1
|
Bendia AG, Moreira JCF, Ferreira JCN, Romano RG, Ferreira IGC, Franco DC, Evangelista H, Montone RC, Pellizari VH. Insights into Antarctic microbiomes: diversity patterns for terrestrial and marine habitats. AN ACAD BRAS CIENC 2023; 95:e20211442. [PMID: 37820122 DOI: 10.1590/0001-3765202320211442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/27/2022] [Indexed: 10/13/2023] Open
Abstract
Microorganisms in Antarctica are recognized for having crucial roles in ecosystems functioning and biogeochemical cycles. To explore the diversity and composition of microbial communities through different terrestrial and marine Antarctic habitats, we analyze 16S rRNA sequence datasets from fumarole and marine sediments, soil, snow and seawater environments. We obtained measures of alpha- and beta-diversities, as well as we have identified the core microbiome and the indicator microbial taxa of a particular habitat. Our results showed a unique microbial community structure according to each habitat, including specific taxa composing each microbiome. Marine sediments harbored the highest microbial diversity among the analyzed habitats. In the fumarole sediments, the core microbiome was composed mainly of thermophiles and hyperthermophilic Archaea, while in the majority of soil samples Archaea was absent. In the seawater samples, the core microbiome was mainly composed by cultured and uncultured orders usually identified on Antarctic pelagic ecosystems. Snow samples exhibited common taxa previously described for habitats of the Antarctic Peninsula, which suggests long-distance dispersal processes occurring from the Peninsula to the Continent. This study contributes as a baseline for further efforts on evaluating the microbial responses to environmental conditions and future changes.
Collapse
Affiliation(s)
- Amanda G Bendia
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Julio Cezar F Moreira
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Juliana C N Ferreira
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Renato G Romano
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Ivan G C Ferreira
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Diego C Franco
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Heitor Evangelista
- Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcantara Gomes, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Rosalinda C Montone
- Universidade de São Paulo (USP), Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Vivian Helena Pellizari
- Universidade de São Paulo (USP), Departamento de Oceanografia Biológica, Instituto Oceanográfico, Cidade Universitária, Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
2
|
Stark JS, Johnstone GJ, King C, Raymond T, Rutter A, Stark SC, Townsend AT. Contamination of the marine environment by Antarctic research stations: Monitoring marine pollution at Casey station from 1997 to 2015. PLoS One 2023; 18:e0288485. [PMID: 37556440 PMCID: PMC10411823 DOI: 10.1371/journal.pone.0288485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
The contamination of the marine environment surrounding coastal Antarctic research stations remains insufficiently understood in terms of its extent, persistence, and characteristics. We investigated the presence of contaminants in marine sediments near Casey Station, located in the Windmill Islands of East Antarctica, during the period spanning from 1997 to 2015. Metals, hydrocarbons, PBDEs, PCBs, and nutrients were measured in sediments at anthropogenically disturbed sites, including the wastewater outfall, the wharf area, two former waste disposal sites, and various control locations. Sampling was carried out at three spatial scales: Locations, which were generally kilometres apart and formed the primary scale for comparison; Sites, which were 100 meters apart within each location; and Plots, which were 10 meters apart within each site. Consistently higher concentrations of most contaminants, and in some cases nutrients, were observed at disturbed locations. Some locations also exhibited an increase in contaminant concentrations over time. The spatial distribution of sediment properties (such as grain size and organic matter) and contaminants displayed intricate patterns of variation. Variation in grain size depended on the size category, with fine grains (e.g., <63 μm) showing the greatest variation at the Location scale, while coarse grains exhibited minimal variation at this scale. Contaminant levels demonstrated significant differences between Locations, accounting for approximately 55% of the overall variation for metals, while the variation within the 10-meter scale generally exceeded that within the 100-meter scale. Residual variation among replicate samples was also very high, demonstrating the need for adequate replication in studies of sediments and contaminants around stations. Some contaminants exceeded international guidelines for sediment quality, including metals, hydrocarbons, and PCBs. We conclude that Antarctic research stations such as Casey are likely to pose a moderate level of long-term ecological risk to local marine ecosystems through marine pollution. However, contamination is expected to be confined to areas in close proximity to the stations, although its extent and concentration are anticipated to increase with time. Raising awareness of the contamination risks associated with Antarctic stations and implementing monitoring programs for marine environments adjacent to these stations can contribute to informed decision-making and the improvement of environmental management practices in Antarctica.
Collapse
Affiliation(s)
- Jonathan S. Stark
- Australian Antarctic Division, East Antarctic Monitoring Program, Kingston, Tasmania, Australia
| | - Glenn J. Johnstone
- Australian Antarctic Division, East Antarctic Monitoring Program, Kingston, Tasmania, Australia
| | - Catherine King
- Australian Antarctic Division, East Antarctic Monitoring Program, Kingston, Tasmania, Australia
| | - Tania Raymond
- Australian Antarctic Division, East Antarctic Monitoring Program, Kingston, Tasmania, Australia
| | - Allison Rutter
- Analytical Services Unit, Queens University, Kingston, Ontario, Canada
| | - Scott C. Stark
- Australian Antarctic Division, East Antarctic Monitoring Program, Kingston, Tasmania, Australia
| | - Ashley T. Townsend
- Central Science Laboratory, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
3
|
Wang M, Zhang W, Dong Z, Yang Z, Zhao J, Guo X. Distinct mediating patterns between metal filtering and species coexistence of rare and abundant subcommunities in heavily polluted river sediments. ENVIRONMENT INTERNATIONAL 2023; 172:107747. [PMID: 36693298 DOI: 10.1016/j.envint.2023.107747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
It is unknown how anthropogenic pollutants released into freshwater ecosystems affect the assembly processes of microbial communities in river sediment. We used high-throughput sequencing to examine the assembly of rare and abundant subcommunities in a heavily polluted urban river: the Beiyun River in Beijing, China. Although deterministic processes overrode stochastic processes in shaping local rare and abundant subcommunities, there were distinctly different assembly mechanisms of rare and abundant subcommunities. Rare subcommunity assembly was governed more by interspecificinteractions, and environmental selection and dispersal limitation explained only a small fraction of the variation. However, both factors seemed to govern the assembly of abundant subcommunities. Our results implied that microbial co-occurrence associations tended to be higher when rare subcommunities were less driven by community assembly, and that these associations tended to be lower when abundant subcommunities were more driven by community assembly. A balance between the community assembly and species coexistence was exhibited atthesubcommunitylevel. Importantly, we tried to disentangle the assembly process of abundant subcommunities into introduction and colonization processes characterized by the presence/absence and relative abundance datasets. Interestingly, metals explained the highest percentage of spatial variation in the species introduction process. By affecting nutrient availability, metals also shaped the abundant subcommunity in the species colonization process, but this did not surpass nutrient availability. Therefore, disentangling the introduction and colonization processes enhances our understanding of the assembly mechanisms of microbial communities in heavily polluted running water ecosystems at fine geographical scales.
Collapse
Affiliation(s)
- Min Wang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, PR China
| | - Wei Zhang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, PR China
| | - Zhi Dong
- School of Life Sciences, Peking University, Beijing 100871, PR China
| | - Zirou Yang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, PR China
| | - Junying Zhao
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, PR China
| | - Xiaoyu Guo
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, PR China.
| |
Collapse
|
4
|
Zhao L, Yang M, Yu X, Liu L, Gao C, Li H, Fu S, Wang W, Wang J. Presence and distribution of triazine herbicides and their effects on microbial communities in the Laizhou Bay, Northern China. MARINE POLLUTION BULLETIN 2023; 186:114460. [PMID: 36521363 DOI: 10.1016/j.marpolbul.2022.114460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the distribution of triazine herbicides in the Laizhou Bay, China and found that the total concentrations of triazine herbicides in the seawater and sediments were 111.15-234.85 ng/L and 0.902-4.661 μg/kg, respectively. Triazine herbicides especially ametryn, atrazine, and simazine were negatively correlated with prokaryote diversity in the seawater. While ametryn, desethylatrazine and desisopropylatrazine had positively significant effects on eukaryotes Dinophyceae, Bacillariophyta, and Cercozoa in the sediments. Moreover, the degree of fragmentation of eukaryotic networks increased dramatically with the increasing numbers of removed nodes, but prokaryotic networks did not change with the decrease of nodes. In addition, the stability analysis and neutral community models revealed that eukaryotes were more sensitive to triazine herbicides than prokaryotes. These results suggest that triazine herbicides might affect the structure and interactions of microbial communities. Therefore, more attentions should be paid to the ecological risk of triazine herbicides in marine ecosystems.
Collapse
Affiliation(s)
- Lingchao Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mengyao Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaowen Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lijuan Liu
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Chen Gao
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Sui Fu
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Frühe L, Dully V, Forster D, Keeley NB, Laroche O, Pochon X, Robinson S, Wilding TA, Stoeck T. Global Trends of Benthic Bacterial Diversity and Community Composition Along Organic Enrichment Gradients of Salmon Farms. Front Microbiol 2021; 12:637811. [PMID: 33995296 PMCID: PMC8116884 DOI: 10.3389/fmicb.2021.637811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
The analysis of benthic bacterial community structure has emerged as a powerful alternative to traditional microscopy-based taxonomic approaches to monitor aquaculture disturbance in coastal environments. However, local bacterial diversity and community composition vary with season, biogeographic region, hydrology, sediment texture, and aquafarm-specific parameters. Therefore, without an understanding of the inherent variation contained within community complexes, bacterial diversity surveys conducted at individual farms, countries, or specific seasons may not be able to infer global universal pictures of bacterial community diversity and composition at different degrees of aquaculture disturbance. We have analyzed environmental DNA (eDNA) metabarcodes (V3-V4 region of the hypervariable SSU rRNA gene) of 138 samples of different farms located in different major salmon-producing countries. For these samples, we identified universal bacterial core taxa that indicate high, moderate, and low aquaculture impact, regardless of sampling season, sampled country, seafloor substrate type, or local farming and environmental conditions. We also discuss bacterial taxon groups that are specific for individual local conditions. We then link the metabolic properties of the identified bacterial taxon groups to benthic processes, which provides a better understanding of universal benthic ecosystem function(ing) of coastal aquaculture sites. Our results may further guide the continuing development of a practical and generic bacterial eDNA-based environmental monitoring approach.
