1
|
Deckmyn B, Domenger D, Blondel C, Ducastel S, Nicolas E, Dorchies E, Caron E, Charton J, Vallez E, Deprez B, Annicotte JS, Lestavel S, Tailleux A, Magnan C, Staels B, Bantubungi K. Farnesoid X Receptor Activation in Brain Alters Brown Adipose Tissue Function via the Sympathetic System. Front Mol Neurosci 2022; 14:808603. [PMID: 35058750 PMCID: PMC8764415 DOI: 10.3389/fnmol.2021.808603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
The nuclear bile acid (BA) receptor farnesoid X receptor (FXR) is a major regulator of metabolic/energy homeostasis in peripheral organs. Indeed, enterohepatic-expressed FXR controls metabolic processes (BA, glucose and lipid metabolism, fat mass, body weight). The central nervous system (CNS) regulates energy homeostasis in close interaction with peripheral organs. While FXR has been reported to be expressed in the brain, its function has not been studied so far. We studied the role of FXR in brain control of energy homeostasis by treating wild-type and FXR-deficient mice by intracerebroventricular (ICV) injection with the reference FXR agonist GW4064. Here we show that pharmacological activation of brain FXR modifies energy homeostasis by affecting brown adipose tissue (BAT) function. Brain FXR activation decreases the rate-limiting enzyme in catecholamine synthesis, tyrosine hydroxylase (TH), and consequently the sympathetic tone. FXR activation acts by inhibiting hypothalamic PKA-CREB induction of TH expression. These findings identify a function of brain FXR in the control of energy homeostasis and shed new light on the complex control of energy homeostasis by BA through FXR.
Collapse
Affiliation(s)
- Benjamin Deckmyn
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Laboratory of Lille Catholic Hospitals, Medical Biology Department, Lille Catholic University, Lille, France
| | - Dorothée Domenger
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Chloé Blondel
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Sarah Ducastel
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Emilie Nicolas
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Emilie Dorchies
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | | | - Julie Charton
- Institut Pasteur de Lille, Lille, France
- Inserm U1177, Lille, France
- Drugs and Molecules for Living Systems, U1177, University of Lille, Lille, France
| | - Emmanuelle Vallez
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Benoit Deprez
- Institut Pasteur de Lille, Lille, France
- Inserm U1177, Lille, France
- Drugs and Molecules for Living Systems, U1177, University of Lille, Lille, France
| | | | - Sophie Lestavel
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Anne Tailleux
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | | | - Bart Staels
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- *Correspondence: Bart Staels,
| | - Kadiombo Bantubungi
- EGID, U1011, University of Lille, Lille, France
- Inserm, U1011, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Kadiombo Bantubungi,
| |
Collapse
|
2
|
Glucagon-like peptide-1 receptor controls exocytosis in chromaffin cells by increasing full-fusion events. Cell Rep 2021; 36:109609. [PMID: 34433018 DOI: 10.1016/j.celrep.2021.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Agonists for glucagon-like-peptide-1 receptor (GLP-1R) are currently used for the treatment of type 2 diabetes and obesity. Their benefits have been centered on pancreas and hypothalamus, but their roles in other organ systems are not well understood. We studied the action of GLP-1R on secretions of adrenal medulla. Exendin-4, a synthetic analog of GLP-1, increases the synthesis and the release of catecholamines (CAs) by increasing cyclic AMP (cAMP) production, without apparent participation of cAMP-regulated guanine nucleotide exchange factor (Epac). Exendin-4, when incubated for 24 h, increases CA synthesis by promoting the activation of tyrosine hydroxylase. Short incubation (20 min) increases the quantum size of exocytotic events by switching exocytosis from partial to full fusion. Our results give a strong support to the role of GLP-1 in the fine control of exocytosis.
