1
|
Yeni Y, Genc S, Nadaroglu H, Hacımuftuoglu A. Effects of quercetin-immobilized albumin cerium oxide nanoparticles on glutamate toxicity: in vitro study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5147-5156. [PMID: 39527310 DOI: 10.1007/s00210-024-03610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
One aspect of glutamate (Glut) toxicity may be the opening of the blood-brain barrier to albumin (Al), which in itself can cause nerve cell death. Quercetin (Q) is a polyphenolic substance and has a neuroprotective effect. Cerium oxide nanoparticles (Ce2O3NPs) are highly interested in biological applications due to their antioxidant properties. The current study aimed to investigate the impact of Q-immobilized Al+Ce2O3NPs in Glut-induced neurotoxicity, mainly focusing on cell viability and neurobiochemical changes. Hydrothermal synthesis and characterization of Q-immobilized Al+Ce2O3NPs were performed. After preparing the primary neuron culture, it was exposed to Glut to induce neurotoxicity. Then, various doses of Ce2O3NP, Al+Ce2O3NP, and Q+Al+Ce2O3NPs (1, 5, 10, and 25 µg/ml) were applied to the wells and incubated for 24 h. Then, cell viability was determined by MTT analysis. Additionally, oxidative stress parameters were measured. When the obtained data were examined, it was shown that cell viability decreased with Glut concentration but significantly increased with Q+Al+Ce2O3NPs treatment. When oxidative stress markers were considered, Glut treatment increased LDH, AChE, and TOS levels, while TAC and GSH levels decreased. However, the trend changed after Q+Al+Ce2O3NPs treatment, suggesting that damaged neurons were protected against oxidative stress. The results of this study indicate that Q+Al+Ce2O3NP can ameliorate Glut-induced neurotoxicity, especially when used at a dose of 25 µg/ml.
Collapse
Affiliation(s)
- Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, Battalgazi, Malatya, 44210, Turkey.
| | - Sıdıka Genc
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Food Technology, Vocational College of Technical Science, Ataturk University, Erzurum, 25240, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Ji Y, Ren J, Qian Y, Li J, Liu H, Yao Y, Sun J, Khanna R, Sun L. Aβ25-35-induced autophagy and apoptosis are prevented by the CRMP2-derived peptide ST2-104 (R9-CBD3) via a CaMKKβ/AMPK/mTOR signaling hub. PLoS One 2024; 19:e0309794. [PMID: 39325788 PMCID: PMC11426444 DOI: 10.1371/journal.pone.0309794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
We previously reported that the peptide ST2-104 (CBD3, for Ca2+ channel-binding domain 3), derived from the collapsin response mediator protein 2 (CRMP2)-a cytosolic phosphoprotein, protects neuroblastoma cells against β-amyloid (Aβ) peptide-mediated toxicity through engagement of a phosphorylated CRMP2/NMDAR pathway. Abnormal aggregation of Aβ peptides (e.g., Aβ25-35) leads to programmed cell death (apoptosis) as well autophagy-both of which contribute to Alzheimer's disease (AD) progression. Here, we asked if ST2-104 affects apoptosis and autophagy in SH-SY5Y neuroblastoma challenged with the toxic Aβ25-35 peptide and subsequently mapped the downstream signaling pathways involved. ST2-104 protected SH-SY5Y cells from death following Aβ25-35 peptide challenge by reducing apoptosis and autophagy as well as limiting excessive calcium entry. Cytotoxicity of SHY-SY5Y cells challenged with Aβ25-35 peptide was blunted by ST2-104. The autophagy activator Rapamycin blunted the anti-apoptotic activity of ST2-104. ST2-104 reversed Aβ25-35-induced apoptosis via inhibiting Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ)-mediated autophagy, which was partly enhanced by STO-609 (an inhibitor of CaMKKβ). ST2-104 attenuated neuronal apoptosis by inhibiting autophagy through a CaMKKβ/AMPK/mTOR signaling hub. These findings identify a mechanism whereby, in the face of Aβ25-35, the concerted actions of ST2-104 leads to a reduction in intracellular calcium overload and inhibition of the CaMKKβ/AMPK/mTOR pathway resulting in attenuation of autophagy and cellular apoptosis. These findings define a mechanistic framework for how ST2-104 transduces "outside" (calcium channels) to "inside" signaling (CaMKKβ/AMPK/mTOR) to confer neuroprotection in AD.
Collapse
Affiliation(s)
- Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Jinghong Ren
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Yuan Qian
- Beijing Jishuitan Hospital, Peking University Fourth School of Clinical Medicine, Beijing, PR China
| | - Jiaxin Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Huanyu Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Yuan Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Jianfeng Sun
- Department of Physiology, Jilin University, Changchun, Jilin, PR China
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital, Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
3
|
Park SK, Oh CM, Kim E, Jung JY. Dietary Intake of Antioxidant Vitamins and Its Relation to the Progression of Chronic Kidney Disease in Adults With Preserved Renal Function. J Ren Nutr 2024; 34:438-446. [PMID: 38508434 DOI: 10.1053/j.jrn.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/10/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE It is expected that antioxidants contribute to slow the progression of chronic kidney disease (CKD). However, there are no data on the protective effect of dietary antioxidant vitamins on CKD. The purpose of study was to evaluate the renoprotective effect of dietary antioxidant vitamins in the general population. DESIGN AND METHODS The study participants were 127,081 Korean adults with preserved renal function with estimated glomerular filtration rate ≥60 mL/min/1.73 m2. They were categorized into 3 groups by tertile levels of dietary antioxidant vitamins intake including vitamins C, E, and A. Cox proportional hazard assumption was used to calculate multivariable hazard ratios and 95% confidence interval for the incident moderate to severe CKD (adjusted hazard ratio [95% confidence interval]) according to tertile levels of dietary intake of antioxidant vitamins. Subgroup analysis was conducted to evaluate the risk of progression from normal to mildly decreased renal function, and from mildly decreased renal function to moderate to severe CKD. RESULTS The risk of moderate to severe CKD was not significantly associated with the third tertile of dietary antioxidant vitamin intake including vitamin C (1.02 [0.78-1.34]), E (0.96 [0.73-1.27]), and A (0.98 [0.74-1.29]). Additionally, any tertile groups didn't show the significant association with the risk of moderate to severe CKD. Subgroup analysis also didn't show the decreased risk of progression from normal to mildly decreased renal function, and from mildly decreased renal function to moderate to severe CKD in any tertile groups. CONCLUSION Dietary intake of vitamins C, E, and A was not significantly associated with the risk of CKD progression.
Collapse
Affiliation(s)
- Sung Keun Park
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chang-Mo Oh
- Departments of Preventive Medicine, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Eugene Kim
- Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine
| | - Ju Young Jung
- Total healthcare center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Martin SP, Leeman-Markowski BA. Proposed mechanisms of tau: relationships to traumatic brain injury, Alzheimer's disease, and epilepsy. Front Neurol 2024; 14:1287545. [PMID: 38249745 PMCID: PMC10797726 DOI: 10.3389/fneur.2023.1287545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI), Alzheimer's disease (AD), and epilepsy share proposed mechanisms of injury, including neuronal excitotoxicity, cascade signaling, and activation of protein biomarkers such as tau. Although tau is typically present intracellularly, in tauopathies, phosphorylated (p-) and hyper-phosphorylated (hp-) tau are released extracellularly, the latter leading to decreased neuronal stability and neurofibrillary tangles (NFTs). Tau cleavage at particular sites increases susceptibility to hyper-phosphorylation, NFT formation, and eventual cell death. The relationship between tau and inflammation, however, is unknown. In this review, we present evidence for an imbalanced endoplasmic reticulum (ER) stress response and inflammatory signaling pathways resulting in atypical p-tau, hp-tau and NFT formation. Further, we propose tau as a biomarker for neuronal injury severity in TBI, AD, and epilepsy. We present a hypothesis of tau phosphorylation as an initial acute neuroprotective response to seizures/TBI. However, if the underlying seizure pathology or TBI recurrence is not effectively treated, and the pathway becomes chronically activated, we propose a "tipping point" hypothesis that identifies a transition of tau phosphorylation from neuroprotective to injurious. We outline the role of amyloid beta (Aβ) as a "last ditch effort" to revert the cell to programmed death signaling, that, when fails, transitions the mechanism from injurious to neurodegenerative. Lastly, we discuss targets along these pathways for therapeutic intervention in AD, TBI, and epilepsy.
Collapse
Affiliation(s)
- Samantha P. Martin
- Comprehensive Epilepsy Center, New York University Langone Health, New York, NY, United States
- Department of Neurology, New York University Langone Health, New York, NY, United States
- New York University Grossman School of Medicine, New York, NY, United States
- VA New York Harbor Healthcare System, New York, NY, United States
| | - Beth A. Leeman-Markowski
- Comprehensive Epilepsy Center, New York University Langone Health, New York, NY, United States
- Department of Neurology, New York University Langone Health, New York, NY, United States
- VA New York Harbor Healthcare System, New York, NY, United States
| |
Collapse
|
5
|
Mao J, Hu H, Zhao Y, Zhou M, Yang X. Association Between Composite Dietary Antioxidant Index and Cognitive Function Among Aging Americans from NHANES 2011-2014. J Alzheimers Dis 2024; 98:1377-1389. [PMID: 38578890 DOI: 10.3233/jad-231189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Antioxidant diets are considered to be protective factors for cognitive function. However, comprehensive measures of antioxidant diets are lacking. Objective To examine the association between the Composite Dietary Antioxidant Index (CDAI) and cognitive function in the elderly. Methods This cross-sectional study included a total of 2,456 participants (≥60 years old) from NHANES 2011-2014. Calculation of CDAI based on 6 minerals and vitamins (manganese, selenium, zinc, vitamins A, C, and E). Cognitive function was measured by the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning sub-test, Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). We also created a composite cognitive z-score to represent global cognition. The statistical analyses we used included multiple linear regression analyses, subgroup analyses, curve-fitting analyses, and threshold effects analyses. Results After controlling for demographic characteristics, lifestyle factors, and disease history, multivariate linear regression analyses showed that increased CDAI was positively associated with scores on global cognitive function and each cognitive domain (p < 0.05), with subgroup analyses suggesting that this association was more pronounced in stroke patients (p for interaction < 0.05). Curve-fitting analyses and threshold effect analyses showed saturation effects between CDAI and CREAD Test, AFT, and composite Z-score, and an inverted U-shaped relationship with DSST, with inflection points of -1.89, 0.79, 1.13, and 1.77, respectively. Conclusions Our findings support that higher levels of CDAI are correlated with significantly elevated cognitive function. Maintaining CDAI in an appropriate range may contribute to cognitive health in elderly.