Collapse
Affiliation(s)
- Larissa Frühe
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Verena Dully
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Dominik Forster
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Nigel B Keeley
- Biosecurity, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,Institute of Marine Research, Bergen, Norway
| | - Olivier Laroche
- Biosecurity, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Xavier Pochon
- Biosecurity, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Shawn Robinson
- St. Andrews Biological Station, Department of Fisheries and Oceans, St. Andrews, NB, Canada
| | | | - Thorsten Stoeck
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
6
|
Gran-Scheuch A, Ramos-Zuñiga J, Fuentes E, Bravo D, Pérez-Donoso JM. Effect of Co-contamination by PAHs and Heavy Metals on Bacterial Communities of Diesel Contaminated Soils of South Shetland Islands, Antarctica. Microorganisms 2020; 8:microorganisms8111749. [PMID: 33171767 PMCID: PMC7695015 DOI: 10.3390/microorganisms8111749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/04/2023] Open
Abstract
Diesel oil is the main source of energy used in Antarctica. Since diesel is composed of toxic compounds such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals, it represents a constant threat to the organisms inhabiting this continent. In the present study, we characterized the chemical and biological parameters of diesel-exposed soils obtained from King George Island in Antarctica. Contaminated soils present PAH concentrations 1000 times higher than non-exposed soils. Some contaminated soil samples also exhibited high concentrations of cadmium and lead. A 16S metagenome analysis revealed the effect of co-contamination on bacterial communities. An increase in the relative abundance of bacteria known as PAH degraders or metal resistant was determined in co-contaminated soils. Accordingly, the soil containing higher amounts of PAHs exhibited increased dehydrogenase activity than control soils, suggesting that the microorganisms present can metabolize diesel. The inhibitory effect on soil metabolism produced by cadmium was lower in diesel-contaminated soils. Moreover, diesel-contaminated soils contain higher amounts of cultivable heterotrophic, cadmium-tolerant, and PAH-degrading bacteria than control soils. Obtained results indicate that diesel contamination at King George island has affected microbial communities, favoring the presence of microorganisms capable of utilizing PAHs as a carbon source, even in the presence of heavy metals.
Collapse
Affiliation(s)
- Alejandro Gran-Scheuch
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer # 1007, Santiago 8380000, Chile;
| | - Javiera Ramos-Zuñiga
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
| | - Edwar Fuentes
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer # 1007, Santiago 8380000, Chile;
| | - Denisse Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Sergio Livingstone Pohlhammer # 943, Santiago 8380453, Chile;
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
- Correspondence:
| |
Collapse
|
7
|
Li J, Gu X, Gui Y. Prokaryotic Diversity and Composition of Sediments From Prydz Bay, the Antarctic Peninsula Region, and the Ross Sea, Southern Ocean. Front Microbiol 2020; 11:783. [PMID: 32411115 PMCID: PMC7198716 DOI: 10.3389/fmicb.2020.00783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
The V3–V4 hypervariable regions of the 16S ribosomal RNA gene were analyzed to assess prokaryotic diversity and community compositions within 19 surface sediment samples collected from three different regions (depth: 250–3,548 m) of Prydz Bay, the Antarctic Peninsula region, and the Ross Sea. In our results, we characterized 1,079,709 clean tag sequences representing 43,227 operational taxonomic units (OTUs, 97% similarity). The prokaryotic community distribution exhibited obvious geographical differences, and the sequences formed three distinct clusters according to the samples’ origins. In general, the biodiversity of Prydz Bay was higher than those of the Antarctic Peninsula region and the Ross Sea, and there were similar prokaryotic communities in different geographic locations. The most dominant clades in the prokaryotic communities were Proteobacteria, Bacteroidetes, Thaumarchaeota, Oxyphotobacteria, Deinococcus-Thermus, Firmicutes, Acidobacteria, Fusobacteria, and Planctomycetes, but unique prokaryotic community compositions were found in each of the sampling regions. Our results also demonstrated that the prokaryotic diversity and community distribution were mainly influenced by geographical and physicochemical factors, such as Zn, V, Na, K, water depth, and especially geographical distance (longitude variation of sample location) and Ba ion content. Moreover, geochemical factors such as nutrient contents (TC, P, and Ca) also played important roles in prokaryotic diversity and community distribution. This represents the first report that Ba ion content has an obvious effect on prokaryotic diversity and community distribution in Southern Ocean sediments.
Collapse
Affiliation(s)
- Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Ministry of Natural Resources (MNR) Key Lab for Science & Technology of Marine Ecosystems, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xiaoqian Gu
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Ministry of Natural Resources (MNR) Key Lab for Science & Technology of Marine Ecosystems, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yuanyuan Gui
- College of Environmental Science and Engineering Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Remediation of Crude Oil-Polluted Soil by the Bacterial Rhizosphere Community of Suaeda salsa Revealed by 16S rRNA Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051471. [PMID: 32106510 PMCID: PMC7084840 DOI: 10.3390/ijerph17051471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
Crude oil pollution of soil is a serious environmental issue, and bioremediation using plants and microorganisms is a natural and sustainable method for its restoration. Pot incubation of a two-factor randomized block (plants with two levels, and crude oil with three levels) was designed to investigate the rhizosphere bacterial community of Suaeda salsa (L.) Pall. Crude oil contamination of soil was studied at different levels: 2 g/kg (low), 4 g/kg (medium), and 6 g/kg (high) levels. In this study, the physicochemical properties of the collected rhizosphere soil were analyzed. Moreover, the soil bacteria were further identified using the 16S rRNA gene. The effects of S. salsa and crude oil and their interaction on the physiochemical properties of the soil and crude oil degradation were found to be significant. Crude oil significantly influenced the diversity and evenness of bacteria, while the effects of S. salsa and interaction with crude oil were not significant. Proteobacteria were found to be dominant at the phylum level. Meanwhile, at the genera level, Saccharibacteria and Alcanivorax increased significantly in the low and medium contamination treatment groups with S. salsa, whereas Saccharibacteria and Desulfuromonas were prevalent in the high contamination treatment group. High crude oil contamination led to a significant decrease in the bacterial diversity in soil, while the effects of S. salsa and its interaction were not significant. Despite the highest abundance of crude oil degradation bacteria, S. salsa reduced crude oil degradation bacteria and increased bacteria related to sulfur, phosphorus, and nitrogen cycling in the low and high contamination group, whereas the opposite effect was observed for the medium contamination treatment group. The abundance of most crude oil degradation bacteria is negatively correlated with crude oil content. Nitrogen cycling bacteria are sensitive to the total nitrogen, total phosphorus, ammonia nitrogen, and nitrate nitrogen, and pH of the soil. Sulfur cycling bacteria are sensitive to aromatic hydrocarbons, saturated hydrocarbons, and asphaltene in soil. This research is helpful for further studying the mechanism of synergistic degradation by S. salsa and bacteria.
Collapse
|
9
|
Zhuang M, Sanganyado E, Li P, Liu W. Distribution of microbial communities in metal-contaminated nearshore sediment from Eastern Guangdong, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:482-492. [PMID: 31026695 DOI: 10.1016/j.envpol.2019.04.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Nearshore environments are a critical transitional zone that connects the marine and terrestrial/freshwater ecosystems. The release of anthropogenic chemicals into nearshore ecosystems pose a human and environmental health risk. We investigated the microbial diversity, abundance and function in metal-contaminated sediments collected from the Rongjiang, Hanjiang and Lianjiang River estuaries and adjacent coastal areas using high throughput sequencing. The concentration of nutrients (NO3-N, NO2-N, NH4-N, PO4-P) and metal (Cu, Zn, Cd, Pb, As, Hg) contaminants were higher at the mouth of the rivers compared to the coastal lines, and this was confirmed using cluster analysis. Estimates obtained using geoaccumulation index showed that about 38.9% of the sites were contaminated with Pb and the pollution load index showed that sediment from the mouth of Hanjiang River Estuary was moderately polluted with metals. In the nearshore sediment samples collected, Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi, Acidobacteria were the dominant phylum with relative abundances of 46.6%, 8.05%, 6.47%, 5.26%, and 4.59%, respectively. There was no significant correlation between environmental variables and microbial abundance and diversity except for total organic carbon (TOC) (diversity; r = 0.569, p < 0.05) and Cr (diversity; r = 0.581, p < 0.05). At phyla level, Nitrospirae had a significant negative correlation with all metals except Cr, while OD1 had a significant positive correlation with all the metals. Overall, changes in nearshore sediment microbial communities by environmental factors were observed, and these may affect biogeochemical cycling.