Collapse
|
3
|
Won SY, You ST, Choi SW, McLean C, Shin EY, Kim EG. cAMP Response Element Binding-Protein- and Phosphorylation-Dependent Regulation of Tyrosine Hydroxylase by PAK4: Implications for Dopamine Replacement Therapy. Mol Cells 2021; 44:493-499. [PMID: 34238765 PMCID: PMC8334344 DOI: 10.14348/molcells.2021.2250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopamine-producing neurons in the midbrain, which results in decreased dopamine levels accompanied by movement symptoms. Oral administration of l-3,4-dihydroxyphenylalanine (L-dopa), the precursor of dopamine, provides initial symptomatic relief, but abnormal involuntary movements develop later. A deeper understanding of the regulatory mechanisms underlying dopamine homeostasis is thus critically needed for the development of a successful treatment. Here, we show that p21-activated kinase 4 (PAK4) controls dopamine levels. Constitutively active PAK4 (caPAK4) stimulated transcription of tyrosine hydroxylase (TH) via the cAMP response element-binding protein (CREB) transcription factor. Moreover, caPAK4 increased the catalytic activity of TH through its phosphorylation of S40, which is essential for TH activation. Consistent with this result, in human midbrain tissues, we observed a strong correlation between phosphorylated PAK4S474, which represents PAK4 activity, and phosphorylated THS40, which reflects their enzymatic activity. Our findings suggest that targeting the PAK4 signaling pathways to restore dopamine levels may provide a new therapeutic approach in PD.
Collapse
Affiliation(s)
- So-Yoon Won
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Soon-Tae You
- Department of Neurosurgery, The Catholic University of Korea, St. Vincent’s Hospital, Suwon 16247, Korea
| | - Seung-Won Choi
- Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, Korea
| | - Catriona McLean
- Department of Pathology, The Alfred Hospital, Melbourne 3004, Australia
| | - Eun-Young Shin
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| |
Collapse
|
4
|
Katila N, Bhurtel S, Park PH, Hong JT, Choi DY. Activation of AMPK/aPKCζ/CREB pathway by metformin is associated with upregulation of GDNF and dopamine. Biochem Pharmacol 2020; 180:114193. [PMID: 32800853 DOI: 10.1016/j.bcp.2020.114193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, leading to a decrease in striatal dopamine. There is no antiparkinsonian therapy that offers a true disease-modifying treatment till date and there is an urgent need for a safe and effective neuroprotective or neurorestorative therapy. Our previous study demonstrated that metformin upregulated dopamine in the mouse brain and provided significant neuroprotection in animal model of PD. Therefore, we designed this study to investigate the molecular mechanism underlying such pharmacological effect of metformin. Herein, we found that metformin enhanced the phosphorylation of tyrosine hydroxylase (TH) which was accompanied by increase in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and activation of their downstream signaling pathways in the mouse brain and SH-SY5Y cells. We further investigated the role of the neurotrophic factors in the activation of TH and observed that both BDNF and GDNF-induction were essential for metformin-induced TH activation. We found that the AMPK/aPKCζ/CREB pathway was essential for metformin-induced GDNF upregulation and TH activation. Thus, this study reveals the TH-activating property of metformin in the brain via induction of neurotrophic factors along with the signaling mechanism. These results potentiate the candidacy of metformin not only as a neuroprotective agent, but also as restorative therapy for the treatment of PD.
Collapse
Affiliation(s)
- Nikita Katila
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sunil Bhurtel
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21 Osongsaengmyeong1-ro, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
5
|
Sportelli C, Urso D, Jenner P, Chaudhuri KR. Metformin as a Potential Neuroprotective Agent in Prodromal Parkinson's Disease-Viewpoint. Front Neurol 2020; 11:556. [PMID: 32595595 PMCID: PMC7304367 DOI: 10.3389/fneur.2020.00556] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
To date, there are no clinically effective neuroprotective or disease-modifying treatments that can halt Parkinson's disease (PD) progression. The current clinical approach focuses on symptomatic management. This failure may relate to the complex neurobiology underpinning the development of PD and the absence of true translational animal models. In addition, clinical diagnosis of PD relies on presentation of motor symptoms which occur when the neuropathology is already established. These multiple factors could contribute to the unsuccessful development of neuroprotective treatments for PD. Prodromal symptoms develop years prior to formal diagnosis and may provide an excellent tool for early diagnosis and better trial design. Patients with idiopathic rapid eye movement behavior disorder (iRBD) have the highest risk of developing PD and could represent an excellent group to include in neuroprotective trials for PD. In addition, repurposing drugs with excellent safety profiles is an appealing strategy to accelerate drug discovery. The anti-diabetic drug metformin has been shown to target diverse cellular pathways implicated in PD progression. Multiple studies have, additionally, observed the benefits of metformin to counteract other age-related diseases. The purpose of this viewpoint is to discuss metformin's neuroprotective potential by outlining relevant mechanisms of action and the selection of iRBD patients for future clinical trials in PD.