Collapse
Affiliation(s)
- Jiesheng Mao
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou People's Hospital, Zhejiang, China
| | - Haoxiang Hu
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou People's Hospital, Zhejiang, China
| | - Yunhan Zhao
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou People's Hospital, Zhejiang, China
| | - Mi Zhou
- Third Affiliated Hospital, School of Medicine, Shanghai University, Shanghai, China
| | - Xiaokai Yang
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou People's Hospital, Zhejiang, China
| |
Collapse
|
6
|
Numaguchi Y, Tsukakoshi K, Takeuchi N, Suzuki Y, Ikebukuro K, Kawano R. Real-time monitoring of the amyloid β 1-42 monomer-to-oligomer channel transition using a lipid bilayer system. PNAS NEXUS 2024; 3:pgad437. [PMID: 38156289 PMCID: PMC10753159 DOI: 10.1093/pnasnexus/pgad437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
This study describes the observation of the transformation of monomeric amyloid β1-42 (Aβ42) into oligomers in a lipid membrane utilizing a lipid bilayer system for electrophysiological measurement. The relevance of oligomers and protofibrils in Alzheimer's disease (AD) is underscored given their significant neurotoxicity. By closely monitoring the shift of Aβ42 from its monomeric state to forming oligomeric channels in phospholipid membranes, we noted that this transformation transpired within a 2-h frame. We manipulated the lipid membrane's constitution with components such as glycerophospholipid, porcine brain total lipid extract, sphingomyelin (SM), and cholesterol (Chol.) to effectively imitate nerve cell membranes. Interesting findings showcased Chol.'s ability to foster stable oligomeric channel formation in the lipid membrane, with SM and GM1 lipids potentially enhancing channel formation as well. Additionally, the study identified the potential of a catechin derivative, epigallocatechin gallate (EGCG), in obstructing oligomerization. With EGCG present in the outer solution of the Aβ42-infused membrane, a noteworthy reduction in channel current was observed, suggesting the successful inhibition of oligomerization. This conclusion held true in both, prior and subsequent, stages of oligomerization. Our findings shed light on the toxicity of oligomers, promising invaluable information for future advancements in AD treatment strategies.
Collapse
Affiliation(s)
- Yuri Numaguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-0011, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-0011, Japan
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-0011, Japan
| | - Yuki Suzuki
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie 514-0102, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-0011, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-0011, Japan
| |
Collapse
|
7
|
Ko H, Yoon SP. Optogenetic neuromodulation with gamma oscillation as a new strategy for Alzheimer disease: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 39:269-277. [PMID: 35152662 PMCID: PMC9580057 DOI: 10.12701/jyms.2021.01683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
The amyloid hypothesis has been considered a major explanation of the pathogenesis of Alzheimer disease. However, failure of phase III clinical trials with anti-amyloid-beta monoclonal antibodies reveals the need for other therapeutic approaches to treat Alzheimer disease. Compared to its relatively short history, optogenetics has developed considerably. The expression of microbial opsins in cells using genetic engineering allows specific control of cell signals or molecules. The application of optogenetics to Alzheimer disease research or clinical approaches is increasing. When applied with gamma entrainment, optogenetic neuromodulation can improve Alzheimer disease symptoms. Although safety problems exist with optogenetics such as the use of viral vectors, this technique has great potential for use in Alzheimer disease. In this paper, we review the historical applications of optogenetic neuromodulation with gamma entrainment to investigate the mechanisms involved in Alzheimer disease and potential therapeutic strategies.
Collapse
Affiliation(s)
- Haneol Ko
- Medical Course, Jeju National University School of Medicine, Jeju, Korea
| | - Sang-Pil Yoon
- Department of Anatomy, Jeju National University College of Medicine, Jeju, Korea
| |
Collapse
|
8
|
Beydoun MA, Beydoun HA, Fanelli-Kuczmarski MT, Weiss J, Hossain S, Canas JA, Evans MK, Zonderman AB. Association of Serum Antioxidant Vitamins and Carotenoids With Incident Alzheimer Disease and All-Cause Dementia Among US Adults. Neurology 2022; 98:e2150-e2162. [PMID: 35508396 PMCID: PMC9169941 DOI: 10.1212/wnl.0000000000200289] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Serum antioxidant vitamins and carotenoids may protect against neurodegeneration with age. We examined associations of these nutritional biomarkers with incident all-cause and Alzheimer disease (AD) dementia among US middle-aged and older adults. METHODS Using data from the third National Health and Nutrition Examination Surveys (1988-1994), linked with Centers for Medicare & Medicaid follow-up data, we tested associations and interactions of serum vitamins A, C, and E and total and individual serum carotenoids and interactions with incident AD and all-cause dementia. Cox proportional hazards regression models were conducted. RESULTS After ≤26 years follow-up (mean 16-17 years, 7,283 participants aged 45-90 years at baseline), serum lutein+zeaxanthin was associated with reduced risk of all-cause dementia (65+ age group), even in the lifestyle-adjusted model (per SD: hazard ratio [HR] 0.93, 95% CI 0.87-0.99; p = 0.037), but attenuated in comparison with a socioeconomic status (SES)-adjusted model (HR 0.92, 95% CI 0.86-0.93; p = 0.013). An inverse relationship was detected between serum β-cryptoxanthin (per SD increase) and all-cause dementia (45+ and 65+) for age- and sex-adjusted models (HR 0.86, 95% CI 0.80-0.93; p < 0.001 for 45+; HR 0.86, 95% CI 0.80-0.93; p = 0.001 for 65+), a relationship remaining strong in SES-adjusted models (HR 0.89, 95% CI 0.82-0.96; p = 0.006 for 45+; HR 0.88, 95% CI 0.81-0.96; p = 0.007 for 65+), but attenuated in subsequent models. Antagonistic interactions indicate putative protective effects of 1 carotenoid may be observed at lower levels other carotenoids or antioxidant vitamin. DISCUSSION Incident all-cause dementia was inversely associated with serum lutein+zeaxanthin and β-cryptoxanthin levels. Further studies with time-dependent exposures and randomized trials are needed to test neuroprotective effects of supplementing the diet with select carotenoids. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that incident all-cause dementia was inversely associated with serum lutein+zeaxanthin and β-cryptoxanthin levels.
Collapse
Affiliation(s)
- May A Beydoun
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Hind A Beydoun
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Marie T Fanelli-Kuczmarski
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Jordan Weiss
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Sharmin Hossain
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Jose Atilio Canas
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Michele Kim Evans
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Alan B Zonderman
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| |
Collapse
|
9
|
Yang JH, Nguyen CD, Lee G, Na CS. Insamgobonhwan Protects Neuronal Cells from Lipid ROS and Improves Deficient Cognitive Function. Antioxidants (Basel) 2022; 11:295. [PMID: 35204177 PMCID: PMC8868228 DOI: 10.3390/antiox11020295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022] Open
Abstract
Iron is an essential element in the central nervous system that is involved in many of its important biological processes, such as oxygen transportation, myelin production, and neurotransmitter synthesis. Previous studies have observed the selective accumulation of iron in Aβ aggregates and neurofibrillary tangles in the brains of patients with Alzheimer's disease, and excess of this accumulation is associated with accelerated cognitive decline in Alzheimer's patients. Emerging evidence suggests that ferroptosis, cell death due to iron accumulation, is a potential therapeutic target for treating Alzheimer's disease. Insamgobonhwan (GBH) is a well-regarded traditional medicine from Donguibogam that possess antioxidant properties and has been suggested to slow the aging process. However, the neuroprotective role of GBH against lipid peroxidation-induced ferroptosis and its positive cognitive effects remain unexplored. Here, we investigated the ability of GBH to protect against RSL3-induced ferroptosis in vitro and to suppress amyloid-β-induced cognitive impairment in vivo. First, we treated HT22 cells with RSL3 to induce ferroptosis, which is an inhibitor of glutathione peroxidase 4 (GPX4) and induces lethal lipid hydroperoxide accumulation, reactive oxygen species (ROS) production, and ferroptotic cell death. GBH treatment inhibited cell death and lipid peroxidation, which were increased by RSL3 administration. In addition, GBH restored the expression of ferroptosis marker proteins, such as GPX4, HO-1 and COX-2, which were altered by RSL3. Next, we examined whether the protective ability of GBH in cells was reproduced in animals. We concluded that GBH treatment inhibited Aβ-induced lipid peroxidation and improved Aβ-induced cognitive impairment in mice.
Collapse
Affiliation(s)
| | | | - Gihyun Lee
- College of Korean Medicine, Dongshin University, Daeho-dong, Naju 58245, Jeollanam-do, Korea; (J.H.Y.); (C.D.N.)
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University, Daeho-dong, Naju 58245, Jeollanam-do, Korea; (J.H.Y.); (C.D.N.)
| |
Collapse
|
10
|
Nguyen CD, Yoo J, Hwang SY, Cho SY, Kim M, Jang H, No KO, Shin JC, Kim JH, Lee G. Bee Venom Activates the Nrf2/HO-1 and TrkB/CREB/BDNF Pathways in Neuronal Cell Responses against Oxidative Stress Induced by Aβ 1-42. Int J Mol Sci 2022; 23:ijms23031193. [PMID: 35163115 PMCID: PMC8835940 DOI: 10.3390/ijms23031193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Honeybee venom has recently been considered an anti-neurodegenerative agent, primarily due to its anti-inflammatory effects. The natural accumulation of amyloid-beta (Aβ) in the brain is reported to be the natural cause of aging neural ability downfall, and oxidative stress is the main route by which Aβ ignites its neural toxicity. Anti-neural oxidative stress is considered an effective approach for neurodegenerative therapy. To date, it is unclear how bee venom ameliorates neuronal cells in oxidative stress induced by Aβ. Here, we evaluated the neuroprotective effect of bee venom on Aβ-induced neural oxidative stress in both HT22 cells and an animal model. Our results indicate that bee venom protected HT22 cells against apoptosis induced by Aβ1–42. This protective effect was explained by the increased nuclear translocation of nuclear factor erythroid 2-like 2 (Nrf2), consequently upregulating the production of heme oxygenase-1 (HO-1), a critical cellular instinct antioxidant enzyme that neutralizes excessive oxidative stress. Furthermore, bee venom treatment activated the tropomyosin-related kinase receptor B (TrkB)/cAMP response element-binding (CREB)/brain-derived neurotrophic factor (BDNF), which is closely related to the promotion of cellular antioxidant defense and neuronal functions. A mouse model with cognitive deficits induced by Aβ1–42 intracerebroventricular (ICV) injections was also used. Bee venom enhanced animal cognitive ability and enhanced neural cell genesis in the hippocampal dentate gyrus region in a dose-dependent manner. Further analysis of animal brain tissue and serum confirmed that bee venom reduced oxidative stress, cholinergic system activity, and intercellular neurotrophic factor regulation, which were all adversely affected by Aβ1–42. Our study demonstrates that bee venom exerts antioxidant and neuroprotective actions against neural oxidative stress caused by Aβ1–42, thereby promoting its use as a therapeutic agent for neurodegenerative disorders.
