Alam, Selangor, Malaysia
| | - Ai-Jun Wang
- Laboratory of Coastal and Marine Geology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China; Fujian Provincial Key Laboratory of Marine Physical and Geological Processes, Xiamen, Fujian 361005, China
| |
Collapse
|
9
|
Alegbeleye O, Sant'Ana AS. Impact of temperature, soil type and compost amendment on the survival, growth and persistence of Listeria monocytogenes of non-environmental (food-source associated) origin in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157033. [PMID: 35777564 DOI: 10.1016/j.scitotenv.2022.157033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Listeria monocytogenes of varied sources including food-related sources may reach the soil. Associated food safety and environmental health risks of such contamination depend significantly on the capacity of L. monocytogenes to survive in the soil. This study assessed the survival of 13 L. monocytogenes strains isolated from food and food processing environments and a cocktail of three of the strains in two types of soils (loam and sandy) under controlled temperature conditions: 5, 10, 20, 25, 30℃ and 'uncontrolled' ambient temperature conditions in a tropical region. The impact of compost amendment on the survival of L. monocytogenes in the two different types of soils was also assessed. Soil type, temperature and compost amendment significantly (P <0.001) impacted the survival of L. monocytogenes in soil. Temperature variations affected the survival of L. monocytogenes in soil, where some strains such as strain 732, a L. monocytogenes 1/2a strain survived better at lower temperature (5°C), for which counts of up to 10.47 ± 0.005 log CFU/g were recovered in compost-amended sandy soil, 60 days post-inoculation. Some other strains such as strain 441, a L. monocytogenes 1/2a survived best at intermediate temperature (25 and 30 °C), while others such as 2739 (L. monocytogenes 1/2b) thrived at higher temperature (between 30 °C - 37 °C). There were significant correlations between the influence of temperature and soil type, where lower temperature conditions (5°C - 20°C) were generally more suitable for survival in sandy soil compared to higher temperature conditions. For some of the strains that thrived better in sandy soil at lower temperature, Pearson correlation analysis found significant correlations between temperature and soil type. Steady, controlled temperature generally favored the survival of the strains compared to uncontrolled ambient temperature conditions, except for the cocktail. The cocktail persisted until the last day of post-inoculation storage (60th day) in all test soils and under all incubation temperature conditions. Loam soil was more favorable for the survival of L. monocytogenes and compost amendment improved the survival of the strains, especially in compost-amended sandy soil. Listeria monocytogenes may exhibit variable survival capacity in soil, depending on conditions such as soil type, compost amendment and temperature.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
10
|
Piveteau P, Druilhe C, Aissani L. What on earth? The impact of digestates and composts from farm effluent management on fluxes of foodborne pathogens in agricultural lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156693. [PMID: 35700775 DOI: 10.1016/j.scitotenv.2022.156693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The recycling of biomass is the cornerstone of sustainable development in the bioeconomy. In this context, digestates and composts from processed agricultural residues and biomasses are returned to the soil. Whether or not the presence of pathogenic microorganisms in these processed biomasses is a threat to the sustainability of the current on-farm practices is still the subject of debate. In this review, we describe the microbial pathogens that may be present in digestates and composts. We then provide an overview of the current European regulation designed to mitigate health hazards linked to the use of organic fertilisers and soil improvers produced from farm biomasses and residues. Finally, we discuss the many factors that underlie the fate of microbial pathogens in the field. We argue that incorporating land characteristics in the management of safety issues connected with the spreading of organic fertilisers and soil improvers can improve the sustainability of biomass recycling.
Collapse
|
11
|
Anjum MF, Schmitt H, Börjesson S, Berendonk TU. The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment. Curr Opin Microbiol 2021; 64:152-158. [PMID: 34739920 DOI: 10.1016/j.mib.2021.09.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
To understand the dynamics of antimicrobial resistance (AMR), in a One-Health perspective, surveillance play an important role. Monitoring systems already exist in the human health and livestock sectors, but there are no environmental monitoring programs. Therefore there is an urgent need to initiate environmental AMR monitoring programs nationally and globally, which will complement existing systems in different sectors. However, environmental programs should not only identify anthropogenic influences and levels of AMR, but they should also allow for identification of transmissions to and from human and animal populations. In the current review we therefore propose using antimicrobial resistant Escherichia coli as indicators for monitoring occurrence and levels of AMR in the environment, including wildlife.
Collapse
Affiliation(s)
- Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Heike Schmitt
- Centre for Zoonoses and Environmental Microbiology - Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands
| | - Stefan Börjesson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.
| | - Thomas U Berendonk
- Institute for Hydrobiology, Technische Universität Dresden, 01217, Dresden, Germany.
| | | |
Collapse
|
12
|
Kwong LH, Ercumen A, Pickering AJ, Arsenault JE, Islam M, Parvez SM, Unicomb L, Rahman M, Davis J, Luby SP. Ingestion of Fecal Bacteria along Multiple Pathways by Young Children in Rural Bangladesh Participating in a Cluster-Randomized Trial of Water, Sanitation, and Hygiene Interventions (WASH Benefits). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13828-13838. [PMID: 33078615 PMCID: PMC7643345 DOI: 10.1021/acs.est.0c02606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Quantifying the contribution of individual exposure pathways to a child's total ingestion of fecal matter could help prioritize interventions to reduce environmental enteropathy and diarrhea. This study used data on fecal contamination of drinking water, food, soil, hands, and objects and second-by-second data on children's contacts with these environmental reservoirs in rural Bangladesh to assess the relative contribution of different pathways to children's ingestion of fecal indicator bacteria and if ingestion decreased with the water, sanitation, and hygiene interventions implemented in the WASH Benefits Trial. Our model estimated that rural Bangladeshi children <36 months old consume 3.6-4.9 log10 most probable number E. coli/day. Among children <6 months, placing objects in the mouth accounted for 60% of E. coli ingested. For children 6-35 months old, mouthing their own hands, direct soil ingestion, and ingestion of contaminated food were the primary pathways of E. coli ingestion. The amount of E. coli ingested by children and the predominant pathways of E. coli ingestion were unchanged by the water, sanitation, and hygiene interventions. These results highlight contaminated soil, children's hands, food, and objects as primary pathways of E. coli ingestion and emphasize the value of intervening along these pathways.
Collapse
Affiliation(s)
- Laura H. Kwong
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| | - Ayse Ercumen
- Department
of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Amy J. Pickering
- Department
of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Joanne E. Arsenault
- Program
in International Community Nutrition, University
of California, Davis, California 95616, United States
| | - Mahfuza Islam
- International
Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1000, Bangladesh
| | - Sarker M Parvez
- International
Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1000, Bangladesh
| | - Leanne Unicomb
- International
Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1000, Bangladesh
| | - Mahbubur Rahman
- International
Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1000, Bangladesh
| | - Jennifer Davis
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Stephen P. Luby
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Martín-Díaz J, Lucena F, Blanch AR, Jofre J. Review: Indicator bacteriophages in sludge, biosolids, sediments and soils. ENVIRONMENTAL RESEARCH 2020; 182:109133. [PMID: 32069755 DOI: 10.1016/j.envres.2020.109133] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/19/2019] [Accepted: 01/12/2020] [Indexed: 05/22/2023]
Abstract
Solid or semisolid matrices polluted with fecal remnants can be highly loaded with pathogens, especially viruses, and play a substantial role in the persistence and dispersion of pathogens in the water cycle. Water quality regulations and guidelines are increasingly including bacteriophages infecting enteric bacteria as indicators of fecal and/or viral pollution. However, more data are needed about viral indicators in contaminated solids to develop effective sanitation strategies for the management of raw and treated sludge, fecal sludge, manures and slurries. Also, the exact role of sediments and soil in the transmission cycle of viral pathogens still needs to be determined. This review aims to provide an update on available data for concentrations of indicator bacteriophages in different solid matrices as well as their resistance to treatments and persistence in solids. The conclusion reached is that there is a need for improved and standardized methodologies for bacteriophage extraction, detection and enumeration in solids. Reports indicate that these contain higher levels of somatic coliphages in comparison with traditional bacterial indicators and F-specific RNA coliphages. Water body sediments and soil have been found to be notable reservoirs of somatic coliphages, which are more persistent in nature and resistant to sludge treatments than Escherichia coli and fecal coliforms and F-specific RNA coliphages. Thus, somatic coliphages show up as excellent complementary indicators for the prediction of pathogenic viruses in solids.
