1
|
González R, Butković A, Rivarez MPS, Elena SF. Natural variation in Arabidopsis thaliana rosette area unveils new genes involved in plant development. Sci Rep 2020; 10:17600. [PMID: 33077802 PMCID: PMC7788084 DOI: 10.1038/s41598-020-74723-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 11/08/2022] Open
Abstract
Growth is a complex trait influenced by multiple genes that act at different moments during the development of an organism. This makes it difficult to spot its underlying genetic mechanisms. Since plant growth is intimately related to the effective leaf surface area (ELSA), identifying genes controlling this trait will shed light on our understanding of plant growth. To find new genes with a significant contribution to plant growth, here we used the natural variation in Arabidopsis thaliana to perform a genome-wide association study of ELSA. To do this, the projected rosette area of 710 worldwide distributed natural accessions was measured and analyzed using the genome-wide efficient mixed model association algorithm. From this analysis, ten genes were identified having SNPs with a significant association with ELSA. To validate the implication of these genes into A. thaliana growth, six of them were further studied by phenotyping knock-out mutant plants. It was observed that rem1.2, orc1a, ppd1, and mcm4 mutants showed different degrees of reduction in rosette size, thus confirming the role of these genes in plant growth. Our study identified genes already known to be involved in plant growth but also assigned this role, for the first time, to other genes.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain.
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
| | - Mark Paul Selda Rivarez
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| |
Collapse
|
2
|
Brasil JN, Costa CNM, Cabral LM, Ferreira PCG, Hemerly AS. The plant cell cycle: Pre-Replication complex formation and controls. Genet Mol Biol 2017; 40:276-291. [PMID: 28304073 PMCID: PMC5452130 DOI: 10.1590/1678-4685-gmb-2016-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/16/2016] [Indexed: 01/07/2023] Open
Abstract
The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes.
Collapse
Affiliation(s)
- Juliana Nogueira Brasil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro Universitário Christus, Fortaleza, CE, Brazil
| | - Carinne N Monteiro Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Luiz Mors Cabral
- Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Paulo C G Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana S Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Zhang J, Liu X, Li S, Cheng Z, Li C. The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS One 2014; 9:e88068. [PMID: 24498428 PMCID: PMC3912173 DOI: 10.1371/journal.pone.0088068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 01/06/2014] [Indexed: 12/02/2022] Open
Abstract
Plant cytochrome P450 has diverse roles in developmental processes and in the response to environmental cues. Here, we characterized the rice (Oryza sativa L ssp. indica cultivar 3037) semi-dwarf mutant sd37, in which the gene CYP96B4 (Cytochrome P450 96B subfamily) was identified and confirmed as the target by map-based cloning and a complementation test. A point mutation in the SRS2 domain of CYP96B4 resulted in a threonine to lysine substitution in the sd37 mutant. Examination of the subcellular localization of the protein revealed that SD37 was ER-localized protein. And SD37 was predominantly expressed in the shoot apical meristem and developing leaf and root maturation zone but not in the root apical meristem. The sd37 leaves, panicles, and seeds were smaller than those of the wild type. Histological analysis further revealed that a decrease in cell number in the mutant, specifically in the shoots, was the main cause of the dwarf phenotype. Microarray analysis demonstrated that the expression of several cell division-related genes was disturbed in the sd37 mutant. In addition, mutation or strongly overexpression of SD37 results in dwarf plants but moderate overexpression increases plant height. These data suggest that CYP96B4 may be an important regulator of plant growth that affects plant height in rice.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing, China
| | - Xiaoqiang Liu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
4
|
Tan D, Lv Q, Chen X, shi J, Ren M, Wu P, Mao C. Interactions among rice ORC subunits. PLANT SIGNALING & BEHAVIOR 2013; 8:25007. [PMID: 23733064 PMCID: PMC3999068 DOI: 10.4161/psb.25007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/10/2013] [Accepted: 05/10/2013] [Indexed: 05/29/2023]
Abstract
The origin recognition complex (ORC) is composed of six subunits and plays an important role in DNA replication in all eukaryotes. The ORC subunits OsORC6 as well as the other five ORC subunits in rice were experimentally isolated and sequenced. It indicated that there also exist six ORC subunits in rice. Results of RT-PCR indicated that expression of all the rice ORC genes are no significant difference under 26°C and 34°C. Yeast two hybridization indicated that OsORC2, -3, -5 interact with each other. OsORC5 can then bind OsORC4 to form the OsORC2, -3,-4,-5 core complex. It suggested that the basic interactions have been conserved through evolution. No binding of OsORC1 and OsORC6 with the other subunits were observed. A model of ORC complex in rice is proposed.