Collapse
Affiliation(s)
- Mei Zhuang
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China
| | - Edmond Sanganyado
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China
| | - Ping Li
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China
| | - Wenhua Liu
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China.
| |
Collapse
|
10
|
Bacterial communities versus anthropogenic disturbances in the Antarctic coastal marine environment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42398-019-00064-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Pohlner M, Dlugosch L, Wemheuer B, Mills H, Engelen B, Reese BK. The Majority of Active Rhodobacteraceae in Marine Sediments Belong to Uncultured Genera: A Molecular Approach to Link Their Distribution to Environmental Conditions. Front Microbiol 2019; 10:659. [PMID: 31001232 PMCID: PMC6454203 DOI: 10.3389/fmicb.2019.00659] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
General studies on benthic microbial communities focus on fundamental biogeochemical processes or the most abundant constituents. Thereby, minor fractions such as the Rhodobacteraceae are frequently neglected. Even though this family belongs to the most widely distributed bacteria in the marine environment, their proportion on benthic microbial communities is usually within or below the single digit range. Thus, knowledge on these community members is limited, even though their absolute numbers might exceed those from the pelagic zone by orders of magnitudes. To unravel the distribution and diversity of benthic, metabolically active Rhodobacteraceae, we have now analyzed an already existing library of bacterial 16S rRNA transcripts. The dataset originated from 154 individual sediment samples comprising seven oceanic regions and a broad variety of environmental conditions. Across all samples, a total of 0.7% of all 16S rRNA transcripts was annotated as Rhodobacteraceae. Among those, Sulfitobacter, Paracoccus, and Phaeomarinomonas were the most abundant cultured representatives, but the majority (78%) was affiliated to uncultured family members. To define them, the 45 most abundant Rhodobacteraceae-OTUs assigned as "uncultured" were phylogenetically assembled in new clusters. Their next relatives particularly belonged to different subgroups other than the Roseobacter group, reflecting a large part of the hidden diversity within the benthic Rhodobacteraceae with unknown functions. The general composition of active Rhodobacteraceae communities was found to be specific for the geographical location, exhibiting a decreasing richness with sediment depth. One-third of the Rhodobacteraceae-OTUs significantly responded to the prevailing redox regime, suggesting an adaption to anoxic conditions. A possible approach to predict their physiological properties is to identify the metabolic capabilities of their nearest relatives. Those need to be proven by physiological experiments, as soon an isolate is available. Because many uncultured members of these subgroups likely thrive under anoxic conditions, in future research, a molecular-guided cultivation strategy can be pursued to isolate novel Rhodobacteraceae from sediments.
Collapse
Affiliation(s)
- Marion Pohlner
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Group “Biology of Geological Processes”, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Bernd Wemheuer
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - Heath Mills
- Rhodium Scientific LLC, San Antonio, TX, United States
| | - Bert Engelen
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
12
|
Zoppini A, Ademollo N, Patrolecco L, Langone L, Lungarini S, Dellisanti W, Amalfitano S. Distribution patterns of organic pollutants and microbial processes in marine sediments across a gradient of anthropogenic impact. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1860-1870. [PMID: 30126737 DOI: 10.1016/j.envpol.2018.07.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Marine sediments are part of the hydrological cycle and the ultimate storage compartment of land-derived organic matter, including pollutants. Since relevant microbially-driven processes occurring at benthic level may affect the quality of the overall aquatic system, the necessity for incorporating information about microbial communities functioning for ecosystem modelling is arising. The aim of this field study was to explore the links occurring between sediment contamination patterns by three selected class of organic pollutants (Polycyclic Aromatic Hydrocarbons, PAHs, Nonylphenols, NPs, Bisphenol A, BPA) and major microbial properties (Prokaryotic Biomass, PB; total living biomass, C-ATP; Prokaryotic C Production rate, PCP; Community Respiration rate, CR) across a gradient of anthropogenic pollution. Sediments were sampled from 34 sites selected along 700 km of the western coastline of the Adriatic Sea. Organic contamination was moderate (PAHs <830 ng g-1; NPs <350 ng g-1; BPA <38 ng g-1) and decreased southward. The amount of PAHs-associated carbon (C-PAHs) increased significantly with sediment organic carbon (OC), along with microbial functional rates. The negative relation between PCP/CR ratio and OC indicated the shift toward oxidative processes in response to organic pollution and potential toxicity, estimated as Toxic Equivalents (TEQs). Our outcomes showed that sediment organic contamination and benthic microbial processes can be intimately linked, with potential repercussions on CO2 emission rates and C-cycling within the detritus-based trophic web.
Collapse
Affiliation(s)
- A Zoppini
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy.
| | - N Ademollo
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy
| | - L Patrolecco
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy
| | - L Langone
- Institute of Marine Sciences, National Research Council (ISMAR-CNR), Bologna, Italy
| | - S Lungarini
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy
| | - W Dellisanti
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy
| | - S Amalfitano
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy
| |
Collapse
|
13
|
Qiao Y, Liu J, Zhao M, Zhang XH. Sediment Depth-Dependent Spatial Variations of Bacterial Communities in Mud Deposits of the Eastern China Marginal Seas. Front Microbiol 2018; 9:1128. [PMID: 29904376 PMCID: PMC5990616 DOI: 10.3389/fmicb.2018.01128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
The mud sediments of the eastern China marginal seas (ECMS) are deposited under different hydrodynamic conditions with different organic matter sources. These events have been demonstrated to exert significant influences on microbial communities and biogeochemical processes in surface sediments. However, the extent to which such effects occur in subsurface microbial communities remains unclear. In this study, both horizontal and vertical (five sites, each for eight layers) distributions of bacterial abundance and community composition in mud deposits of the South Yellow Sea (SYS) and East China Sea (ECS) were investigated by quantitative PCR and Illumina sequencing of the 16S rRNA gene. Both bacterial abundance and diversity were higher in the ECS than in the SYS, and tended to be higher in up than in deep layers. Proteobacteria (JTB255 marine benthic group), Acidobacteria and Bacteroidetes were dominant in the upper layers, whereas Lactococcus, Pseudomonas, and Dehalococcoidia were enriched in the deep layers. The bacterial communities in surface and subsurface sediments showed different inter-taxa relationships, indicating contrasting co-occurrence patterns. The bacterial communities in the upper layer samples clustered in accordance with mud zones, whereas those in the deep layer samples of all sites tended to cluster together. TOC δ13C and TON δ15N significantly affected the bacterial community composition, suggesting that the abundance and composition of organic matter played critical roles in shaping of sedimentary bacterial communities. This study provides novel insights into the distribution of subsurface bacterial communities in mud deposits of the ECMS, and provides clues for understanding the biogeochemical cycles in this area.
Collapse
Affiliation(s)
- Yanlu Qiao
- Laboratory of Marine Microbiology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiwen Liu
- Laboratory of Marine Microbiology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Meixun Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Laboratory of Marine Microbiology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Lee DW, Lee H, Lee AH, Kwon BO, Khim JS, Yim UH, Kim BS, Kim JJ. Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:503-512. [PMID: 29216488 DOI: 10.1016/j.envpol.2017.11.097] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 05/15/2023]
Abstract
The tidal flats near Sinduri beach in Taean, Korea, have been severely contaminated by heavy crude oils due to the Korea's worst oil spill accident, say the Hebei Spirit Oil Spill, in 2007. Crude oil compounds, including polycyclic aromatic hydrocarbons (PAHs), pose significant environmental damages due to their wide distribution, persistence, high toxicity, mutagenicity, and carcinogenicity. Microbial community of Sinduri beach sediments samples was analyzed by metagenomic data with 16S rRNA gene amplicons. Three phyla (Proteobacteria, Firmicutes, and Bacteroidetes) accounted for approximately ≥93.0% of the total phyla based on metagenomic analysis. Proteobacteria was the dominant phylum in Sinduri beach sediments. Cultivable bacteria were isolated from PAH-enriched cultures, and bacterial diversity was investigated through performing culture characterization followed by molecular biology methods. Sixty-seven isolates were obtained, comprising representatives of Actinobacteria, Firmicutes, α- and γ-Proteobacteria, and Bacteroidetes. PAH catabolism genes, such as naphthalene dioxygenase (NDO) and aromatic ring hydroxylating dioxygenase (ARHDO), were used as genetic markers to assess biodegradation of PAHs in the cultivable bacteria. The ability to degrade PAHs was demonstrated by monitoring the removal of PAHs using a gas chromatography mass spectrometer. Overall, various PAH-degrading bacteria were widely present in Sinduri beach sediments and generally reflected the restored microbial community. Among them, Cobetia marina, Rhodococcus soli, and Pseudoalteromonas agarivorans were found to be significant in degradation of PAHs. This large collection of PAH-degrading strains represents a valuable resource for studies investigating mechanisms of PAH degradation and bioremediation in oil contaminated coastal environment, elsewhere.