Collapse
Affiliation(s)
- Carolina Sportelli
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Daniele Urso
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, United Kingdom.,Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom
| | - Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College, London, United Kingdom
| | - K Ray Chaudhuri
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, London, United Kingdom.,Institute of Psychiatry, Psychology & Neuroscience, King's College, London, United Kingdom
| |
Collapse
|
6
|
Regulation of dopaminergic neuronal phenotypes by the estrogen-related receptor gamma ligand GSK4716 via the activation of CREB signaling. Neurochem Int 2020; 136:104726. [PMID: 32173553 DOI: 10.1016/j.neuint.2020.104726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/13/2020] [Accepted: 03/10/2020] [Indexed: 01/09/2023]
Abstract
Midbrain dopaminergic (DAergic) neurotransmission plays a crucial role in regulating motor, cognitive, and emotional functions. The orphan nuclear receptor estrogen-related receptor gamma (ERRγ) is highly expressed in the adult brain and in the developing fetal brain. Our previous study showed the relevance of ERRγ in the regulation of the DAergic neuronal phenotype with the upregulation of dopamine synthesizing tyrosine hydroxylase (TH) and dopamine transporter (DAT) and the possibility that ERRγ could be a novel target for regulating DAergic neuronal differentiation. In this study, we examined whether ERRγ ligands could be small molecule regulators of DAergic phenotypes. The ERRγ agonist GSK4716 increased DAT and TH expression, and the ERRγ inverse agonist GSK5182 attenuated the retinoic acid-induced upregulation of DAT and TH in differentiated SH-SY5Y cells. We found that biphasic activation of the protein kinase A/cyclic AMP response element-binding (CREB) protein signaling pathway was involved in the GSK4716-induced increase in the DAergic phenotype in SH-SY5Y cells. CREB signaling activated as early as 3 h after GSK4716 treatment in an ERRγ-independent manner, but increased following ERRγ activation after 3 days. Protein kinase A inhibitor H-89 attenuated GSK4716-induced DAT and TH upregulation. In primary cultured DAergic neurons, GSK4716 increased neurite length and the number of DAT and TH-double-positive (DAT + TH+) neurons compared to that in control cells. These findings suggest that ERRγ ligands could serve as useful chemical tools for obtaining a better understanding of the regulation of DAergic phenotypes and might facilitate the development of small molecule therapeutics to treat DA-related neurological diseases.
Collapse
|
7
|
Ketchesin KD, Becker-Krail D, McClung CA. Mood-related central and peripheral clocks. Eur J Neurosci 2020; 51:326-345. [PMID: 30402924 PMCID: PMC6502705 DOI: 10.1111/ejn.14253] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
Abstract
Mood disorders, including major depression, bipolar disorder, and seasonal affective disorder, are debilitating disorders that affect a significant portion of the global population. Individuals suffering from mood disorders often show significant disturbances in circadian rhythms and sleep. Moreover, environmental disruptions to circadian rhythms can precipitate or exacerbate mood symptoms in vulnerable individuals. Circadian clocks exist throughout the central nervous system and periphery, where they regulate a wide variety of physiological processes implicated in mood regulation. These processes include monoaminergic and glutamatergic transmission, hypothalamic-pituitary-adrenal axis function, metabolism, and immune function. While there seems to be a clear link between circadian rhythm disruption and mood regulation, the mechanisms that underlie this association remain unclear. This review will touch on the interactions between the circadian system and each of these processes and discuss their potential role in the development of mood disorders. While clinical studies are presented, much of the review will focus on studies in animal models, which are attempting to elucidate the molecular and cellular mechanisms in which circadian genes regulate mood.
Collapse
Affiliation(s)
- Kyle D Ketchesin
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Darius Becker-Krail
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Logan RW, Parekh PK, Kaplan G, Becker-Krail D, Williams W, Yamaguchi S, Yoshino J, Shelton MA, Zhu X, Zhang H, Waplinger S, Fitzgerald E, Oliver-Smith J, Sundarvelu P, Enwright JF, Huang YH, McClung CA. NAD+ cellular redox and SIRT1 regulate the diurnal rhythms of tyrosine hydroxylase and conditioned cocaine reward. Mol Psychiatry 2019; 24:1668-1684. [PMID: 29728703 PMCID: PMC6215755 DOI: 10.1038/s41380-018-0061-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/12/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022]
Abstract
The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration. Furthermore, CLOCK and SIRT1 are important for regulating cocaine reward and dopaminergic (DAergic) activity, with interesting differences depending on whether DAergic activity is in a heightened state and if there is a functional CLOCK protein. Taken together, we find that rhythms in cellular metabolism and circadian proteins work together to regulate dopamine synthesis and the reward value for drugs of abuse.