Collapse
|
5
|
Chen X, Shi J, Hao X, Liu H, Shi J, Wu Y, Wu Z, Chen M, Wu P, Mao C. OsORC3 is required for lateral root development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:339-350. [PMID: 23346890 DOI: 10.1111/tpj.12126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 05/28/2023]
Abstract
The origin recognition complex (ORC) is a pivotal element in DNA replication, heterochromatin assembly, checkpoint regulation and chromosome assembly. Although the functions of the ORC have been determined in yeast and model animals, they remain largely unknown in the plant kingdom. In this study, Oryza sativa Origin Recognition Complex subunit 3 (OsORC3) was cloned using map-based cloning procedures, and functionally characterized using a rice (Oryza sativa) orc3 mutant. The mutant showed a temperature-dependent defect in lateral root (LR) development. Map-based cloning showed that a G→A mutation in the 9th exon of OsORC3 was responsible for the mutant phenotype. OsORC3 was strongly expressed in regions of active cell proliferation, including the primary root tip, stem base, lateral root primordium, emerged lateral root primordium, lateral root tip, young shoot, anther and ovary. OsORC3 knockdown plants lacked lateral roots and had a dwarf phenotype. The root meristematic zone of ORC3 knockdown plants exhibited increased cell death and reduced vital activity compared to the wild-type. CYCB1;1::GUS activity and methylene blue staining showed that lateral root primordia initiated normally in the orc3 mutant, but stopped growing before formation of the stele and ground tissue. Our results indicate that OsORC3 plays a crucial role in the emergence of lateral root primordia.
Collapse
Affiliation(s)
- Xinai Chen
- The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Costas C, Sanchez MDLP, Sequeira-Mendes J, Gutierrez C. Progress in understanding DNA replication control. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:203-9. [PMID: 21763530 DOI: 10.1016/j.plantsci.2011.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/07/2011] [Accepted: 04/24/2011] [Indexed: 05/19/2023]
Abstract
Completion of genome duplication during the S-phase of the cell cycle is crucial for the maintenance of genomic integrity. In eukaryotes, chromosomal DNA replication is accomplished by the activity of multiple origins of DNA replication scattered across the genome. Origin specification, selection and activity as well as the availability of replication factors and the regulation of DNA replication licensing, have unique and common features among eukaryotes. Although the initial studies on the semiconservative nature of chromosome duplication were carried out in the mid 1950s in Vicia faba, since then plant DNA replication studies have been scarce. However, they have received an unprecedented drive in the last decade after the completion of sequencing the Arabidopsis thaliana genome, and more recently of other plant genomes. In particular, the past year has witnessed major advances with the use of genomic approaches to study chromosomal replication timing, DNA replication origins and licensing control mechanisms. In this minireview article we discuss these recent discoveries in plants in the context of what is known at the genomic level in other eukaryotes. These studies constitute the basis for addressing in the future key questions about replication origin specification and function that will be of relevance not only for plants but also for the rest of multicellular organisms.
Collapse
Affiliation(s)
- Celina Costas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Sakaguchi K, Ishibashi T, Uchiyama Y, Iwabata K. The multi-replication protein A (RPA) system--a new perspective. FEBS J 2009; 276:943-63. [PMID: 19154342 DOI: 10.1111/j.1742-4658.2008.06841.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.