Collapse
Affiliation(s)
- Dong Wan Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, Republic of Korea; BK21 Plus Eco-Leader Education Center, Korea University, Seoul, 02841, Republic of Korea
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Aslan Hwanhwi Lee
- Department of Civil and Geological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - Bong-Oh Kwon
- School of Earth and Environmental Science & Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Science & Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Beom Seok Kim
- Division of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Hornick KM, Buschmann AH. Insights into the diversity and metabolic function of bacterial communities in sediments from Chilean salmon aquaculture sites. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1317-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Wang X, Zhao X, Li H, Jia J, Liu Y, Ejenavi O, Ding A, Sun Y, Zhang D. Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation. Res Microbiol 2016; 167:731-744. [PMID: 27475037 DOI: 10.1016/j.resmic.2016.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022]
Abstract
Uncultivable microorganisms account for over 99% of all species on the planet, but their functions are yet not well characterized. Though many cultivable degraders for n-alkanes have been intensively investigated, the roles of functional n-alkane degraders remain hidden in the natural environment. This study introduces the novel magnetic nanoparticle-mediated isolation (MMI) technology in Nigerian soils and successfully separates functional microbes belonging to the families Oxalobacteraceae and Moraxellaceae, which are dominant and responsible for alkane metabolism in situ. The alkR-type n-alkane monooxygenase genes, instead of alkA- or alkP-type, were the key functional genes involved in the n-alkane degradation process. Further physiological investigation via a BIOLOG PM plate revealed some carbon (Tween 20, Tween 40 and Tween 80) and nitrogen (tyramine, l-glutamine and d-aspartic acid) sources promoting microbial respiration and n-alkane degradation. With further addition of promoter carbon or nitrogen sources, the separated functional alkane degraders significantly improved n-alkane biodegradation rates. This suggests that MMI is a promising technology for separating functional microbes from complex microbiota, with deeper insight into their ecological functions and influencing factors. The technique also broadens the application of the BIOLOG PM plate for physiological research on functional yet uncultivable microorganisms.
Collapse
Affiliation(s)
- Xinzi Wang
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Xiaohui Zhao
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hanbing Li
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China
| | - Yueqiao Liu
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Odafe Ejenavi
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Dayi Zhang
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
17
|
Learman DR, Henson MW, Thrash JC, Temperton B, Brannock PM, Santos SR, Mahon AR, Halanych KM. Biogeochemical and Microbial Variation across 5500 km of Antarctic Surface Sediment Implicates Organic Matter as a Driver of Benthic Community Structure. Front Microbiol 2016; 7:284. [PMID: 27047451 PMCID: PMC4803750 DOI: 10.3389/fmicb.2016.00284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/22/2016] [Indexed: 02/01/2023] Open
Abstract
Western Antarctica, one of the fastest warming locations on Earth, is a unique environment that is underexplored with regards to biodiversity. Although pelagic microbial communities in the Southern Ocean and coastal Antarctic waters have been well-studied, there are fewer investigations of benthic communities and most have a focused geographic range. We sampled surface sediment from 24 sites across a 5500 km region of Western Antarctica (covering the Ross Sea to the Weddell Sea) to examine relationships between microbial communities and sediment geochemistry. Sequencing of the 16S and 18S rRNA genes showed microbial communities in sediments from the Antarctic Peninsula (AP) and Western Antarctica (WA), including the Ross, Amundsen, and Bellingshausen Seas, could be distinguished by correlations with organic matter concentrations and stable isotope fractionation (total organic carbon; TOC, total nitrogen; TN, and δ13C). Overall, samples from the AP were higher in nutrient content (TOC, TN, and NH4+) and communities in these samples had higher relative abundances of operational taxonomic units (OTUs) classified as the diatom, Chaetoceros, a marine cercozoan, and four OTUs classified as Flammeovirgaceae or Flavobacteria. As these OTUs were strongly correlated with TOC, the data suggests the diatoms could be a source of organic matter and the Bacteroidetes and cercozoan are grazers that consume the organic matter. Additionally, samples from WA have lower nutrients and were dominated by Thaumarchaeota, which could be related to their known ability to thrive as lithotrophs. This study documents the largest analysis of benthic microbial communities to date in the Southern Ocean, representing almost half the continental shoreline of Antarctica, and documents trophic interactions and coupling of pelagic and benthic communities. Our results indicate potential modifications in carbon sequestration processes related to change in community composition, identifying a prospective mechanism that links climate change to carbon availability.
Collapse
Affiliation(s)
- Deric R Learman
- Department of Biology, Institute for Great Lakes Research, Central Michigan University Mt. Pleasant, MI, USA
| | - Michael W Henson
- Department of Biological Sciences, Louisiana State University Baton Rouge, LA, USA
| | - J Cameron Thrash
- Department of Biological Sciences, Louisiana State University Baton Rouge, LA, USA
| | - Ben Temperton
- Department of Biosciences, University of Exeter Exeter, UK
| | - Pamela M Brannock
- Department of Biological Sciences, Auburn University Auburn, AL, USA
| | - Scott R Santos
- Department of Biological Sciences, Auburn University Auburn, AL, USA
| | - Andrew R Mahon
- Department of Biology, Institute for Great Lakes Research, Central Michigan University Mt. Pleasant, MI, USA
| | | |
Collapse
|
18
|
Reyes C, Dellwig O, Dähnke K, Gehre M, Noriega-Ortega BE, Böttcher ME, Meister P, Friedrich MW. Bacterial communities potentially involved in iron-cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing. FEMS Microbiol Ecol 2016; 92:fiw054. [DOI: 10.1093/femsec/fiw054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
|
19
|
Subha B, Song YC, Woo JH. Optimization of biostimulant for bioremediation of contaminated coastal sediment by response surface methodology (RSM) and evaluation of microbial diversity by pyrosequencing. MARINE POLLUTION BULLETIN 2015; 98:235-246. [PMID: 26139459 DOI: 10.1016/j.marpolbul.2015.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
The present study aims to optimize the slow release biostimulant ball (BSB) for bioremediation of contaminated coastal sediment using response surface methodology (RSM). Different bacterial communities were evaluated using a pyrosequencing-based approach in contaminated coastal sediments. The effects of BSB size (1-5cm), distance (1-10cm) and time (1-4months) on changes in chemical oxygen demand (COD) and volatile solid (VS) reduction were determined. Maximum reductions of COD and VS, 89.7% and 78.8%, respectively, were observed at a 3cm ball size, 5.5cm distance and 4months; these values are the optimum conditions for effective treatment of contaminated coastal sediment. Most of the variance in COD and VS (0.9291 and 0.9369, respectively) was explained in our chosen models. BSB is a promising method for COD and VS reduction and enhancement of SRB diversity.
Collapse
Affiliation(s)
- Bakthavachallam Subha
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea
| | - Young Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea.
| | - Jung Hui Woo
- Nuclear Power Equipment Research Center, Korea Maritime and Ocean University, Busan, South Korea
| |
Collapse
|
20
|
Long-term oil contamination causes similar changes in microbial communities of two distinct soils. Appl Microbiol Biotechnol 2015; 99:10299-310. [PMID: 26254788 DOI: 10.1007/s00253-015-6880-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Since total petroleum hydrocarbons (TPH) are toxic and persistent in environments, studying the impact of oil contamination on microbial communities in different soils is vital to oil production engineering, effective soil management and pollution control. This study analyzed the impact of oil contamination on the structure, activity and function in carbon metabolism of microbial communities of Chernozem soil from Daqing oil field and Cinnamon soil from Huabei oil field through both culture-dependent techniques and a culture-independent technique-pyrosequencing. Results revealed that pristine microbial communities in these two soils presented disparate patterns, where Cinnamon soil showed higher abundance of alkane, (polycyclic aromatic hydrocarbons) PAHs and TPH degraders, number of cultivable microbes, bacterial richness, bacterial biodiversity, and stronger microbial activity and function in carbon metabolism than Chernozem soil. It suggested that complicated properties of microbes and soils resulted in the difference in soil microbial patterns. However, the changes of microbial communities caused by oil contamination were similar in respect of two dominant phenomena. Firstly, the microbial community structures were greatly changed, with higher abundance, higher bacterial biodiversity, occurrence of Candidate_division_BRC1 and TAO6, disappearance of BD1-5 and Candidate_division_OD1, dominance of Streptomyces, higher percentage of hydrocarbon-degrading groups, and lower percentage of nitrogen-transforming groups. Secondly, microbial activity and function in carbon metabolism were significantly enhanced. Based on the characteristics of microbial communities in the two soils, appropriate strategy for in situ bioremediation was provided for each oil field. This research underscored the usefulness of combination of culture-dependent techniques and next-generation sequencing techniques both to unravel the microbial patterns and understand the ecological impact of contamination.
Collapse
|
21
|
Liao J, Wang J, Huang Y. Bacterial Community Features Are Shaped by Geographic Location, Physicochemical Properties, and Oil Contamination of Soil in Main Oil Fields of China. MICROBIAL ECOLOGY 2015; 70:380-389. [PMID: 25676171 DOI: 10.1007/s00248-015-0572-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
Geographic location and physicochemical properties are thought to represent major factors that shape soil bacterial community abundance and diversity. Crude oil contamination is becoming a notable concern with respect to soil property variation; however, the quantifiable influences of geographic location, physicochemical properties, and oil contamination are still poorly understood. In this study, the 16S ribosomal RNA genes of bacteria in the four oil fields in China were analyzed by using pyrosequencing. Results showed that physicochemical properties were the most dominant factor of bacterial community distribution, followed by geographical location. Oil contamination was a driving factor whose indirect influence was stronger than its direct influence. Under the impact of these three factors, different oil fields presented diversified and distinguishable bacterial community features. The soil of sites with the highest total petroleum hydrocarbon content (HB), nitrogen content (DQ), and phosphorus content (XJ) contained the largest proportion of functional groups participating in hydrocarbon degradation, nitrogen turnover, and phosphorus turnover, respectively. The first dominant phylum of the site with loam soil texture (HB) was Actinobacteria instead of Proteobacteria in other sites with sandy or sandy loam soil texture (DQ, SL, XJ). The site with the highest salinization and alkalization (SL) exhibited the largest proportion of unique local bacteria. The site that was located in the desert with extremely low precipitation (XJ) had the most diversified bacteria distribution. The bacterial community diversity was strongly influenced by soil physicochemical properties.