Collapse
Affiliation(s)
- Julia Martín-Díaz
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain.
| | - Francisco Lucena
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain
| | - Juan Jofre
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain
| |
Collapse
|
14
|
Ducey TF, Durso LM, Ibekwe AM, Dungan RS, Jackson CR, Frye JG, Castleberry BL, Rashash DMC, Rothrock MJ, Boykin D, Whitehead TR, Ramos Z, McManus M, Cook KL. A newly developed Escherichia coli isolate panel from a cross section of U.S. animal production systems reveals geographic and commodity-based differences in antibiotic resistance gene carriage. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:120991. [PMID: 31446353 DOI: 10.1016/j.jhazmat.2019.120991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
There are limited numbers of Escherichia coli isolate panels that represent United States food animal production. The majority of existing Escherichia coli isolate panels are typically designed: (i) to optimize genetic and/or phenotypic diversity; or (ii) focus on human isolates. To address this shortfall in agriculturally-related resources, we have assembled a publicly-available isolate panel (AgEc) from the four major animal production commodities in the United States, including beef, dairy, poultry, and swine, as well as isolates from agriculturally-impacted environments, and other commodity groups. Diversity analyses by phylotyping and Pulsed-field Gel Electrophoresis revealed a highly diverse composition, with the 300 isolates clustered into 71 PFGE sub-types based upon an 80% similarity cutoff. To demonstrate the panel's utility, tetracycline and sulfonamide resistance genes were assayed, which identified 131 isolates harboring genes involved in tetracycline resistance, and 41 isolates containing sulfonamide resistance genes. There was strong overlap in the two pools of isolates, 38 of the 41 isolates harboring sulfonamide resistance genes also contained tetracycline resistance genes. Analysis of antimicrobial resistance gene patterns revealed significant differences along commodity and geographical lines. This panel therefore provides the research community an E. coli isolate panel for study of issues pertinent to U.S. food animal production.
Collapse
Affiliation(s)
- Thomas F Ducey
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service, Department of Agriculture, Florence, SC, United States.
| | - Lisa M Durso
- Agroecosystem Management Research Unit, Agricultural Research Service, Department of Agriculture, Lincoln, NE, United States
| | - Abasiofiok M Ibekwe
- U.S. Salinity Laboratory, Agricultural Research Service, Department of Agriculture, Riverside, CA, United States
| | - Robert S Dungan
- Northwest Irrigation and Soils Research Laboratory, Agricultural Research Service, Department of Agriculture, Kimberly, ID, United States
| | - Charlene R Jackson
- Bacterial Epidemiology & Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, Department of Agriculture, Athens, GA, United States
| | - Jonathan G Frye
- Bacterial Epidemiology & Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, Department of Agriculture, Athens, GA, United States
| | - B Lana Castleberry
- Livestock Nutrient Management Research Unit, Agricultural Research Service, Department of Agriculture, Bushland, TX, United States
| | - Diana M C Rashash
- North Carolina Cooperative Extension Service, Jacksonville, NC, United States
| | - Michael J Rothrock
- Egg Safety & Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, Department of Agriculture, Athens, GA, United States
| | - Debbie Boykin
- Jamie Whitten Delta States Research Center, Agricultural Research Service, Department of Agriculture, Stoneville, MS, United States
| | - Terence R Whitehead
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, Department of Agriculture, Peoria, IL, United States
| | - Zeanmarj Ramos
- South Carolina Governor's School for Science and Mathematics, Hartsville, SC, United States
| | - Morgan McManus
- South Carolina Governor's School for Science and Mathematics, Hartsville, SC, United States
| | - Kimberly L Cook
- Bacterial Epidemiology & Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, Department of Agriculture, Athens, GA, United States
| |
Collapse
|
15
|
Bravo Z, Orruño M, Navascues T, Ogayar E, Ramos-Vivas J, Kaberdin VR, Arana I. Analysis of Acinetobacter baumannii survival in liquid media and on solid matrices as well as effect of disinfectants. J Hosp Infect 2019; 103:e42-e52. [PMID: 30986481 DOI: 10.1016/j.jhin.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Acinetobacter baumannii is a cause of healthcare-associated infections and has considerable potential to survive on inanimate hospital surfaces under hostile conditions (e.g. disinfection or desiccation). AIM To learn more about its survival strategy and capacity to persist in liquid media and on surfaces mimicking hospital environments. METHODS The effect of temperature, nutrient deprivation, permanence on inanimate surfaces, and exposure to disinfectants on the survival of four A. baumannii strains (ATCC 19606T and three clinical isolates) was studied by monitoring the number of total and viable cells using fluorescent microscopy and of culturable cells by standard cultures. FINDINGS Bacterial survival was differentially affected by temperature (cells maintained at 20°C remained culturable at least within 30 days) and physical environment (desiccation favoured cell resistance to stress at 37°C). Moreover, persistence was associated with two adaptation patterns: one linked to entry into the viable but non-culturable state, whereas the other apparently followed a bust-and-boom model. During a study on the effect of disinfectant (commercial bleach and quaternary ammonium compounds), it was found that treatment with these antibacterial compounds did not eliminate A. baumannii populations and provoked the reduction of culturable populations, although a fraction of cells remained culturable. CONCLUSION The ability to persist for long periods on different surfaces, mimicking those usually found in hospitals, along with A. baumannii's capacity to survive after a disinfection process may account for the recurrent outbreaks in intensive care units.
Collapse
Affiliation(s)
- Z Bravo
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; Instituto de Investigación Valdecilla IDIVAL, Santander, Spain
| | - M Orruño
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), Plentzia, Spain.
| | - T Navascues
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; Instituto de Investigación Valdecilla IDIVAL, Santander, Spain
| | - E Ogayar
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - J Ramos-Vivas
- Instituto de Investigación Valdecilla IDIVAL, Santander, Spain
| | - V R Kaberdin
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), Plentzia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - I Arana
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), Plentzia, Spain
| |
Collapse
|
16
|
Alegbeleye OO, Singleton I, Sant'Ana AS. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol 2018; 73:177-208. [PMID: 29526204 PMCID: PMC7127387 DOI: 10.1016/j.fm.2018.01.003] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022]
Abstract
Foodborne illness resulting from the consumption of contaminated fresh produce is a common phenomenon and has severe effects on human health together with severe economic and social impacts. The implications of foodborne diseases associated with fresh produce have urged research into the numerous ways and mechanisms through which pathogens may gain access to produce, thereby compromising microbiological safety. This review provides a background on the various sources and pathways through which pathogenic bacteria contaminate fresh produce; the survival and proliferation of pathogens on fresh produce while growing and potential methods to reduce microbial contamination before harvest. Some of the established bacterial contamination sources include contaminated manure, irrigation water, soil, livestock/ wildlife, and numerous factors influence the incidence, fate, transport, survival and proliferation of pathogens in the wide variety of sources where they are found. Once pathogenic bacteria have been introduced into the growing environment, they can colonize and persist on fresh produce using a variety of mechanisms. Overall, microbiological hazards are significant; therefore, ways to reduce sources of contamination and a deeper understanding of pathogen survival and growth on fresh produce in the field are required to reduce risk to human health and the associated economic consequences.
Collapse
Affiliation(s)
| | - Ian Singleton
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh, UK
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
17
|
Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S. Environmental Escherichia coli: ecology and public health implications-a review. J Appl Microbiol 2017; 123:570-581. [PMID: 28383815 DOI: 10.1111/jam.13468] [Citation(s) in RCA: 380] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022]
Abstract
Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through faeces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent faecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extraintestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a faecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics revealed the diversity and complexity of E. coli strains in various environments, which are affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments with regard to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.
Collapse
Affiliation(s)
- J Jang
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - H-G Hur
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - M J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.,Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA
| | - M N Byappanahalli
- Lake Michigan Ecological Research Station, Great Lakes Science Center, U.S. Geological Survey, Chesterton, IN, USA
| | - T Yan
- Department of Civil and Environmental Engineering, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - S Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.,Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
18
|
Ravva SV, Sarreal CZ, Cooley MB. Expression of Curli by Escherichia coli O157:H7 Strains Isolated from Patients during Outbreaks Is Different from Similar Strains Isolated from Leafy Green Production Environments. Front Cell Infect Microbiol 2017; 6:189. [PMID: 28066724 PMCID: PMC5167686 DOI: 10.3389/fcimb.2016.00189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022] Open
Abstract
We previously reported that the strains of Escherichia coli O157:H7 (EcO157) that survived longer in austere soil environment lacked expression of curli, a fitness trait linked with intestinal colonization. In addition, the proportion of curli-positive variants of EcO157 decreased with repeated soil exposure. Here we evaluated 84 and 176 clinical strains from outbreaks and sporadic infections in the US, plus 211 animal fecal and environmental strains for curli expression. These shiga-toxigenic strains were from 328 different genotypes, as characterized by multi-locus variable-number tandem-repeat analysis (MLVA). More than half of the fecal strains (human and animal) and a significant proportion of environmental isolates (82%) were found to lack curli expression. EcO157 strains from several outbreaks linked with the consumption of contaminated apple juice, produce, hamburgers, steak, and beef were also found to lack curli expression. Phylogenetic analysis of fecal strains indicates curli expression is distributed throughout the population. However, a significant proportion of animal fecal isolates (84%) gave no curli expression compared to human fecal isolates (58%). In addition, analysis of environmental isolates indicated nearly exclusive clustering of curli expression to a single branch of the minimal spanning tree. This indicates that curli expression depends primarily upon the type of environmental exposure and the isolation source, although genotypic differences also contribute to clonal variation in curli. Furthermore, curli-deficient phenotype appears to be a selective trait for survival of EcO157 in agricultural environments.