Collapse
Affiliation(s)
- Cong Duc Nguyen
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Jaehee Yoo
- Department of Acupuncture and Moxibustion Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (J.Y.); (J.C.S.)
- Dongshin University Gwangju Korean Medicine Hospital, 141 Wolsan-ro Nam-gu, Gwangju 61619, Korea
| | - Sun-Young Hwang
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Sung-Young Cho
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Myeonghun Kim
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Hyemin Jang
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Kyoung Ok No
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
| | - Jeong Cheol Shin
- Department of Acupuncture and Moxibustion Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (J.Y.); (J.C.S.)
- Dongshin University Mokpo Korean Medicine Hospital, 313 Baengnyeon-daero, Mokpo 58665, Korea
| | - Jae-Hong Kim
- Department of Acupuncture and Moxibustion Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (J.Y.); (J.C.S.)
- Dongshin University Gwangju Korean Medicine Hospital, 141 Wolsan-ro Nam-gu, Gwangju 61619, Korea
- Correspondence: (J.-H.K.); (G.L.)
| | - Gihyun Lee
- College of Korean Medicine, Dongshin University, 67 Dongshindae-gil, Naju 58245, Korea; (C.D.N.); (S.-Y.H.); (S.-Y.C.); (M.K.); (H.J.); (K.O.N.)
- Correspondence: (J.-H.K.); (G.L.)
| |
Collapse
|
11
|
Nguyen CD, Lee G. Neuroprotective Activity of Melittin-The Main Component of Bee Venom-Against Oxidative Stress Induced by Aβ 25-35 in In Vitro and In Vivo Models. Antioxidants (Basel) 2021; 10:antiox10111654. [PMID: 34829525 PMCID: PMC8614890 DOI: 10.3390/antiox10111654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Melittin, a 26-amino acid peptide, is the main component of the venom of four honeybee species and exhibits neuroprotective actions. However, it is unclear how melittin ameliorates neuronal cells in oxidative stress and how it affects memory impairment in an in vivo model. We evaluated the neuroprotective effect of melittin on Aβ25–35-induced neuro-oxidative stress in both in vitro HT22 cells and in vivo animal model. Melittin effectively protected against HT22 cell viability and significantly deregulated the Aβ25–35-induced overproduction of intracellular reactive oxygen species. Western blot analysis showed that melittin suppressed cell apoptosis and regulated Bax/Bcl-2 ratio, as well as the expression of proapoptotic related factors: Apoptosis-inducing factor (AIF), Calpain, Cytochrome c (CytoC), Cleaved caspase-3 (Cleacas3). Additionally, melittin enhanced the antioxidant defense pathway by regulating the nuclear translocation of nuclear factor erythroid 2-like 2 (Nrf2) thus upregulated the production of the heme oxygenase-1 (HO-1), a major cellular antioxidant enzyme combating neuronal oxidative stress. Furthermore, melittin treatment activated the Tropomyosin-related kinase receptor B (TrkB)/cAMP Response Element-Binding (CREB)/Brain-derived neurotrophic factor (BDNF), contributing to neuronal neurogenesis, and regulating the normal function of synapses in the brain. In our in vivo experiment, melittin was shown to enhance the depleted learning and memory ability, a novel finding. A mouse model with cognitive deficits induced by Aβ25–35 intracerebroventricular injection was used. Melittin had dose-dependently enhanced neural-disrupted animal behavior and enhanced neurogenesis in the dentate gyrus hippocampal region. Further analysis of mouse brain tissue and serum confirmed that melittin enhanced oxidant–antioxidant balance, cholinergic system activity, and intercellular neurotrophic factors regulation, which were all negatively altered by Aβ25–35. Our study shows that melittin exerts antioxidant and neuroprotective actions against neural oxidative stress. Melittin can be a potential therapeutic agent for neurodegenerative disorders.
Collapse
|
12
|
Elevating the Levels of Calcium Ions Exacerbate Alzheimer's Disease via Inducing the Production and Aggregation of β-Amyloid Protein and Phosphorylated Tau. Int J Mol Sci 2021; 22:ijms22115900. [PMID: 34072743 PMCID: PMC8198078 DOI: 10.3390/ijms22115900] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with a high incidence rate. The main pathological features of AD are β-amyloid plaques (APs), which are formed by β-amyloid protein (Aβ) deposition, and neurofibrillary tangles (NFTs), which are formed by the excessive phosphorylation of the tau protein. Although a series of studies have shown that the accumulation of metal ions, including calcium ions (Ca2+), can promote the formation of APs and NFTs, there is no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD. In view of this, the current review summarizes the mechanisms by which Ca2+ is transported into and out of cells and organelles, such as the cell, endoplasmic reticulum, mitochondrial and lysosomal membranes to affect the balance of intracellular Ca2+ levels. In addition, dyshomeostasis of Ca2+ plays an important role in modulating the pathogenesis of AD by influencing the production and aggregation of Aβ peptides and tau protein phosphorylation and the ways that disrupting the metabolic balance of Ca2+ can affect the learning ability and memory of people with AD. In addition, the effects of these mechanisms on the synaptic plasticity are also discussed. Finally, the molecular network through which Ca2+ regulates the pathogenesis of AD is introduced, providing a theoretical basis for improving the clinical treatment of AD.
Collapse
|
13
|
Kim BH, Nho K, Lee JM. Genome-wide association study identifies susceptibility loci of brain atrophy to NFIA and ST18 in Alzheimer's disease. Neurobiol Aging 2021; 102:200.e1-200.e11. [PMID: 33640202 DOI: 10.1016/j.neurobiolaging.2021.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 02/04/2023]
Abstract
To identify genetic variants influencing cortical atrophy in Alzheimer's disease (AD), we performed genome-wide association studies (GWAS) of mean cortical thicknesses in 17 AD-related brain. In this study, we used neuroimaging and genetic data of 919 participants from the Alzheimer's Disease Neuroimaging Initiative cohort, which include 268 cognitively normal controls, 488 mild cognitive impairment, 163 AD individuals. We performed GWAS with 3,041,429 single nucleotide polymorphisms (SNPs) for cortical thickness. The results of GWAS indicated that rs10109716 in ST18 (ST18 C2H2C-type zinc finger transcription factor) and rs661526 in NFIA (nuclear factor I A) genes are significantly associated with mean cortical thicknesses of the left inferior frontal gyrus and left parahippocampal gyrus, respectively. The rs661526 regulates the expression levels of NFIA in the substantia nigra and frontal cortex and rs10109716 regulates the expression levels of ST18 in the thalamus. These results suggest a crucial role of identified genes for cortical atrophy and could provide further insights into the genetic basis of AD.
Collapse
Affiliation(s)
- Bo-Hyun Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea.
| | | |
Collapse
|
14
|
In-vitro neuroprotective effect and mechanism of 2β-hydroxy-δ-cadinol against amyloid β-induced neuronal apoptosis. Neuroreport 2021; 31:245-250. [PMID: 31895745 DOI: 10.1097/wnr.0000000000001398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amyloid beta (Aβ) neurotoxicity plays a causative role in the pathogenesis of Alzheimer's disease. Accumulating evidence demonstrates that Aβ neurotoxicity is mediated by glutamate excitotoxicity. In our previous study, a sesquiterpenoid compound 2β-hydroxy-δ-cadinol (HOC) which exhibited antiglutamate excitotoxicity effect was isolated from the fruits of Alpinia oxyphylla Miquel. Based on the antiglutamate excitotoxicity effect of HOC, in this study, we investigated the potential benefit of HOC in preventing Aβ(1-42)-induced neuronal apoptosis in cultured rat hippocampal neurons. The neuroprotective effect of HOC against Aβ(1-42)-induced neuronal apoptosis was assessed by Hoechst 33258 staining, reactive oxygen species (ROS) production, caspase-3 activation and caspase-3 activity. Results demonstrated that HOC treatment significantly prevented Aβ(1-42)-induced neuronal apoptosis. The underlying molecular mechanisms of HOC in preventing Aβ(1-42)-induced neuronal apoptosis may be via inhibiting Aβ(1-42)-induced ROS production, attenuating Aβ(1-42)-induced caspase-3 activation and inhibiting caspase-3 activity. This study suggests that HOC may be a potential agent for the prevention of Aβ neurotoxicity.
Collapse
|
15
|
Beydoun MA, Canas JA, Fanelli-Kuczmarski MT, Maldonado AI, Shaked D, Kivimaki M, Evans MK, Zonderman AB. Association of Antioxidant Vitamins A, C, E and Carotenoids with Cognitive Performance over Time: A Cohort Study of Middle-Aged Adults. Nutrients 2020; 12:nu12113558. [PMID: 33233594 PMCID: PMC7699702 DOI: 10.3390/nu12113558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Carotenoids may strengthen the association of antioxidant vitamins A, C, and E with favorable cognitive outcomes over time, though a few prospective studies have examined this hypothesis. We evaluated the longitudinal data from 1251 participants in the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study (Age at visit 1 in 2004–2009 (v1): 30–65 years). Vitamins A, C, and E dietary intakes and total and individual dietary carotenoids were computed using two 24-h recalls at v1. Cognitive tests, covering global mental status and domains of memory/learning, attention, psychomotor speed, visuo-spatial, language/verbal, and executive function were conducted at v1 and/or v2 (2009–2013); mean ± SD follow-up: 4.66 ± 0.93 years. Mixed-effects linear regression models detected an interaction between vitamin E and total (and individual) carotenoids for three of 11 cognitive tests at v1, with only one meeting the statistical significance upon multiple testing correction whereby vitamin E was linked with greater verbal memory performance in the uppermost total carotenoid tertile (γ0a = +0.26 ± 0.08, p = 0.002), a synergism largely driven by carotenoid lycopene. Vitamins A and C showed no consistent interactions with carotenoids. In conclusion, we provide partial evidence for synergism between vitamin E and carotenoids in relation to better baseline cognitive performance, pending further studies with time-dependent exposures and randomized trials directly examining this synergism.
