1
|
KANG JB, KOH PO. Identification of changed proteins by retinoic acid in cerebral ischemic damage: a proteomic study. J Vet Med Sci 2022; 84:1194-1204. [PMID: 35831120 PMCID: PMC9523306 DOI: 10.1292/jvms.22-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemic stroke is a severe neurodegenerative disease with a high mortality rate. Retinoic acid is a representative metabolite of vitamin A. It has many beneficial effects including anti-inflammatory, anti-apoptotic, and neuroprotective effects. The purpose of this study is to identify specific proteins that are regulated by retinoic acid in ischemic stroke. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected intraperitoneally into male rats for four days prior to MCAO operation. Neurobehavioral tests were performed 24 hr after MCAO and the cerebral cortex was collected for proteomic study. Retinoic acid alleviates neurobehavioral deficits and histopathological changes caused by MCAO. Furthermore, we identified various proteins that were altered by retinoic acid in MCAO damage. Among these identified proteins, adenosylhomocysteinase, isocitrate dehydrogenase [NAD+] subunit α, glycerol-3-phosphate dehydrogenase, Rab GDP dissociation inhibitor β, and apolipoprotein A1 were down-regulated in MCAO animals with vehicle treatment, whereas retinoic acid treatment alleviated these reductions. However, heat shock protein 60 was up-regulated in MCAO animals with vehicle, while retinoic acid treatment attenuated this increase. The changes in these expressions were confirmed by reverse transcription-PCR. These proteins regulate cell metabolism and mediate stress responses. Our results demonstrated that retinoic acid attenuates the neuronal damage by MCAO and regulates the various protein expressions that are involved in the survival of cells. Thus, we can suggest that retinoic acid exerts neuroprotective effects on focal cerebral ischemia by modulation of specific proteins.
Collapse
Affiliation(s)
- Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
2
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
PARK DJ, KANG JB, KOH PO. Identification of regulated proteins by epigallocatechin gallate treatment in an ischemic cerebral cortex animal model: a proteomics approach. J Vet Med Sci 2021; 83:916-926. [PMID: 33883340 PMCID: PMC8267205 DOI: 10.1292/jvms.21-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022] Open
Abstract
Ischemic stroke is a fatal disease that has long-term disability. It induces excessive oxidative stress generation and cellular metabolic disorders, result in tissue damage. Epigallocatechin gallate (EGCG) is a naturally derived flavonoid with strong antioxidant property. We previously reported the neuroprotective effect of EGCG in ischemic stroke. The defensive mechanisms of stroke are very diverse and complex. This study investigated specific proteins that are regulated by EGCG treatment in the ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. EGCG (50 mg/kg) or vehicle was intraperitoneally administered just prior to MCAO. MCAO induced severe neurological deficits and disorders. EGCG treatment alleviated these neurological disorder and damage. Cerebral cortex was used for this study. Two-dimensional gel electrophoresis and mass spectrometry were performed to detect the proteins altered by EGCG. We identified various proteins that were changed between vehicle- and EGCG-treated animals. Among these proteins, isocitrate dehydrogenase, dynamin-like protein 1, and γ-enolase were decreased in vehicle-treated animals, while EGCG treatment prevented these decreases. However, pyridoxal-5'-phosphate phosphatase and 60 kDa heat shock protein were increased in vehicle-treated animals with MCAO injury. EGCG treatment attenuated these increases. The changes in these proteins were confirmed by Western blot and reverse transcription-PCR analyses. These proteins were associated with cellular metabolism and neuronal regeneration. Thus, these findings can suggest that EGCG performs a defensive mechanism in ischemic damage by regulating specific proteins related to energy metabolism and neuronal protection.
Collapse
Affiliation(s)
- Dong-Ju PARK
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| | - Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| |
Collapse
|
4
|
Thuringer D, Garrido C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection? FASEB J 2019; 33:11629-11639. [PMID: 31348679 DOI: 10.1096/fj.201900895r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to form the blood-brain barrier (BBB). Their compromised function alters the BBB integrity, which is associated with early events in the pathogenesis of cancer, neurodegenerative diseases, and epilepsy. Interestingly, these conditions also induce the expression of heat shock proteins (HSPs). Here we review the contribution of major HSP families to BMEC and BBB function. Although investigators mainly report protective effects of HSPs in brain, contrasted results were obtained in BMEC, which depend both on the HSP and on its location, intra- or extracellular. The therapeutic potential of HSPs must be scrupulously analyzed before targeting them in patients to reduce the progression of brain lesions and improve neurologic outcomes in the long term.-Thuringer, D., Garrido, C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Carmen Garrido
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
5
|
Demyanenko S, Berezhnaya E, Neginskaya M, Rodkin S, Dzreyan V, Pitinova M. Сlass II histone deacetylases in the post-stroke recovery period-expression, cellular, and subcellular localization-promising targets for neuroprotection. J Cell Biochem 2019; 120:19590-19609. [PMID: 31264264 DOI: 10.1002/jcb.29266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
Histone deacetylases (HDAC) inhibitors can protect nerve cells after a stroke, but it is unclear which HDAC isoform is involved in this effect. We studied cellular and intracellular rearrangement of class II HDACs at late periods after photothrombotic infarct (PTI) in the mouse sensorimotor cortex in the tissue surrounding the ischemia core and in the corresponding region of the contralateral hemisphere. We observed a decrease in HDAC4 in cortical neurons and an increase in its nuclear translocation. HDAC6 expression in neurons was also increased. Moreover, HDAC6-positive cells had elevated apoptosis. Tubostatin A (Tub A)-induced decrease in the activity of HDAC6 restored acetylation of α-tubulin during the early poststroke recovery period and reduced apoptosis of nerve cells thus protecting the brain tissue. Selective inhibition of HDAC6 elevated expression of growth-associated protein-43 (GAP43), which remained high up to 14 days after stroke and promoted axogenesis and recovery from the PTI-induced neurological deficit. Selective HDAC6 inhibitor Tub A markedly reduced neuronal death and increased acetylation of α-tubulin and the level of GAP43. Thus, HDAC6 inhibition could be a promising strategy for modulation of brain recovery as it can increase the intensity and reduce the duration of reparation processes in the brain after stroke.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Elena Berezhnaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Maria Neginskaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Stanislav Rodkin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Maria Pitinova
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
6
|
Abstract
Global and focal ischemias induce a variety of gene families, including immediate early genes, cytokines, neurotransmitter receptors, and heat-shock proteins. The Janus-like effects of several of these gene prod ucts promote neuronal survival and degeneration. Therefore, determining the molecular pathways respon sible for the differential regulation of these genes is of paramount importance. The discovery of apoptosis as a mediator of delayed neuronal death has led to the identification of a number of other genes involved in postischemic brain damage. Future neuroprotective therapies for cerebral ischemia may be directed at preventing alterations in gene expression. NEUROSCIENTIST 5:238-253, 1999
Collapse
Affiliation(s)
- Sean I. Savitz
- Department of Neurology, Neuroscience, Albert Einstein
College of Medicine Bronx, New York
| | - Daniel M. Rosenbaum
- Department of Neurology, Neuroscience and Ophthalmology
Albert Einstein College of Medicine Bronx, New York
| |
Collapse
|
7
|
Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway. Mol Neurodegener 2015; 10:5. [PMID: 25887709 PMCID: PMC4365525 DOI: 10.1186/s13024-015-0003-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/03/2015] [Indexed: 01/11/2023] Open
Abstract
Background Toll-like receptors (TLR) constitute a highly conserved class of receptors through which the innate immune system responds to both pathogen- and host-derived factors. Although TLRs are involved in a wide range of central nervous system (CNS) disorders including neurodegenerative diseases, the molecular events leading from CNS injury to activation of these innate immune receptors remain elusive. The stress protein heat shock protein 60 (HSP60) released from injured cells is considered an endogenous danger signal of the immune system. In this context, the main objective of the present study was to investigate the impact of extracellular HSP60 on the brain in vivo. Results We show here that HSP60 injected intrathecally causes neuronal and oligodendrocyte injury in the CNS in vivo through TLR4-dependent signaling. Intrathecal HSP60 results in neuronal cell death, axonal injury, loss of oligodendrocytes, and demyelination in the cerebral cortex of wild-type mice. In contrast both mice lacking TLR4 and the TLR adaptor molecule MyD88 are protected against deleterious effects induced by HSP60. In contrast to the exogenous TLR4 ligand, lipopolysaccharide, intrathecal HSP60 does not induce such a considerable inflammatory response in the brain. In the CNS, endogenous HSP60 is predominantly expressed in neurons and released during brain injury, since the cerebrospinal fluid (CSF) from animals of a mouse stroke model contains elevated levels of this stress protein compared to the CSF of sham-operated mice. Conclusions Our data show a direct toxic effect of HSP60 towards neurons and oligodendrocytes in the CNS. The fact that these harmful effects involve TLR4 and MyD88 confirms a molecular pathway mediated by the release of endogenous TLR ligands from injured CNS cells common to many forms of brain diseases that bi-directionally links CNS injury and activation of the innate immune system to neurodegeneration and demyelination in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0003-1) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Zepeda AB, Figueroa CA, Abdalla DSP, Maranhão AQ, Ulloa PH, Pessoa A, Farías JG. HSF-1, HIF-1 and HSP90 expression on recombinant Pichia pastoris under fed-batch fermentation. Braz J Microbiol 2014; 45:485-90. [PMID: 25242931 PMCID: PMC4166272 DOI: 10.1590/s1517-83822014000200015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/09/2013] [Indexed: 11/23/2022] Open
Abstract
Pichia pastoris is a methylotrophic yeast used as an efficient expression system for heterologous protein production as compared to other expression systems. Considering that every cell must respond to environmental changes to survive and differentiate, determination of endogenous protein related to heat stress responses and hypoxia, it would necessary to establish the temperature and methanol concentration conditions for optimal growth. The aim of this study is characterize the culture conditions through the putative biomarkers in different conditions of temperature and methanol concentration. Three yeast cultures were performed: 3X = 3% methanol −10 °C, 4X = 3% methanol −30 °C, and 5X = 1% methanol −10 °C. The expression level of HIF-1α, HSF-1, HSP-70 and HSP-90 biomarkers were measured by Western blot and in situ detection was performed by immunocytochemistry. The western blot results of HIF-1α and HSP-90 did not indicate statistically significant in the culture conditions studied. Respect to biomarkers location, HIF-1α and HSP-90 presented differences between cultures. In conclusion, the results suggest the cultures in a hypoxic condition produce a high density and yeast cells smaller. Beside the high density would not necessary related with a high production of recombinant proteins in modified-genetically P. pastoris.