Collapse
Affiliation(s)
- Ryan W. Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, 04609
| | - Puja K. Parekh
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gabrielle Kaplan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Darius Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Wilbur Williams
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - Shintaro Yamaguchi
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, 04609
| | - Jun Yoshino
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, 04609
| | - Micah A. Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - Xiyu Zhu
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Hui Zhang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,School of Medicine, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Spencer Waplinger
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - Ethan Fitzgerald
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - Jeffrey Oliver-Smith
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - Poornima Sundarvelu
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | - John F. Enwright
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA
| | | | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, 15219, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, 04609,Correspondence: (C.A.M.)
| |
Collapse
|
9
|
Bartolotti N, Lazarov O. CREB signals as PBMC-based biomarkers of cognitive dysfunction: A novel perspective of the brain-immune axis. Brain Behav Immun 2019; 78:9-20. [PMID: 30641141 PMCID: PMC6488430 DOI: 10.1016/j.bbi.2019.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/26/2022] Open
Abstract
To date, there is no reliable biomarker for the assessment or determination of cognitive dysfunction in Alzheimer's disease and related dementia. Such a biomarker would not only aid in diagnostics, but could also serve as a measure of therapeutic efficacy. It is widely acknowledged that the hallmarks of Alzheimer's disease, namely, amyloid deposits and neurofibrillary tangles, as well as their precursors and metabolites, are poorly correlated with cognitive function and disease stage and thus have low diagnostic or prognostic value. A lack of biomarkers is one of the major roadblocks in diagnosing the disease and in assessing the efficacy of potential therapies. The phosphorylation of cAMP Response Element Binding protein (pCREB) plays a major role in memory acquisition and consolidation. In the brain, CREB activation by phosphorylation at Ser133 and the recruitment of transcription cofactors such as CREB binding protein (CBP) is a critical step for the formation of memory. This set of processes is a prerequisite for the transcription of genes thought to be important for synaptic plasticity, such as Egr-1. Interestingly, recent work suggests that the expression of pCREB in peripheral blood mononuclear cells (PBMC) positively correlates with pCREB expression in the postmortem brain of Alzheimer's patients, suggesting not only that pCREB expression in PBMC might serve as a biomarker of cognitive dysfunction, but also that the dysfunction of CREB signaling may not be limited to the brain in AD, and that a link may exist between the regulation of CREB in the blood and in the brain. In this review we consider the evidence suggesting a correlation between the level of CREB signals in the brain and blood, the current knowledge about CREB in PBMC and its association with CREB in the brain, and the implications and mechanisms for a neuro-immune cross talk that may underlie this communication. This Review will discuss the possibility that peripheral dysregulation of CREB is an early event in AD pathogenesis, perhaps as a facet of immune system dysfunction, and that this impairment in peripheral CREB signaling modifies CREB signaling in the brain, thus exacerbating cognitive decline in AD. A more thorough understanding of systemic dysregulation of CREB in AD will facilitate the search for a biomarker of cognitive function in AD, and also aid in the understanding of the mechanisms underlying cognitive decline in AD.
Collapse
Affiliation(s)
- Nancy Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
10
|
Moreira da Silva Santos A, Kelly JP, Dockery P, Doyle KM. Effect of a binge-like dosing regimen of methamphetamine on dopamine levels and tyrosine hydroxylase expressing neurons in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:303-309. [PMID: 30296469 DOI: 10.1016/j.pnpbp.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 11/19/2022]
Abstract
Methamphetamine, an amphetamine derivative, is a powerful psychomotor stimulant and commonly used drug of abuse. This study examined the effect of binge-like methamphetamine (MA) dosing (4 × 4 mg/kg, s.c., 2 h apart) on regional dopamine and dopaminergic metabolite levels in rat brain at a range of early time points after final dose (2-48 h). Body temperature was elevated when measured 2 h after the last dose. MA increased dopamine levels in the frontal cortex 2 and 24 h after the last dose. The dopamine level was also increased in the amygdala at 24 h. No change was observed in the striatum at any time point, but levels of the dopamine metabolite DOPAC were markedly reduced at 24 and 48 h. Tyrosine hydroxylase expression is induced downstream of dopamine activity, and it is the rate limiting enzyme in dopamine synthesis. The effect of MA binge-like dosing on the volume of tyrosine hydroxylase containing cell bodies and the area fraction of tyrosine hydroxylase containing fibres was also assessed. MA increased the area fraction of tyrosine hydroxylase fibres in the frontal cortex and reduced the volume of tyrosine hydroxylase containing cell bodies 2 h after last dose in the ventral tegmental area and the substantia nigra. An increase in cell body volume in the substantia nigra was observed 48 h after treatment. These findings collectively highlight the importance of the dopaminergic system in methamphetamine induced effects, identify the frontal cortex, amygdala and striatum as key regions that undergo early changes in response to binge-like methamphetamine dosing and provide evidence of time-dependent effects on the cell bodies and fibres of tyrosine hydroxylase expressing neurons.