Collapse
Affiliation(s)
- Subbarao V Ravva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture Albany, CA, USA
| | - Chester Z Sarreal
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture Albany, CA, USA
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture Albany, CA, USA
| |
Collapse
|
19
|
Abberton CL, Bereschenko L, van der Wielen PWJJ, Smith CJ. Survival, Biofilm Formation, and Growth Potential of Environmental and Enteric Escherichia coli Strains in Drinking Water Microcosms. Appl Environ Microbiol 2016; 82:5320-31. [PMID: 27342552 PMCID: PMC4988207 DOI: 10.1128/aem.01569-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Escherichia coli is the most commonly used indicator for fecal contamination in drinking water distribution systems (WDS). The assumption is that E. coli bacteria are of enteric origin and cannot persist for long outside their host and therefore act as indicators of recent contamination events. This study investigates the fate of E. coli in drinking water, specifically addressing survival, biofilm formation under shear stress, and regrowth in a series of laboratory-controlled experiments. We show the extended persistence of three E. coli strains (two enteric isolates and one soil isolate) in sterile and nonsterile drinking water microcosms at 8 and 17°C, with T90 (time taken for a reduction in cell number of 1 log10 unit) values ranging from 17.4 ± 1.8 to 149 ± 67.7 days, using standard plate counts and a series of (reverse transcription-)quantitative PCR [(RT-)Q-PCR] assays targeting 16S rRNA, tuf, uidA, and rodA genes and transcripts. Furthermore, each strain was capable of attaching to a surface and replicating to form biofilm in the presence of nutrients under a range of shear stress values (0.6, 2.0, and 4.4 dynes [dyn] cm(-2); BioFlux system; Fluxion); however, cell numbers did not increase when drinking water flowed over the biofilm (P > 0.05 by t test). Finally, E. coli regrowth within drinking water microcosms containing polyethylene PE-100 pipe wall material was not observed in the biofilm or water phase using a combination of culturing and Q-PCR methods for E. coli The results of this work highlight that when E. coli enters drinking water it has the potential to survive and attach to surfaces but that regrowth within drinking water or biofilm is unlikely. IMPORTANCE The provision of clean, safe drinking water is fundamental to society. WDS deliver water to consumers via a vast network of pipes. E. coli is used as an indicator organism for recent contamination events based on the premise that it cannot survive for long outside its host. A key public health concern therefore arises around the fate of E. coli on entering a WDS; its survival, ability to form a biofilm, and potential for regrowth. In particular, if E. coli bacteria have the ability to incorporate and regrow within the pipe wall biofilm of a WDS, they could reinoculate the water at a later stage. This study sheds light on the fate of environmental and enteric strains of E. coli in drinking water showing extended survival, the potential for biofilm formation under shear stress, and importantly, that regrowth in the presence of an indigenous microbial community is unlikely.
Collapse
Affiliation(s)
- Cathy L Abberton
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | | - Cindy J Smith
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
20
|
Staley ZR, Robinson C, Edge TA. Comparison of the occurrence and survival of fecal indicator bacteria in recreational sand between urban beach, playground and sandbox settings in Toronto, Ontario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:520-527. [PMID: 26432162 DOI: 10.1016/j.scitotenv.2015.09.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
While beach sands are increasingly being studied as a reservoir of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in other recreational sands (i.e., sandboxes and playgrounds). In this study, different culture-based FIB enumeration techniques were compared and microbial source tracking assays were conducted on recreational sand samples from beaches, playgrounds and sandboxes around Toronto, ON. FIB were detected in every sand sample (n=104) with concentrations not changing significantly over the five month sampling period. Concentrations of FIB and a gull-specific DNA marker were significantly higher in foreshore beach sands, and indicated these were a more significant reservoir of FIB contamination than sandbox or playground sands. Human- and dog-specific contamination markers were not detected. All culture-based FIB enumeration techniques were consistent in identifying the elevated FIB concentrations associated with foreshore beach sands. However, significant differences between differential agar media, IDEXX and Aquagenx Compartment Bag Test were observed, with DC media and Enterolert being the most sensitive methods to detect Escherichia coli and enterococci, respectively. To better understand the elevated occurrence of E. coli in foreshore sands, microcosm survival experiments were conducted at two different temperatures (15 °C and 28 °C) using non-sterile saturated foreshore beach sands collected from two urban freshwater beaches with different sand type (fine grain and sand-cobble). Microcosms were inoculated with a mixture of eight sand-derived E. coli strains and sampled over a 28-day period. E. coli levels were found to decline in all microcosms, although survival was significantly greater in the finer sand and at the cooler temperature (15 °C). These results indicate that FIB can be widespread in any type of recreational sand and, while E. coli can survive for many weeks, it is most likely to accumulate in cooler fine-grain sand as occurs below the foreshore sand surface.
Collapse
Affiliation(s)
- Zachery R Staley
- Department of Civil and Environmental Engineering, Western University, London, ON, Canada; Environment Canada, Canada Centre for Inland Waters, Burlington, ON, Canada.
| | - Clare Robinson
- Department of Civil and Environmental Engineering, Western University, London, ON, Canada
| | - Thomas A Edge
- Environment Canada, Canada Centre for Inland Waters, Burlington, ON, Canada
| |
Collapse
|
21
|
Généreux M, Breton MJ, Fairbrother JM, Fravalo P, Côté C. Persistence of Indicator and Pathogenic Microorganisms in Broccoli following Manure Spreading and Irrigation with Fecally Contaminated Water: Field Experiment. J Food Prot 2015; 78:1776-84. [PMID: 26408125 DOI: 10.4315/0362-028x.jfp-15-081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In 2011 and 2012, trials consisting of experimental plots were carried out to evaluate the presence of pathogenic (Listeria monocytogenes, Salmonella) and prevalence of indicator (Escherichia coli) microorganisms in broccoli fertilized with liquid hog manure or mineral fertilizers and irrigated zero, one, or two times with E. coli-contaminated water. In 2011, results showed that E. coli contamination in broccoli heads was affected by the interval between irrigation and sampling (P = 0.0236), with a significant decrease between the first and third day following irrigation (P = 0.0064). In 2012, irrigation frequency significantly increased E. coli prevalence in broccoli samples (P = 0.0499). In 2012, E. coli counts in the soil were significantly influenced by the type of fertilizer applied, as plots receiving liquid hog manure showed higher bacterial counts (P = 0.0006). L. monocytogenes was recovered in one broccoli sample, but geno-serogrouping differentiated the isolate from those recovered in manure and irrigation water. The L. monocytogenes serogroup IIA, pulsotype 188 strain was found in six soil samples and in irrigation water applied 5 days before soil sampling. This study highlights the link between E. coli levels in irrigation water, irrigation frequency, and interval between irrigation and harvest on produce contamination. It also demonstrates that L. monocytogenes introduced into the soil following irrigation can persist for up to 5 days.
Collapse
Affiliation(s)
- Mylène Généreux
- Research and Development Institute for the Agri-Environment (IRDA), 335 Vingt-Cinq East Road, Saint-Bruno-de-Montarville, Québec, Canada J3V 0G7.
| | - Marie Jo Breton
- Research and Development Institute for the Agri-Environment (IRDA), 335 Vingt-Cinq East Road, Saint-Bruno-de-Montarville, Québec, Canada J3V 0G7
| | - John Morris Fairbrother
- OIE Reference Laboratory for Escherichia coli (EcL), Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte Street, Saint-Hyacinthe, Québec, Canada J2S 2M2
| | - Philippe Fravalo
- NSERC Industrial Research Chair in Meat Safety, Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte Street, Saint-Hyacinthe, Québec, Canada J2S 2M2
| | - Caroline Côté
- Research and Development Institute for the Agri-Environment (IRDA), 335 Vingt-Cinq East Road, Saint-Bruno-de-Montarville, Québec, Canada J3V 0G7
| |
Collapse
|
22
|
Blaustein RA, Pachepsky YA, Shelton DR, Hill RL. Release and Removal of Microorganisms from Land-Deposited Animal Waste and Animal Manures: A Review of Data and Models. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:1338-54. [PMID: 26436252 DOI: 10.2134/jeq2015.02.0077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microbial pathogens present a leading cause of impairment to rivers, bays, and estuaries in the United States, and agriculture is often viewed as the major contributor to such contamination. Microbial indicators and pathogens are released from land-applied animal manure during precipitation and irrigation events and are carried in overland and subsurface flow that can reach and contaminate surface waters and ground water used for human recreation and food production. Simulating the release and removal of manure-borne pathogens and indicator microorganisms is an essential component of microbial fate and transport modeling regarding food safety and water quality. Although microbial release controls the quantities of available pathogens and indicators that move toward human exposure, a literature review on this topic is lacking. This critical review on microbial release and subsequent removal from manure and animal waste application areas includes sections on microbial release processes and release-affecting factors, such as differences in the release of microbial species or groups; bacterial attachment in turbid suspensions; animal source; animal waste composition; waste aging; manure application method; manure treatment effect; rainfall intensity, duration, and energy; rainfall recurrence; dissolved salts and temperature; vegetation and soil; and spatial and temporal scale. Differences in microbial release from liquid and solid manures are illustrated, and the influential processes are discussed. Models used for simulating release and removal and current knowledge gaps are presented, and avenues for future research are suggested.