Collapse
Affiliation(s)
- Andrea B Zepeda
- Departamento de Ingeniería Química Facultad de Ingeniería, Ciencias y Administración Universidad de La Frontera Temuco Chile Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile. ; Departamento de Tecnologia Bioquímico-Farmacêutica Faculdade de Ciências Farmacêuticas Universidade de São Paulo São PauloSP Brazil Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carolina A Figueroa
- Departamento de Ingeniería Química Facultad de Ingeniería, Ciencias y Administración Universidad de La Frontera Temuco Chile Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile. ; Departamento de Tecnologia Bioquímico-Farmacêutica Faculdade de Ciências Farmacêuticas Universidade de São Paulo São PauloSP Brazil Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dulcineia S P Abdalla
- Departamento de Análises Clínicas e Toxicológicas Faculdade de Ciências Farmacêuticas Universidade de São Paulo São PauloSP Brazil Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Andrea Q Maranhão
- Departamento de Biología Celular Instituto de Ciências Biológicas Universidade de Brasília BrasíliaDF Brazil Departamento de Biología Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Patricio H Ulloa
- Departamento de Ingeniería Química Facultad de Ingeniería, Ciencias y Administración Universidad de La Frontera Temuco Chile Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica Faculdade de Ciências Farmacêuticas Universidade de São Paulo São PauloSP Brazil Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jorge G Farías
- Departamento de Ingeniería Química Facultad de Ingeniería, Ciencias y Administración Universidad de La Frontera Temuco Chile Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
9
|
Abd-El-Fattah MA, Abdelakader NF, Zaki HF. Pyrrolidine dithiocarbamate protects against scopolamine-induced cognitive impairment in rats. Eur J Pharmacol 2014; 723:330-8. [DOI: 10.1016/j.ejphar.2013.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 10/25/2022]
|
10
|
Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 2013; 167:699-719. [PMID: 23003569 DOI: 10.1111/j.1476-5381.2012.02025.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem throughout the world. It is a complicated pathological process that consists of primary insults and a secondary insult characterized by a set of biochemical cascades. The imbalance between a higher energy demand for repair of cell damage and decreased energy production led by mitochondrial dysfunction aggravates cell damage. At the cellular level, the main cause of the secondary deleterious cascades is cell damage that is centred in the mitochondria. Excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), Bcl-2 family, caspases and apoptosis inducing factor (AIF) are the main participants in mitochondria-centred cell damage following TBI. Some preclinical and clinical results of mitochondria-targeted therapy show promise. Mitochondria- targeted multipotential therapeutic strategies offer new hope for the successful treatment of TBI and other acute brain injuries.
Collapse
Affiliation(s)
- Gang Cheng
- Neurosurgical Department, PLA Navy General Hospital, Beijing, China
| | | | | | | |
Collapse
|
11
|
Sheng R, Zhang LS, Han R, Gao B, Liu XQ, Qin ZH. Combined prostaglandin E1 and lithium exert potent neuroprotection in a rat model of cerebral ischemia. Acta Pharmacol Sin 2011; 32:303-10. [PMID: 21258357 DOI: 10.1038/aps.2010.211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To examine the effects of a mixed formulation composed of prostaglandin E1 and lithium (PGE1+Li mixture) on brain damage after cerebral ischemia. The effects of the mixture on protein expression of heat shock proteins (HSPs), p53, and Bcl-2 were also determined. METHODS Brain ischemia was induced with a permanent middle cerebral artery occlusion (pMCAO) in rats. Rats were treated with a single intravenous administration of PGE1, lithium or a PGE1+Li mixture immediately after the ischemic insult. The infarct volume and motor behavior deficits were analyzed 24 h after the ischemic insult. The protein levels of HSP70, glucose-regulated protein 78 (GRP78), HSP60, Bcl-2, and p53 in the striatum of the ipsilateral hemisphere were examined using immunoblotting. RESULTS The mixture (PGE1 22.6 nmol/kg+Li 0.5 mmol/kg) reduced infarct volume and neurological deficits induced by focal cerebral ischemia. Moreover, the mixture had a greater neuroprotective effect against cerebral ischemia compared with PGE1 or lithium alone. The mixture was effective even if it was administered 3 h after ischemia. PGE1+Li also significantly upregulated cytoprotective HSP70, GRP78, HSP60, and Bcl-2 protein levels, while decreasing p53 expression. CONCLUSION These results demonstrated a PGE1+Li mixture with a therapeutic window of up to 3 h for clinical treatment of cerebral ischemia. The PGE1+Li mixture potentially exerts a protective effect after stroke through the induction of HSPs and Bcl-2 proteins.
Collapse
|
12
|
Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G, Chen J. Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol 2010; 92:184-211. [PMID: 20685377 DOI: 10.1016/j.pneurobio.2010.05.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/23/2010] [Accepted: 05/27/2010] [Indexed: 12/30/2022]
Abstract
Emerging evidence indicates that heat shock proteins (HSPs) are critical regulators in normal neural physiological function as well as in cell stress responses. The functions of HSPs represent an enormous and diverse range of cellular activities, far beyond the originally identified roles in protein folding and chaperoning. HSPs are now understood to be involved in processes such as synaptic transmission, autophagy, ER stress response, protein kinase and cell death signaling. In addition, manipulation of HSPs has robust effects on the fate of cells in neurological injury and disease states. The ongoing exploration of multiple HSP superfamilies has underscored the pluripotent nature of HSPs in the cellular context, and has demanded the recent revamping of the nomenclature referring to these families to reflect a re-organization based on structure and function. In keeping with this re-organization, we first discuss the HSP superfamilies in terms of protein structure, regulation, expression and distribution in the brain. We then explore major cellular functions of HSPs that are relevant to neural physiological states, and from there we discuss known and proposed HSP impacts on major neurological disease states. This review article presents a three-part discussion on the array of HSP families relevant to neuronal tissue, their cellular functions, and the exploration of therapeutic targets of these proteins in the context of neurological diseases.
Collapse
Affiliation(s)
- R Anne Stetler
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, United States.
| | | | | | | | | | | | | |
Collapse
|
13
|
Stensløkken KO, Ellefsen S, Larsen HK, Vaage J, Nilsson GE. Expression of heat shock proteins in anoxic crucian carp (Carassius carassius): support for cold as a preparatory cue for anoxia. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1499-508. [DOI: 10.1152/ajpregu.00675.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The crucian carp ( Carassius carassius ) tolerates anoxia for days to months depending on temperature. During episodes of stress, heat shock proteins (HSPs) are important for limiting cellular damage, mainly by ensuring protein function. Accordingly, we hypothesized that anoxia would change the expression of HSPs and that this response would be temperature dependent. Real-time RT-PCR was used to investigate the effects of 1 and 7 days anoxia (A1 and A7) on the expression of HSP70a, HSP70b, HSC70, HSP90, and HSP30 in the brain and heart of 8°C- and 13°C-acclimated crucian carp. In general, the expression of all HSPs changed in response to anoxia, although varying in size and direction, and with organ and temperature. HSP70a expression increased drastically (∼10-fold) in A7 brains and hearts at 13°C but not at 8°C. HSC70 and HSP90 expression decreased in A7 brains (by 60–70%), but not in A7 hearts. HSC70 expression increased in A1 brains and hearts at both temperatures (by 60–160%), and HSP30 expression decreased in A7 brains and hearts at both temperatures (by 50–80%). Notably, normoxic fish showed 7- and 11-fold higher HSP70a expression in the brain and heart at 8°C compared with 13°C. This difference disappeared during anoxia, suggesting that cold may function as a cue for preconditioning the crucian carp's HSP70a expression to the approaching anoxic winter period.