Collapse
Affiliation(s)
- Andreia Moreira da Silva Santos
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Centro Universitário Unievangélica, Anápolis - GO CEP, 75083-515, Brazil
| | - John P Kelly
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Peter Dockery
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Karen M Doyle
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
11
|
Schommer J, Marwarha G, Nagamoto-Combs K, Ghribi O. Palmitic Acid-Enriched Diet Increases α-Synuclein and Tyrosine Hydroxylase Expression Levels in the Mouse Brain. Front Neurosci 2018; 12:552. [PMID: 30127714 PMCID: PMC6087752 DOI: 10.3389/fnins.2018.00552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Accumulation of the α-synuclein (α-syn) protein and depletion of dopaminergic neurons in the substantia nigra are hallmarks of Parkinson's disease (PD). Currently, α-syn is under scrutiny as a potential pathogenic factor that may contribute to dopaminergic neuronal death in PD. However, there is a significant gap in our knowledge on what causes α-syn to accumulate and dopaminergic neurons to die. It is now strongly suggested that the nature of our dietary intake influences both epigenetic changes and disease-related genes and may thus potentially increase or reduce our risk of developing PD. Objective: In this study, we determined the extent to which a 3 month diet enriched in the saturated free fatty acid palmitate (PA) influences levels of α-syn and tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis in mice brains. Methods: We fed the m-Thy1-αSyn (m-Thy1) mouse model for PD and its matched control, the B6D2F1/J (B6D2) mouse a PA-enriched diet or a normal diet for 3 months. Levels of α-syn, tyrosine hydroxylase, and the biogenic amines dopamine and dopamine metabolites, serotonin and noradrenaline were determined. Results: We found that the PA-enriched diet induces an increase in α-syn and TH protein and mRNA expression levels in m-Thy1 transgenic mice. We also show that, while it didn't affect levels of biogenic amine content in the B6D2 mice, the PA-enriched diet significantly reduces dopamine metabolites and increases the level of serotonin in m-Thy1 mice. Conclusion: Altogether, our results demonstrate that a diet rich in the saturated fatty acid palmitate can modulate levels of α-syn, TH, dopamine, and serotonin which all are proteins and neurochemicals that play key roles in increasing or reducing the risk for many neurodegenerative diseases including PD.
Collapse
Affiliation(s)
- Jared Schommer
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Gurdeep Marwarha
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Kumi Nagamoto-Combs
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Othman Ghribi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
12
|
Metformin Prevented Dopaminergic Neurotoxicity Induced by 3,4-Methylenedioxymethamphetamine Administration. Neurotox Res 2016; 30:101-9. [DOI: 10.1007/s12640-016-9633-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 01/31/2023]
|
13
|
Differential expression of polycytosine-binding protein isoforms in adrenal gland, locus coeruleus and midbrain. Neuroscience 2015; 286:1-12. [DOI: 10.1016/j.neuroscience.2014.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/29/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022]
|
14
|
Patil S, Jain P, Ghumatkar P, Tambe R, Sathaye S. Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 2014; 277:747-54. [DOI: 10.1016/j.neuroscience.2014.07.046] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 11/27/2022]
|
15
|
Makuch E, Kuropatwa M, Kurowska E, Ciekot J, Klopotowska D, Matuszyk J. Phosphodiesterase 2 negatively regulates adenosine-induced transcription of the tyrosine hydroxylase gene in PC12 rat pheochromocytoma cells. Mol Cell Endocrinol 2014; 392:51-9. [PMID: 24837549 DOI: 10.1016/j.mce.2014.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/11/2014] [Accepted: 05/01/2014] [Indexed: 12/01/2022]
Abstract
Adenosine induces expression of the tyrosine hydroxylase (TH) gene in PC12 cells. However, it is suggested that atrial natriuretic peptide (ANP) inhibits expression of this gene. Using real-time PCR and luciferase reporter assays we found that ANP significantly decreases the adenosine-induced transcription of the TH gene. Results of measurements of cyclic nucleotide concentrations indicated that ANP-induced accumulation of cGMP inhibits the adenosine-induced increase in cAMP level. Using selective phosphodiesterase 2 (PDE2) inhibitors and a synthetic cGMP analog activating PDE2, we found that PDE2 is involved in coupling the ANP-triggered signal to the cAMP metabolism. We have established that ANP-induced elevated levels of cGMP as well as cGMP analog stimulate hydrolytic activity of PDE2, leading to inhibition of adenosine-induced transcription of the TH gene. We conclude that ANP mediates negative regulation of TH gene expression via stimulation of PDE2-dependent cAMP breakdown in PC12 cells.