Collapse
Affiliation(s)
- May A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD 21224, USA; (A.I.M.); (M.K.E.); (A.B.Z.)
- Correspondence: ; Fax: +1-410-558-8236
| | - Jose A. Canas
- Department of Pediatrics, Johns Hopkins Medical Institutions, Saint Petersburg, FL 33701, USA;
| | | | - Ana I. Maldonado
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD 21224, USA; (A.I.M.); (M.K.E.); (A.B.Z.)
| | - Danielle Shaked
- Department of Psychology, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK;
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD 21224, USA; (A.I.M.); (M.K.E.); (A.B.Z.)
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD 21224, USA; (A.I.M.); (M.K.E.); (A.B.Z.)
| |
Collapse
|
16
|
Park DJ, Kang JB, Shah MA, Koh PO. Quercetin alleviates the injury-induced decrease of protein phosphatase 2A subunit B in cerebral ischemic animal model and glutamate-exposed HT22 cells. J Vet Med Sci 2019; 81:1047-1054. [PMID: 31092742 PMCID: PMC6656806 DOI: 10.1292/jvms.19-0094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Quercetin is a plant flavonoid that has anti-oxidant, anti-inflammatory, anti-cancer, and anti-ischemic properties. Moreover, quercetin exerts neuroprotective effects against focal cerebral
ischemia. Protein phosphatase 2A (PP2A) is a form of serine/threonine phosphatase that modulates various biological functions. Among PP2A subunit types, subunit B exists abundantly in brain
tissue and plays an essential function in nervous system. We previously reported the decrease of PP2A subunit B in focal cerebral animal model. This study explored the change of PP2A subunit
B expression by quercetin treatment in cerebral ischemic animal model and glutamate-treated hippocampal-derived (HT22) cell culture. Quercetin (10 mg/kg) or vehicle was injected
intraperitoneally into male rats before 30 min of middle cerebral artery occlusion (MCAO), and cerebral cortices were isolated 24 hr after MCAO. MCAO induced the neurological behavioral
deficit and increased infarct volume. However, quercetin treatment attenuated the increase of neurological deficit and infarction. We detected the alleviation of MCAO-induced the decrease in
PP2A subunit B by quercetin treatment using a proteomic approach. Reverse-transcription PCR and Western blot analyses confirmed lower PP2A subunit B expression levels in MCAO group with
vehicle. However, quercetin treatment attenuated MCAO-induced this reduction. We also observed the neuroprotective effect of quercetin and the change of PP2A subunit B expression in
glutamate-exposed HT22 cells. Glutamate exposure dramatically reduced cell viability and PP2A subunit B expression, and quercetin treatment significantly improved these decreases. We clearly
showed that quercetin performs a neuroprotective function and modulates down-regulation of PP2A subunit B against MCAO injury and glutamate toxicity. Thus, our finding suggests that the
regulation of PP2A subunit B by quercetin contributes to neuroprotective function in ischemic brain injury.
Collapse
Affiliation(s)
- Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Murad-Ali Shah
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| |
Collapse
|
17
|
Abstract
Turns out I have been a major contributor to the Journal of Alzheimer's Disease over its 20-year history. As such, I was invited to provide a review of my work over the years. What follows is a retrospective of how the Alzheimer-related research of a Ph.D. (i.e., not an M.D.) transitioned from basic to clinical, and moved from bench to bedside and back again.I have included some of the more humorous and poignant twists along the way that some older players may find familiar and I hope might inspire some younger players to hang in there.
Collapse
Affiliation(s)
- Thomas B. Shea
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA, USA
| |
Collapse
|
18
|
Liao Y, Dong Y, Cheng J. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders. Int J Mol Sci 2017; 18:ijms18020248. [PMID: 28208618 PMCID: PMC5343785 DOI: 10.3390/ijms18020248] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial calcium uniporter (MCU)-a calcium uniporter on the inner membrane of mitochondria-controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP); however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yajin Liao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100039, China.
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yuan Dong
- Department of Biochemistry, Qingdao University Medical College, Qingdao 266071, China.
| | - Jinbo Cheng
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
19
|
The Impact of Vitamin E and Other Fat-Soluble Vitamins on Alzheimer´s Disease. Int J Mol Sci 2016; 17:ijms17111785. [PMID: 27792188 PMCID: PMC5133786 DOI: 10.3390/ijms17111785] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly population, currently affecting 46 million people worldwide. Histopathologically, the disease is characterized by the occurrence of extracellular amyloid plaques composed of aggregated amyloid-β (Aβ) peptides and intracellular neurofibrillary tangles containing the microtubule-associated protein tau. Aβ peptides are derived from the sequential processing of the amyloid precursor protein (APP) by enzymes called secretases, which are strongly influenced by the lipid environment. Several vitamins have been reported to be reduced in the plasma/serum of AD-affected individuals indicating they have an impact on AD pathogenesis. In this review we focus on vitamin E and the other lipophilic vitamins A, D, and K, and summarize the current knowledge about their status in AD patients, their impact on cognitive functions and AD risk, as well as their influence on the molecular mechanisms of AD. The vitamins might affect the generation and clearance of Aβ both by direct effects and indirectly by altering the cellular lipid homeostasis. Additionally, vitamins A, D, E, and K are reported to influence further mechanisms discussed to be involved in AD pathogenesis, e.g., Aβ-aggregation, Aβ-induced neurotoxicity, oxidative stress, and inflammatory processes, as summarized in this article.
Collapse
|
20
|
Dose-response analysis indicating time-dependent neurotoxicity caused by organic and inorganic mercury-Implications for toxic effects in the developing brain. Toxicology 2016; 347-349:1-5. [PMID: 26945727 DOI: 10.1016/j.tox.2016.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 11/22/2022]
Abstract
A latency period preceding neurotoxicity is a common characteristic in the dose-response relationship induced by organic mercury. Latency periods have typically been observed with genotoxicants in carcinogenesis, with cancer being manifested a long time after the initiating event. These observations indicate that even a very small dose may cause extensive adverse effects later in life, so the toxicity of the genotoxic compound is dose and time-dependent. In children, methylmercury exposure during pregnancy (in utero) has been associated with delays in reaching developmental milestones (e.g., age at first walking) and decreases in intelligence, increasing in severity with increasing exposure. Ethylmercury exposure from thimerosal in some vaccines has been associated, in some studies, with autism and other neurological disorders in children. In this paper, we have examined whether dose-response data from in vitro and in vivo organic mercury toxicity studies fit the Druckrey-Küpfmüller equation c·t(n)=constant (c=exposure concentration, t=latency period), first established for genotoxic carcinogens, and whether or not irreversible effects are enhanced by time of exposure (n≥1), or else toxic effects are dose-dependent while time has only minor influence on the adverse outcome (n<1). The mode of action underlying time-dependent toxicity is irreversible binding to critical receptors causing adverse and cumulative effects. The results indicate that the Druckrey-Küpfmüller equation describes well the dose-response characteristics of organic mercury induced neurotoxic effects. This amounts to a paradigm shift in chemical risk assessment of mercurial compounds and highlights that it is vital to perform toxicity testing geared to investigate time-dependent effects.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Evidence for the benefit of nutrition in Alzheimer's disease continues to accumulate. Many studies with individual vitamins or supplements show marginal, if any, benefit. However, new findings with combinatorial formulations demonstrate improvement in cognitive performance and behavioral difficulties that accompany Alzheimer's disease. Herein, we review some of the most recent clinical advances and summarize supportive preclinical studies. RECENT FINDINGS We present novel positive effects on Alzheimer's disease derived from diet, trace elements, vitamins and supplements. We discuss the inherent difficulty in conducting nutritional studies because of the variance in participants' nutritional history, versus pharmacological interventions in which participants are naive to the intervention. We examine the evidence that epigenetics play a role in Alzheimer's disease and how nutritional intervention can modify the key epigenetic events to maintain or improve cognitive performance. SUMMARY Overall consideration of the most recent collective evidence suggests that the optimal approach for Alzheimer's disease would seem to combine early, multicomponent nutritional approaches (a Mediterranean-style diet, multivitamins and key combinatorial supplements), along with lifestyle modifications such as social activity and mental and physical exercise, with ultimate addition of pharmacological agents when warranted.
Collapse
|
22
|
Shah SA, Yoon GH, Kim HO, Kim MO. Vitamin C Neuroprotection Against Dose-Dependent Glutamate-Induced Neurodegeneration in the Postnatal Brain. Neurochem Res 2015; 40:875-84. [DOI: 10.1007/s11064-015-1540-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 11/24/2022]
|
23
|
Beydoun MA, Fanelli Kuczmarski M, Kitner-Triolo MH, Beydoun HA, Kaufman JS, Mason MA, Evans MK, Zonderman AB. Dietary antioxidant intake and its association with cognitive function in an ethnically diverse sample of US adults. Psychosom Med 2015; 77:68-82. [PMID: 25478706 PMCID: PMC4597309 DOI: 10.1097/psy.0000000000000129] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dietary antioxidants can inhibit reactions accompanying neurodegeneration and thus prevent cognitive impairment. We describe associations of dietary antioxidants with cognitive function in a large biracial population, while testing moderation by sex, race, and age and mediation by depressive symptoms. METHODS This was a cross-sectional analysis of 1274 adults (541 men and 733 women) aged 30 to 64 years at baseline (mean [standard deviation] = 47.5 [9.3]) in the Healthy Aging in Neighborhoods of Diversity Across the Lifespan Study, Baltimore city, MD. Cognitive performance in the domains of memory, language/verbal, attention, spatial, psychomotor speed, executive function, and global mental status were assessed. The 20-item Center for Epidemiologic Studies Depression Scale was used to measure depressive symptoms. Dietary intake was assessed with two 24-hour recalls, estimating daily consumption of total carotenoids and vitamins A, C, and E per 1000 kcal. RESULTS Among key findings, 1 standard deviation (∼ 2.02 mg/1000 kcal) higher vitamin E was associated with a higher score on verbal memory, immediate recall (β = +0.64 [0.19], p = .001), and better language/verbal fluency performance (β = +0.53 [0.16], p = .001), particularly among the younger age group. Women with higher vitamin E intake (β = +0.68 [0.21], p = .001) had better performance on a psychomotor speed test. The vitamin E-verbal memory association was partially mediated by depressive symptoms (proportion mediated = 13%-16%). CONCLUSIONS In sum, future cohort studies and dietary interventions should focus on associations of dietary vitamin E with cognitive decline, specifically for domains of verbal memory, verbal fluency, and psychomotor speed.