Collapse
Affiliation(s)
- Kåre-Olav Stensløkken
- Department of Molecular Biosciences and
- Faculty Division Ullevål University Hospital, University of Oslo, Oslo, Norway; and
| | | | | | - Jarle Vaage
- Faculty Division Ullevål University Hospital, University of Oslo, Oslo, Norway; and
| | | |
Collapse
|
14
|
|
15
|
Kesaraju S, Schmidt-Kastner R, Prentice HM, Milton SL. Modulation of stress proteins and apoptotic regulators in the anoxia tolerant turtle brain. J Neurochem 2009; 109:1413-26. [PMID: 19476552 PMCID: PMC2735444 DOI: 10.1111/j.1471-4159.2009.06068.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Freshwater turtles survive prolonged anoxia and reoxygenation without overt brain damage by well-described physiological processes, but little work has been done to investigate the molecular changes associated with anoxic survival. We examined stress proteins and apoptotic regulators in the turtle during early (1 h) and long-term anoxia (4, 24 h) and reoxygenation. Western blot analyses showed changes within the first hour of anoxia; multiple stress proteins (Hsp72, Grp94, Hsp60, Hsp27, and HO-1) increased while apoptotic regulators (Bcl-2 and Bax) decreased. Levels of the ER stress protein Grp78 were unchanged. Stress proteins remained elevated in long-term anoxia while the Bcl-2/Bax ratio was unaltered. No changes in cleaved caspase 3 levels were observed during anoxia while apoptosis inducing factor increased significantly. Furthermore, we found no evidence for the anoxic translocation of Bax from the cytosol to mitochondria, nor movement of apoptosis inducing factor between the mitochondria and nucleus. Reoxygenation did not lead to further increases in stress proteins or apoptotic regulators except for HO-1. The apparent protection against cell damage was corroborated with immunohistochemistry, which indicated no overt damage in the turtle brain subjected to anoxia and reoxygenation. The results suggest that molecular adaptations enhance pro-survival mechanisms and suppress apoptotic pathways to confer anoxia tolerance in freshwater turtles.
Collapse
Affiliation(s)
- Shailaja Kesaraju
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA.
| | | | | | | |
Collapse
|
16
|
Han R, Gao B, Sheng R, Zhang LS, Zhang HL, Gu ZL, Qin ZH. Synergistic effects of prostaglandin E1 and lithium in a rat model of cerebral ischemia. Acta Pharmacol Sin 2008; 29:1141-9. [PMID: 18817617 DOI: 10.1111/j.1745-7254.2008.00873.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Heat shock proteins (HSPs) are important regulators of cellular survival and exert neuroprotective effects against cerebral ischemia. Both prostaglandin E1 (PGE1) and lithium have been reported to protect neurons against ischemic injury. The present study was undertaken to examine if lithium could potentiate the neuroprotection of PGE1 against cerebral ischemia, and if the synergetic effects take place at the level of HSPs. METHODS Brain ischemia was induced by a permanent middle cerebral artery occlusion (pMCAO) in rats. Rats were pretreated with subcutaneous injection of lithium for 2 d and a single intravenous administration of PGE1 immediately after ischemic insult. Cerebrocortical blood flow of each group was closely monitored prior to onset of ischemia, 5 min, 15 min, 30 min and 60 min after surgical operation. Body temperature was measured before, 5 min, 2 h and 24 h after the onset of pMCAO. The infarct volume, brain edema and motor behavior deficits were analyzed 24 h after ischemic insult. Cytoprotective HSP70 and heme oxygenase-1 (HO-1) in the striatum of the ipsilateral hemisphere were detected by immunoblotting. Brain sections from the striatum of the ipsilateral hemisphere were double-labeled with the anti-HSP70 antibody and 4,6-diamidino-2-phenylindole (DAPI). RESULTS Treatment with PGE1 (8 and 16 microg/kg, iv) or lithium (0.5 mEq/kg, sc) alone reduced infarct volume, neurological deficits and brain edema induced by focal cerebral ischemia in rats. Moreover, a greater neuroprotection was observed when PGE1 and lithium were given together. Co-administration of PGE1 and lithium significantly upregulated cytoprotective HSP70 and HO-1 protein levels. CONCLUSION Lithium and PGE1 may exert synergistic effects in treatment of cerebral ischemia and thus may have potential clinical value for the treatment of stroke.
Collapse
Affiliation(s)
- Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Kalesnykas G, Tuulos T, Uusitalo H, Jolkkonen J. Neurodegeneration and cellular stress in the retina and optic nerve in rat cerebral ischemia and hypoperfusion models. Neuroscience 2008; 155:937-47. [DOI: 10.1016/j.neuroscience.2008.06.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 11/30/2022]
|
18
|
Abstract
Neuronal cell death plays a role in many chronic neurodegenerative diseases with the loss of particular subsets of neurons. The loss of the neurons occurs during a period of many years, which can make the mode(s) of cell death and the initiating factors difficult to determine. In vitro and in vivo models have proved invaluable in this regard, yielding insight into cell death pathways. This review describes the main mechanisms of neuronal cell death, particularly apoptosis, necrosis, excitotoxicity and autophagic cell death, and their role in neurodegenerative diseases such as ischaemia, Alzheimer's, Parkinson's and Huntington's diseases. Crosstalk between these death mechanisms is also discussed. The link between cell death and protein mishandling, including misfolded proteins, impairment of protein degradation, protein aggregation is described and finally, some pro-survival strategies are discussed.
Collapse
Affiliation(s)
- Adrienne M Gorman
- Department of Biochemistry, National University of Ireland, Galway Ireland.
| |
Collapse
|
19
|
Kobayashi MS, Asai S, Ishikawa K, Nishida Y, Nagata T, Takahashi Y. Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain. ACTA ACUST UNITED AC 2008; 58:171-91. [PMID: 18440647 DOI: 10.1016/j.brainresrev.2008.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 02/08/2008] [Accepted: 03/08/2008] [Indexed: 12/20/2022]
Abstract
Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we screened 24000 genes in the hippocampus under hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (39 degrees C) conditions in a rat ischemia-reperfusion model. When the ischemic group at each intra-ischemic brain temperature was compared to a sham-operated control group, genes whose expression levels changed more than three-fold with statistical significance could be detected. In our screening condition, thirty-three genes (some of them novel) were obtained after screening, and extensive functional surveys and literature reviews were subsequently performed. In the hypothermic condition, many neuroprotective factor genes were obtained, whereas cell death- and cell damage-associated genes were detected as the brain temperature increased. At all intra-ischemic brain temperatures, multiple molecular chaperone genes were obtained. The finding that intra-ischemic brain temperature affects the expression level of many genes related to neuroprotection or neurotoxicity coincides with the different pathological outcomes at different brain temperatures, demonstrating the utility of the genetic approach.
Collapse
Affiliation(s)
- Megumi Sugahara Kobayashi
- Division of Genomic Epidemiology and Clinical Trials, Advanced Medical Research Center, Nihon University School of Medicine, Oyaguchi-Kami Machi, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Yousuf S, Atif F, Ahmad M, Hoda MN, Khan MB, Ishrat T, Islam F. Selenium plays a modulatory role against cerebral ischemia-induced neuronal damage in rat hippocampus. Brain Res 2007; 1147:218-25. [PMID: 17376411 DOI: 10.1016/j.brainres.2007.01.143] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
During cerebral ischemic cascade, a unifying factor which leads to mitochondrial dysfunctions is lack of oxygen followed by decrease in ATP production. The present study demonstrates the effect of selenium pretreatment (0.1 mg/kg as sodium selenite, i.p, 7 days) on cerebral ischemia-induced altered levels of mitochondrial ATP content, intracellular calcium (Ca(i)(2+)) in synaptosomes, expression of heat stress protein (Hsp70) and caspase-3 activity in hippocampus followed by neurobehavioral deficits and histopathological changes in Wistar rats. Cerebral ischemia was induced for 2 h followed by reperfusion for 22 h. It was observed that levels of (Ca(i)(2+)), Hsp70 and caspase-3 activity were significantly (p<0.01-0.001) higher with a marked decrease in ATP level in hippocampus of ischemic group as compared to sham values. Subsequently, a marked change was observed in neurobehavioral activities in ischemic animals as compared to control one. As a result of selenium pretreatment, a significant (p<0.05-0.001) trend of restoration was observed in the level of ATP, (Ca(i)(2+)), Hsp70, caspase-3 and behavioral outputs as compared to ischemic group. Histopathological analysis confirmed the protective effect of selenium against cerebral ischemia induced histological alterations as evidenced by lesser edema formation and separation of cells with minimal microglial cell infiltration in selenium pretreated group as compared to ischemic animals. The present study suggests that selenium may be able to salvage the ischemic penumbral zone neurons, thereby limiting ischemic cell death.
Collapse
Affiliation(s)
- Seema Yousuf
- Neurotoxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | | | | | | | | | | | | |
Collapse
|
21
|
Lai Y, Stange C, Wisniewski SR, Adelson PD, Janesko-Feldman KL, Brown DS, Kochanek PM, Clark RSB. Mitochondrial heat shock protein 60 is increased in cerebrospinal fluid following pediatric traumatic brain injury. Dev Neurosci 2006; 28:336-41. [PMID: 16943656 DOI: 10.1159/000094159] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 03/28/2006] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial dysfunction occurs after traumatic brain injury (TBI) and contributes significantly to subsequent cell death. Heat shock protein 60 (hsp60) is a predominantly mitochondrial protein with important homeostatic functions. Induction of hsp60 has been demonstrated in cerebral ischemia models, possibly reflecting mitochondrial stress. We measured hsp60 concentration in the cerebrospinal fluid (CSF) of 34 infants and children after severe TBI and of 7 control patients by ELISA. Peak CSF hsp60 concentration was increased in TBI patients versus controls (0.84 ng/ml, range 0-44.59, vs. 0.0 ng/ml, range 0-0.48; p<0.05). Induction of hsp60 occurred early after the injury. Peak hsp60 concentration was independently associated with the severity of injury, defined as the admission Glasgow Coma Scale score. These data suggest that increased hsp60 in CSF might reflect the severity of early mitochondrial stress or damage after TBI.