Collapse
Affiliation(s)
- Edyta Makuch
- Laboratory of Signaling Proteins, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| | - Marianna Kuropatwa
- Laboratory of Signaling Proteins, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Ewa Kurowska
- Laboratory of Signaling Proteins, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Jaroslaw Ciekot
- Laboratory of Biomedical Chemistry "Neolek", Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Dagmara Klopotowska
- Laboratory of Experimental Anticancer Therapy "Neolek", Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Janusz Matuszyk
- Laboratory of Signaling Proteins, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
16
|
Mechanisms underlying the effect of acupuncture on cognitive improvement: a systematic review of animal studies. J Neuroimmune Pharmacol 2014; 9:492-507. [PMID: 24903518 DOI: 10.1007/s11481-014-9550-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/22/2014] [Indexed: 01/23/2023]
Abstract
Acupuncture has been reported to be beneficial in treating cognitive impairment in various pathological conditions. This review describes the effort to understand the signaling pathways that underlie the acupunctural therapeutic effect on cognitive function. We searched the literature in 12 electronic databases from their inception to November 2013, with full text available and language limited to English. Twenty-three studies were identified under the selection criteria. All recruited animal studies demonstrate a significant positive effect of acupuncture on cognitive impairment. Findings suggest acupuncture may improve cognitive function through modulation of signaling pathways involved in neuronal survival and function, specifically, through promoting cholinergic neural transmission, facilitating dopaminergic synaptic transmission, enhancing neurotrophin signaling, suppressing oxidative stress, attenuating apoptosis, regulating glycometabolic enzymes and reducing microglial activation. However, the quality of reviewed studies has room for improvement. Further high-quality animal studies with randomization, blinding and estimation of sample size are needed to strengthen the recognition of group differences.
Collapse
|
17
|
Arraf Z, Khamisy-Farah R, Amit T, Youdim MBH, Farah R. Lithium's gene expression profile, relevance to neuroprotection A cDNA microarray study. Cell Mol Neurobiol 2013; 33:411-20. [PMID: 23324999 PMCID: PMC11497965 DOI: 10.1007/s10571-013-9907-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/04/2013] [Indexed: 12/28/2022]
Abstract
Lithium can prevent 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) dopaminergic neurotoxicity in mice. This is attributed to induced antioxidant and antiapoptotic state, which among other factors results from induction of Bcl-2 and reduction of Bax, however, cDNA microarray reveals that this represents only one cascade of lithium targets. From analyzing the gene expression profile of lithium, we are able to point out candidate genes that might be involved in the antioxidant and neuroprotective properties of lithium. Among these are, the cAMP response element binding (CREB) protein, extracellular signal-regulated kinase (ERK), both CREB and ERK-part of the mitogen-activated kinase pathway-were upregulated by lithium, downregulated by MPTP, and maintained in mice fed with lithium chloride (LiCl) supplemented diet and treated with MPTP. Our positive control included tyrosine hydroxylase which both its mRNA and protein levels were independently measured, in addition to Bcl-2 protein levels. Other important genes which were similarly regulated are plasma glutathione peroxidase precursor (GSHPX-P), protein kinase C alpha type, insulin-like growth factor binding protein 4 precursor, and interferon regulatory factor. In addition, some genes were oppositely regulated, i.e., downregulated by lithium, upregulated by MPTP, and maintained in mice fed with LiCl supplemented diet and treated with MPTP, among these genes were basic fibroblast growth factor receptor 1 precursor, inhibin alpha subunit, glutamate receptor subunit zeta 1 precursor (NMD-R1), postsynaptic density protein-95 which together with NMD-R1 can form an apoptotic promoting complex. The discussed targets represent part of genes altered by chronic lithium. In fact lithium affected the expressions of more than 50 genes among these were basic transcription factors, transcription activators, cell signaling proteins, cell adhesion proteins, oncogenes and tumor suppressors, intracellular transducers, survival and death genes, and cyclins, here we discuss the relevance of these changes to lithium's reported neuroprotective properties.