Collapse
Affiliation(s)
- Kengo Sakaguchi
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan.
| | | | | | | |
Collapse
|
8
|
Shultz RW, Tatineni VM, Hanley-Bowdoin L, Thompson WF. Genome-wide analysis of the core DNA replication machinery in the higher plants Arabidopsis and rice. PLANT PHYSIOLOGY 2007; 144:1697-714. [PMID: 17556508 PMCID: PMC1949880 DOI: 10.1104/pp.107.101105] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/29/2007] [Indexed: 05/15/2023]
Abstract
Core DNA replication proteins mediate the initiation, elongation, and Okazaki fragment maturation functions of DNA replication. Although this process is generally conserved in eukaryotes, important differences in the molecular architecture of the DNA replication machine and the function of individual subunits have been reported in various model systems. We have combined genome-wide bioinformatic analyses of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) with published experimental data to provide a comprehensive view of the core DNA replication machinery in plants. Many components identified in this analysis have not been studied previously in plant systems, including the GINS (go ichi ni san) complex (PSF1, PSF2, PSF3, and SLD5), MCM8, MCM9, MCM10, NOC3, POLA2, POLA3, POLA4, POLD3, POLD4, and RNASEH2. Our results indicate that the core DNA replication machinery from plants is more similar to vertebrates than single-celled yeasts (Saccharomyces cerevisiae), suggesting that animal models may be more relevant to plant systems. However, we also uncovered some important differences between plants and vertebrate machinery. For example, we did not identify geminin or RNASEH1 genes in plants. Our analyses also indicate that plants may be unique among eukaryotes in that they have multiple copies of numerous core DNA replication genes. This finding raises the question of whether specialized functions have evolved in some cases. This analysis establishes that the core DNA replication machinery is highly conserved across plant species and displays many features in common with other eukaryotes and some characteristics that are unique to plants.
Collapse
Affiliation(s)
- Randall W Shultz
- Department of Plant Biology , North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
9
|
Saotome A, Kimura S, Mori Y, Uchiyama Y, Morohashi K, Sakaguchi K. Characterization of four RecQ homologues from rice (Oryza sativa L. cv. Nipponbare). Biochem Biophys Res Commun 2006; 345:1283-91. [PMID: 16730655 DOI: 10.1016/j.bbrc.2006.04.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/14/2006] [Indexed: 11/19/2022]
Abstract
The RecQ family of DNA helicases is conserved throughout the biological kingdoms. In this report, we have characterized four RecQ homologues clearly expressed in rice. OsRecQ1, OsRecQ886, and OsRecQsim expressions were strongly detected in meristematic tissues. Transcription of the OsRecQ homologues was differentially induced by several types of DNA-damaging agents. The expression of four OsRecQ homologues was induced by MMS and bleomycin. OsRecQ1 and OsRecQ886 were induced by H(2)O(2), and MitomycinC strongly induced the expression of OsRecQ1. Transient expression of OsRecQ/GFP fusion proteins demonstrated that OsRecQ2 and OsRecQ886 are found in nuclei, whereas OsRecQ1 and OsRecQsim are found in plastids. Neither OsRecQ1 nor OsRecQsim are induced by light. These results indicate that four of the RecQ homologues have different and specific functions in DNA repair pathways, and that OsRecQ1 and OsRecQsim may not involve in plastid differentiation but different aspects of a plastid-specific DNA repair system.