Collapse
Affiliation(s)
- Yichen Lai
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, and Children's Hospital of Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Dai T, Natarajan R, Nast CC, LaPage J, Chuang P, Sim J, Tong L, Chamberlin M, Wang S, Adler SG. Glucose and diabetes: effects on podocyte and glomerular p38MAPK, heat shock protein 25, and actin cytoskeleton. Kidney Int 2006; 69:806-14. [PMID: 16421517 DOI: 10.1038/sj.ki.5000033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphorylated p38 (pp38) mitogen-activated protein kinase (MAPK) regulates heat shock protein 25 (HSP25), stabilizing fibrillar actin (FA) and preventing cleavage to G-actin (GA). Cultured podocytes (Pods) were exposed to glucose (5.5-50 mM)+/-p38MAPK inhibitor SB202190 (SB) or control SB202474 to assess the effects on FA/GA and Pod structure. The relationship of p38MAPK with in vivo Pod structure and albuminuria (Ualb) was assessed in rats with streptozotocin (SZ)-induced diabetes (DM) for 1 week, 1 month, and 4 months. High glucose induced concentration-dependent increases in pp38MAPK and phosphorylated HSP25 (pHSP25) maintained actin cytoskeleton. Inhibition by SB diminished pp38MAPK and pHSP25, decreased FA/GA, and altered FA and GA immunohistochemical appearance. In SZ-DM, glomerular pp38MAPK and biphosphorylated HSP25 were increased after 1 week, declining at 1 month, and at or below C values at 4 months. Glomerular FA/GA in DM was normal at 1 week, declining at 1 month, and low at 4 months. Ualb/creatinine was similar in DM vs C at 1 week, and increased at 1 and 4 months. Morphometry demonstrated progressively diminishing slit pore density in DM over time, denoting evolving effacement. There were strong correlations between slit membrane density and both glomerular biphosphorylated HSP25 and ln Ualb/cr ratio. The data suggest that increased pp38MAPK and pHSP25 comprise an acute adaptation to glycemic stress. Later depletion of DM may contribute to Pod structural alterations and Ualb.
Collapse
Affiliation(s)
- T Dai
- Harbor-UCLA Los Angeles Biomedical Research Institute, 1124 West Carson Street, Torrance, CA 90502, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Glucose and diabetes: Effects on podocyte and glomerular p38 MAPK, heat-shock protein 25, and actin cytoskeleton. Kidney Int 2006. [DOI: 10.1038/sj.ki.5000200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Badin RA, Lythgoe MF, van der Weerd L, Thomas DL, Gadian DG, Latchman DS. Neuroprotective effects of virally delivered HSPs in experimental stroke. J Cereb Blood Flow Metab 2006; 26:371-81. [PMID: 16079790 DOI: 10.1038/sj.jcbfm.9600190] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones with essential roles in modulating the proteolytic machinery and accelerating cell repair. Heat shock protein overexpression has been observed in vivo and in vitro under stresses including heat, nutrient deprivation and ischemia. Experiments in in vivo models of stroke indicate that transgenically overexpressed or virally delivered HSPs can enhance cell survival, but cannot always reduce lesion size. This study aims to assess the effects of virally delivered HSPs in a rat middle cerebral artery occlusion model of reversible focal cerebral ischemia using noninvasive magnetic resonance imaging. Attenuated herpes simplex virus carrying HSP27, HSP70, or a LacZ control was microinjected into the striatum 3 days before ischemia. Multislice T(2)-weighted images at 24 h after ischemia indicated that lesion volume was reduced by 44% in HSP27-treated animals compared with controls (P = 0.019). No significant differences were found between HSP70-treated and control animals (P = 0.88). Immunohistochemistry and Western blots revealed that HSP27 and HSP70 expression levels were equally high in injected hemispheres, but only the former had an effect on lesion size. This is the first evidence of the efficacy of gene therapy with any viral vector expressing HSP27 in an experimental model of stroke.
Collapse
Affiliation(s)
- Romina Aron Badin
- RCS Unit of Biophysics, Institute of Child Health, University College London, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Muranyi M, He QP, Fong KSK, Li PA. Induction of heat shock proteins by hyperglycemic cerebral ischemia. ACTA ACUST UNITED AC 2005; 139:80-7. [PMID: 15961182 DOI: 10.1016/j.molbrainres.2005.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 11/21/2022]
Abstract
Hyperglycemia worsens the neuronal death induced by cerebral ischemia. A previous study demonstrated that diabetic hyperglycemia suppressed the expression of heat shock protein 70 (HSP70) in the liver. The objective of this study is to determine whether hyperglycemia exacerbates ischemic brain damage by suppressing the expression of heat shock proteins (HSPs) in the brain. Both normoglycemic and hyperglycemic rats were subjected to a transient global cerebral ischemia of 15 min and followed by 0.5, 1 and 3 h of reperfusion. The expression of stress-related genes and levels of HSP proteins were determined by DNA microarray, immunocytochemistry and Western blot analyses. The results showed that hyperglycemic ischemia upregulated the expressions of hsp70, hsp90A, hsp90B, heat shock cognate 71 kD protein (hsc70) and mthsp70. Protein levels of HSP70 and HSP60 were enhanced by hyperglycemia compared with normoglycemia. The results suggested that hyperglycemia-exacerbated ischemic brain damage is not mediated by the suppression of the HSPs. The increased levels of HSPs and mthsp70 suggest that the cell and the mitochondrion had strong stress responses to hyperglycemic ischemia.
Collapse
Affiliation(s)
- Marianna Muranyi
- Cardiovascular Research Center, John A. Burns School of Medicine, University of Hawaii, 1960 East West Road, Biomedical Tower 514, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
26
|
Yasuda H, Shichinohe H, Kuroda S, Ishikawa T, Iwasaki Y. Neuroprotective effect of a heat shock protein inducer, geranylgeranylacetone in permanent focal cerebral ischemia. Brain Res 2005; 1032:176-82. [PMID: 15680957 DOI: 10.1016/j.brainres.2004.11.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 11/02/2004] [Accepted: 11/06/2004] [Indexed: 10/26/2022]
Abstract
Previous studies have strongly suggested that heat shock protein 70 (HSP70) has protective effects in ischemia/reperfusion in tissues such as brain, heart, and liver. This study was performed to assess the efficacy of the HSP70 inducer geranylgeranylacetone (GGA) in experiments involving permanent middle cerebral artery (MCA) occlusion. Male Balb/c mice were subjected to permanent MCA occlusion by direct occlusion through small craniectomy. Vehicle or GGA (200 or 1000 mg/kg) was injected intraperitoneally 1 h prior to the onset of ischemia. Infarct volumes were evaluated at 24 h of ischemia by using 2,3,5-triphenyltetrazolium chloride (TTC) staining. The effect of GGA on the induction of HSP70 was studied at 3 h after ischemia with fluorescence immunocytochemistry. The percentage of infarct volume in the control mice (n=10) was 23.0+/-4.0% (mean+/-SD) of the contralateral hemisphere, while those in the treated groups were 22.6+/-7.3% (200 mg/kg group; n=5, P>0.05) and 15.7+/-3.8% (1000 mg/kg group; n=5, P<0.05). Pretreatments with 1000 mg/kg of GGA enhanced the ischemia-related induction of HSP in the neurons and astrocytes in the boundary zone of infarct. The results demonstrate that GGA significantly reduces infarct volume due to permanent MCA occlusion when given 1 h prior to the induction of ischemia.
Collapse
Affiliation(s)
- Hiroshi Yasuda
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | |
Collapse
|
27
|
Satoh M, Tang J, Nanda A, Zhang JH. Heat shock proteins expression in brain stem after subarachnoid hemorrhage in rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2004; 86:477-82. [PMID: 14753490 DOI: 10.1007/978-3-7091-0651-8_98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The pathogenesis of brain damage after subarachnoid hemorrhage (SAH) especially at molecular or gene level remains unclear. We used complimentary deoxyribonucleic acid (cDNA) macroarray technique and compared gene expression in brain stem after experimental SAH in rats. The upregulation of several heat shock proteins (HSPs) demonstrated by cDNA array was further confirmed by Western blotting. The expressions of 9 genes were upregulated 30 minutes or 2 days after SAH. They included four upregulated HSPs: HSP90alpha, HSP60, HSP27, and HSP10. Western blotting demonstrated increases in the HSP27 and HSP10 proteins on Day 2. SAH enhanced the induction of several HSP mRNAs in the brainstems, even though the functions of these HSPs after SAH remain unclear.