Collapse
Affiliation(s)
- M. A. Beydoun
- National Institute on Aging, NIA/NIH/IRP, Baltimore, MD
| | | | | | - H. A. Beydoun
- Graduate Program in Public Health, Eastern Virginia Medical School, Norfolk, VA
| | - J. S. Kaufman
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - M. A. Mason
- Statistical Information Systems, MedStar Research Institute, Baltimore, MD
| | - M. K. Evans
- National Institute on Aging, NIA/NIH/IRP, Baltimore, MD
| | | |
Collapse
|
24
|
Liu S, Wu H, Xue G, Ma X, Wu J, Qin Y, Hou Y. Metabolic alteration of neuroactive steroids and protective effect of progesterone in Alzheimer's disease-like rats. Neural Regen Res 2014; 8:2800-10. [PMID: 25206601 PMCID: PMC4146013 DOI: 10.3969/j.issn.1673-5374.2013.30.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
A correlation between metabolic alterations of neuroactive steroids and Alzheimer's disease remains unknown. In the present study, amyloid beta (Aβ) 25–35 (Aβ25–35) injected into the bilateral hippocampus CA1 region significantly reduced learning and memory. At the biochemical level, hippocampal levels of pregnenolone were significantly reduced with Aβ25–35 treatment. Furthermore, progesterone was considerably decreased in the prefrontal cortex and hippocampus, and 17β-estradiol was significantly elevated. To our knowledge, this is the first report showing that Aβ25–35, a main etiological factor of Alzheimer's disease, can alter the level and metabolism of neuroactive steroids in the prefrontal cortex and hippocampus, which are brain regions significantly involved in learning and memory. Aβ25–35 exposure also increased the expression of inflammatory mediators, tumor necrosis factor-α and interleukin-1β. However, subcutaneous injection of progesterone reversed the upregulation of tumor necrosis factor-α and interleukin-1β in a dose-dependent manner. Concomitant with improved cognitive abilities, progesterone blocked Aβ-mediated inflammation and increased the survival rate of hippocampal pyramidal cells. We thus hypothesize that Aβ-mediated cognitive deficits may occur via changes in neuroactive steroids. Moreover, our findings provide a possible therapeutic strategy for Alzheimer's disease via neuroactive steroids, particularly progesterone.
Collapse
Affiliation(s)
- Sha Liu
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Gai Xue
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Xin Ma
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Jie Wu
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Yabin Qin
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Yanning Hou
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China ; Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| |
Collapse
|
25
|
Neuroprotection by the synthetic neurosteroid enantiomers ent-PREGS and ent-DHEAS against Aβ₂₅₋₃₅ peptide-induced toxicity in vitro and in vivo in mice. Psychopharmacology (Berl) 2014; 231:3293-3312. [PMID: 24481566 PMCID: PMC4188413 DOI: 10.1007/s00213-014-3435-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
RATIONALE Pregnenolone sulfate (PREGS) and dehydroepiandrosterone sulphate (DHEAS) are pro-amnesic, anti-amnesic and neuroprotective steroids in rodents. In Alzheimer's disease (AD) patient's brains, their low concentrations are correlated with high levels of Aβ and tau proteins. The unnatural enantiomer ent-PREGS enhanced memory in rodents. We investigated here whether ent-PREGS and ent-DHEAS could be neuroprotective in AD models. OBJECTIVE The effects of PREGS, ent-PREGS, DHEAS and ent-DHEAS against Aβ25-35 peptide-induced toxicity were examined in vitro on B104 neuroblastoma cells and in vivo in mice. METHODS B104 cells pretreated with the steroids before Aβ25-35 were analysed by flow cytometry measuring cell viability and death processes. Mice injected intracerebroventricularly with Aβ25-35 and the steroids were analysed for their memory abilities. Additionally, lipid peroxidation levels in the hippocampus were measured. RESULTS ent-PREGS and PREGS significantly attenuated the Aβ25-35-induced decrease in cell viability. Both steroids prevented the Aβ25-35-induced increase in late apoptotic cells. PREGS further attenuated the ratio of necrotic cells. ent-DHEAS and DHEAS significantly reduced the Aβ25-35-induced toxicity and prevented the cells from entering late apoptosis and necrosis. All steroids stimulated neurite outgrowth per se and prevented the Aβ25-35-induced decrease. In vivo, ent-PREGS and ent-DHEAS significantly attenuated the Aβ25-35-induced decrease in memory (spontaneous alternation and passive avoidance) and an increase in lipid peroxidation levels. In contrast to the natural steroids, both enantiomers prevented amnesia when injected 6 h before Aβ25-35 in contrast to the natural steroids. CONCLUSION The unnatural steroids ent-PREGS and ent-DHEAS are potent neuroprotective agents and could be effective therapeutical tools in AD.
Collapse
|
26
|
Behensky AA, Yasny IE, Shuster AM, Seredenin SB, Petrov AV, Cuevas J. Afobazole activation of σ-1 receptors modulates neuronal responses to amyloid-β25-35. J Pharmacol Exp Ther 2013; 347:468-77. [PMID: 24006338 DOI: 10.1124/jpet.113.208330] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a continual decline of cognitive function. No therapy has been identified that can effectively halt or reverse its progression. One hallmark of AD is accumulation of the amyloid-β peptide (Aβ), which alone induces neuronal injury via various mechanisms. Data presented here demonstrate that prolonged exposure (1-24 hours) of rat cortical neurons to Aβ25-35 results in an increase in basal intracellular Ca(2+) concentration ([Ca(2+)]i), and that coincubation with the compound afobazole inhibits these [Ca(2+)]i increases. The effect of afobazole on [Ca(2+)]i is due to activation of σ-1 receptors but could not be mimicked by a second pan-selective σ receptor agonist, 1,3-di-o-tolylguanidine (DTG). Afobazole was also found to lessen nitric oxide (NO) production in response to Aβ25-35 application but did not affect elevations in reactive oxygen species elicited by the Aβ fragment. The reductions in [Ca(2+)]i and NO perturbation produced by afobazole were associated with a decrease in neuronal cell death, whereas DTG failed to enhance cell survival. Examining the molecular mechanisms involved in the increased neuronal survival demonstrates that afobazole incubation results in lower expression of the proapoptotic protein Bax and the death protease caspase-3, while at the same time increasing expression of the antiapoptotic protein, Bcl-2. Given the importance of Aβ neurotoxicity in AD etiology, the findings reported here suggest that afobazole may be an effective AD therapeutic agent. Furthermore, σ-1 receptors may represent a useful target for AD treatment, although not all σ ligands appear to be equally beneficial.
Collapse
Affiliation(s)
- Adam A Behensky
- Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, Florida (A.A.B., J.C.); IBC Generium, Volginsky, Russian Federation (I.E.Y., A.M.S., A.V.P.); and Zakusov Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russian Federation (S.B.S.)
| | | | | | | | | | | |
Collapse
|
27
|
Pyrroloquinoline quinine protects rat brain cortex against acute glutamate-induced neurotoxicity. Neurochem Res 2013; 38:1661-71. [PMID: 23686346 DOI: 10.1007/s11064-013-1068-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/28/2013] [Accepted: 05/03/2013] [Indexed: 12/27/2022]
Abstract
To investigate possible protective effects of pyrroloquinoline quinone (PQQ) on the rat cortex with glutamate injection and to understand the mechanisms linking the in vivo neuroprotection of PQQ. Adult Sprague-Dawley rats received glutamate injection into the rat cortex. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assay was performed to observe influences of co-treatment with PQQ (simultaneous injection with PQQ and glutamate) on neural cell apoptosis in the rat cortex. The production of reactive oxygen species (ROS) in the rat cortex was detected by flow cytometry using 2',7'-dichlorofluorescin diacetate labeling, and the activity of superoxide dismutase, glutathione and malondialdehyde was respectively determined. Real time quantitative RT-PCR and Western blot were applied to measure the mRNA and protein expressions of Nrf1, Nrf2, HO-1 and GCLC in the rat cortex. Western blot was used to detect the phosphorylation of Akt and GSK3β in the rat cortex. Co-treatment with PQQ protected neural cells in the rat cortex from glutamate-induced apoptosis. PQQ decreased the ROS production induced by glutamate injection. PQQ increased the mRNA and protein expressions of Nrf2, HO-1 and GCLC and the phosphorylation of Akt and GSK3β in the cortex of glutamate-injected rats. PQQ could produce neuroprotective effects on the rat cortex. The antioxidant properties of PQQ and PQQ-induced activation of Akt/GSK3β signal pathway might be responsible for the in vivo neuroprotection of PQQ.
Collapse
|
28
|
Genistein inhibits Aβ₂₅₋₃₅ -induced neurotoxicity in PC12 cells via PKC signaling pathway. Neurochem Res 2012; 37:2787-94. [PMID: 22949092 DOI: 10.1007/s11064-012-0872-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/30/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Protein kinase C (PKC) signaling pathway is recognized as an important molecular mechanism of Alzheimer's disease (AD) in the regulation of neuronal plasticity and survival. Genistein, the most active molecule of soy isoflavones, exerts neuroprotective roles in AD. However, the detailed mechanism has not been fully understood yet. The present study aimed to investigate whether the neuroprotective effects of genistein against amyloid β (Aβ)-induced toxicity in cultured rat pheochromocytoma (PC12) cells is involved in PKC signaling pathway. PC12 cells were pretreated with genistein for 2 h following incubation with Aβ(25-35) for additional 24 h. Cell viability was assessed by MTT. Hoechst33342/PI staining was applied to determine the apoptotic cells. PKC activity, intracellular calcium level and caspase-3 activity were analyzed by assay kits. The results showed that pretreatment with genistein significantly increased cell viability and PKC activity, decreased the levels of intracellular calcium, attenuated Hoechst/PI staining and blocked caspase-3 activity in Aβ(25-35)-treated PC12 cells. Pretreatment of Myr, a general PKC inhibitor, significantly attenuated the neuroprotective effect of genistein against Aβ(25-35)-treated PC12 cells. The present study indicates that PKC signaling pathway is involved in the neuroprotective action of genistein against Aβ(25-35)-induced toxicity in PC12 cells.