Collapse
Affiliation(s)
- Jingqiu Liao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | | | | |
Collapse
|
22
|
Prus W, Fabiańska MJ, Łabno R. Geochemical markers of soil anthropogenic contaminants in polar scientific stations nearby (Antarctica, King George Island). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:266-79. [PMID: 25770449 DOI: 10.1016/j.scitotenv.2015.02.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 05/15/2023]
Abstract
The organic contamination of Antarctic soils and terrestrial sediments from nearby of five polar scientific stations on King George Island (Antarctica) was investigated. Gas chromatography-mass spectrometry (GC-MS) was applied to find composition of dichloromethane extracts of soil and terrestrial sediments. The presence of geochemical markers, such as n-alkanes, steranes, pentacyclic triterpenoids, and alkyl PAHs, their distribution types, and values of their ratios indicates the predominating source of organic fossil fuels and products of their refining rather than from the natural Antarctic environment. Fossil fuel-originated compounds well survived in conditions of Antarctic climate over long times thus enabling to characterize geochemical features of source fossil fuel identified as petroleum expelled from kerogen II of algal/bacterial origins deposited in sub-oxic conditions and being in the middle of catagenesis. Both microbial activity and water leaching play an important role in degradation of terrestrial oil spills in the Antarctica climate, and petroleum alteration occurs lowly over long periods of time. Synthetic anthropogenic compounds found in terrestrial Antarctica sediments included diisopropylnaphthalenes, products of their sulfonates degradation in paper combustion, and organophosporus compounds used as retardants and plasticizers.
Collapse
Affiliation(s)
- Wojciech Prus
- University of Bielsko-Biała, ul. Willowa 2, 43-309 Bielsko-Biała, Poland.
| | - Monika J Fabiańska
- Faculty of Earth Sciences, University of Silesia, Będzińska Street 60, 41-200 Sosnowiec, Poland
| | - Radosław Łabno
- Institute of Biochemistry and Biophysics, Department of Antarctic Biology, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warszawa, Poland
| |
Collapse
|
23
|
Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, Vangnai AS, Pinyakong O. Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4725-4735. [PMID: 25335763 DOI: 10.1007/s11356-014-3721-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
Hydrocarbon catabolic genes were investigated in soils and sediments in nine different locations around Syowa Station, Antarctica, using conventional PCR, real-time PCR, cloning, and sequencing analysis. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD)-coding genes from both Gram-positive and Gram-negative bacteria were observed. Clone libraries of Gram-positive RHD genes were related to (i) nidA3 of Mycobacterium sp. py146, (ii) pdoA of Terrabacter sp. HH4, (iii) nidA of Diaphorobacter sp. KOTLB, and (iv) pdoA2 of Mycobacterium sp. CH-2, with 95-99% similarity. Clone libraries of Gram-negative RHD genes were related to the following: (i) naphthalene dioxygenase of Burkholderia glathei, (ii) phnAc of Burkholderia sartisoli, and (iii) RHD alpha subunit of uncultured bacterium, with 41-46% similarity. Interestingly, the diversity of the Gram-positive RHD genes found around this area was higher than those of the Gram-negative RHD genes. Real-time PCR showed different abundance of dioxygenase genes between locations. Moreover, the PCR-denaturing gradient gel electrophoresis (DGGE) profile demonstrated diverse bacterial populations, according to their location. Forty dominant fragments in the DGGE profiles were excised and sequenced. All of the sequences belonged to ten bacterial phyla: Proteobacteria, Actinobacteria, Verrucomicrobia, Bacteroidetes, Firmicutes, Chloroflexi, Gemmatimonadetes, Cyanobacteria, Chlorobium, and Acidobacteria. In addition, the bacterial genus Sphingomonas, which has been suggested to be one of the major PAH degraders in the environment, was observed in some locations. The results demonstrated that indigenous bacteria have the potential ability to degrade PAHs and provided information to support the conclusion that bioremediation processes can occur in the Antarctic soils and sediments studied here.
Collapse
Affiliation(s)
- C Muangchinda
- Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
24
|
Polmear R, Stark JS, Roberts D, McMinn A. The effects of oil pollution on Antarctic benthic diatom communities over 5 years. MARINE POLLUTION BULLETIN 2015; 90:33-40. [PMID: 25499184 DOI: 10.1016/j.marpolbul.2014.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/16/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Although considered pristine, Antarctica has not been impervious to hydrocarbon pollution. Antarctica's history is peppered with oil spills and numerous abandoned waste disposal sites. Both spill events and constant leakages contribute to previous and current sources of pollution into marine sediments. Here we compare the response of the benthic diatom communities over 5 years to exposure to a commonly used standard synthetic lubricant oil, an alternative lubricant marketed as more biodegradable, in comparison to a control treatment. Community composition varied significantly over time and between treatments with some high variability within contaminated treatments suggesting community stress. Both lubricants showed evidence of significant effects on community composition after 5 years even though total petroleum hydrocarbon reduction reached approximately 80% over this time period. It appears that even after 5 years toxicity remains high for both the standard and biodegradable lubricants revealing the temporal scale at which pollutants persist in Antarctica.
Collapse
Affiliation(s)
- R Polmear
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia
| | - J S Stark
- Australian Antarctic Division, Channel Hwy, Kingston 7050, Tasmania, Australia
| | - D Roberts
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart, Tasmania, Australia
| | - A McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia.
| |
Collapse
|
25
|
Fodelianakis S, Papageorgiou N, Karakassis I, Ladoukakis ED. Community structure changes in sediment bacterial communities along an organic enrichment gradient associated with fish farming. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0865-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Jørgensen SL, Thorseth IH, Pedersen RB, Baumberger T, Schleper C. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front Microbiol 2013; 4:299. [PMID: 24109477 PMCID: PMC3790079 DOI: 10.3389/fmicb.2013.00299] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022] Open
Abstract
In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG) is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria, and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001). Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000), indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures.
Collapse
Affiliation(s)
- Steffen L Jørgensen
- Department of Biology, Centre for Geobiology, University of Bergen , Bergen, Norway
| | | | | | | | | |
Collapse
|
27
|
Pan Q, Wang F, Zhang Y, Cai M, He J, Yang H. Denaturing gradient gel electrophoresis fingerprinting of soil bacteria in the vicinity of the Chinese Great Wall Station, King George Island, Antarctica. J Environ Sci (China) 2013; 25:1649-1655. [PMID: 24520704 DOI: 10.1016/s1001-0742(12)60229-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bacterial diversity was investigated in soil samples collected from 13 sites around the Great Wall Station, Fildes Peninsula, King George Island, Antarctica, using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The classes alpha-, beta-, and gamma-Proteobacteria, as well as the phylum Actinobacteria, were found to be the dominant bacteria in the soils around the Great Wall Station. Although the selected samples were not contaminated by oil, a relationship between soil parameters, microbial biodiversity, and human impact was still seen. Sample sites in human impacted areas showed lower bacterial biodiversity (average H' = 2.65) when compared to non-impacted sites (average H' = 3.05). There was no statistically significant correlation between soil bacterial diversity and total organic carbon (TOC), total nitrogen, or total phosphorus contents of the soil. Canonical correlation analysis showed that TOC content was the most important factor determining bacterial community profiles among the measured soil parameters. In conclusion, microbial biodiversity and community characteristics within relatively small scales (1.5 km) were determined as a function of local environment parameters and anthropogenic impact.
Collapse
Affiliation(s)
- Qi Pan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Feng Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Zhang
- Jinan Municipal Engineering Design and Research Institute Co., Ltd., Jinan 250101, China
| | - Minghong Cai
- Key Laboratory for Polar Science of State Ocean Administration, Polar Research Institute of China, Shanghai 200136, China
| | - Jianfeng He
- Key Laboratory for Polar Science of State Ocean Administration, Polar Research Institute of China, Shanghai 200136, China
| | - Haizhen Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
28
|
Wang L, Liu L, Zheng B, Zhu Y, Wang X. Analysis of the bacterial community in the two typical intertidal sediments of Bohai Bay, China by pyrosequencing. MARINE POLLUTION BULLETIN 2013; 72:181-187. [PMID: 23660440 DOI: 10.1016/j.marpolbul.2013.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
For full understanding of the bacterial community in the intertidal zones of Bohai Bay, China, we used pyrosequencing-based approach to analyze the 16S rRNA gene of bacteria in the sediments from the two typically intertidal zones - Qikou (Qi) and Gaoshaling (Ga). Results showed that, at a 0.03 distance, the sequences from the Qi sediment were assigned to 3252 operational taxonomic units (OTUs) which belong to 34 phyla, 69 classes and 119 genera, while the 3740 OTUs from the Ga sediment were affiliated with 33 phyla, 66 classes and 146 genera. Comparing the bacterial communities inhabiting in the two intertidal sediments, we observed significant difference in the dominant composition and distribution at phylum, class and genus levels. Canonical correspondence analysis (CCA) showed that the median grain size and DO were the most important factors regulating the bacterial abundance and diversity, while the other environmental factors have effects with different degree.