Collapse
Affiliation(s)
- M Satoh
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | |
Collapse
|
28
|
Gilbert RW, Costain WJ, Blanchard ME, Mullen KL, Currie RW, Robertson HA. DNA microarray analysis of hippocampal gene expression measured twelve hours after hypoxia-ischemia in the mouse. J Cereb Blood Flow Metab 2003; 23:1195-211. [PMID: 14526230 DOI: 10.1097/01.wcb.0000088763.02615.79] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell death from cerebral ischemia is a dynamic process. In the minutes to days after an ischemic insult, progressive changes in cellular morphology occur. Associated with these events is the regulation of competing programs of gene expression; some are protective against ischemic insult, and others contribute to delayed cell death. Many genes involved in these processes have been identified, but individually, these findings have provided only limited insight into the systems biology of cerebral ischemia. Attempts to characterize the coordinated expression of large numbers of genes in cerebral ischemia has only recently become possible. Today, DNA microarray technology provides a powerful tool for investigating parallel expression changes for thousands of genes at one time. In this study, adult mice were subjected to 30 minutes of hypoxia-ischemia (HI), and the hippocampus was examined 12 hours later for differential gene expression using a 15K high-density mouse EST array. The genomic response to HI is complex, affecting approximately 7% of the total number of ESTs examined. Assigning differentially expressed ESTs to molecular functional groups revealed that HI affects many pathways including the molecular chaperones, transcription factors, kinases, and calcium ion binding genes. A comprehensive list of regulated genes should prove valuable in advancing our understanding of the pathogenesis of cerebral ischemia.
Collapse
Affiliation(s)
- Robert W Gilbert
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Cho S, Liu D, Gonzales C, Zaleska MM, Wood A. Temporal assessment of caspase activation in experimental models of focal and global ischemia. Brain Res 2003; 982:146-55. [PMID: 12915250 DOI: 10.1016/s0006-8993(03)02846-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rodent models of focal and global ischemia were used to examine caspase activation. Several readouts were employed on identical tissue to provide correlative measurement of caspase induction, activation and enzymatic activity. In a rat focal ischemia model, caspase-3 enzymatic activity, as recorded by DEVD-AMC cleavage, peaked in penumbral cortex at 6-12 h following ischemia, correlating with increases in caspase 3-cleaved substrates of PARP and alpha-spectrin and subsequent disappearance of caspase-3 zymogen. Although induction of caspases 8 and 2 proteins was detectable as early as 6 h following ischemia, examination of the same tissues for caspase 8 or 2 enzymatic activities did not show significant modulation up to 12 h after ischemic insult. Caspase 9 induction was evident only after 24 h postischemia and did not correlate with elevated LDHD-AMC cleavage. Following global ischemia in gerbils, levels of caspase-3 enzyme activity peaked at 12 h in hippocampal tissue extracts. Cleaved caspase-3 signal was prominent in NeuN-positive layers in the CA1 region 6-12 h following ischemia. Interestingly, strong caspase-3 immunoreactivity was also detected in the subgranular zone of the dentate gyrus, a known region of ischemia-induced neurogenesis. Caspase-3 activation may be responsible for the loss of these cells, thereby hindering the endogenous recovery process.
Collapse
Affiliation(s)
- Seongeun Cho
- Neuroscience Division, Wyeth Research, CN 8000, Princeton, NJ 08543-8000, USA.
| | | | | | | | | |
Collapse
|
30
|
Valentim LM, Rodnight R, Geyer AB, Horn AP, Tavares A, Cimarosti H, Netto CA, Salbego CG. Changes in heat shock protein 27 phosphorylation and immunocontent in response to preconditioning to oxygen and glucose deprivation in organotypic hippocampal cultures. Neuroscience 2003; 118:379-86. [PMID: 12699774 DOI: 10.1016/s0306-4522(02)00919-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organotypic hippocampal cultures have been recently used to study in vitro ischaemic neuronal death. Sub-lethal periods of ischaemia in vivo confer resistance to lethal insults and many studies have demonstrated the involvement of heat shock proteins in this phenomenon. We used organotypic hippocampal cultures to investigate the involvement of heat shock protein (HSP) 27 in preconditioning to oxygen and glucose deprivation. Neuronal damage was assessed using propidium iodide fluorescence; HSP27 phosphorylation and immunocontent were obtained using (32)Pi labelling followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting. We observed that immunocontent of HSP27 was increased after lethal or sub-lethal treatment, indicating it is a response to metabolic stress. Treatments with 5 or 10 min of oxygen and glucose deprivation (OGD) or 1- microM N-methyl-D-aspartate (NMDA) induced tolerance to 40 min of OGD associated with an increase in HSP27 immunocontent and phosphorylation. These data suggest that, in vitro, phosphorylated HSP27 might be involved in preconditioning, probably acting as a modulator of actin filaments or by the blockage of neurodegenerative processes.
Collapse
Affiliation(s)
- L M Valentim
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre 90035-003, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Akbar MT, Lundberg AMC, Liu K, Vidyadaran S, Wells KE, Dolatshad H, Wynn S, Wells DJ, Latchman DS, de Belleroche J. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. J Biol Chem 2003; 278:19956-65. [PMID: 12639970 DOI: 10.1074/jbc.m207073200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 27-kDa heat shock protein (HSP27) has a potent ability to increase cell survival in response to a wide range of cellular challenges. In order to investigate the mode of action of HSP27 in vivo, we have developed transgenic lines, which express human HSP27 at high levels throughout the brain, spinal cord, and other tissues. In view of the particular property of HSP27 compared with other HSPs to protect neurons against apoptosis, we have tested these transgenic lines in a well established in vivo model of neurotoxicity produced by kainic acid, where apoptotic cell death occurs. Our results demonstrate for the first time the marked protective effects of HSP27 overexpression in vivo, which significantly reduces kainate-induced seizure severity and mortality rate (>50%) in two independent lines and markedly reduces neuronal cell death in the CA3 region of hippocampus. This reduced seizure severity in HSP27 transgenic animals was associated with a marked attenuation of caspase 3 induction and apoptotic features. These studies clearly demonstrate that HSP27 has a major neuroprotective effect in the central nervous system in keeping with its properties demonstrated in culture and highlight an early stage in the cell death pathway that is affected by HSP27.
Collapse
Affiliation(s)
- Mohammed T Akbar
- Department of Neuromuscular Diseases, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tamura S, Kinouchi H, Izaki K, Okubo A, Sugawara T, Kunizuka H, Mizoi K. Induction of heat shock protein 40 and GrpE mRNAs following transient focal cerebral ischemia in the rat. Brain Res 2003; 960:277-81. [PMID: 12505684 DOI: 10.1016/s0006-8993(02)03887-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cerebral ischemia is associated with the induction of several heat shock proteins (HSPs), but the effects on HSP40 and GrpE are less clear. The present study investigated the induction of Hsp40 and GrpE mRNAs following 30 min of middle cerebral artery occlusion in the rat model. Reverse transcription-polymerase chain reaction (PCR) and in situ hybridization analyses showed significant induction of both mRNAs in the ischemic cortex. These results demonstrate the synergic induction of HSP70 molecular chaperone machinery in cerebral ischemia.
Collapse
Affiliation(s)
- Shin'ya Tamura
- Department of Neurosurgery, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Miyazaki M, Ozawa K, Hori O, Kitao Y, Matsushita K, Ogawa S, Matsuyama T. Expression of 150-kd oxygen-regulated protein in the hippocampus suppresses delayed neuronal cell death. J Cereb Blood Flow Metab 2002; 22:979-87. [PMID: 12172383 DOI: 10.1097/00004647-200208000-00009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ORP150-150-kd oxygen-regulated protein-is a novel stress protein localized in the endoplasmic reticulum (ER). To investigate the role of ORP150 in delayed neuronal cell death, the authors examined its expression in the gerbil brain after an ischemic insult. The expression of ORP150 antigen, as well as its transcripts, was observed in the CA1 region after the occlusion of the common carotid artery, and the preconditioning enhanced this expression. In cultured neurons, exposure either to hypoxia or to glutamate induced the expression of ORP150, and this effect was also observed by treating the culture with breferdin A or thapsigargin, indicating that both glutamate and hypoxia can cause stress in the ER (ER stress). Neurons became more vulnerable to these stresses following treatment with cycloheximide or after infection with an adenovirus carrying the ORP150-antisense structure. In contrast, the overexpression of ORP150 by an adenovirus suppressed neuronal cell death, and this was accompanied by the suppression of Ca2+ elevation and proteolytic activity induced by glutamate. Further, overexpression of ORP150 in CA1 neurons by an adenovirus carrying the ORP150-sense structure suppressed delayed neuronal cell death after ischemia. These data suggest a possible function of ORP150 as an intracellular apparatus that participates in a protective response in ischemic tolerance.