Collapse
Affiliation(s)
- Ai Saotome
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Diaz-Trivino S, del Mar Castellano M, de la Paz Sanchez M, Ramirez-Parra E, Desvoyes B, Gutierrez C. The genes encoding Arabidopsis ORC subunits are E2F targets and the two ORC1 genes are differently expressed in proliferating and endoreplicating cells. Nucleic Acids Res 2005; 33:5404-14. [PMID: 16179646 PMCID: PMC1236721 DOI: 10.1093/nar/gki854] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Initiation of eukaryotic DNA replication depends on the function of pre-replication complexes (pre-RC), one of its key component being the six subunits origin recognition complex (ORC). In spite of a significant degree of conservation among ORC proteins from different eukaryotic sources, the regulation of their availability varies considerably in different model systems and cell types. Here, we show that the six ORC genes of Arabidopsis thaliana are regulated at the transcriptional level during cell cycle and development. We found that Arabidopsis ORC genes, except AtORC5, contain binding sites for the E2F family of transcription factors. Expression of AtORC genes containing E2F binding sites peaks at the G1/S-phase. Analysis of AtORC gene expression in plants with reduced E2F activity, obtained by expressing a dominant negative version of DP, the E2F heterodimerization partner, and with increased E2F activity, obtained by inactivation of the retinoblastoma protein, led us to conclude that all AtORC genes, except AtORC5 are E2F targets. Interestingly, Arabidopsis contains two AtORC1 (a and b) genes, highly conserved at the amino acid level but with unrelated promoter sequences. AtORC1b expression is restricted to proliferating cells. However, AtORC1a is preferentially expressed in endoreplicating cells based on our analysis in endoreplicating tissues and in a mutant with altered endocycle pattern. This suggests a differential expression of the two ORC1 genes in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | - Crisanto Gutierrez
- To whom correspondence should be addressed. Tel: +34 91 497 8430; Fax: +34 91 4974799;
| |
Collapse
|
11
|
Mori Y, Kimura S, Saotome A, Kasai N, Sakaguchi N, Uchiyama Y, Ishibashi T, Yamamoto T, Chiku H, Sakaguchi K. Plastid DNA polymerases from higher plants, Arabidopsis thaliana. Biochem Biophys Res Commun 2005; 334:43-50. [PMID: 15993837 DOI: 10.1016/j.bbrc.2005.06.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
Previously, we described a novel DNA polymerase, designated as OsPolI-like, from rice. The OsPolI-like showed a high degree of sequence homology with the DNA polymerase I of cyanobacteria and was localized in the plastid. Here, we describe two PolI-like polymerases, designated as AtPolI-like A and AtPolI-like B, from Arabidopsis thaliana. In situ hybridization analysis demonstrated expression of both mRNAs in proliferating tissues such as the shoot apical meristem. Analysis of the localizations of GFP fusion proteins showed that AtPolI-like A and AtPolI-like B were localized to plastids. AtPolI-like B expression could be induced by exposure to the mutagen H(2)O(2). These results suggested that AtPolI-like B has a role in the repair of oxidation-induced DNA damage. Our data indicate that higher plants possess two plastid DNA polymerases that are not found in animals and yeasts.
Collapse
Affiliation(s)
- Yoko Mori
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mori Y, Yamamoto T, Sakaguchi N, Ishibashi T, Furukawa T, Kadota Y, Kuchitsu K, Hashimoto J, Kimura S, Sakaguchi K. Characterization of the origin recognition complex (ORC) from a higher plant, rice (Oryza sativa L.). Gene 2005; 353:23-30. [PMID: 15939553 DOI: 10.1016/j.gene.2005.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 03/11/2005] [Accepted: 03/22/2005] [Indexed: 11/20/2022]
Abstract
The origin recognition complex (ORC) protein plays a critical role in DNA replication through binding to sites (origins) where replication commences. The protein is composed of six subunits (ORC1 to 6) in animals and yeasts. Our knowledge of the ORC protein in plants is, however, much less complete. We have performed cDNA cloning and characterization of ORC subunits in rice (Oryza sativa L. cv. Nipponbare) in order to facilitate study of plant DNA replication mechanisms. Our previous report provided a description of a gene, ORC1 (OsORC1), that encodes one of the protein subunits. The present report extends this initial analysis to include the genes that encode four other rice ORC subunits, OsORC2, 3, 4 and 5. Northern hybridization analyses demonstrated the presence of abundant transcripts for all OsORC subunits in shoot apical meristems (SAM) and cultured cells, but not in mature leaves. Interestingly, only OsORC5 showed high levels of expression in organs in which cell proliferation is not active, such as flag leaves, the ears and the non-tip roots. The pattern of expression of OsORC2 also differed from other OsORC subunits. When cell proliferation was temporarily halted for 6-10 days by removal of sucrose from the growth medium, expression of OsORC1, OsORC3, OsORC4 and OsORC5 was substantially reduced. However, the level of expression of OsORC2 remained constant. We suggest from these results that expression of OsORC1, 3, 4 and 5 are correlated with cell proliferation, but the expression of OsORC2 is not.