Collapse
|
23
|
Rochelle-Newall E, Nguyen TMH, Le TPQ, Sengtaheuanghoung O, Ribolzi O. A short review of fecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions. Front Microbiol 2015; 6:308. [PMID: 25941519 PMCID: PMC4400915 DOI: 10.3389/fmicb.2015.00308] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/28/2015] [Indexed: 11/22/2022] Open
Abstract
Given the high numbers of deaths and the debilitating nature of diseases caused by the use of unclean water it is imperative that we have an understanding of the factors that control the dispersion of water borne pathogens and their respective indicators. This is all the more important in developing countries where significant proportions of the population often have little or no access to clean drinking water supplies. Moreover, and notwithstanding the importance of these bacteria in terms of public health, at present little work exists on the persistence, transfer and proliferation of these pathogens and their respective indicator organisms, e.g., fecal indicator bacteria (FIB) such as Escherichia coli and fecal coliforms in humid tropical systems, such as are found in South East Asia or in the tropical regions of Africa. Both FIB and the waterborne pathogens they are supposed to indicate are particularly susceptible to shifts in water flow and quality and the predicted increases in rainfall and floods due to climate change will only exacerbate the problems of contamination. This will be furthermore compounded by the increasing urbanization and agricultural intensification that developing regions are experiencing. Therefore, recognizing and understanding the link between human activities, natural process and microbial functioning and their ultimate impacts on human health are prerequisites for reducing the risks to the exposed populations. Most of the existing work in tropical systems has been based on the application of temperate indicator organisms, models and mechanisms regardless of their applicability or appropriateness for tropical environments. Here, we present a short review on the factors that control FIB dynamics in temperate systems and discuss their applicability to tropical environments. We then highlight some of the knowledge gaps in order to stimulate future research in this field in the tropics.
Collapse
Affiliation(s)
- Emma Rochelle-Newall
- iEES-Paris, UMR 7618 (IRD-UPMC-CNRS-INRA-Université Paris-Est, Université Paris 7), Centre IRD Bondy, France
| | - Thi Mai Huong Nguyen
- iEES-Paris, UMR 7618 (IRD-UPMC-CNRS-INRA-Université Paris-Est, Université Paris 7), Centre IRD Bondy, France ; Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi, Vietnam
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi, Vietnam
| | - Oloth Sengtaheuanghoung
- Agriculture Land Research Center, National Agriculture and Forestry Research Institute Vientiane, Laos
| | - Olivier Ribolzi
- Institut de Recherche pour le Développement, Géosciences Environnement Toulouse, UMR 5563, Université Paul Sabatier Toulouse, France
| |
Collapse
|
24
|
Wanjugi P, Harwood VJ. Protozoan predation is differentially affected by motility of enteric pathogens in water vs. sediments. MICROBIAL ECOLOGY 2014; 68:751-760. [PMID: 24952019 DOI: 10.1007/s00248-014-0444-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Survival of enteric bacteria in aquatic habitats varies depending upon species, strain, and environmental pressures, but the mechanisms governing their fate are poorly understood. Although predation by protozoa is a known, top-down control mechanism on bacterial populations, its influence on the survival of fecal-derived pathogens has not been systematically studied. We hypothesized that motility, a variable trait among pathogens, can influence predation rates and bacterial survival. We compared the survival of two motile pathogens of fecal origin by culturing Escherichia coli O157 and Salmonella enterica Typhimurium. Each species had a motile and non-motile counterpart and was cultured in outdoor microcosms with protozoan predators (Tetrahymena pyriformis) present or absent. Motility had a significant, positive effect on S. enterica levels in water and sediment in the presence or absence of predators. In contrast, motility had a significant negative effect on E. coli O157 levels in sediment, but did not affect water column levels. The presence/absence of protozoa consistently accounted for a greater proportion of the variability in bacterial levels (>95 %) than in bacterial motility (<4 %) in the water column. In sediments, however, motility was more important than predation for both bacteria. Calculations of total CFU/microcosm showed decreasing bacterial concentrations over time under all conditions except for S. enterica in the absence of predation, which increased ∼0.5-1.0 log over 5 days. These findings underscore the complexity of predicting the survival of enteric microorganisms in aquatic habitats, which has implications for the accuracy of risk assessment and modeling of water quality.
Collapse
Affiliation(s)
- Pauline Wanjugi
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL, 33620, USA
| | | |
Collapse
|
25
|
Piorkowski G, Jamieson R, Bezanson G, Truelstrup Hansen L, Yost C. Reach specificity in sediment E. coli population turnover and interaction with waterborne populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 496:402-413. [PMID: 25093301 DOI: 10.1016/j.scitotenv.2014.06.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/20/2014] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
Sediment-borne Escherichia coli can elevate waterborne concentrations through sediment resuspension or hyporheic exchange. This study sought to correlate hydrological, sediment transport, and water quality variables with: (i) the temporal stability of sediment E. coli populations [concentrations, strain richness and similarity (Raup-Crick index)]; and (ii) the contribution of sediment E. coli to the water column as defined through a library-dependent microbial source tracking approach that matched waterborne E. coli isolates to sediment E. coli populations. Three monitoring locations differing in their hydrological characteristics and adjacent upland fecal sources (dairy operation, low-density residential, and tile-drained cultivated field) were investigated. Sediment E. coli population turnover was influenced by sediment transport at upstream, high-energy reaches, but not at the downstream low-energy reach. Sediment contributions to the water column averaged 13% and 18%, and fecal sources averaged 17% and 21% at the upstream sites adjacent to dairy operations and low-density residential areas, respectively. Waterborne E. coli at the downstream site had low matches to E. coli from reach sediments (1%), higher matches to the upstream sediments (27% and 12%), and an average of 14% matches to the tile drained field. The percentage of waterborne E. coli matching sediment-borne E. coli at each stream reach varied in correlations to hydrological and sediment transport variables, suggesting reach-specific differences in the role of sediment resuspension and hyporheic exchange on E. coli transport.
Collapse
Affiliation(s)
- Gregory Piorkowski
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3H 4R2, Canada.
| | - Rob Jamieson
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3H 4R2, Canada.
| | - Greg Bezanson
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, NS B4N 1J5, Canada.
| | - Lisbeth Truelstrup Hansen
- Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3H 4R2, Canada.
| | - Chris Yost
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
26
|
Pachepsky Y, Shelton D, Dorner S, Whelan G. Can E. coli or thermotolerant coliform concentrations predict pathogen presence or prevalence in irrigation waters? Crit Rev Microbiol 2014; 42:384-93. [PMID: 25198779 DOI: 10.3109/1040841x.2014.954524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An increase in food-borne illnesses in the United States has been associated with fresh produce consumption. Irrigation water presents recognized risks for microbial contamination of produce. Water quality criteria rely on indicator bacteria. The objective of this review was to collate and summarize experimental data on the relationships between pathogens and thermotolerant coliform (THT) and/or generic E. coli, specifically focusing on surface fresh waters used in or potentially suitable for irrigation agriculture. We analyzed peer-reviewed publications in which concentrations of E. coli or THT coliforms in surface fresh waters were measured along with concentrations of one or more of waterborne and food-borne pathogenic organisms. The proposed relationships were significant in 35% of all instances and not significant in 65% of instances. Coliform indicators alone cannot provide conclusive, non-site-specific and non-pathogen-specific information about the presence and/or concentrations of most important pathogens in surface waters suitable for irrigation. Standards of microbial water quality for irrigation can rely not only on concentrations of indicators and/or pathogens, but must include references to crop management. Critical information on microbial composition of actual irrigation waters to support criteria of microbiological quality of irrigation waters appears to be lacking and needs to be collected.