Collapse
Affiliation(s)
- Mayuki Miyazaki
- Department of Neuroanatomy, Kanazawa University Medical School, Kanazawa City, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Acarin L, Paris J, González B, Castellano B. Glial expression of small heat shock proteins following an excitotoxic lesion in the immature rat brain. Glia 2002; 38:1-14. [PMID: 11921199 DOI: 10.1002/glia.10040] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heat shock proteins (HSPs) are chaperones induced under pathological conditions and involved in protein stabilization and cellular protection. In this study, we have evaluated the expression pattern of the glial cell-related HSP27, HSP32, and HSP47 following an excitotoxic lesion in the immature rat brain. Postnatal day 9 rats received an intracortical injection of N-methyl-D-aspartate and tissue was processed immunohistochemically for HSPs and double labeling using astroglial and microglial markers. HSP expression was quantified by image analysis. Excitotoxic damage caused primary cortical degeneration and secondary damage in the corresponding thalamus. In the injured cortex, reactive microglia/macrophages expressed HSP32 from 10 h until 14 days postlesion (PL), showing maximal levels at days 3-5. In parallel, most cortical reactive astrocytes showed expression of HSP47 from 10 h until 14 days PL and a population of them also displayed HSP27 labeling from 1 day PL. In addition, some cortical reactive astrocytes showed a temporary expression of HSP32 at day 1. In general, astroglial HSP expression in the cortex achieved maximal levels at days 3-5 PL. In the damaged thalamus, HSP32 was not significantly induced, but reactive astrocytes expressed HSP47 and some of them also HSP27. Thalamic astroglial HSP induction was transient, peaked at 5 days PL and reached basal levels by day 14. The injury-induced expression of HSP32, HSP27, and HSP47 in glial cells may contribute to glial cell protection and adaptation to damage, therefore playing an important role in the evolution of the glial response and the excitotoxic lesion outcome. HSP32 may provide antioxidant protective mechanisms to microglia/macrophages, whereas HSP47 could contribute to extracellular matrix remodeling and HSP27 may stabilize the astroglial cytoskeleton and participate in astroglial antioxidant mechanisms.
Collapse
Affiliation(s)
- Laia Acarin
- Unit of Histology, Department of Cell Biology, Physiology and Immunology, School of Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
| | | | | | | |
Collapse
|
35
|
Valentim LM, Geyer AB, Tavares A, Cimarosti H, Worm PV, Rodnight R, Netto CA, Salbego CG. Effects of global cerebral ischemia and preconditioning on heat shock protein 27 immunocontent and phosphorylation in rat hippocampus. Neuroscience 2002; 107:43-9. [PMID: 11744245 DOI: 10.1016/s0306-4522(01)00325-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Global cerebral ischemia, with or without preconditioning, leads to an increase in heat shock protein 27 (HSP27) immunocontent and alterations in HSP27 phosphorylation in CA1 and dentate gyrus areas of the hippocampus. We studied different times of reperfusion (1, 4, 7, 14, 21 and 30 days) using 2 min, 10 min or 2+10 min of ischemia. The results showed an increase in HSP27 immunocontent of about 300% after 10 min of ischemia in CA1 and dentate gyrus. CA1, a hippocampal vulnerable area, showed an increase in HSP27 phosphorylation, parallel with immunocontent. In dentate gyrus, a resistant area, the increase in HSP phosphorylation was lower than immunocontent. After preconditioned ischemia (2+10 min), when CA1 neurons are protected to a lethal, 10 min insult, we observed an increase in HSP immunocontent and a decrease in phosphorylation in both regions of the hippocampus, suggesting that, when there is no neuronal death, HSP27 in a vulnerable area responds similarly to the resistant area.When dephosphorylated, HSP27 acts as a chaperone, protecting other proteins from denaturation. As it is markedly expressed in astrocytes, we suggest that HSP27 could be protecting hippocampal astrocytes, which could then be helping neurons to resist to the insult, maintaining tissue normal homeostasis.
Collapse
Affiliation(s)
- L M Valentim
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, 90035-003, RS, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Cimarosti H, Rodnight R, Tavares A, Paiva R, Valentim L, Rocha E, Salbego C. An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation. Neurosci Lett 2001; 315:33-6. [PMID: 11711208 DOI: 10.1016/s0304-3940(01)02310-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Brain ischemia results in cellular degeneration and loss of function. Here we investigated the neuroprotective effect of lithium in an in vitro model of ischemia. Organotypic hippocampal slice cultures were exposed to oxygen and glucose deprivation. Cellular death was quantified by measuring uptake of propidium iodide (PI). Lithium chloride (0.2-1.2 mM) was added to the medium before, during and after lesion induction. A decrease in incorporation of PI was observed, indicating a neuroprotective effect in all doses tested. We also studied the effect of lithium on the phosphorylation of HSP27, a heat shock protein involved in cellular protection in its dephosphorylated state. In the lesioned hippocampus, 0.4 mM lithium chloride decreased the proportion of phosphorylated HSP27 to total HSP27. These results suggest that lithium may be useful in the treatment of brain ischemia.
Collapse
Affiliation(s)
- H Cimarosti
- Departamento de BioquImica, Instituto de Ciências Básicas da Saúde, UFRGS, 90035-003, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Aoki M, Tamatani M, Taniguchi M, Yamaguchi A, Bando Y, Kasai K, Miyoshi Y, Nakamura Y, Vitek MP, Tohyama M, Tanaka H, Sugimoto H. Hypothermic treatment restores glucose regulated protein 78 (GRP78) expression in ischemic brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 95:117-28. [PMID: 11687283 DOI: 10.1016/s0169-328x(01)00255-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mild hypothermia is a well-known method of reducing brain damage caused by traumatic, hypoxic, and ischemic injury. To elucidate the neuroprotective mechanism induced by hypothermic treatment, we compared gene expression profiles in the hippocampus of gerbils rendered ischemic for 15 min and then reperfused for 3 h under conditions of normothermia (37+/-0.5 degrees C) or hypothermic treatment (34+/-0.5 degrees C). Using the differential display method, we observed significantly reduced expression of the 78 kDa glucose regulated protein (GRP78), in ischemic gerbil hippocampus that underwent normothermic reperfusion, but normal GRP78 expression in animals that underwent hypothermic reperfusion. In situ hybridization and Northern blot analysis showed GRP78 mRNA expression was reduced in the CA1 region of the hippocampus under normothermic conditions, but was not reduced under hypothermic conditions. Western blot analysis also showed the levels of immunoreactive GRP78 protein decreased in neurons of the hippocampal CA-1 region under normothermia, but not under hypothermic treatments. Furthermore, adenovirus-mediated overexpression of GRP78 protects rat hippocampal neurons from cell death and inhibits the rise in intracellular calcium concentration normally induced by hydrogen peroxide. These results suggest that reduction in GRP78 expression contributes to cell damage in the ischemic brain and that hypothermia-mediated restoration of GRP78 expression is one mechanism that enhances neuronal survival.
Collapse
Affiliation(s)
- M Aoki
- Department of Traumatology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Akbar MT, Wells DJ, Latchman DS, de Belleroche J. Heat shock protein 27 shows a distinctive widespread spatial and temporal pattern of induction in CNS glial and neuronal cells compared to heat shock protein 70 and caspase 3 following kainate administration. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 93:148-63. [PMID: 11589992 DOI: 10.1016/s0169-328x(01)00199-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Kainate-induced status epilepticus is associated with both apoptotic and necrotic cell death and induction of heat shock proteins (HSPs) in hippocampal and cortical regions of the rodent brain. In the present study we have examined the temporal, spatial and cellular expression patterns of mRNAs for the highly inducible HSPs, HSP70 and HSP27, together with the apoptotic marker, caspase 3 (CPP32) in rat brain after systemic administration of kainate. HSP70 mRNA was transiently induced in the forebrain by kainate, principally in the CA1, CA3 and hilar cells of the hippocampal formation, in piriform cortex and discrete thalamic nuclei. Maximal expression was seen at 8 h after kainate which then declined to background levels by 7 days. Labelling was predominantly neuronal. In contrast, HSP27 mRNA expression was more widespread. Intense labelling was observed in CA1, CA3 and the hilar region at 8 h after kainate but the expression profile for HSP27 mRNA expanded considerably with intense signals seen in corpus callosum, cortex and thalamus at 24 h post kainate. Emulsion autoradiographs indicated a predominantly glial localisation for HSP27 mRNA. In the hilus, a distinct subpopulation of interneurones were found to express HSP27 mRNA. CPP32 mRNA was upregulated in CA1, CA3 and hilus of the hippocampal formation and in piriform cortex. CPP32 mRNA expression was more restricted and similar in distribution to HSP70 mRNA being localised to neurones. The present study demonstrates the unique early expression of HSP27 mRNA by glial cells and distinct populations of neurones which extends beyond those in which HSP70 and CPP32 induction occurs with subsequent cell loss.