Collapse
Affiliation(s)
- Liping Wang
- State Environmental Protection Key Laboratory of Estuary and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | | | | | | | | |
Collapse
|
29
|
Fan J, Li L, Han J, Ming H, Li J, Na G, Chen J. Diversity and structure of bacterial communities in Fildes Peninsula, King George Island. Polar Biol 2013. [DOI: 10.1007/s00300-013-1358-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Janke T, Schwaiger K, Ege M, Fahn C, von Mutius E, Bauer J, Mayer M. Analysis of the Fungal Flora in Environmental Dust Samples by PCR–SSCP Method. Curr Microbiol 2013; 67:156-69. [DOI: 10.1007/s00284-013-0344-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|
31
|
The ecological roles of bacterial populations in the surface sediments of coastal lagoon environments in Japan as revealed by quantification and qualification of 16S rDNA. World J Microbiol Biotechnol 2012; 29:759-74. [PMID: 23264132 DOI: 10.1007/s11274-012-1231-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
32
|
Lin R, Buijse L, Dimitrov MR, Dohmen P, Kosol S, Maltby L, Roessink I, Sinkeldam JA, Smidt H, Van Wijngaarden RPA, Brock TCM. Effects of the fungicide metiram in outdoor freshwater microcosms: responses of invertebrates, primary producers and microbes. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1550-69. [PMID: 22555811 PMCID: PMC3377896 DOI: 10.1007/s10646-012-0909-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2012] [Indexed: 05/14/2023]
Abstract
The ecological impact of the dithiocarbamate fungicide metiram was studied in outdoor freshwater microcosms, consisting of 14 enclosures placed in an experimental ditch. The microcosms were treated three times (interval 7 days) with the formulated product BAS 222 28F (Polyram®). Intended metiram concentrations in the overlying water were 0, 4, 12, 36, 108 and 324 μg a.i./L. Responses of zooplankton, macroinvertebrates, phytoplankton, macrophytes, microbes and community metabolism endpoints were investigated. Dissipation half-life (DT₅₀) of metiram was approximately 1-6 h in the water column of the microcosm test system and the metabolites formed were not persistent. Multivariate analysis indicated treatment-related effects on the zooplankton (NOEC(community) = 36 μg a.i./L). Consistent treatment-related effects on the phytoplankton and macroinvertebrate communities and on the sediment microbial community could not be demonstrated or were minor. There was no evidence that metiram affected the biomass, abundance or functioning of aquatic hyphomycetes on decomposing alder leaves. The most sensitive populations in the microcosms comprised representatives of Rotifera with a NOEC of 12 μg a.i./L on isolated sampling days and a NOEC of 36 μg a.i./L on consecutive samplings. At the highest treatment-level populations of Copepoda (zooplankton) and the blue-green alga Anabaena (phytoplankton) also showed a short-term decline on consecutive sampling days (NOEC = 108 μg a.i./L). Indirect effects in the form of short-term increases in the abundance of a few macroinvertebrate and several phytoplankton taxa were also observed. The overall community and population level no-observed-effect concentration (NOEC(microcosm)) was 12-36 μg a.i./L. At higher treatment levels, including the test systems that received the highest dose, ecological recovery of affected measurement endpoints was fast (effect period < 8 weeks).
Collapse
Affiliation(s)
- Ronghua Lin
- Alterra, Wageningen University and Research Centre, PO Box 47, 6700 AA, Wageningen, The Netherlands
- Institute for the Control of Agrochemicals, Ministry of Agriculture (ICAMA), Beijing, 100125 China
| | - Laura Buijse
- Alterra, Wageningen University and Research Centre, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Mauricio R. Dimitrov
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Peter Dohmen
- BASF SE, Agricultural Center, APD/EE-L1425, Speyerer Str. 2, 67117 Limburgerhof, Germany
| | - Sujitra Kosol
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN UK
- Thailand Institute of Scientific and Technological Research, 35 Moo 3, Tambon Klong Five, Klong Laung, Pathum Thani 12120 Thailand
| | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN UK
| | - Ivo Roessink
- Alterra, Wageningen University and Research Centre, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Jos A. Sinkeldam
- Alterra, Wageningen University and Research Centre, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | | | - Theo C. M. Brock
- Alterra, Wageningen University and Research Centre, PO Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
33
|
Pérez-Leblic MI, Turmero A, Hernández M, Hernández AJ, Pastor J, Ball AS, Rodríguez J, Arias ME. Influence of xenobiotic contaminants on landfill soil microbial activity and diversity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 95 Suppl:S285-S290. [PMID: 20724060 DOI: 10.1016/j.jenvman.2010.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 05/13/2010] [Accepted: 07/12/2010] [Indexed: 05/29/2023]
Abstract
Landfills are often the final recipient of a range of environmentally important contaminants such as hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). In this study the influence of these contaminants on microbial activity and diversity was assessed in a municipal solid waste (MSW) landfill placed in Torrejón de Ardoz (Madrid, Spain). Soil samples were collected from four selected areas (T2, T2B, T8 and T9) in which the amount of total hydrocarbons, PAHs and PCBs were measured. Soil biomass, substrate induced respiration (SIR) and physiological profiles of soil samples were also determined and used as indicators of total microbial activity. Highest concentration of total hydrocarbons was detected in T2 and T9 samples, with both PCBs and benzopyrene being detected in T9 sample. Results corresponding to microbial estimation (viable bacteria and fungi, and SIR) and microbiological enzyme activities showed that highest values corresponded to areas with the lowest concentration of hydrocarbons (T2B and T8). It is noticeable that in such areas was detected the lowest concentration of the pollutants PAHs and PCBs. A negative significant correlation between soil hydrocarbons concentration and SIR, total bacteria and fungi counts and most of the enzyme activities determined was established. DGGE analysis was also carried out to determine the microbial communities' structure in the soil samples, establishing different profiles of Bacteria and Archaea communities in each analysed area. Through the statistical analysis a significant negative correlation was only found for Bacteria domain when Shannon index and hydrocarbon concentration were correlated. In addition, a bacterial 16S rRNA gene based clone library was prepared from each soil. From the clones analysed in the samples, the majority corresponded to Proteobacteria, followed by Acidobacteria and Actinobacteria. It is important to remark that the most polluted sample (T9) showed the lowest microbial diversity only formed by six phyla being Proteobacteria and Acidobacteria the most representative.
Collapse
Affiliation(s)
- M I Pérez-Leblic
- Dpto. de Microbiología y Parasitología, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gillan DC, Baeyens W, Bechara R, Billon G, Denis K, Grosjean P, Leermakers M, Lesven L, Pede A, Sabbe K, Gao Y. Links between bacterial communities in marine sediments and trace metal geochemistry as measured by in situ DET/DGT approaches. MARINE POLLUTION BULLETIN 2012; 64:353-362. [PMID: 22153908 DOI: 10.1016/j.marpolbul.2011.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 10/28/2011] [Accepted: 11/03/2011] [Indexed: 05/31/2023]
Abstract
Our current view about the relationship between metals and bacteria in marine sediments might be biased because most studies only use ex situ approaches to quantify metals. The aim of the present research was to compare ex situ and in situ methods of metal measurement (DET and DGT--diffusive equilibration or diffusive gradients in thin-films) and relate the results with two commonly used microbiological variables (bacterial biomass and bacterial diversity as revealed by DGGE). No previous studies have used such in situ approaches in microbial ecology. For biomass and most of the investigated trace metals (Ag, Cd, Sn, Cr, Ni, Cu, Pb, and Al) no significant correlations were found. The exceptions were Fe, Mn, Co, and As which behave like micronutrients. For bacterial diversity, no relevant relationships were found. We conclude that in situ methods are more adapted tools for microbial ecologists but that ex situ approaches are still necessary.
Collapse
Affiliation(s)
- David C Gillan
- Proteomics and Microbiology Laboratory, Mons University, Mons, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Woolfenden ENM, Hince G, Powell SM, Stark SC, Snape I, Stark JS, George SC. The rate of removal and the compositional changes of diesel in Antarctic marine sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 410-411:205-216. [PMID: 22018965 DOI: 10.1016/j.scitotenv.2011.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 05/31/2023]
Abstract
Diesels and lubricants used at research stations can persist in terrestrial and marine sediments for decades, but knowledge of their effects on the surrounding environments is limited. In a 5 year in situ investigation, marine sediment spiked with Special Antarctic Blend (SAB) diesel was placed on the seabed of O'Brien Bay near Casey Station, Antarctica and sampled after 5, 56, 65, 104 and 260 weeks. The rates and possible mechanisms of removal of the diesel from the marine sediments are presented here. The hydrocarbons within the spiked sediment were removed at an overall rate of 4.7mg total petroleum hydrocarbons kg(-1) sediment week(-1), or 245mgkg(-1)year(-1), although seasonal variation was evident. The concentration of total petroleum hydrocarbons fell markedly from 2020±340mgkg(-1) to 800±190mgkg(-1), but after 5 years the spiked sediment was still contaminated relative to natural organic matter (160±170mgkg(-1)). Specific compounds in SAB diesel preferentially decreased in concentration, but not as would be expected if biodegradation was the sole mechanism responsible. Naphthalene was removed more readily than n-alkanes, suggesting that aqueous dissolution played a major role in the reduction of SAB diesel. 1,3,5,7-Teramethyladamantane and 1,3-dimethyladamantane were the most recalcitrant isomers in the spiked marine sediment. Dissolution of aromatic compounds from marine sediment increases the availability of more soluble, aromatic compounds in the water column. This could increase the area of contamination and potentially broaden the region impacted by ecotoxicological effects from shallow sediment dwelling fauna, as noted during biodegradation, to shallow (<19m) water dwelling fauna.