Collapse
Affiliation(s)
- Yakov Pachepsky
- a USDA-ARS, Environmental Mirobial and Food Safety Laboratory , Beltsville , MD , USA
| | - Daniel Shelton
- a USDA-ARS, Environmental Mirobial and Food Safety Laboratory , Beltsville , MD , USA
| | - Sarah Dorner
- b Department of Civil , Geological and Mining Engineering, École Polytechnique de Montréal , Montreal , Quebec , Canada , and
| | - Gene Whelan
- c US Environmental Protection Agency, National Exposure Research Laboratory , Athens , GA , USA
| |
Collapse
|
27
|
Ravva SV, Sarreal CZ, Mandrell RE. Strain differences in fitness of Escherichia coli O157:H7 to resist protozoan predation and survival in soil. PLoS One 2014; 9:e102412. [PMID: 25019377 PMCID: PMC4097067 DOI: 10.1371/journal.pone.0102412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli O157:H7 (EcO157) associated with the 2006 spinach outbreak appears to have persisted as the organism was isolated, three months after the outbreak, from environmental samples in the produce production areas of the central coast of California. Survival in harsh environments may be linked to the inherent fitness characteristics of EcO157. This study evaluated the comparative fitness of outbreak-related clinical and environmental strains to resist protozoan predation and survive in soil from a spinach field in the general vicinity of isolation of strains genetically indistinguishable from the 2006 outbreak strains. Environmental strains from soil and feral pig feces survived longer (11 to 35 days for 90% decreases, D-value) with Vorticella microstoma and Colpoda aspera, isolated previously from dairy wastewater; these D-values correlated (P<0.05) negatively with protozoan growth. Similarly, strains from cow feces, feral pig feces, and bagged spinach survived significantly longer in soil compared to clinical isolates indistinguishable by 11-loci multi-locus variable-number tandem-repeat analysis. The curli-positive (C+) phenotype, a fitness trait linked with attachment in ruminant and human gut, decreased after exposure to protozoa, and in soils only C− cells remained after 7 days. The C+ phenotype correlated negatively with D-values of EcO157 exposed to soil (rs = −0.683; P = 0.036), Vorticella (rs = −0.465; P = 0.05) or Colpoda (rs = −0.750; P = 0.0001). In contrast, protozoan growth correlated positively with C+ phenotype (Vorticella, rs = 0.730, P = 0.0004; Colpoda, rs = 0.625, P = 0.006) suggesting a preference for consumption of C+ cells, although they grew on C− strains also. We speculate that the C− phenotype is a selective trait for survival and possibly transport of the pathogen in soil and water environments.
Collapse
Affiliation(s)
- Subbarao V. Ravva
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, California, United States of America
- * E-mail:
| | - Chester Z. Sarreal
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Robert E. Mandrell
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, California, United States of America
| |
Collapse
|
28
|
Pourcher AM, Jadas-Hécart A, Cotinet P, Dabert P, Ziebal C, Le Roux S, Moraru R, Heddadj D, Kempf I. Effect of land application of manure from enrofloxacin-treated chickens on ciprofloxacin resistance of Enterobacteriaceae in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 482-483:269-275. [PMID: 24657372 DOI: 10.1016/j.scitotenv.2014.02.136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
A field plot experiment was carried out to evaluate the impact of spreading chicken manure containing enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP), on the levels of CIP-resistant Enterobacteriaceae in soil. The manures from chickens treated with ENR and from untreated control chickens were applied on six plots. Total and CIP-resistant Enterobacteriaceae were counted on Violet Red Bile Glucose medium containing 0 to 16mg L(-1) of CIP. A total of 145 isolates were genotyped by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The minimum inhibitory concentration (MIC) of CIP for the isolates of each ERIC-PCR profile was determined. The most frequently isolated Enterobacteriaceae included Escherichia coli, and to a lesser extent, Enterobacter and 5 other genera from environmental origin. The composition of the E. coli community differed between manure and manured soil suggesting that the E. coli genotypes determined by ERIC-PCR varied significantly in their ability to survive in soil. One of these genotypes, including both susceptible and resistant isolates, was detected up to 89 days after the manure was applied. Most of the E. coli isolated in soil amended with manure from treated chickens was resistant to CIP (with a MIC ranging between 2 and 32mg L(-1)). In contrast, despite the presence of ENR in soil at concentrations ranging from 13-518μg kg(-1), the environmental Enterobacteriaceae isolates had a CIP MIC≤0.064mg L(-1), except one isolate which had a MIC of 0.25mg L(-1), These results showed that spreading manure from ENR-treated chickens enabled CIP-resistant E. coli to persist for at least three months in the soil. However, neither the presence of fluoroquinolones, nor the persistence of CIP-resistant E. coli, increased the CIP-susceptibility of environmental Enterobacteriaceae.
Collapse
Affiliation(s)
- A-M Pourcher
- IRSTEA, 17 Avenue de Cucillé, 35044 Rennes, France; Université Européenne de Bretagne, France.
| | - A Jadas-Hécart
- Université d'Angers, LETG-Angers LEESA UMR CNRS 6554, UFR Sciences, 2 Boulevard Lavoisier, 49045 Angers, France
| | - P Cotinet
- Chambre Régionale d'Agriculture de Bretagne, ZAC Atalante Champeaux, 35042 Rennes, France
| | - P Dabert
- IRSTEA, 17 Avenue de Cucillé, 35044 Rennes, France; Université Européenne de Bretagne, France
| | - C Ziebal
- IRSTEA, 17 Avenue de Cucillé, 35044 Rennes, France; Université Européenne de Bretagne, France
| | - S Le Roux
- IRSTEA, 17 Avenue de Cucillé, 35044 Rennes, France; Université Européenne de Bretagne, France
| | - R Moraru
- University of Agricultural Sciences and Veterinary Medicine, Aleea Mihail Sadoveanu no. 8, 700489 Iaşi, Romania
| | - D Heddadj
- Chambre Régionale d'Agriculture de Bretagne, ZAC Atalante Champeaux, 35042 Rennes, France
| | - I Kempf
- Université Européenne de Bretagne, France; ANSES Laboratoire de Ploufragan/Plouzané, BP 53, 22440 Ploufragan, France
| |
Collapse
|
29
|
Piorkowski GS, Bezanson GS, Jamieson RC, Hansen LT, Yost CK. Effect of hillslope position and manure application rates on the persistence of fecal source tracking indicators in an agricultural soil. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:450-458. [PMID: 25602646 DOI: 10.2134/jeq2013.07.0274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The influence of liquid dairy manure (LDM) application rates (12.5 and 25 kL ha) and soil type on the decay rates of library-independent fecal source tracking markers (host-associated and mitochondrial DNA) and persistent (>58 d) population structure was examined in a field study. The soils compared were an Aquic Haplorthod and a Typic Haplorthod in Nova Scotia, Canada, that differed according to landscape position and soil moisture regime. Soil type and LDM application rate did not influence decay rates (0.045-0.057 d). population structure, in terms of the occurrence of abundance of strain types, varied according to soil type ( = 0.012) but did not vary by LDM application rate ( = 0.121). Decay of ruminant-specific (BacR), bovine-specific (CowM2), and mitochondrial DNA (AcytB) markers was analyzed for 13 d after LDM application. The decay rates of BacR were greater under high-LDM application rates (0.281-0.358 d) versus low-LDM application rates (0.212-0.236 d) but were unaffected by soil type. No decay rates could be calculated for the CowM2 marker because it was undetectable within 6 d after manure application. Decay rates for AcytB were lower for the Aquic Haplorthod (0.088-0.100 d), with higher moisture status compared with the Typic Haplorthod (0.135 d). Further investigation into the decay of fecal source tracking indicators in agricultural field soils is warranted to assess the influence of soil type and agronomic practice on the differential decay of relevant markers and the likelihood of transport in runoff.
Collapse
|
30
|
Piorkowski GS, Jamieson RC, Hansen LT, Bezanson GS, Yost CK. Characterizing spatial structure of sediment E. coli populations to inform sampling design. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:277-291. [PMID: 23959344 DOI: 10.1007/s10661-013-3373-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p = 0.002) among monitoring sites during baseflow, and significant interactive effects (p = 0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.
Collapse
|
31
|
Harwood VJ, Staley C, Badgley BD, Borges K, Korajkic A. Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol Rev 2013; 38:1-40. [PMID: 23815638 DOI: 10.1111/1574-6976.12031] [Citation(s) in RCA: 421] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 05/08/2013] [Accepted: 06/25/2013] [Indexed: 01/22/2023] Open
Abstract
Microbial source tracking (MST) describes a suite of methods and an investigative strategy for determination of fecal pollution sources in environmental waters that rely on the association of certain fecal microorganisms with a particular host. MST is used to assess recreational water quality and associated human health risk, and total maximum daily load allocations. Many methods rely on signature molecules (markers) such as DNA sequences of host-associated microorganisms. Human sewage pollution is among the greatest concerns for human health due to (1) the known risk of exposure to human waste and (2) the public and regulatory will to reduce sewage pollution; however, methods to identify animal sources are receiving increasing attention as our understanding of zoonotic disease potential improves. Here, we review the performance of MST methods in initial reports and field studies, with particular emphasis on quantitative PCR (qPCR). Relationships among human-associated MST markers, fecal indicator bacteria, pathogens, and human health outcomes are presented along with recommendations for future research. An integrated understanding of the advantages and drawbacks of the many MST methods targeting human sources advanced over the past several decades will benefit managers, regulators, researchers, and other users of this rapidly growing area of environmental microbiology.