Collapse
|
29
|
Kerrigan TL, Daniel J W, Regan PL, Cho K. The role of neuronal calcium sensors in balancing synaptic plasticity and synaptic dysfunction. Front Mol Neurosci 2012; 5:57. [PMID: 22586365 PMCID: PMC3343381 DOI: 10.3389/fnmol.2012.00057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 11/13/2022] Open
Abstract
Neuronal calcium sensors (NCS) readily bind calcium and undergo conformational changes enabling them to interact and regulate specific target molecules. These interactions lead to dynamic alterations in protein trafficking that significantly impact upon synaptic function. Emerging evidence suggests that NCS and alterations in Ca(2+) mobilization modulate glutamate receptor trafficking, subsequently determining the expression of different forms of synaptic plasticity. In this review, we aim to discuss the functional relevance of NCS in protein trafficking and their emerging role in synaptic plasticity. Their significance within the concept of "translational neuroscience" will also be highlighted, by assessing their potential as key molecules in neurodegeneration.
Collapse
Affiliation(s)
- Talitha L Kerrigan
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
30
|
Park H, Oh MS. Houttuyniae Herba protects rat primary cortical cells from Aβ(25-35)-induced neurotoxicity via regulation of calcium influx and mitochondria-mediated apoptosis. Hum Exp Toxicol 2012; 31:698-709. [PMID: 22262263 DOI: 10.1177/0960327111433898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amyloid beta (Aβ) fibrils are believed to play a major role in the pathogenesis of Alzheimer's disease. Although the mechanisms underlying Aβ toxicity remain largely unknown, Aβ fibrils disrupt calcium homeostasis and generate free radicals, resulting in oxidative stress, mitochondrial dysfunction, and apoptotic cell death. Houttuyniae Herba, the aerial part of Houttuynia cordata Thunb. (Saururaceae), is a commonly used herb in traditional Asian medicine. It has been reported to have various bioactivities, including antioxidant effects. In the present study, we investigated the protective effect of standardised Houttuyniae Herba water extract (HCW) against Aβ(25-35)-induced neurotoxicity and its possible mechanisms in rat primary cortical cells. Pretreatment with HCW attenuated the cell damage caused by 8 μM Aβ(25-35) exposure, as evidenced by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, a lactate dehydrogenase assay, and microtubule-associated protein 2 immunostaining. Moreover, HCW inhibited the Aβ(25-35)-induced elevation of the intracellular calcium level, reactive oxygen species overproduction, mitochondrial membrane potential disruption, and caspase 3 activation. These results indicate that HCW protects rat primary cortical neurons against Aβ(25-35)-induced toxicity via the regulation of calcium and the inhibition of mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- H Park
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | | |
Collapse
|
31
|
Nifedipine protects INS-1 β-cell from high glucose-induced ER stress and apoptosis. Int J Mol Sci 2011; 12:7569-80. [PMID: 22174617 PMCID: PMC3233423 DOI: 10.3390/ijms12117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/19/2011] [Accepted: 10/31/2011] [Indexed: 01/14/2023] Open
Abstract
Sustained high concentration of glucose has been verified toxic to β-cells. Glucose augments Ca2+-stimulated insulin release in pancreatic β-cells, but chronic high concentration of glucose could induce a sustained level of Ca2+ in β-cells, which leads to cell apoptosis. However, the mechanism of high glucose-induced β-cell apoptosis remains unclear. In this study, we use a calcium channel blocker, nifedipine, to investigate whether the inhibition of intracellular Ca2+ concentration could protect β-cells from chronic high glucose-induced apoptosis. It was found that in a concentration of 33.3 mM, chronic stimulation of glucose could induce INS-1 β-cells apoptosis at least through the endoplasmic reticulum stress pathway and 10 μM nifedipine inhibited Ca2+ release to protect β-cells from high glucose-induced endoplasmic reticulum stress and apoptosis. These results indicated that inhibition of Ca2+ over-accumulation might provide benefit to attenuate islet β-cell decompensation in a high glucose environment.
Collapse
|
32
|
Zhang Q, Shen M, Ding M, Shen D, Ding F. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway. Toxicol Appl Pharmacol 2011; 252:62-72. [DOI: 10.1016/j.taap.2011.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/18/2011] [Accepted: 02/04/2011] [Indexed: 01/18/2023]
|
33
|
Jeong HY, Kim JY, Lee HK, Ha DT, Song KS, Bae K, Seong YH. Leaf and stem of Vitis amurensis and its active components protect against amyloid β protein (25–35)-induced neurotoxicity. Arch Pharm Res 2010; 33:1655-64. [DOI: 10.1007/s12272-010-1015-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/09/2010] [Accepted: 08/17/2010] [Indexed: 01/03/2023]
|
34
|
Liu ZZ, Ji BS. The protective effect of trihexyphenidyl on the beta-amyloid peptide 25–35-induced cytotoxicity in PC12 cells. Clin Exp Med 2010; 10:237-43. [DOI: 10.1007/s10238-010-0090-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 01/04/2010] [Indexed: 12/22/2022]
|
35
|
Liu RT, Zou LB, Lü QJ. Liquiritigenin inhibits Abeta(25-35)-induced neurotoxicity and secretion of Abeta(1-40) in rat hippocampal neurons. Acta Pharmacol Sin 2009; 30:899-906. [PMID: 19574995 DOI: 10.1038/aps.2009.74] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM To examine whether liquiritigenin, a newly found agonist of selective estrogen receptor-beta, has neuroprotective activity against beta-amyloid peptide (Abeta) in rat hippocampal neurons. METHODS Primary cultures of rat hippocampal neurons were pretreated with liquiritigenin (0.02, 0.2, and 2 micromol/L) prior to Abeta(25-35) exposure. Following treatment, viability of the cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and by a lactate dehydrogenase activity-based cytotoxicity assay. Intracellular Ca(2+) concentration ([Ca(2+)](i)) and levels of reactive oxygen species (ROS), as well as apoptotic rates, were determined. Our studies were extended in tests of whether liquiritigenin treatment could inhibit the secretion of Abeta(1-40) as measured using an ELISA method. In order to analyze which genes may be involved, we used a microarray assay to compare gene expression patterns. Finally, the levels of specific proteins related to neurotrophy and neurodenegeration were detected by Western blotting. RESULTS Pretreated neurons with liquiritigenin in the presence of Abeta(25-35) increased cell viability in a concentration-dependent manner. Liquiritigenin treatment also attenuated Abeta(25-35)-induced increases in [Ca(2+)](i) and ROS level and decreased the apoptotic rate of neurons. Some genes, including B-cell lymphoma/leukemia-2 (Bcl-2), neurotrophin 3 (Ntf-3) and amyloid beta (A4) precursor protein-binding, family B, member 1 (Apbb-1) were regulated by liquiritigenin; similar results were shown at the protein level by Western blotting. CONCLUSION Our results demonstrate that liquiritigenin exhibits neuroprotective effects against Abeta(25-35)-induced neurotoxicity and that it can decrease the secretion of Abeta(1-40). Therefore, liquiritigenin may be useful for further study as a prodrug for treatment of Alzheimer's disease.Acta Pharmacologica Sinica (2009) 30: 899-906; doi: 10.1038/aps.2009.74.
Collapse
|
36
|
Orellana JA, Sáez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MVL, Sáez JC. Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 2009; 11:369-99. [PMID: 18816186 PMCID: PMC2713807 DOI: 10.1089/ars.2008.2130] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/07/2008] [Accepted: 07/10/2008] [Indexed: 01/07/2023]
Abstract
In normal brain, neurons, astrocytes, and oligodendrocytes, the most abundant and active cells express pannexins and connexins, protein subunits of two families forming membrane channels. Most available evidence indicates that in mammals endogenously expressed pannexins form only hemichannels and connexins form both gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activity, hemichannels communicate the intra- and extracellular compartments and serve as a diffusional pathway for ions and small molecules. A subthreshold stimulation by acute pathological threatening conditions (e.g., global ischemia subthreshold for cell death) enhances neuronal Cx36 and glial Cx43 hemichannel activity, favoring ATP release and generation of preconditioning. If the stimulus is sufficiently deleterious, microglia become overactivated and release bioactive molecules that increase the activity of hemichannels and reduce gap junctional communication in astroglial networks, depriving neurons of astrocytic protective functions, and further reducing neuronal viability. Continuous glial activation triggered by low levels of anomalous proteins expressed in several neurodegenerative diseases induce glial hemichannel and gap junction channel disorders similar to those of acute inflammatory responses triggered by ischemia or infectious diseases. These changes are likely to occur in diverse cell types of the CNS and contribute to neurodegeneration during inflammatory process.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cho SO, Ban JY, Kim JY, Jeong HY, Lee IS, Song KS, Bae K, Seong YH. Aralia cordata Protects Against Amyloid β Protein (25–35)–Induced Neurotoxicity in Cultured Neurons and Has Antidementia Activities in Mice. J Pharmacol Sci 2009; 111:22-32. [DOI: 10.1254/jphs.08271fp] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
38
|
Qin Z, Sun Z, Huang J, Hu Y, Wu Z, Mei B. Mutated recombinant human glucagon-like peptide-1 protects SH-SY5Y cells from apoptosis induced by amyloid-beta peptide (1-42). Neurosci Lett 2008; 444:217-21. [PMID: 18760331 DOI: 10.1016/j.neulet.2008.08.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 12/19/2022]
Abstract
Accumulation and deposition of amyloid beta peptide (Abeta) in the brain causes neuronal apoptosis and eventually leads to Alzheimer's disease (AD). A therapeutic target for AD is to block the cascade reaction induced by Abeta. It has been demonstrated that glucagon-like peptide-1 (GLP-1), which is an endogenous insulinotropic peptide secreted from the gut, binds to its receptor in the brain and possesses neuroprotective effects. Using site-directed mutagenesis and gene recombination techniques, we generated a mutated recombinant human glucagon-like peptide-1 (mGLP-1) which has longer half-life as compared with native GLP-1. This present work aims to examine whether mGLP-1 attenuates Abeta(1-42)-mediated cytotoxicity in SH-SY5Y cells and to explore the possible mechanisms. Our data indicate that > or = 0.02 ng/ml of mGLP-1 facilitated cell proliferation and 0.1 ng/ml and 0.5 ng/ml of mGLP-1 rescued SH-SY5Y cells from Abeta(1-42)-induced apoptosis. Moreover, Abeta(1-42) treatment dramatically stimulated the release of Ca(2+) from internal calcium stores in SH-SY5Y cells, while mGLP-1 helped to maintain the intracellular Ca(2+) homeostasis. Abeta(1-42) also significantly increased the expression level of TP53 and Bax genes which are involved in apoptotic pathways, and mGLP-1 decreased Abeta(1-42)-induced up-regulation of TP53 and Bax. Since mGLP-1 treatment elevated cytosolic cAMP concentration in SH-SY5Y cells, we postulate that mGLP-1 may exert its influence via binding to GLP-1 receptors in SH-SY5Y cells and stimulating the production of cAMP. These results suggest that mGLP-1 exhibited neuronal protection properties, and could potentially be a novel therapeutic agent for intervention in Alzheimer's disease.