Collapse
Affiliation(s)
- E N M Woolfenden
- Department of Earth and Planetary Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Assessment of soil bacterial communities on Alexander Island (in the maritime and continental Antarctic transitional zone). Polar Biol 2011. [DOI: 10.1007/s00300-011-1084-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Lee YM, Kim SY, Jung J, Kim EH, Cho KH, Schinner F, Margesin R, Hong SG, Lee HK. Cultured bacterial diversity and human impact on alpine glacier cryoconite. J Microbiol 2011; 49:355-62. [DOI: 10.1007/s12275-011-0232-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
|
38
|
Benthic mats in Antarctica: biophysical coupling of sea-bed hypoxia and sediment communities. Polar Biol 2011. [DOI: 10.1007/s00300-011-1043-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Microbial community composition and function in permanently cold seawater and sediments from an arctic fjord of svalbard. Appl Environ Microbiol 2011; 77:2008-18. [PMID: 21257812 DOI: 10.1128/aem.01507-10] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterotrophic microbial communities in seawater and sediments metabolize much of the organic carbon produced in the ocean. Although carbon cycling and preservation depend critically on the capabilities of these microbial communities, their compositions and capabilities have seldom been examined simultaneously at the same site. To compare the abilities of seawater and sedimentary microbial communities to initiate organic matter degradation, we measured the extracellular enzymatic hydrolysis rates of 10 substrates (polysaccharides and algal extracts) in surface seawater and bottom water as well as in surface and anoxic sediments of an Arctic fjord. Patterns of enzyme activities differed between seawater and sediments, not just quantitatively, in accordance with higher cell numbers in sediments, but also in their more diversified enzyme spectrum. Sedimentary microbial communities hydrolyzed all of the fluorescently labeled polysaccharide and algal extracts, in most cases at higher rates in subsurface than surface sediments. In seawater, in contrast, only 5 of the 7 polysaccharides and 2 of the 3 algal extracts were hydrolyzed, and hydrolysis rates in surface and deepwater were virtually identical. To compare bacterial communities, 16S rRNA gene clone libraries were constructed from the same seawater and sediment samples; they diverged strongly in composition. Thus, the broader enzymatic capabilities of the sedimentary microbial communities may result from the compositional differences between seawater and sedimentary microbial communities, rather than from gene expression differences among compositionally similar communities. The greater number of phylum- and subphylum-level lineages and operational taxonomic units in sediments than in seawater samples may reflect the necessity of a wider range of enzymatic capabilities and strategies to access organic matter that has already been degraded during passage through the water column. When transformations of marine organic matter are considered, differences in community composition and their different abilities to access organic matter should be taken into account.
Collapse
|
40
|
Haller L, Tonolla M, Zopfi J, Peduzzi R, Wildi W, Poté J. Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland). WATER RESEARCH 2011; 45:1213-1228. [PMID: 21145090 DOI: 10.1016/j.watres.2010.11.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/08/2010] [Accepted: 11/14/2010] [Indexed: 05/27/2023]
Abstract
The aim of this study was to compare the composition of bacterial and archaeal communities in contaminated sediments (Vidy Bay) with uncontaminated sediments (Ouchy area) of Lake Geneva using 16S rRNA clone libraries. Sediments of both sites were analysed for physicochemical characteristics including porewater composition, organic carbon, and heavy metals. Results show high concentrations of contaminants in sediments from Vidy. Particularly, high contents of fresh organic matter and nutrients led to intense mineralisation, which was dominated by sulphate-reduction and methanogenesis. The bacterial diversity in Vidy sediments was significantly different from the communities in the uncontaminated sediments. Phylogenetic analysis revealed a large proportion of Betaproteobacteria clones in Vidy sediments related to Dechloromonas sp., a group of dechlorinating and contaminant degrading bacteria. Deltaproteobacteria, including clones related to sulphate-reducing bacteria and Fe(III)-reducing bacteria (Geobacter sp.) were also more abundant in the contaminated sediments. The archaeal communities consisted essentially of methanogenic Euryarchaeota, mainly found in the contaminated sediments rich in organic matter. Multiple factor analysis revealed that the microbial community composition and the environmental variables were correlated at the two sites, which suggests that in addition to environmental parameters, pollution may be one of the factors affecting microbial community structure.
Collapse
Affiliation(s)
- Laurence Haller
- University of Geneva, Institute F.A. Forel, 10 route de Suisse, CP 416, CH-1290 Versoix, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Manter DK, Delgado JA, Holm DG, Stong RA. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. MICROBIAL ECOLOGY 2010; 42:35-59. [PMID: 20414647 DOI: 10.1146/annurev.phyto.42.040803.140408] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/12/2010] [Indexed: 05/20/2023]
Abstract
In this study, we examined the bacterial endophyte community of potato (Solanum tuberosum) cultivar/clones using two different molecular-based techniques (bacterial automated ribosomal intergenic spacer analysis (B-ARISA) and pyrosequencing). B-ARISA profiles revealed a significant difference in the endophytic community between cultivars (perMANOVA, p < 0.001), and canonical correspondence analysis showed a significant correlation between the community structure and plant biomass (p = 0.001). Pyrosequencing detected, on average, 477 +/- 71 bacterial operational taxonomic units (OTUs, 97% genetic similarity) residing within the roots of each cultivar, with a Chao estimated total OTU richness of 1,265 +/- 313. Across all cultivars, a total of 238 known genera from 15 phyla were identified. Interestingly, five of the ten most common genera (Rheinheimera, Dyadobacter, Devosia, Pedobacter, and Pseudoxanthomonas) have not, to our knowledge, been previously reported as endophytes of potato. Like the B-ARISA analysis, the endophytic communities differed between cultivar/clones (integral-libshuff, p < 0.001) and exhibited low similarities on both a presence/absence (0.145 +/- 0.019) and abundance (0.420 +/- 0.081) basis. Seventeen OTUs showed a strong positive (r > 0.600) or negative (r < -0.600) correlation with plant biomass, suggesting a possible link between plant production and endophyte abundance. This study represents one of the most comprehensive assessments of the bacterial endophytic communities to date, and similar analyses in other plant species, cultivars, or tissues could be utilized to further elucidate the potential contribution(s) of endophytic communities to plant physiology and production.
Collapse
Affiliation(s)
- Daniel K Manter
- USDA-ARS, Soil-Plant-Nutrient Research Unit, Fort Collins, CO, USA.
| | | | | | | |
Collapse
|
42
|
Tourlomousis P, Kemsley EK, Ridgway KP, Toscano MJ, Humphrey TJ, Narbad A. PCR-denaturing gradient gel electrophoresis of complex microbial communities: a two-step approach to address the effect of gel-to-gel variation and allow valid comparisons across a large dataset. MICROBIAL ECOLOGY 2010; 59:776-786. [PMID: 19953241 DOI: 10.1007/s00248-009-9613-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/26/2009] [Indexed: 05/28/2023]
Abstract
Denaturing gradient gel electrophoresis (DGGE) is widely used in microbial ecology to profile complex microbial communities over time and in response to different stimuli. However, inherent gel-to-gel variability has always been a barrier toward meaningful interpretation of DGGE profiles obtained from multiple gels. To address this problem, we developed a two-step methodology to align DGGE profiles across a large dataset. The use of appropriate inter-gel standards was of vital importance since they provided the basis for efficient within- and between-gel alignment and a reliable means to evaluate the final outcome of the process. Pretreatment of DGGE profiles by a commercially available image analysis software package (TL120 v2006, Phoretix 1D Advanced) followed by a simple interpolation step in Matlab minimized the effect of gel-to-gel variation, allowing for comparisons between large numbers of samples with a high degree of confidence. At the same time, data were obtained in the form of whole densitometric curves, rather than as band presence/absence or intensity information, and could be readily analyzed by a collection of well-established multivariate methods. This work clearly demonstrates that there is still room for significant improvements as to the way large DGGE datasets are processed and statistically interrogated.
Collapse
Affiliation(s)
- Panagiotis Tourlomousis
- Integrated Biology of GI Tract Programme, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | | | | | | | | | | |
Collapse
|
43
|
Ikenaga M, Guevara R, Dean AL, Pisani C, Boyer JN. Changes in community structure of sediment bacteria along the Florida coastal everglades marsh-mangrove-seagrass salinity gradient. MICROBIAL ECOLOGY 2010; 59:284-95. [PMID: 19705193 DOI: 10.1007/s00248-009-9572-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 07/30/2009] [Indexed: 05/05/2023]
Abstract
Community structure of sediment bacteria in the Everglades freshwater marsh, fringing mangrove forest, and Florida Bay seagrass meadows were described based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) patterns of 16S rRNA gene fragments and by sequencing analysis of DGGE bands. The DGGE patterns were correlated with the environmental variables by means of canonical correspondence analysis. There was no significant trend in the Shannon-Weiner index among the sediment samples along the salinity gradient. However, cluster analysis based on DGGE patterns revealed that the bacterial community structure differed according to sites. Not only were these salinity/vegetation regions distinct but the sediment bacteria communities were consistently different along the gradient from freshwater marsh, mangrove forest, eastern-central Florida Bay, and western Florida Bay. Actinobacteria- and Bacteroidetes/Chlorobi-like DNA sequences were amplified throughout all sampling sites. More Chloroflexi and members of candidate division WS3 were found in freshwater marsh and mangrove forest sites than in seagrass sites. The appearance of candidate division OP8-like DNA sequences in mangrove sites distinguished these communities from those of freshwater marsh. The seagrass sites were characterized by reduced presence of bands belonging to Chloroflexi with increased presence of those bands related to Cyanobacteria, gamma-Proteobacteria, Spirochetes, and Planctomycetes. This included the sulfate-reducing bacteria, which are prevalent in marine environments. Clearly, bacterial communities in the sediment were different along the gradient, which can be explained mainly by the differences in salinity and total phosphorus.