Collapse
Affiliation(s)
- Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
32
|
Harris LJ, Berry ED, Blessington T, Erickson M, Jay-Russell M, Jiang X, Killinger K, Michel FC, Millner P, Schneider K, Sharma M, Suslow TV, Wang L, Worobo RW. A framework for developing research protocols for evaluation of microbial hazards and controls during production that pertain to the application of untreated soil amendments of animal origin on land used to grow produce that may be consumed raw. J Food Prot 2013; 76:1062-84. [PMID: 23726206 DOI: 10.4315/0362-028x.jfp-13-007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Application of manure or soil amendments of animal origin (untreated soil amendments; UTSAs) to agricultural land has been a long-standing practice to maintain or improve soil quality through addition of organic matter, nitrogen, and phosphorus. Much smaller quantities of these types of UTSAs are applied to land used for food crops than to land used for animal grain and forage. UTSAs can harbor zoonotic enteric pathogens that may survive for extended periods after application. Additional studies are needed to enhance our understanding of preharvest microbial food safety hazards and control measures pertaining to the application of UTSAs especially for land used to grow produce that may be consumed raw. This document is intended to provide an approach to study design and a framework for defining the scope and type of data required. This document also provides a tool for evaluating the strength of existing data and thus can aid the produce industry and regulatory authorities in identifying additional research needs. Ultimately, this framework provides a means by which researchers can increase consistency among and between studies and facilitates direct comparison of hazards and efficacy of controls applied to different regions, conditions, and practices.
Collapse
Affiliation(s)
- Linda J Harris
- Western Center for Food Safety, University of California, One Shields Avenue, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Janezic KJ, Ferry B, Hendricks EW, Janiga BA, Johnson T, Murphy S, Roberts ME, Scott SM, Theisen AN, Hung KF, Daniel SL. Phenotypic and Genotypic Characterization of Escherichia coli Isolated from Untreated Surface Waters. Open Microbiol J 2013; 7:9-19. [PMID: 23539437 PMCID: PMC3606946 DOI: 10.2174/1874285801307010009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/22/2022] Open
Abstract
A common member of the intestinal microbiota in humans and animals is Escherichia coli. Based on the presence of virulence factors, E. coli can be potentially pathogenic. The focus of this study was to isolate E. coli from untreated surface waters (37 sites) in Illinois and Missouri and determine phenotypic and genotypic diversity among isolates. Water samples positive for fecal coliforms based on the Colisure® test were streaked directly onto Eosin Methylene Blue (EMB) agar (37°C) or transferred to EC broth (44.5°C). EC broth cultures producing gas were then streaked onto EMB agar. Forty-five isolates were identified as E. coli using API 20E and Enterotube II identification systems, and some phenotypic variation was observed in metabolism and fermentation. Antibiotic susceptibility of each isolate was also determined using the Kirby-Bauer Method. Differential responses to 10 antimicrobial agents were seen with 7, 16, 2, and 9 of the isolates resistant to ampicillin, cephalothin, tetracycline, and triple sulfonamide, respectively. All of the isolates were susceptible or intermediate to amoxicillin, ciprofloxacin, polymyxin B, gentamicin, imipenem, and nalidixic acid. Genotypic variation was assessed through multiplex Polymerase Chain Reaction for four virulence genes (stx1 and stx2 [shiga toxin], eaeA [intimin]; and hlyA [enterohemolysin]) and one housekeeping gene (uidA [β-D-glucuronidase]). Genotypic variation was observed with two of the isolates possessing the virulence gene (eaeA) for intimin. These findings increase our understanding of the diversity of E. coli in the environment which will ultimately help in the assessment of this organism and its role in public health.
Collapse
Affiliation(s)
- Kristopher J Janezic
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois 61920, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sha Q, Vattem DA, Forstner MRJ, Hahn D. Quantifying Salmonella population dynamics in water and biofilms. MICROBIAL ECOLOGY 2013; 65:60-67. [PMID: 22890729 DOI: 10.1007/s00248-012-0106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/24/2012] [Indexed: 06/01/2023]
Abstract
Members of the bacterial genus Salmonella are recognized worldwide as major zoonotic pathogens often found to persist in non-enteric environments including heterogeneous aquatic biofilms. In this study, Salmonella isolates that had been detected repeatedly over time in aquatic biofilms at different sites in Spring Lake, San Marcos, Texas, were identified as serovars Give, Thompson, Newport and -:z10:z39. Pathogenicity results from feeding studies with the nematode Caenorhabditis elegans as host confirmed that these strains were pathogenic, with Salmonella-fed C. elegans dying faster (mean survival time between 3 and 4 days) than controls, i.e., Escherichia coli-fed C. elegans (mean survival time of 9.5 days). Cells of these isolates inoculated into water at a density of up to 10(6) ml(-1) water declined numerically by 3 orders of magnitude within 2 days, reaching the detection limit of our quantitative polymerase chain reaction (qPCR)-based quantification technique (i.e., 10(3) cells ml(-1)). Similar patterns were obtained for cells in heterogeneous aquatic biofilms developed on tiles and originally free of Salmonella that were kept in the inoculated water. Cell numbers increased during the first days to more than 10(7) cells cm(-2), and then declined over time. Ten-fold higher cell numbers of Salmonella inoculated into water or into biofilm resulted in similar patterns of population dynamics, though cells in biofilms remained detectable with numbers around 10(4) cells cm(-2) after 4 weeks. Independent of detectability by qPCR, samples of all treatments harbored viable salmonellae that resembled the inoculated isolates after 4 weeks of incubation. These results demonstrate that pathogenic salmonellae were isolated from heterogeneous aquatic biofilms and that they could persist and stay viable in such biofilms in high numbers for some time.
Collapse
Affiliation(s)
- Qiong Sha
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | | | | | | |
Collapse
|
35
|
Ishii S, Sadowsky MJ. Escherichia coli in the Environment: Implications for Water Quality and Human Health. Microbes Environ 2012; 23:101-8. [PMID: 21558695 DOI: 10.1264/jsme2.23.101] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli is naturally present in the intestinal tracts of warm-blooded animals. Since E. coli is released into the environment through deposition of fecal material, this bacterium is widely used as an indicator of fecal contamination of waterways. Recently, research efforts have been directed towards the identification of potential sources of fecal contamination impacting waterways and beaches. This is often referred to as microbial source tracking. However, recent studies have reported that E. coli can become "naturalized" to soil, sand, sediments, and algae in tropical, subtropical, and temperate environments. This phenomenon raises issues concerning the continued use of this bacterium as an indicator of fecal contamination. In this review, we discuss the relationship between E. coli and fecal pollution and the use of this bacterium as an indicator of fecal contamination in freshwater systems. We also discuss recent studies showing that E. coli can become an active member of natural microbial communities in the environment, and how this bacterium is being used for microbial source tracking. We also discuss the impact of environmentally-"naturalized" E. coli populations on water quality.
Collapse
Affiliation(s)
- Satoshi Ishii
- Department of Soil, Water, and Climate, University of Minnesota
| | | |
Collapse
|
36
|
Correlation of intracellular trehalose concentration with desiccation resistance of soil Escherichia coli populations. Appl Environ Microbiol 2012; 78:7407-13. [PMID: 22885754 DOI: 10.1128/aem.01904-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naturalized soil Escherichia coli populations need to resist common soil desiccation stress in order to inhabit soil environments. In this study, four representative soil E. coli strains and one lab strain, MG1655, were tested for desiccation resistance via die-off experiments in sterile quartz sand under a potassium acetate-induced desiccation condition. The desiccation stress caused significantly lower die-off rates of the four soil strains (0.17 to 0.40 day(-1)) than that of MG1655 (0.85 day(-1)). Cellular responses, including extracellular polymeric substance (EPS) production, exogenous glycine betaine (GB) uptake, and intracellular compatible organic solute synthesis, were quantified and compared under the desiccation and hydrated control conditions. GB uptake appeared not to be a specific desiccation response, while EPS production showed considerable variability among the E. coli strains. All E. coli strains produced more intracellular trehalose, proline, and glutamine under the desiccation condition than the hydrated control, and only the trehalose concentration exhibited a significant correlation with the desiccation-contributed die-off coefficients (Spearman's ρ = -1.0; P = 0.02). De novo trehalose synthesis was further determined for 15 E. coli strains from both soil and nonsoil sources to determine its prevalence as a specific desiccation response. Most E. coli strains (14/15) synthesized significantly more trehalose under the desiccation condition, and the soil E. coli strains produced more trehalose (106.5 ± 44.9 μmol/mg of protein [mean ± standard deviation]) than the nonsoil reference strains (32.5 ± 10.5 μmol/mg of protein).