Collapse
Affiliation(s)
- M T Akbar
- Department of Neuromuscular Diseases, Division of Neuroscience and Psychological Medicine, Imperial College of Science, Technology and Medicine, Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK
| | | | | | | |
Collapse
|
39
|
Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, Simon RP, Greenberg DA. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 2001; 50:93-103. [PMID: 11456315 DOI: 10.1002/ana.1073] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The brain's response to ischemia, which helps determine clinical outcome after stroke, is regulated partly by competing genetic programs that respectively promote cell survival and delayed cell death. Many genes involved in this response have been identified individually or systematically, providing insights into the molecular basis of ischemic injury and potential targets for therapy. The development of microarray systems for gene expression profiling permits screening of large numbers of genes for possible involvement in biological or pathological processes. Therefore, we used an oligodeoxynucleotide-based microarray consisting of 374 human genes, most implicated previously in apoptosis or related events, to detect alterations in gene expression in the hippocampus of rats subjected to 15 minutes of global cerebral ischemia followed by up to 72 hours of reperfusion. We found 1.7-fold or greater increases in the expression of 57 genes and 1.7-fold or greater decreases in the expression of 34 genes at 4, 24, or 72 hours after ischemia. The number of induced genes increased from 4 to 72 hours, whereas the number of repressed genes decreased. The induced genes included genes involved in protein synthesis, genes mutated in hereditary human diseases, proapoptotic genes, antiapoptotic genes, injury-response genes, receptors, ion channels, and enzymes. We detected transcriptional induction of several genes implicated previously in cerebral ischemia, including ALG2, APP, CASP3, CLU, ERCC3, GADD34, GADD153, IGFBP2, TIAR, VEGF, and VIM, as well as other genes not so implicated. We also found coinduction of several groups of related genes that might represent functional modules within the ischemic neuronal transcriptome, including VEGF and its receptor, NRP1; the IGF1 receptor and the IGF1-binding protein IGFBP2; Rb, the Rb-binding protein E2F1, and the E2F-related transcription factor, TFDP1; the CACNB3 and CACNB4 beta-subunits of the voltage-gated calcium channel; and caspase-3 and its substrates, ACINUS, FEM1, and GSN. To test the hypothesis that genes identified through this approach might have roles in the pathophysiology of cerebral ischemia, we measured expression of the products of two induced genes not heretofore implicated in cerebral ischemia-GRB2, an adapter protein involved in growth-factor signaling pathways, and SMN1, which participates in RNA processing and is deleted in most cases of spinal muscular atrophy. Western analysis showed enhanced expression of both proteins in hippocampus at 24 to 72 hours after ischemia, and SMN1 was localized by immunohistochemistry to hippocampal neurons. These results suggest that microarray analysis of gene expression may be useful for elucidating novel molecular mediators of cell death and survival in the ischemic brain.
Collapse
Affiliation(s)
- K Jin
- Buck Institute for Age Research, Novato, CA 94945, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Izaki K, Kinouchi H, Watanabe K, Owada Y, Okubo A, Itoh H, Kondo H, Tashima Y, Tamura S, Yoshimoto T, Mizoi K. Induction of mitochondrial heat shock protein 60 and 10 mRNAs following transient focal cerebral ischemia in the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 88:14-25. [PMID: 11295228 DOI: 10.1016/s0169-328x(01)00012-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heat shock proteins (HSPs) 60 and 10 are stress-inducible mitochondrial matrix proteins that form a chaperonin complex that is important for mitochondrial protein folding and function. The effect of cerebral ischemia on mitochondrial HSPs is unclear. The topographical and chronological patterns of HSP60 and HSP10 messenger ribonucleic acid (mRNA) expression and induction were investigated in the rat focal cerebral ischemia model. Focal cerebral ischemia was produced by transient middle cerebral artery occlusion for 30 or 90 min. Expression of mRNAs was analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization. RT-PCR analysis showed that both HSP60 and HSP10 mRNA levels increased significantly in the ischemic cortex from 4 to 24 h of reperfusion after 30 min of occlusion. In situ hybridization analysis demonstrated significant induction of both mRNAs in the whole ischemic cortex after 30 min of occlusion and in the dorsomedial border (penumbra) of the ischemic cortex and ipsilateral hippocampus after 90 min of occlusion. Expression patterns and the timing of the induction of both HSP60 and HSP10 mRNAs were identical throughout the experiments. Simultaneous induction of the mRNAs for the mitochondrial chaperonins, HSP60 and HSP10, in various regions in focal cerebral ischemia demonstrates that mitochondrial stress conditions persist concomitantly with cytosolic stress conditions in focal cerebral ischemia.
Collapse
Affiliation(s)
- K Izaki
- Department of Neurosurgery, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nomura H, Furuta A, Suzuki SO, Iwaki T. Dorsal horn lesion resulting from spinal root avulsion leads to the accumulation of stress-responsive proteins. Brain Res 2001; 893:84-94. [PMID: 11222996 DOI: 10.1016/s0006-8993(00)03291-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to demonstrate acute to subacute molecular episodes in the dorsal horn following root avulsion using immunohistochemical methods with the markers for synapses, astrocytes and such stress-responsive molecules as heat shock proteins (Hsps) and p38 MAP kinase (p38). Among them, Hsp27 was accumulated selectively in the injured substantia gelatinosa 24 h after avulsion injury. The localization of Hsp27 in astrocytes within the substantia gelatinosa was confirmed by the double immunofluorescence method using anti-Hsp27 antibody and either anti-synaptophysin antibody or anti-glutamine synthetase antibody and by immunoelectron microscopy for Hsp27. The pattern of Hsp27 expression subsequently changed from glial pattern to punctate pattern by 7 days. Immunoelectron microscopy revealed that the punctate pattern in the subacute stage corresponded to distal parts of the astrocytic processes. Hsp27 immunoreaction was decreased 21 days after root avulsion. In the distal axotomy model, Hsp27 was accumulated later in the ipsilateral dorsal horn in a punctate pattern from 7 days after the axotomy. Phosphorylation of p38 was detected in microglia in the dorsal horn following both avulsion and axotomy. Substance P was slightly decreased in the injured substantia gelatinosa in both the avulsion and axotomy models around 14-21 days. We conclude that Hsp27 is a useful marker for demonstrating dorsal horn lesions following avulsion injury and that avulsion injury may induce Hsp27 in the dorsal horn more rapidly than distal axotomy.
Collapse
Affiliation(s)
- H Nomura
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
42
|
Okubo A, Kinouchi H, Owada Y, Kunizuka H, Itoh H, Izaki K, Kondo H, Tashima Y, Yoshimoto T, Mizoi K. Simultaneous induction of mitochondrial heat shock protein mRNAs in rat forebrain ischemia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 84:127-34. [PMID: 11113539 DOI: 10.1016/s0169-328x(00)00200-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Several investigations have postulated evidence of the involvement of apoptosis in delayed neuronal death following brief periods of global cerebral ischemia. Apoptosis may be closely linked to mitochondrial dysfunction. Heat shock protein (HSP) 60 and HSP10 are mitochondrial matrix proteins induced by stress and form the chaperonin complex that is implicated in protein folding and assembly within the mitochondria. This study investigated the induction of these mitochondrial stress protein genes in the hippocampal CA1 region and less vulnerable regions following transient forebrain ischemia. In situ hybridization analysis revealed that the induction pattern of HSP60 mRNA was identical to that of HSP10 mRNA throughout the entire ischemic course. No changes occurred in the expression of both mRNAs after 2 min ischemia. Strong induction of both mRNAs occurred in the CA1 region after 10 min ischemia and persisted until 1 d after reperfusion. In contrast, induction of both mRNAs in the less vulnerable regions was terminated by 1 d after reperfusion. These results demonstrate that mitochondrial stress conditions persist concomitantly with cytosolic stress conditions in regions vulnerable to transient forebrain ischemia.
Collapse
Affiliation(s)
- A Okubo
- Department of Neurosurgery, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Johnston WE. Preconditioning the Brain and Heart: Implications for Cardiac Surgery. Semin Cardiothorac Vasc Anesth 2000. [DOI: 10.1053/vc.2000.6483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite many recent advances in emboli detection, aortic imaging, myocardial preservation, and perfusion equipment, ischemic injury to the heart and brain remains a serious complications after cardiac surgery. Hypoperfusion (particularly in the heart) and microem boli (particularly in the brain) during cardiopulmonary bypass constitute the etiology of ischemia. Although hypothermia has traditionally been the mainstay for systemic protection from transient ischemia, there has been a general trend to accept warmer heart and core temperatures during bypass, which increases the poten tial for ischemic injury to various organs. This article discusses recent advances in the understanding of myocardial and brain preconditioning and their poten tial role to provide additional protection during cardiac surgery.
Collapse
Affiliation(s)
- William E. Johnston
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
44
|
Hicks SD, DeFranco DB, Callaway CW. Hypothermia during reperfusion after asphyxial cardiac arrest improves functional recovery and selectively alters stress-induced protein expression. J Cereb Blood Flow Metab 2000; 20:520-30. [PMID: 10724117 DOI: 10.1097/00004647-200003000-00011] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examined whether prolonged hypothermia induced 1 hour after resuscitation from asphyxial cardiac arrest would improve neurologic outcome and alter levels of stress-related proteins in rats. Rats were resuscitated from 8 minutes of asphyxia resulting in cardiac arrest. Brain temperature was regulated after resuscitation in three groups: normothermia (36.8 degrees C x 24 hours), immediate hypothermia (33 degrees C x 24 hours, beginning immediately after resuscitation), and delayed hypothermia (33 degrees C x 24 hours, beginning 60 minutes after resuscitation). Mortality and neurobehavioral deficits were improved in immediate and delayed hypothermia rats relative to normothermia rats. Furthermore, both immediate and delayed hypothermia improved neuronal survival in the CA1 region of the hippocampus assessed at 14 days. In normothermia rats, the 70-kDa heat shock protein (Hsp70) and 40-kDa heat shock protein (Hsp40) were increased within 12 hours after resuscitation in the hippocampus. Delayed hypothermia attenuated the increase in Hsp70 levels in the hippocampus but did not affect Hsp70 induction in the cerebellum. Hippocampal expression of Hsp40 was not affected by hypothermia. These data indicate that prolonged hypothermia during later reperfusion improves neurologic outcome after experimental global ischemia and is associated with selective changes in the pattern of stress-induced protein expression.