Collapse
Affiliation(s)
- Makoto Ikenaga
- Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Chong CW, Annie Tan GY, Wong RCS, Riddle MJ, Tan IKP. DGGE fingerprinting of bacteria in soils from eight ecologically different sites around Casey Station, Antarctica. Polar Biol 2009. [DOI: 10.1007/s00300-009-0585-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Kuhn E, Bellicanta GS, Pellizari VH. New alk genes detected in Antarctic marine sediments. Environ Microbiol 2009; 11:669-73. [PMID: 19207566 DOI: 10.1111/j.1462-2920.2008.01843.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkane monooxygenases (Alk) are the key enzymes for alkane degradation. In order to understand the dispersion and diversity of alk genes in Antarctic marine environments, this study analysed by clone libraries the presence and diversity of alk genes (alkB and alkM) in sediments from Admiralty Bay, King George Island, Peninsula Antarctica. The results show a differential distribution of alk genes between the sites, and the predominant presence of new alk genes, mainly in the pristine site. Sequences presented 53.10-69.60% nucleotide identity and 50.90-73.40% amino acid identity to alkB genes described in Silicibacter pomeroyi, Gordonia sp., Prauserella rugosa, Nocardioides sp., Rhodococcus sp., Nocardia farcinica, Pseudomonas putida, Acidisphaera sp., Alcanivorax borkumensis, and alkM described in Acinetobacter sp. This is the first time that the gene alkM was detected and described in Antarctic marine environments. The presence of a range of previously undescribed alk genes indicates the need for further studies in this environment.
Collapse
Affiliation(s)
- Emanuele Kuhn
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
47
|
Toes ACM, Finke N, Kuenen JG, Muyzer G. Effects of deposition of heavy-metal-polluted harbor mud on microbial diversity and metal resistance in sandy marine sediments. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 55:372-85. [PMID: 18273665 DOI: 10.1007/s00244-008-9135-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 01/21/2008] [Indexed: 05/22/2023]
Abstract
Deposition of dredged harbor sediments in relatively undisturbed ecosystems is often considered a viable option for confinement of pollutants and possible natural attenuation. This study investigated the effects of deposition of heavy-metal-polluted sludge on the microbial diversity of sandy sediments during 12 months of mesocosm incubation. Geochemical analyses showed an initial increase in pore-water metal concentrations, which subsided after 3 months of incubation. No influence of the deposited sediment was observed in denaturing gradient gel electrophoresis (DGGE) profiles of bacterial 16S rRNA genes, whereas a minor, transient impact on the archaeal community was revealed. Phylogenetic analyses of bacterial 16S rRNA clone libraries showed an abundance of members of the Flavobacteriaceae, the alpha- and gamma-Proteobacteria, in both the muddy and the sandy sediments. Despite the finding that some groups of clones were shared between the metal-impacted sandy sediment and the harbor control, comparative analyses showed that the two sediments were significantly different in community composition. Consequences of redeposition of metal-polluted sediment were primarily underlined with cultivation-dependent techniques. Toxicity tests showed that the percentage of Cd- and Cu-tolerant aerobic heterotrophs was highest among isolates from the sandy sediment with metal-polluted mud on top.
Collapse
MESH Headings
- Bacteria, Aerobic/drug effects
- Bacteria, Aerobic/genetics
- Bacteria, Aerobic/growth & development
- DNA, Archaeal/genetics
- Drug Resistance, Bacterial
- Electrophoresis, Agar Gel
- Environmental Pollutants/analysis
- Environmental Pollutants/toxicity
- Genetic Variation
- Geologic Sediments/chemistry
- Geologic Sediments/microbiology
- Metals, Heavy/analysis
- Phylogeny
- Polymerase Chain Reaction
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Ann-Charlotte M Toes
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628, BC, Delft, The Netherlands
| | | | | | | |
Collapse
|
48
|
Arnosti C. Functional differences between Arctic seawater and sedimentary microbial communities: contrasts in microbial hydrolysis of complex substrates. FEMS Microbiol Ecol 2008; 66:343-51. [PMID: 18778275 DOI: 10.1111/j.1574-6941.2008.00587.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The activities and structural specificities of extracellular enzymes that initiate microbial remineralization of high-molecular-weight (MW) organic matter were investigated in surface waters and sediments of an Arctic fjord of Svalbard. Hydrolysis rates of a suite of fluorescently labeled macromolecular substrates, including seven commercially available polysaccharides and three high-carbohydrate-content plankton extracts ranged from rapid to not detectable, and differed markedly between seawater and sediments. Order (fastest to slowest) of hydrolysis in surface water was laminarin, Spirulina extract, xylan>chondroitin, alginic acid, Wakame extract>arabinogalactan, fucoidan>Isochrysis extract>>>pullulan, while in sediments the order was pullulan, laminarin, alginic acid, Wakame extract>chondroitin, xylan>arabinogalactan, Isochrysis extract>Spirulina extract>fucoidan. These differences cannot be explained by simple scaling factors such as differences in microbial cell numbers between seawater and sediments. Other investigations have shown that microbial community composition of Svalbard sediments and of polar bacterioplankton samples differ markedly. These results demonstrate that sedimentary and seawater microbial communities also differ fundamentally in their abilities to access specific high-MW substrates. Substrate bioavailability depends on the capabilities of a microbial community, as well as the chemical and structural features of the substrate itself.
Collapse
Affiliation(s)
- Carol Arnosti
- Department of Marine Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
49
|
Wu T, Chellemi DO, Graham JH, Martin KJ, Rosskopf EN. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices. MICROBIAL ECOLOGY 2008; 55:293-310. [PMID: 17619214 DOI: 10.1007/s00248-007-9276-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 05/07/2007] [Indexed: 05/16/2023]
Abstract
The composition and structure of bacterial communities were examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profiles that were analyzed with univariate and multivariate statistical methods. Five land management programs were initiated in July 2000: conventional, organic, continuous removal of vegetation (disk fallow), undisturbed (weed fallow), and bahiagrass pasture (Paspalum notatum var Argentine). Similar levels in the diversity of bacterial 16S rDNA amplicons were detected in soil samples collected from organically and conventionally managed plots 3 and 4 years after initiation of land management programs, whereas significantly lower levels of diversity were observed in samples collected from bahiagrass pasture. Differences in diversity were attributed to effects on how the relative abundance of individual amplicons were distributed (evenness) and not on the total numbers of bacterial 16S rDNA amplicons detected (richness). Similar levels of diversity were detected among all land management programs in soil samples collected after successive years of tomato (Lycopersicon esculentum) cultivation. A different trend was observed after a multivariate examination of the similarities in genetic composition among soil bacterial communities. After 3 years of land management, similarities in genetic composition of soil bacterial communities were observed in plots where disturbance was minimized (bahiagrass and weed fallow). The genetic compositions in plots managed organically were similar to each other and distinct from bacterial communities in other land management programs. After successive years of tomato cultivation and damage from two major hurricanes, only the composition of soil bacterial communities within organically managed plots continued to maintain a high degree of similarity to each other and remain distinct from other bacterial communities. This study reveals the effects of agricultural land management practices on soil bacterial community composition and diversity in a large-scale, long-term replicated study where the effect of soil type on community attributes was removed.
Collapse
Affiliation(s)
- Tiehang Wu
- US Horticulture Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA.
| | | | | | | | | |
Collapse
|
50
|
Bacterial population dynamics and faecal short-chain fatty acid (SCFA) concentrations in healthy humans. Br J Nutr 2008; 100:138-46. [PMID: 18205991 DOI: 10.1017/s0007114507886351] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fermentation products, SCFA, particularly butyrate, are considered a sign of 'good' bowel health but the influence of bacterial population composition and diet on inter-individual difference in metabolites and colonic health is poorly understood. Faecal specimens were collected weekly from eight healthy human volunteers over 12 weeks. Dietary intake was self-reported and ten macronutrient factors were analysed at selected weekly periods. Faecal weight, pH and moisture were recorded, and SCFA concentrations were measured in all samples. From each specimen, DNA was prepared and eubacterial 16S rRNA gene PCR performed. Bacterial population profiles were captured by denaturing gradient gel electrophoresis (DGGE) of PCR products, and multivariate statistical analysis was performed. Faecal weight, pH and moisture varied widely within and between individuals. Average total SCFA concentrations over 12 weeks ranged from 36.9 to 144.4 mmol/kg in 48 h specimens and faecal butyrate concentrations ranged from 1.8 to 48.5 mmol/kg. Two individuals with butyrate concentrations below 10 mmol/kg were considered to be 'low butyrate types' and may represent an at-risk population for bowel health. Dietary fat, sugar and carbohydrate showed weak correlation with SCFA (R - 0.612, P = 0.015; R 0.607, P = 0.016; R 0.610, P = 0.016, respectively) and butyrate concentrations (R - 0.593, P = 0.02; R 0.504, P = 0.054; R 0.528, P = 0.043, respectively). Multivariate analysis of DGGE bacterial profiles demonstrated concise and repeated grouping of intra-individual samples, but these were combined with distinct inter-individual differences (analysis of similarities P < 0.001, R > or = 0.99) The exact relationship of these SCFA values to the overall bacterial profiles and SCFA-producer bacterial groups was not direct nor linear.
Collapse
|