Collapse
|
37
|
Tello A, Austin B, Telfer TC. Selective pressure of antibiotic pollution on bacteria of importance to public health. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1100-6. [PMID: 22571927 PMCID: PMC3440082 DOI: 10.1289/ehp.1104650] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/16/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Many bacteria of clinical importance survive and may grow in different environments. Antibiotic pollution may exert on them a selective pressure leading to an increase in the prevalence of resistance. OBJECTIVES In this study we sought to determine whether environmental concentrations of antibiotics and concentrations representing action limits used in environmental risk assessment may exert a selective pressure on clinically relevant bacteria in the environment. METHODS We used bacterial inhibition as an assessment end point to link antibiotic selective pressures to the prevalence of resistance in bacterial populations. Species sensitivity distributions were derived for three antibiotics by fitting log-logistic models to end points calculated from minimum inhibitory concentration (MIC) distributions based on worldwide data collated by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). To place bacteria represented in these distributions in a broader context, we performed a brief phylogenetic analysis. The potentially affected fraction of bacterial genera at measured environmental concentrations of antibiotics and environmental risk assessment action limits was used as a proxy for antibiotic selective pressure. Measured environmental concentrations and environmental risk assessment action limits were also directly compared to wild-type cut-off values. RESULTS The potentially affected fraction of bacterial genera estimated based on antibiotic concentrations measured in water environments is ≤ 7%. We estimated that measured environmental concentrations in river sediments, swine feces lagoons, liquid manure, and farmed soil inhibit wild-type populations in up to 60%, 92%, 100%, and 30% of bacterial genera, respectively. At concentrations used as action limits in environmental risk assessment, erythromycin and ciprofloxacin were estimated to inhibit wild-type populations in up to 25% and 76% of bacterial genera. CONCLUSIONS Measured environmental concentrations of antibiotics, as well as concentrations representing environmental risk assessment action limits, are high enough to exert a selective pressure on clinically relevant bacteria that may lead to an increase in the prevalence of resistance.
Collapse
Affiliation(s)
- Alfredo Tello
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom.
| | | | | |
Collapse
|
38
|
Bezanson G, Delaquis P, Bach S, McKellar R, Topp E, Gill A, Blais B, Gilmour M. Comparative examination of Escherichia coli O157:H7 survival on romaine lettuce and in soil at two independent experimental sites. J Food Prot 2012; 75:480-7. [PMID: 22410221 DOI: 10.4315/0362-028x.jfp-11-306] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Little is known about the influence of abiotic factors such as climate and soil chemistry on the survival of Escherichia coli O157:H7 in field lettuce. We applied a nalidixic acid-resistant derivative of strain ATCC 700728 to field-grown romaine lettuce in two regions in Canada characterized by large variances in soil type and climate. Surviving populations in soil and on lettuce leaves were estimated on sorbitol MacConkey agar supplemented with nalidixic acid. Data were fitted with the Weibull decline function to permit comparison of decay rates in the two experimental sites. E. coli O157:H7 populations fell from 10⁵ to <10² CFU/g on leaves, and <10³ CFU/g in soil within 7 days after inoculation. Analysis revealed there was no significant difference between decay rates at the two experimental sites in either environment. The results of this study suggest that the inherent ecological fitness of E. coli O157:H7 ATCC 700728 determines the extent of survival in the production environment.
Collapse
Affiliation(s)
- Greg Bezanson
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, Nova Scotia B4N 1J5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Byappanahalli MN, Yan T, Hamilton MJ, Ishii S, Fujioka RS, Whitman RL, Sadowsky MJ. The population structure of Escherichia coli isolated from subtropical and temperate soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 417-418:273-9. [PMID: 22264918 DOI: 10.1016/j.scitotenv.2011.12.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 05/19/2023]
Abstract
While genotypically-distinct naturalized Escherichia coli strains have been shown to occur in riparian soils of Lake Michigan and Lake Superior watersheds, comparative analyses of E. coli populations in diverse soils across a range of geographic and climatic conditions have not been investigated. The main objectives of this study were to: (a) examine the population structure and genetic relatedness of E. coli isolates collected from different soil types on a tropical island (Hawaii), and (b) determine if E. coli populations from Hawaii and temperate soils (Indiana, Minnesota) shared similar genotypes that may be reflective of biome-related soil conditions. DNA fingerprint and multivariate statistical analyses were used to examine the population structure and genotypic characteristics of the E. coli isolates. About 33% (98 of 293) of the E. coli from different soil types and locations on the island of Oahu, Hawaii, had unique DNA fingerprints, indicating that these bacteria were relatively diverse; the Shannon diversity index for the population was 4.03. Nearly 60% (171 of 293) of the E. coli isolates from Hawaii clustered into two major groups and the rest, with two or more isolates, fell into one of 22 smaller groups, or individual lineages. Multivariate analysis of variance of 89, 21, and 106 unique E. coli DNA fingerprints for Hawaii, Indiana, and Minnesota soils, respectively, showed that isolates formed tight cohesive groups, clustering mainly by location. However, there were several instances of clonal isolates being shared between geographically different locations. Thus, while nearly identical E. coli strains were shared between disparate climatologically- and geographically-distinct locations, a vast majority of the soil E. coli strains were genotypically diverse and were likely derived from separate lineages. This supports the hypothesis that these bacteria are not unique and multiple genotypes can readily adapt to become part of the soil autochthonous microflora.
Collapse
|
40
|
Jang J, Unno T, Lee SW, Cho KH, Sadowsky MJ, Ko G, Kim JH, Hur HG. Prevalence of season-specific Escherichia coli strains in the Yeongsan River Basin of South Korea. Environ Microbiol 2011; 13:3103-13. [DOI: 10.1111/j.1462-2920.2011.02541.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Ma J, Ibekwe AM, Yi X, Wang H, Yamazaki A, Crowley DE, Yang CH. Persistence of Escherichia coli O157:H7 and its mutants in soils. PLoS One 2011; 6:e23191. [PMID: 21826238 PMCID: PMC3149627 DOI: 10.1371/journal.pone.0023191] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/08/2011] [Indexed: 11/18/2022] Open
Abstract
The persistence of Shiga toxin-producing E. coli O157:H7 in the environment poses a serious threat to public health. However, the role of Shiga toxins and other virulence factors in the survival of E. coli O157:H7 is poorly defined. The aim of this study was to determine if the virulence factors, stx₁, stx₂, stx₁₋₂, and eae in E. coli O157:H7 EDL933 play any significant role in the growth of this pathogen in rich media and in soils. Isogenic deletion mutants that were missing one of four virulence factors, stx₁, stx₂, stx₁₋₂, and eae in E. coli O157:H7 EDL933 were constructed, and their growth in rich media and survival in soils with distinct texture and chemistry were characterized. The survival data were successfully analyzed using Double Weibull model, and the modeling parameters of the mutant strains were not significantly different from those of the wild type. The calculated T(d) (time needed to reach the detection limit, 100 CFU/g soil) for loamy sand, sandy loam, and silty clay was 32, 80, and 110 days, respectively. It was also found that T(d) was positively correlated with soil structure (e.g. clay content), and soil chemistry (e.g. total nitrogen, total carbon, and water extractable organic carbon). The results of this study showed that the possession of Shiga toxins and intimin in E. coli O157:H7 might not play any important role in its survival in soils. The double deletion mutant of E. coli O157:H7 (stx₁⁻stx₂⁻) may be a good substitute to use for the investigation of transport, fate, and survival of E. coli O157:H7 in the environment where the use of pathogenic strains are prohibited by law since the mutants showed the same characteristics in both culture media and environmental samples.
Collapse
Affiliation(s)
- Jincai Ma
- United States Salinity Laboratory, Agriculture Research Service, United States Department of Agriculture, Riverside, California, United States of America
- Department of Environmental Sciences, University of California Riverside, Riverside, California, United States of America
| | - A. Mark Ibekwe
- United States Salinity Laboratory, Agriculture Research Service, United States Department of Agriculture, Riverside, California, United States of America
| | - Xuan Yi
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Haizhen Wang
- United States Salinity Laboratory, Agriculture Research Service, United States Department of Agriculture, Riverside, California, United States of America
- Department of Environmental Sciences, University of California Riverside, Riverside, California, United States of America
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Akihiro Yamazaki
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - David E. Crowley
- Department of Environmental Sciences, University of California Riverside, Riverside, California, United States of America
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
42
|
Sha Q, Gunathilake A, Forstner MR, Hahn D. Temporal analyses of the distribution and diversity of Salmonella in natural biofilms. Syst Appl Microbiol 2011; 34:353-9. [DOI: 10.1016/j.syapm.2011.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/15/2022]
|
43
|
McLaughlin MR, Brooks JP, Adeli A, Tewolde H. Nutrients and bacteria in common contiguous Mississippi soils with and without broiler litter fertilization. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:1322-1331. [PMID: 21712602 DOI: 10.2134/jeq2010.0402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In Mississippi, spent poultry litter is used as fertilizer. Nutrient and bacterial levels in litter and nutrient levels in litter-fertilized (L+) soil are known, but less is known of bacterial levels in L+ soil. This study compared contiguous L+ and non-litter-fertilized (L-) soils comprising 15 soil types on five farms in April through May 2009. Levels of pH; NO-N; and Mehlich-3-extractable (M3) and water-extractable (WE) P, Ca, K, and Cu were higher in L+ than in L- soil. Total C; total N; NH-N; and M3 and WE Na, Fe, and Zn did not differ in L+ and L- soil. Bacterial levels were higher in 0- to 5-cm than in 5- to 10-cm cores. Levels were higher in L+ than in L- soil for culturally determined heterotrophic plate counts and staphylococci and were lower for total bacteria estimated by quantitative polymerase chain reaction (qPCR) of 16S rRNA, but cultural levels of thermotolerant coliforms, , , and enterococci were not different. Cultural presence/absence (CPA) tests and qPCR for spp., spp., and spp. detected only spp., which did not differ in L+ (CPA = 77% positive samples; mean qPCR = 0.65 log genomic units [gu] g) and L- (CPA = 70% positive samples; mean qPCR = 0 log gu g) soils. Litter applications were associated with higher levels of pH, P, Cu, heterotrophic plate counts, and staphylococci. Fecal indicator and enteric pathogen levels were not affected. We conclude that, although some litter-derived nutrients and bacteria persisted between growing seasons in L+ soils, enteric pathogens did not.