Collapse
Affiliation(s)
- Zaher Arraf
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | | | - Tamar Amit
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | - Moussa B. H. Youdim
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | - Raymond Farah
- Department of Internal Medicine B, Ziv Medical Center, Safed, Israel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
18
|
Kashem MA, Ahmed S, Sarker R, Ahmed EU, Hargreaves GA, McGregor IS. Long-term daily access to alcohol alters dopamine-related synthesis and signaling proteins in the rat striatum. Neurochem Int 2012; 61:1280-8. [PMID: 22995788 DOI: 10.1016/j.neuint.2012.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/23/2012] [Accepted: 08/30/2012] [Indexed: 01/24/2023]
Abstract
Chronic alcohol exposure can adversely affect neuronal morphology, synaptic architecture and associated neuroplasticity. However, the effects of moderate levels of long-term alcohol intake on the brain are a matter of debate. The current study used 2-DE (two-dimensional gel electrophoresis) proteomics to examine proteomic changes in the striatum of male Wistar rats after 8 months of continuous access to a standard off-the-shelf beer in their home cages. Alcohol intake under group-housed conditions during this time was around 3-4 g/kg/day, a level below that known to induce physical dependence in rats. After 8 months of access rats were euthanased and 2-DE proteomic analysis of the striatum was conducted. A total of 28 striatal proteins were significantly altered in the beer drinking rats relative to controls. Strikingly, many of these were dopamine (DA)-related proteins, including tyrosine hydroxylase (an enzyme of DA biosynthesis), pyridoxal phosphate phosphatase (a co-enzyme in DA biosynthesis), DA and cAMP regulating phosphoprotein (a regulator of DA receptors and transporters), protein phosphatase 1 (a signaling protein) and nitric oxide synthase (which modulates DA uptake). Selected protein expression changes were verified using Western blotting. We conclude that long-term moderate alcohol consumption is associated with substantial alterations in the rat striatal proteome, particularly with regard to dopaminergic signaling pathways. This provides potentially important evidence of major neuroadaptations in dopamine systems with daily alcohol consumption at relatively modest levels.
Collapse
Affiliation(s)
- Mohammed Abul Kashem
- Psychopharmacology and Proteomics Laboratory, School of Psychology, The University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Sorriento D, Santulli G, Del Giudice C, Anastasio A, Trimarco B, Iaccarino G. Endothelial cells are able to synthesize and release catecholamines both in vitro and in vivo. Hypertension 2012; 60:129-36. [PMID: 22665130 DOI: 10.1161/hypertensionaha.111.189605] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recently it has been demonstrated that catecholamines are produced and used by macrophages and mediate immune response. The aim of this study is to verify whether endothelial cells (ECs), which are of myeloid origin, can produce catecholamines. We demonstrated that genes coding for tyrosine hydroxylase, Dopa decarboxylase, dopamine β hydroxylase (DβH), and phenylethanolamine-N-methyl transferase, enzymes involved in the synthesis of catecholamines, are all expressed in basal conditions in bovine aorta ECs, and their expression is enhanced in response to hypoxia. Moreover, hypoxia enhances catecholamine release. To evaluate the signal transduction pathway that regulates catecholamine synthesis in ECs, we overexpressed in bovine aorta ECs either protein kinase A (PKA) or the transcription factor cAMP response element binding, because PKA/cAMP response element binding activation induces tyrosine hydroxylase transcription and activity in response to stress. Both cAMP response element binding and PKA overexpression enhance DβH and phenylethanolamine-N-methyl transferase gene expression and catecholamine release, whereas H89, inhibitor of PKA, exerts the opposite effect, evidencing the role of PKA/cAMP response element binding transduction pathway in the regulation of catecholamine release in bovine aorta ECs. We then evaluated by immunohistochemistry the expression of tyrosine hydroxylase, Dopa decarboxylase, DβH, and phenylethanolamine-N-methyl transferase in femoral arteries from hindlimbs of C57Bl/6 mice 3 days after removal of the common femoral artery to induce chronic ischemia. Ischemia evokes tyrosine hydroxylase, Dopa decarboxylase, DβH, and phenylethanolamine-N-methyl transferase expression in the endothelium. Finally, the pharmacological inhibition of catecholamine release by fusaric acid, an inhibitor of DβH, reduces the ability of ECs to form network-like structures on Matrigel matrix. In conclusion, our study demonstrates for the first time that ECs are able to synthesize and release catecholamines in response to ischemia.