Collapse
Affiliation(s)
- Zhenxia Qin
- Shanghai Institute of Brain Functional Genomics, and Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, No. 3663 North Zhongshan Road, Shanghai 200062, China
| | | | | | | | | | | |
Collapse
|
39
|
Zhou S, Yang Y, Gu X, Ding F. Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci Lett 2008; 444:270-4. [PMID: 18755243 DOI: 10.1016/j.neulet.2008.08.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 01/17/2023]
Abstract
Chitooligosaccharides (COSs), the biodegradation product of chitosan, have demonstrated a diverse array of biological activities. Here we report the protective effect of COSs (M.W. 800) against glutamate-induced neurotoxicity in cultured hippocampal neurons. The cell viability assessments, together with Hoechst 33342 staining and flow cytometry for cell apoptosis analysis, indicated that glutamate (125 microM)-induced cell apoptosis in cultured hippocampal neurons was attenuated in a concentration-dependent manner by COSs pretreatment. After measurement with Fluo 4-AM, COSs were found to depress glutamate-induced elevation in intracellular calcium concentration ([Ca(2+)](c)). The enzymatic assay indicated that COSs antagonized glutamate-evoked activation of caspase-3. These results collectively suggest that COSs prevent cultured hippocampal neurons from glutamate-induced cell damage by interfering with an increase in [Ca(2+)](c) and inhibiting caspase-3 activity.
Collapse
Affiliation(s)
- Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China
| | | | | | | |
Collapse
|
40
|
Ban JY, Nguyen HTT, Lee HJ, Cho SO, Ju HS, Kim JY, Bae K, Song KS, Seong YH. Neuroprotective Properties of Gallic Acid from Sanguisorbae Radix on Amyloid .BETA. Protein (25-35)-Induced Toxicity in Cultured Rat Cortical Neurons. Biol Pharm Bull 2008; 31:149-53. [DOI: 10.1248/bpb.31.149] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ju Yeon Ban
- College of Veterinary Medicine, Chungbuk National University
- Department of Pharmacology, College of Medicine, Kyung Hee University
| | | | - Hee-Ju Lee
- College of Agriculture and Life-Sciences, Kyungpook National University
| | - Soon Ock Cho
- College of Veterinary Medicine, Chungbuk National University
| | - Hyun Soo Ju
- College of Veterinary Medicine, Chungbuk National University
| | - Ju Yeon Kim
- College of Veterinary Medicine, Chungbuk National University
| | - KiHwan Bae
- College of Pharmacy, Chungnam National University
| | - Kyung-Sik Song
- College of Agriculture and Life-Sciences, Kyungpook National University
| | - Yeon Hee Seong
- College of Veterinary Medicine, Chungbuk National University
| |
Collapse
|
41
|
Ban JY, Cho SO, Jeon SY, Bae K, Song KS, Seong YH. 3,4-Dihydroxybenzoic acid from Smilacis chinae rhizome protects amyloid β protein (25–35)-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett 2007; 420:184-8. [PMID: 17531386 DOI: 10.1016/j.neulet.2007.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 01/14/2023]
Abstract
The neuroprotective effect of 3,4-dihydroxybenzoic acid (3,4-DHBA) isolated from Smilacis chinae rhizome against Abeta (25-35)-induced neurotoxicity on cultured rat cortical neurons was found in this study. The protective effect of 3,4-DHBA against Abeta (25-35)-induced neuronal cell death was investigated by measuring cell viability via a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. 3,4-DHBA (1 and 10 microM) concentration-dependently inhibited 10 microM Abeta (25-35)-induced neuronal apoptotic death. 3,4-DHBA (1 and 10 microM) inhibited 10 microM Abeta (25-35)-induced elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)), which was measured by a fluorescent dye, Fluo-4 AM. 3,4-DHBA also inhibited glutamate release into medium, reactive oxygen species (ROS) generation, and caspase-3 activation, which were induced by 10 microM Abeta (25-35). These results suggest that 3,4-DHBA prevents Abeta (25-35)-induced neuronal cell damage by interfering with the increase of [Ca(2+)](c), and then by inhibiting glutamate release, generation of ROS and caspase-3 activity.
Collapse
Affiliation(s)
- Ju Yeon Ban
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | | | |
Collapse
|
42
|
Uberti D, Ferrari-Toninelli G, Bonini SA, Sarnico I, Benarese M, Pizzi M, Benussi L, Ghidoni R, Binetti G, Spano P, Facchetti F, Memo M. Blockade of the tumor necrosis factor-related apoptosis inducing ligand death receptor DR5 prevents beta-amyloid neurotoxicity. Neuropsychopharmacology 2007; 32:872-80. [PMID: 16936710 DOI: 10.1038/sj.npp.1301185] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We originally suggested that inhibition of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) death pathway could be taken into consideration as a potential therapeutic strategy for Alzheimer's disease (AD). However, because the critical role of TRAIL in immune surveillance, the neutralization of TRAIL protein by an antibody to prevent its binding to death receptors is definitely a risky approach. Here, we demonstrated that the blockade of the TRAIL death receptor DR5 with a specific antibody completely prevented amyloid beta peptide (A beta) neurotoxicity in both neuronal cell line and primary cortical neurons. DR5 was demonstrated to be a key factor in TRAIL death pathway. In fact, whereas TRAIL expression was enhanced dose-dependently by concentrations of beta amyloid ranging from 10 nM to 1 microM, only the highest toxic dose of A beta (25 microM) induced the increased expression of DR5 and neuronal cell death. In addition, the increased expression of DR5 receptor after beta amyloid treatment was sustained by p53 transcriptional activity, as demonstrated by the data showing that the p53 inhibitor Pifithrin alpha prevented both beta amyloid-induced DR5 induction and cell death. These data suggest a sequential activation of p53 and DR5 upon beta amyloid exposure. Further insight into the key role of DR5 in AD was suggested by data showing a significant increase of DR5 receptor in cortical slices of AD brain. Thus, these findings may give intracellular TRAIL pathway a role in AD pathophysiology, making DR5 receptor a possible candidate as a pharmacological target.
Collapse
Affiliation(s)
- Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia Medical School, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ban JY, Jeon SY, Nguyen TTH, Bae K, Song KS, Seong YH. Neuroprotective effect of oxyresveratrol from smilacis chinae rhizome on amyloid Beta protein (25-35)-induced neurotoxicity in cultured rat cortical neurons. Biol Pharm Bull 2007; 29:2419-24. [PMID: 17142975 DOI: 10.1248/bpb.29.2419] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that Smilacis chinae rhizome inhibits amyloid beta protein (25-35) (Abeta (25-35))-induced neurotoxicity in cultured rat cortical neurons. The present study evaluated the neuroprotective effect of oxyresveratrol isolated from Smilacis chinae rhizome against Abeta (25-35)-induced neurotoxicity on cultured rat cortical neurons. Oxyresveratrol over the concentration range of 1-10 microM significantly inhibited 10 microM Abeta (25-35)-induced neuronal cell death, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Oxyresveratrol (10 microM) inhibited 10 microM Abeta (25-35)-induced elevation of cytosolic calcium concentration ([Ca2+]c), which was measured by a fluorescent dye, Fluo-4 AM. Oxyresveratrol (1, 10 microM) also inhibited glutamate release into medium and reactive oxygen species (ROS) generation induced by 10 microM Abeta (25-35). These results suggest that oxyresveratrol prevents Abeta (25-35)-induced neuronal cell damage by interfering with the increase of [Ca2+]c, and then by inhibiting glutamate release and ROS generation. Furthermore, these effects of oxyresveratrol may be associated with the neuroprotective effect of Smilacis chinae rhizome.
Collapse
Affiliation(s)
- Ju Yeon Ban
- College of Veterinary Medicine and Research Institute of Herbal Medicine, Chungbuk National University, South Korea
| | | | | | | | | | | |
Collapse
|
44
|
Lafay-Chebassier C, Pérault-Pochat MC, Page G, Rioux Bilan A, Damjanac M, Pain S, Houeto JL, Gil R, Hugon J. The immunosuppressant rapamycin exacerbates neurotoxicity of Abeta peptide. J Neurosci Res 2007; 84:1323-34. [PMID: 16955484 DOI: 10.1002/jnr.21039] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system characterized by two major lesions: extracellular senile plaques and intraneuronal neurofibrillary tangles. beta-Amyloid (Abeta) is known to play a major role in the pathogenesis of AD. Protein synthesis and especially translation initiation are modulated by different factors, including the PKR/eIF2 and the mTOR/p70S6K pathways. mRNA translation is altered in the brain of AD patients. Very little is known about the translation control mediated by mTOR in AD, although mTOR is a central regulator of translation initiation and also ribosome biogenesis and cell growth and proliferation. In this study, by using Western blotting, we show that mTOR pathway is down-regulated by Abeta treatment in human neuroblastoma cells, and the underlying mechanism explaining a transient activation of p70S6K is linked to cross-talk between mTOR and ERK1/2 at this kinase level. This phenomenon is associated with caspase-3 activation, and inhibition of mTOR by the inhibitor rapamycin enhances Abeta-induced cell death. Moreover, in our cell model, insulin-like growth factor-1 is able to increase markedly the p70S6K phosphorylation controlled by mTOR and reduces the caspase-3 activity, but its protective effect on Abeta cell death is mediated via an mTOR-independent pathway. These results demonstrate that mTOR plays an important role as a cellular survival pathway in Abeta toxicity and could represent a possible target for modulating Abeta toxicity.