Collapse
Affiliation(s)
- S D Hicks
- Department of Emergency Medicine, University of Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
45
|
Differential expression of small heat shock proteins in reactive astrocytes after focal ischemia: possible role of beta-adrenergic receptor. J Neurosci 1999. [PMID: 10559386 DOI: 10.1523/jneurosci.19-22-09768.1999] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Small heat shock proteins (sHSPs), a family of HSPs, are known to accumulate in the CNS, mainly in astrocytes, in several pathological conditions such as Alexander's disease, Alzheimer's disease, and Creutzfeldt-Jakob disease. sHSPs may act not only as molecular chaperones, protecting against various stress stimuli, but may also play a physiological role in regulating cell differentiation and proliferation. In the present study, we have demonstrated that transient focal ischemia in rats dramatically induced HSP27 but not alpha B-crystallin (alphaBC), both of which are members of sHSPs, in reactive astrocytes. In contrast, in vitro chemical ischemic stress induced both HSP27 and alphaBC in cultured glial cells to the same extent. Dibutyryl cAMP (dBcAMP) and isoproterenol, a beta-adrenergic receptor (betaAR) agonist, enhanced HSP27 expression but suppressed alphaBC, and changed the shape of the cells to a stellate form. dBcAMP and isoproterenol inhibited cell proliferation under normal conditions. An increase in betaAR-like immunoreactivity was also observed in reactive astrocytes in vivo. These results, together with recent findings that betaAR plays an important role in glial scar formation in vivo, raise the possibility that betaAR activation modulates sHSP expression after focal ischemia and is involved in the transformation of astrocytes to their reactive form.
Collapse
|
46
|
Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C. Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 1999; 460:251-6. [PMID: 10544245 DOI: 10.1016/s0014-5793(99)01359-9] [Citation(s) in RCA: 263] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The protein chaperone heat shock protein 90 (Hsp90) is a major regulator of different transcription factors such as MyoD, a basic helix loop helix (bHLH) protein, and the bHLH-Per-aryl hydrocarbon nuclear translocator (ARNT)-Sim (PAS) factors Sim and aryl hydrocarbon receptor (Ahr). The transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha), involved in the response to hypoxia, also belongs to the bHLH-PAS family. This work was aimed to investigate the putative role of Hsp90 in HIF-1 activation by hypoxia. Using a EGFP-HIF-1alpha fusion protein, co-immunoprecipitation experiments evidenced that the chimeric protein expressed in COS-7 cells interacts with Hsp90 in normoxia but not in hypoxia. We also demonstrated that Hsp90 interacts with the bHLH-PAS domain of HIF-1alpha. Moreover, Hsp90 is not co-translocated with HIF-1alpha into the nucleus. At last, we showed that Hsp90 activity is essential for HIF-1 activation in hypoxia since it is inhibited in the presence of geldanamycin. These results indicate that Hsp90 is a major regulator in HIF-1alpha activation.
Collapse
Affiliation(s)
- E Minet
- Laboratoire de Biochimie et Biologie Cellulaire, Facultés Universitaires de la Paix, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | | | | | | | | | | | | |
Collapse
|
47
|
Yagita Y, Kitagawa K, Taguchi A, Ohtsuki T, Kuwabara K, Mabuchi T, Matsumoto M, Yanagihara T, Hori M. Molecular cloning of a novel member of the HSP110 family of genes, ischemia-responsive protein 94 kDa (irp94), expressed in rat brain after transient forebrain ischemia. J Neurochem 1999; 72:1544-51. [PMID: 10098860 DOI: 10.1046/j.1471-4159.1999.721544.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To identify genes induced by transient forebrain ischemia, we used the mRNA differential display technique in the four-vessel occlusion model in rats. Some genes were identified as candidates that encode ischemia-responsive protein, and one of them was cloned as ischemia-responsive protein 94 kDa (irp94) from the rat hippocampal cDNA library. Sequence analysis suggested that rat irp94 was a transcriptional variant or a homologue of mouse apg-2 and human heat shock protein (hsp) 70RY and a member of the HSP110 family, because IRP94 was >90% identical to APG-2 and HSP70RY and approximately 60% identical to the other members of the HSP110 family. Although irp94 mRNA was constitutively expressed in the normal hippocampus, it was clearly enhanced 4-24 h after ischemia for 10 (1.9-fold increase) and 15 min (3.4-fold increase). These changes mainly occurred in neuronal cells, as judged by the localization of irp94 mRNA using in situ hybridization histochemistry. On the other hand, hyperthermic stress did not enhance irp94 mRNA expression, suggesting that irp94 expression was enhanced under ischemic stress and not related to the heat shock signaling mechanism. Our study suggested that irp94, a novel member of the HSP110 family, might play an important role in the environment altering neuronal functions, especially after transient forebrain ischemia.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Brain Chemistry/genetics
- Cloning, Molecular
- DNA, Complementary
- Fever/genetics
- Fever/physiopathology
- Gene Expression/physiology
- HSP110 Heat-Shock Proteins
- HSP70 Heat-Shock Proteins/genetics
- Heat-Shock Response/genetics
- Hippocampus/blood supply
- Hippocampus/chemistry
- Hippocampus/physiology
- In Situ Hybridization
- Ischemic Attack, Transient/genetics
- Ischemic Attack, Transient/physiopathology
- Male
- Molecular Sequence Data
- Multigene Family/genetics
- Prosencephalon/blood supply
- Prosencephalon/chemistry
- Prosencephalon/physiology
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Stress, Physiological/genetics
- Stress, Physiological/physiopathology
Collapse
Affiliation(s)
- Y Yagita
- First Department of Medicine, Osaka University School of Medicine, Suita City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wagstaff MJ, Collaço-Moraes Y, Smith J, de Belleroche JS, Coffin RS, Latchman DS. Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virus-based vector. J Biol Chem 1999; 274:5061-9. [PMID: 9988753 DOI: 10.1074/jbc.274.8.5061] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the gene encoding the 70-kDa heat shock protein (hsp70) has previously been shown to protect neuronal cells against subsequent thermal or ischemic stress. It has no protective effect, however, against stimuli that induce apoptosis, although a mild heat shock (sufficient to induce hsp synthesis) does have a protective effect against apoptosis. We have prepared disabled herpes simplex virus-based vectors that are able to produce high level expression of individual hsps in infected neuronal cells without damaging effects. We have used these vectors to show that hsp27 and hsp56 (which have never previously been overexpressed in neuronal cells) as well as hsp70 can protect dorsal root ganglion neurons from thermal or ischemic stress. In contrast, only hsp27 can protect dorsal root ganglion neurons from apoptosis induced by nerve growth factor withdrawal, and hsp27 also protects the ND7 neuronal cell line from retinoic acid-induced apoptosis. However, hsp70 showed no protective effect against apoptosis in contrast to its anti-apoptotic effect in non-neuronal cell types. These results thus identify hsp27 as a novel neuroprotective factor and show that it can mediate this effect when delivered via a high efficiency viral vector.
Collapse
Affiliation(s)
- M J Wagstaff
- Department of Molecular Pathology, Windeyer Institute of Medical Sciences, University College London Medical School, Windeyer Building, Cleveland Street, London W1P 6DB, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Murashov AK, Talebian S, Wolgemuth DJ. Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 63:14-24. [PMID: 9838025 DOI: 10.1016/s0169-328x(98)00258-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury.
Collapse
Affiliation(s)
- A K Murashov
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, Black Bldg. #1613, 630 West 168 Street, New York, NY 10032, USA
| | | | | |
Collapse
|
50
|
Matsushita K, Matsuyama T, Nishimura H, Takaoka T, Kuwabara K, Tsukamoto Y, Sugita M, Ogawa S. Marked, sustained expression of a novel 150-kDa oxygen-regulated stress protein, in severely ischemic mouse neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 60:98-106. [PMID: 9748521 DOI: 10.1016/s0169-328x(98)00174-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 150-kDa oxygen-regulated protein (ORP150) first was described with reference to the central nervous system in cultured astrocytes subjected to dense hypoxia. Subsequently its transcript was found in macrophages within human aortic atherosclerotic plaques, suggesting a role in protecting cells under hypoxic stress. In a mouse model of permanent focal brain ischemia, we aimed to elucidate the constitutive cellular localization in vivo of ORP150 in the central nervous system as well as the sequential alteration in its mRNA and protein expression during this severe ischemic insult. Immunohistochemical study demonstrated that ORP150 protein normally is present predominantly in neurons. The 78-kDa glucose-regulated protein, which is another well-known stress protein retained in the endoplasmic reticulum, also was stained in neurons. During the first 3 h after ischemia, ORP150 antigenicity was markedly enhanced in severely damaged neurons, while the amount of the glucose-regulated protein was decreased. Preceding this change, orp150 mRNA was selectively induced in neurons undergoing postischemic cytoskeletal proteolysis, as early as 1 h after middle cerebral artery occlusion. These results indicated that ORP150 might be regulated by transcriptional level as for many stress proteins, but unlike previously described other stress proteins it was translated in the center of ischemic lesions despite nearly complete energy depletion. In this paper, the biological potentials of ORP150 protein in the setting of brain ischemia in vivo will also be discussed.
Collapse
Affiliation(s)
- K Matsushita
- Fifth Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663, Japan
| | | | | | | | | | | | | | | |
Collapse
|