Collapse
MESH Headings
- Biolistics
- Blotting, Northern
- Cell Nucleus/metabolism
- Cell Proliferation
- Cells, Cultured
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Exons
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Introns
- Microscopy, Confocal
- Molecular Sequence Data
- Origin Recognition Complex
- Oryza/genetics
- Phylogeny
- Plant Proteins/genetics
- Protein Subunits/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Sucrose/pharmacology
Collapse
Affiliation(s)
- Yoko Mori
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Masuda HP, Ramos GBA, de Almeida-Engler J, Cabral LM, Coqueiro VM, Macrini CMT, Ferreira PCG, Hemerly AS. Genome based identification and analysis of the pre-replicative complex of Arabidopsis thaliana. FEBS Lett 2004; 574:192-202. [PMID: 15358564 DOI: 10.1016/j.febslet.2004.07.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/09/2004] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
Eukaryotic DNA replication requires an ordered and regulated machinery to control G1/S transition. The formation of the pre-replicative complex (pre-RC) is a key step involved in licensing DNA for replication. Here, we identify all putative components of the full pre-RC in the genome of the model plant Arabidopsis thaliana. Different from the other eukaryotes, Arabidopsis houses in its genome two putative homologs of ORC1, CDC6 and CDT1. Two mRNA variants of AtORC4 subunit, with different temporal expression patterns, were also identified. Two-hybrid binary interaction assays suggest a primary architectural organization of the Arabidopsis ORC, in which AtORC3 plays a central role in maintaining the complex associations. Expression profiles differ among pre-RC components suggesting the existence of various forms of the complex, possibly playing different roles during development. In addition, the expression of the putative pre-RC genes in non-proliferating plant tissues suggests that they might have roles in processes other than DNA replication licensing.
Collapse
Affiliation(s)
- H P Masuda
- Departamento de Bioquímica Médica, ICB, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kimura S, Tahira Y, Ishibashi T, Mori Y, Mori T, Hashimoto J, Sakaguchi K. DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non-proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells. Nucleic Acids Res 2004; 32:2760-7. [PMID: 15150342 PMCID: PMC419598 DOI: 10.1093/nar/gkh591] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 04/02/2004] [Accepted: 04/15/2004] [Indexed: 11/13/2022] Open
Abstract
We investigated expression patterns of DNA repair genes such as the CPD photolyase, UV-DDB1, CSB, PCNA, RPA32 and FEN-1 genes by northern hybridization analysis and in situ hybridization using a higher plant, rice (Oryza sativa L. cv. Nipponbare). We found that all the genes tested were expressed in tissues rich in proliferating cells, but only CPD photolyase was expressed in non-proliferating tissue such as the mature leaves and elongation zone of root. The removal of DNA damage, cyclobutane pyrimidine dimers and (6-4) photoproducts, in both mature leaves and the root apical meristem (RAM) was observed after UV irradiation under light. In the dark, DNA damage in mature leaves was not repaired efficiently, but that in the RAM was removed rapidly. Using a rice 22K custom oligo DNA microarray, we compared global gene expression patterns in the shoot apical meristem (SAM) and mature leaves. Most of the excision repair genes were more strongly expressed in SAM. These results suggested that photoreactivation is the major DNA repair pathway for the major UV-induced damage in non-proliferating cells, while both photoreactivation and excision repair are active in proliferating cells.