Collapse
|
45
|
Ban JY, Jeon SY, Bae K, Song KS, Seong YH. Catechin and epicatechin from Smilacis chinae rhizome protect cultured rat cortical neurons against amyloid beta protein (25-35)-induced neurotoxicity through inhibition of cytosolic calcium elevation. Life Sci 2006; 79:2251-9. [PMID: 16978655 DOI: 10.1016/j.lfs.2006.07.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 06/30/2006] [Accepted: 07/24/2006] [Indexed: 01/23/2023]
Abstract
We previously reported that the Smilacis chinae rhizome inhibits amyloid beta protein (25-35) (Abeta (25-35))-induced neurotoxicity in cultured rat cortical neurons. Here, we isolated catechin and epicatechin from S. chinae rhizome and also studied their neuroprotective effects on Abeta (25-35)-induced neurotoxicity in cultured rat cortical neurons. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced neuronal cell death at a concentration of 10 microM, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced elevation of cytosolic calcium concentration ([Ca2+]c), which was measured by a fluorescent dye, Fluo-4 AM. Catechin and epicatechin also inhibited glutamate release into medium induced by 10 microM Abeta (25-35), which was measured by HPLC, generation of reactive oxygen species (ROS) and activation of caspase-3. These results suggest that catechin and epicatechin prevent Abeta (25-35)-induced neuronal cell damage by interfering with the increase of [Ca2+]c, and then by inhibiting glutamate release, generation of ROS and caspase-3 activity. Furthermore, these effects of catechin and epicatechin may be associated with the neuroprotective effect of the S. chinae rhizome.
Collapse
Affiliation(s)
- Ju Yeon Ban
- College of Veterinary Medicine and Research Institute of Herbal Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | |
Collapse
|
46
|
Arakawa M, Ushimaru N, Osada N, Oda T, Ishige K, Ito Y. N-acetylcysteine selectively protects cerebellar granule cells from 4-hydroxynonenal-induced cell death. Neurosci Res 2006; 55:255-63. [PMID: 16675054 DOI: 10.1016/j.neures.2006.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 11/16/2022]
Abstract
4-hydroxynonenal (HNE), an aldehydic product of membrane lipid peroxidation, has been shown to induce neurotoxicity accompanied by multiple events. To clarify mechanisms of neuroprotective compounds on HNE-induced toxicity, the protective effects of N-acetylcysteine (NAC), alpha-tocopherol (TOC), ebselen and S-allyl-L-cysteine (SAC) were compared in cerebellar granule neurons. The decrease in MTT reduction induced by HNE was significantly suppressed by pretreatment of the neurons with 1000 microM NAC or 10 and 100 microM TOC; however, lactate dehydrogenase (LDH) release and propidium iodide (PI) fluorescence studies revealed that neuronal death was suppressed by NAC but not by TOC. Treatment of these neurons with HNE resulted in a drastic reduction of mitochondrial membrane potential, and this reduction was also prevented by NAC but not by TOC. Ebselen and SAC, a garlic compound, were unable to protect these neurons against HNE-induced toxicity. Pretreatment with NAC also prevented HNE-induced depletion of intracellular glutathione (GSH) levels in these neurons. These results suggest that NAC, but not other antioxidants such as TOC, SAC and ebselen, exerts significant protective effects against HNE-induced neuronal death in cerebellar granule neurons, and that this neuroprotective effect is due, at least in part, to preservation of mitochondrial membrane potential and intracellular GSH levels.
Collapse
Affiliation(s)
- Motoki Arakawa
- Department of Pharmacology, College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Ban JY, Cho SO, Koh SB, Song KS, Bae K, Seong YH. Protection of amyloid beta protein (25-35)-induced neurotoxicity by methanol extract of Smilacis chinae rhizome in cultured rat cortical neurons. JOURNAL OF ETHNOPHARMACOLOGY 2006; 106:230-7. [PMID: 16497458 DOI: 10.1016/j.jep.2005.12.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 12/15/2005] [Accepted: 12/29/2005] [Indexed: 05/06/2023]
Abstract
Smilax has various pharmacological effects including antiinflammatory, anticancer and antioxidant activity. The present study aims to investigate the effect of the methanol extract of Smilacis chinae rhizome (SCR) from Smilax china L. (Liliaceae) on amyloid beta protein (Abeta) (25-35), a synthetic 25-35 amyloid peptide, -induced neurotoxicity in cultured rat cerebral cortical neurons. Abeta (25-35) (10 microM) produced a reduction of cell viability, which was significantly reduced by (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, an L-type Ca2+ channel blocker, and NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor. SCR, over a concentration range of 10-50 microg/ml, inhibited 10 microM Abeta (25-35)-induced neuronal cell death, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. SCR (50 microg/ml) inhibited 10 microM Abeta (25-35)-induced elevation of cytosolic calcium concentration ([Ca2+]c), which was measured by a fluorescent dye, Fluo-4 AM. Pretreatment of SCR (10 and 50 microg/ml) also inhibited glutamate release into medium induced by 10 microM Abeta (25-35), which was measured by HPLC, generation of reactive oxygen species and activation of caspase-3. These results suggest that SCR prevents Abeta (25-35)-induced neuronal cell damage in vitro.
Collapse
Affiliation(s)
- Ju Yeon Ban
- College of Veterinary Medicine and Research Institute of Herbal Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | | | | | | | | | | |
Collapse
|
48
|
Huang J, May JM. Ascorbic acid protects SH-SY5Y neuroblastoma cells from apoptosis and death induced by beta-amyloid. Brain Res 2006; 1097:52-8. [PMID: 16725131 DOI: 10.1016/j.brainres.2006.04.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 04/10/2006] [Accepted: 04/15/2006] [Indexed: 01/13/2023]
Abstract
beta-Amyloid causes apoptosis and death in cultured neurons that may be mediated by generation of reactive oxygen species. Since ascorbic acid concentrations are relatively high in brain, we tested whether and how this antioxidant might protect cultured SH-SY5Y neuroblastoma cells from apoptotic cell death. SH-SY5Y cells did not contain ascorbate in culture but readily took it up to achieve intracellular concentrations several-fold those of GSH. Treatment of cells with 2-10 microM beta-amyloid(25-35) decreased both intracellular ascorbate and GSH without affecting rates of ascorbate transport, which suggests that the peptide induces an oxidant stress in the cells. Overnight culture of cells with 10-20 microM beta-amyloid(25-35) induced apoptosis in SH-SY5Y cells when measured as externalization of phosphatidylserine by annexin V binding, as DNA fragmentation in the TUNEL assay, and as caspase-3 activity in cell lysates. Pre-loading cells with ascorbate substantially prevented apoptosis measured by these assays as well as cell death. In addition to preventing apoptosis, ascorbate loading of SH-SY5Y cells also decreased basal rates of generation of endogenous beta-amyloid. Together, these results support the notion that beta-amyloid induces apoptosis and death in neurons due to oxidant stress and suggest that intracellular ascorbate effectively prevents this toxicity.
Collapse
Affiliation(s)
- Junjun Huang
- Department of Medicine, Vanderbilt University School of Medicine, 715 Preston Research Building, Nashville, TN 37232-6303, USA
| | | |
Collapse
|
49
|
Mok SS, Losic D, Barrow CJ, Turner BJ, Masters CL, Martin LL, Small DH. The beta-amyloid peptide of Alzheimer's disease decreases adhesion of vascular smooth muscle cells to the basement membrane. J Neurochem 2006; 96:53-64. [PMID: 16269005 DOI: 10.1111/j.1471-4159.2005.03539.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is a major feature of Alzheimer's disease pathology. In CAA, degeneration of vascular smooth muscle cells (VSMCs) occurs close to regions of the basement membrane where the amyloid protein (Abeta) builds up. In this study, the possibility that Abeta disrupts adhesive interactions between VSMCs and the basement membrane was examined. VSMCs were cultured on a commercial basement membrane substrate (Matrigel). The presence of Abeta in the Matrigel decreased cell-substrate adhesion and cell viability. Full-length oligomeric Abeta was required for the effect, as N- and C-terminally truncated peptide analogues did not inhibit adhesion. Abeta that was fluorescently labelled at the N-terminus (fluo-Abeta) bound to Matrigel as well as to the basement membrane heparan sulfate proteoglycan (HSPG) perlecan and laminin. Adhesion of VSMCs to perlecan or laminin was decreased by Abeta. As perlecan influences VSMC viability through the extracellular signal-regulated kinase (ERK)1/2 signalling pathway, the effect of Abeta1-40 on ERK1/2 phosphorylation was examined. The level of phospho-ERK1/2 was decreased in cells following Abeta treatment. An inhibitor of ERK1/2 phosphorylation enhanced the effect of Abeta on cell adhesion. The studies suggest that Abeta can decrease VSMC viability by disrupting VSMC-extracellular matrix (ECM) adhesion.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Calcitonin Gene-Related Peptide/biosynthesis
- Calcitonin Gene-Related Peptide/metabolism
- Cells, Cultured
- Ceramides/pharmacology
- Down-Regulation/drug effects
- Female
- Genetic Vectors
- Immunohistochemistry
- JNK Mitogen-Activated Protein Kinases/physiology
- Mitogen-Activated Protein Kinases/metabolism
- NF-kappa B/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Signal Transduction/drug effects
- Stimulation, Chemical
- Transfection
- Trigeminal Ganglion/cytology
- Trigeminal Ganglion/drug effects
- Trigeminal Ganglion/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Su San Mok
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Masilamoni JG, Jesudason EP, Baben B, Jebaraj CE, Dhandayuthapani S, Jayakumar R. Molecular chaperone alpha-crystallin prevents detrimental effects of neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2005; 1762:284-93. [PMID: 16443350 DOI: 10.1016/j.bbadis.2005.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 11/03/2005] [Accepted: 11/11/2005] [Indexed: 12/01/2022]
Abstract
Silver nitrate administration stimulates immune activation, inflammation and deterioration in cell function. It is well established that hippocampal and cortical tissue are susceptible to degeneration in responses to insult such as oxidative stress or infection. This study was designed to investigate the prophylactic effect of alpha-crystallin, a major chaperone lens protein comprising of alpha-A and alpha-B subunits in inflammation induced mice. Mice were divided into three groups (n=6 in each), control, inflammation and alpha-crystallin treated. Our result shows that alpha-crystallin pretreatment effectively diminished systemic inflammation induced glial fibrillary acidic protein (GFAP) and nuclear factor kappa B (NFkappaB) expression in the mice neocortex, reversed elevated intracellular calcium levels, acetylcholine esterase activity and depletion of glucose. Furthermore it also significantly prevented nitric oxide (P<0.05) and lipid peroxide production in the plasma, liver, neocortex and hippocampus of the inflammation-induced mice. In order to demonstrate the direct *OH and nitric oxide radical scavenging ability of alpha-crystallin, an In vitro experiment using primary astrocyte culture subjected to lipopolysaccharide (LPS), a well-known inflammatory stimuli were also carried out. This study reiterates that alpha-crystallin therapy may serve as a potent pharmacological agent in neuroinflammation.
Collapse
Affiliation(s)
- J G Masilamoni
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai-600 020, India
| | | | | | | | | | | |
Collapse
|