Collapse
|
44
|
Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources. PLoS One 2011; 6:e20819. [PMID: 21687635 PMCID: PMC3110821 DOI: 10.1371/journal.pone.0020819] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/12/2011] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and sediment from creeks and channels along the middle Santa Ana River (MSAR) watershed of southern California, USA, after a 12 month study. Evaluation of E. coli populations along the creeks and channels showed that E. coli were more prevalent in sediment compared to surface water. E. coli populations were not significantly different (P = 0.05) between urban runoff sources and agricultural sources, however, E. coli genotypes determined by pulsed-field gel electrophoresis (PFGE) were less diverse in the agricultural sources than in urban runoff sources. PFGE also showed that E. coli populations in surface water were more diverse than in the sediment, suggesting isolates in sediment may be dominated by clonal populations.Twenty four percent (144 isolates) of the 600 isolates exhibited resistance to more than one antimicrobial agent. Most multiple resistances were associated with inputs from urban runoff and involved the antimicrobials rifampicin, tetracycline, and erythromycin. The occurrence of a greater number of E. coli with multiple antibiotic resistances from urban runoff sources than agricultural sources in this watershed provides useful evidence in planning strategies for water quality management and public health protection.
Collapse
|
45
|
van Elsas JD, Semenov AV, Costa R, Trevors JT. Survival of Escherichia coli in the environment: fundamental and public health aspects. THE ISME JOURNAL 2011; 5:173-83. [PMID: 20574458 PMCID: PMC3105702 DOI: 10.1038/ismej.2010.80] [Citation(s) in RCA: 386] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this review, our current understanding of the species Escherichia coli and its persistence in the open environment is examined. E. coli consists of six different subgroups, which are separable by genomic analyses. Strains within each subgroup occupy various ecological niches, and can be broadly characterized by either commensalistic or different pathogenic behaviour. In relevant cases, genomic islands can be pinpointed that underpin the behaviour. Thus, genomic islands of, on the one hand, broad environmental significance, and, on the other hand, virulence, are highlighted in the context of E. coli survival in its niches. A focus is further placed on experimental studies on the survival of the different types of E. coli in soil, manure and water. Overall, the data suggest that E. coli can persist, for varying periods of time, in such terrestrial and aquatic habitats. In particular, the considerable persistence of the pathogenic E. coli O157:H7 is of importance, as its acid tolerance may be expected to confer a fitness asset in the more acidic environments. In this context, the extent to which E. coli interacts with its human/animal host and the organism's survivability in natural environments are compared. In addition, the effect of the diversity and community structure of the indigenous microbiota on the fate of invading E. coli populations in the open environment is discussed. Such a relationship is of importance to our knowledge of both public and environmental health.
Collapse
Affiliation(s)
- Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Haren, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Badgley BD, Thomas FIM, Harwood VJ. Quantifying environmental reservoirs of fecal indicator bacteria associated with sediment and submerged aquatic vegetation. Environ Microbiol 2011; 13:932-42. [PMID: 21208357 DOI: 10.1111/j.1462-2920.2010.02397.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Elevated concentrations of fecal indicator bacteria (FIB) in aquatic sediments and vegetation have prompted concern that environmental reservoirs of FIB disrupt the correlation between indicator organisms, pathogens and human health risks. FIB numbers, however, are typically normalized to volume of water or mass of substrate. Because these reservoirs tend to differ greatly in magnitude within and between water bodies, direct comparison between water column and benthic population sizes can be problematic. Normalization to a set volume of water or mass of substrate, e.g. cfu (100 ml)(-1) or cfu(100 g)(-1), can give a false picture of the relative contributions of various reservoirs to FIB numbers across the ecosystem, and of the potential for FIBs to trigger health advisories as they pass from one reservoir to another. Here, we normalized enterococci concentrations from water, sediment and submerged aquatic vegetation (SAV) to land surface area (m(2) ) to compare their relative importance in the entire system. SAV-associated enterococci comprised only 0-18% of the entire population, even though they displayed the highest concentrations of enterococci per unit mass. The largest proportion of the enterococci population was in the water column (4-77%) or sediments (20-95%), depending on the volume of each substrate available at a site and FIB concentrations within them. Models indicated that large shifts in the relative size of FIB populations in each substrate can result from changes in per cent SAV cover, water depth and depth of sediment colonization. It follows that high concentrations of FIB in sediments or SAV do not necessarily signify large environmental reservoirs of FIB that can affect the water column. Comprehensive analyses that include FIB measurements from water, SAV and sediment normalized to land surface area offer a more balanced perspective on total FIB numbers contained in various matrices of an aquatic system.
Collapse
Affiliation(s)
- Brian D Badgley
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | | | | |
Collapse
|
47
|
Badgley BD, Ferguson J, Vanden Heuvel A, Kleinheinz GT, McDermott CM, Sandrin TR, Kinzelman J, Junion EA, Byappanahalli MN, Whitman RL, Sadowsky MJ. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan. WATER RESEARCH 2011; 45:721-731. [PMID: 20851450 DOI: 10.1016/j.watres.2010.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/21/2010] [Accepted: 08/23/2010] [Indexed: 05/29/2023]
Abstract
High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples.
Collapse
Affiliation(s)
- Brian D Badgley
- University of Minnesota, Department of Soil, Water, and Climate, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Badgley BD, Nayak BS, Harwood VJ. The importance of sediment and submerged aquatic vegetation as potential habitats for persistent strains of enterococci in a subtropical watershed. WATER RESEARCH 2010; 44:5857-66. [PMID: 20678788 DOI: 10.1016/j.watres.2010.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/09/2010] [Accepted: 07/01/2010] [Indexed: 05/23/2023]
Abstract
Recent evidence of extended survival of fecal indicator bacteria in sediments and submerged aquatic vegetation (SAV) has raised concerns about using indicator bacteria to reliably detect fecal contamination. We monitored enterococci densities and population structure in water, sediment and SAV simultaneously at sites across a subtropical watershed (Tampa Bay, FL, USA) over one year to determine the extent to which each matrix serves as a potential reservoir of enterococci. SAV harbored significantly higher mean densities of enterococci than sediments, which harbored higher densities than water. Mean enterococci densities were also greater at sites located further upstream in the watershed. The population structure assessed by BOX-PCR genotyping was relatively dissimilar in each sample, although some similarities among samples suggested grouping by location. Strain diversity ranged from very high to negligible, with lowest overall diversity in lake samples taken during the summer. Several strains were highly abundant and cosmopolitan (found across sites, seasons, and matrices) and were identified by 16S rRNA gene sequencing as the Enterococcus species casseliflavus, faecalis, faecium, hirae, and mundtii. The proportional dominance of certain strains suggests the existence of persistent and possibly naturalized indicator bacteria populations that are not directly related to pollution events.
Collapse
Affiliation(s)
- Brian D Badgley
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, United States
| | | | | |
Collapse
|
49
|
|
50
|
Boukef I, El Bour M, Al Gallas N, El Bahri O, Mejri S, Mraouna R, Ben Aissa R, Boudabous A, Got P, Troussellier M. Survival of Escherichia coli strains in Mediterranean brackish water in the Bizerte lagoon in northern Tunisia. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2010; 82:2249-2257. [PMID: 21141386 DOI: 10.2175/106143010x12609736967161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study investigated survival and virulence of Escherichia coli strains exposed to natural conditions in brackish water. Two E. coli strains (O126:B16 and O55:B5) were incubated in water microcosms in the Bizerte lagoon in northern Tunisia and exposed for 12 days to natural sunlight in June (231 to 386 W/m2, 26 +/- 1 degrees C, 30 g/L) and in April (227 to 330 W/m2, 17 +/- 1 degrees C, 27 g/L) or maintained in darkness for 21 days (17 +/- 1 degrees C, 27 g/L). The results revealed that sunlight was the most significant inactivating factor (decrease of 3 Ulog within 48 hours for the two strains) compared to salinity and temperature (in darkness). Survival time of the strains was prolonged as they were maintained in darkness. Local strain (E. coli O55:B5) showed better survival capacity (T90 = 52 hours) than E. coli O126:B16 (T90 = 11 h). For both, modifications were noted only for some metabolic activities of carbohydrates hydrolysis. Cytotoxicity of the two strains, tested on Vero cell, was maintained during the period of survival.
Collapse
Affiliation(s)
- I Boukef
- National Institute of Sea Sciences and Technology, Laboratory of Microbiology, Salammbô, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|