Collapse
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Collinge MA, Spillane C, Köhler C, Gheyselinck J, Grossniklaus U. Genetic interaction of an origin recognition complex subunit and the Polycomb group gene MEDEA during seed development. THE PLANT CELL 2004; 16:1035-46. [PMID: 15020747 PMCID: PMC412875 DOI: 10.1105/tpc.019059] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 01/16/2004] [Indexed: 05/21/2023]
Abstract
The eukaryotic origin recognition complex (ORC) is made up of six subunits and functions in nuclear DNA replication, chromatin structure, and gene silencing in both fungi and metazoans. We demonstrate that disruption of a plant ORC subunit homolog, AtORC2 of Arabidopsis (Arabidopsis thaliana), causes a zygotic lethal mutant phenotype (orc2). Seeds of orc2 abort early, typically producing embryos with up to eight cells. Nuclear division in the endosperm is arrested at an earlier developmental stage: only approximately four nuclei are detected in orc2 endosperm. The endosperm nuclei in orc2 are dramatically enlarged, a phenotype that is most similar to class B titan mutants, which include mutants in structural maintenance of chromosomes (SMC) cohesins. The highest levels of ORC2 gene expression were found in preglobular embryos, coinciding with the stage at which homozygous orc2 mutant seeds arrest. The homologs of the other five Arabidopsis ORC subunits are also expressed at this developmental stage. The orc2 mutant phenotype is partly suppressed by a mutation in the Polycomb group gene MEDEA. In double mutants between orc2 and medea (mea), orc2 homozygotes arrest later with a phenotype intermediate between those of mea and orc2 single mutants. Either alterations in chromatin structure or the release of cell cycle checkpoints by the mea mutation may allow more cell and nuclear divisions to occur in orc2 homozygous seeds.
Collapse
|
16
|
Witmer X, Alvarez-Venegas R, San-Miguel P, Danilevskaya O, Avramova Z. Putative subunits of the maize origin of replication recognition complex ZmORC1-ZmORC5. Nucleic Acids Res 2003; 31:619-28. [PMID: 12527770 PMCID: PMC140504 DOI: 10.1093/nar/gkg138] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The finding in animal species of complexes homologous to the products of six Saccharomyces cerevisiae genes, origin of replication recognition complex (ORC), has suggested that ORC-related mechanisms have been conserved in all eukaryotes. In plants, however, the only cloned putative homologs of ORC subunits are the Arabidopsis ORC2 and the rice ORC1. Homologs of other subunits of plant origin have not been cloned and characterized. A striking observation was the absence from the Arabidopsis genome of an obvious candidate gene-homolog of ORC4. This fact raised compelling questions of whether plants, in general, and Arabidopsis, in particular, may have lost the ORC4 gene, whether ORC-homologous subunits function within a complex in plants, whether an ORC complex may form and function without an ORC4 subunit, whether a functional (but not sequence) protein homolog may have taken up the role of ORC4 in Arabidopsis, and whether lack of ORC4 is a plant feature, in general. Here, we report the first cloned and molecularly characterized five genes coding for the maize putative homologs of ORC subunits ZmORC1, ZmORC2, ZmORC3, ZmORC4 and ZmORC5. Their expression profiles in tissues with different cell-dividing activities are compatible with a role in DNA replication. Based on the potential of ORC-homologous maize proteins to bind each other in yeast, we propose a model for their possible assembly within a maize ORC. The isolation and molecular characterization of an ORC4-homologous gene from maize argues that, in its evolution, Arabidopsis may have lost the homologous ORC4 gene.
Collapse
Affiliation(s)
- Xiaohong Witmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
17
|
Gutierrez C, Ramirez-Parra E, Castellano MM, del Pozo JC. G(1) to S transition: more than a cell cycle engine switch. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:480-6. [PMID: 12393009 DOI: 10.1016/s1369-5266(02)00301-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
CDK-cyclin complexes are the universal drivers of cell cycle transitions. Progression through G(1) and transition to S-phase, thereby initiating genome duplication, requires the concerted action of cyclin-dependent kinase (CDK)-cyclin complexes on specific targets. These targets belong to at least two major regulatory networks: the retinoblastoma-related (RBR)/E2F pathway and complexes that are responsible for the initiation of DNA replication. The G(1) phase is central to the integration of signals that regulate both the exit from the cell division cycle to differentiation and the reactivation of cell proliferation. Cellular factors that are involved in these pathways play a role in regulating cell size and number, and organogenesis. As a consequence, they are also involved in determining plant architecture.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
| | | | | | | |
Collapse
|
18
|
Avramova ZV. Heterochromatin in animals and plants. Similarities and differences. PLANT PHYSIOLOGY 2002; 129:40-9. [PMID: 12011336 PMCID: PMC1540225 DOI: 10.1104/pp.010981] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Zoya V Avramova
- School of Biological Sciences, Manter Hall, University of Nebraska, Lincoln, Nebraska 68588, USA.
| |
Collapse
|
19
|
Kimura S, Uchiyama Y, Kasai N, Namekawa S, Saotome A, Ueda T, Ando T, Ishibashi T, Oshige M, Furukawa T, Yamamoto T, Hashimoto J, Sakaguchi K. A novel DNA polymerase homologous to Escherichia coli DNA polymerase I from a higher plant, rice (Oryza sativa L.). Nucleic Acids Res 2002; 30:1585-92. [PMID: 11917019 PMCID: PMC101828 DOI: 10.1093/nar/30.7.1585] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel DNA polymerase, designated as OsPolI-like, has been identified from the higher plant, rice (Oryza sativa L. cv. Nipponbare). The OsPolI-like cDNA was 3765 bp in length, and the open reading frame encoded a predicted product of 977 amino acid residues with a molecular weight of 100 kDa. The OsPolI-like gene has been mapped to chromosome 8 and contains 12 exons and 11 introns. The encoded protein showed a high degree of sequence and structural homology to Escherichia coli pol I protein, but differed from DNA polymerase gamma and theta. The DNA polymerase domain of OsPolI-like showed DNA polymerase activity. Subcellular fractionation analysis suggested that the protein is localized in the plastid. Northern and western blotting, and in situ hybridization analyses demonstrated preferential expression of OsPolI-like in meristematic tissues such as shoot apical meristem, root apical meristem, leaf primordia and the marginal meristem. Interestingly, no expression was detected in mature leaves, although they have a high chloroplast content. These properties indicated that OsPolI-like is a novel plant DNA polymerase. The function of OsPolI-like is discussed in relation to plastid maturation.
Collapse
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kimura S, Suzuki T, Yanagawa Y, Yamamoto T, Nakagawa H, Tanaka I, Hashimoto J, Sakaguchi K. Characterization of plant proliferating cell nuclear antigen (PCNA) and flap endonuclease-1 (FEN-1), and their distribution in mitotic and meiotic cell cycles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:643-53. [PMID: 11851910 DOI: 10.1046/j.1365-313x.2001.01184.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The biochemical and cell cycle-dependent properties of proliferating cell nuclear antigen (OsPCNA) and flap endonuclease-1 (OsFEN-1) were characterized from rice (Oryza sativa). OsPCNA was physically associated with OsFEN-1 and increased the flap-endonuclease activity of OsFEN-1 by 2.5-fold. Northern and Western blotting analysis revealed that OsPCNA and OsFEN-1 were present in meristematic tissues such as cultured cells, shoot apical meristem and root apical meristem. No expression was detected in the mature leaves, although they were exposed to UV. Both of these proteins were localized in the nuclei of the interphase cells including G1, S and G2, and in the nuclear region at telophase. The distribution patterns of plant PCNA and FEN-1 in meiotic cell progression were investigated using microsporocytes of lily (Lilium longiflorum cv. Hinomoto). During the leptotene to pachytene stages, PCNA and FEN-1 were localized in the nuclear region. The florescence gradually disappeared from diplotene to metaphase I. Interestingly, signals for PCNA formed 10-20 intense spots at leptotene. The number of spots decreased to 1-5 at zygotene and finally to 1 at pachytene. The roles of OsPCNA and OsFEN-1 in mitotic and meiotic cell cycles are discussed.
Collapse
Affiliation(s)
- S Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278, Japan
| | | | | | | | | | | | | | | |
Collapse
|