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Medicine and Surgery, Università di Salerno, Via Salvador Allende, 84081 Baronissi, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Scholz D, Pöltl D, Genewsky A, Weng M, Waldmann T, Schildknecht S, Leist M. Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J Neurochem 2011; 119:957-71. [PMID: 21434924 DOI: 10.1111/j.1471-4159.2011.07255.x] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We characterized phenotype and function of a fetal human mesencephalic cell line (LUHMES, Lund human mesencephalic) as neuronal model system. Neurodevelopmental profiling of the proliferation stage (d0, day 0) of these conditionally-immortalized cells revealed neuronal features, expressed simultaneously with some early neuroblast and stem cell markers. An optimized 2-step differentiation procedure, triggered by shut-down of the myc transgene, resulted in uniformly post-mitotic neurons within 5 days (d5). This was associated with down-regulation of some precursor markers and further up-regulation of neuronal genes. Neurite network formation involved the outgrowth of 1-2, often > 500 μm long projections. They showed dynamic growth cone behavior, as evidenced by time-lapse imaging of stably GFP-over-expressing cells. Voltage-dependent sodium channels and spontaneous electrical activity of LUHMES continuously increased from d0 to d11, while levels of synaptic markers reached their maximum on d5. The developmental expression patterns of most genes and of the dopamine uptake- and release-machinery appeared to be intrinsically predetermined, as the differentiation proceeded similarly when external factors such as dibutyryl-cAMP and glial cell derived neurotrophic factor were omitted. Only tyrosine hydroxylase required the continuous presence of cAMP. In conclusion, LUHMES are a robust neuronal model with adaptable phenotype and high value for neurodevelopmental studies, disease modeling and neuropharmacology.
Collapse
|
21
|
Genomic organization and regulation of the human orexin (hypocretin) receptor 2 gene: identification of alternative promoters. Biochem J 2010; 427:377-90. [DOI: 10.1042/bj20091755] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Orexins (hypocretins), acting via their receptors, are involved in the control of feeding behaviour, sleep, arousal and energy homoeostasis. However, regulation of the human orexin receptor 2 (hOX2R) gene remains unknown. We have identified four transcripts arising from alternative splicing from three exons. These exon 1 variants were designated exons 1A, 1B and 1C on the basis of their 5′–3′ order. RT (reverse transcription)–PCR demonstrates the differential expression in various human tissues. The alternative 5′-UTRs (untranslated regions) possessed by these isoforms have different translational efficiencies, which regulate the level of protein expression. In the present study, we have demonstrated that the hOX2R gene is regulated by two promoters and the novel transcripts are regulated by the distal promoter located upstream of exon 1A. We have demonstrated that the AP-1 (activator protein 1) motif is critical for sustaining the basal activity of distal promoter. Analysis of the proximal promoter revealed the region regulating promoter activity contained putative binding elements including those for CREB (cAMP-response-element-binding protein), GATA-2 and Oct-1. Using the chromatin immunoprecipitation assay, we demonstrated that CREB, GATA-2 and Oct-1 transcription factors bind to these critical regulatory promoter elements. Mutational studies suggested that these motifs functioned independently, but have a compound effect regulating hOX2R gene transcription. Furthermore, proximal promoter activity is enhanced by both PKA (protein kinase A) and PKC (protein kinase C) pathway activation, via binding of CREB and GATA-2 transcription factors. In conclusion, we have demonstrated that expression of hOX2R is regulated by a complex involving a proximal PKA/PKC-regulated promoter and a distal promoter regulating tissue-specific expression of alternative transcripts which in turn post-transcriptionally regulate receptor levels.
Collapse
|
22
|
Bosier B, Hermans E, Lambert DM. Concomitant activation of adenylyl cyclase suppresses the opposite influences of CB(1) cannabinoid receptor agonists on tyrosine hydroxylase expression. Biochem Pharmacol 2008; 77:216-27. [PMID: 18992715 DOI: 10.1016/j.bcp.2008.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/03/2008] [Accepted: 10/08/2008] [Indexed: 11/26/2022]
Abstract
The CB(1) cannabinoid receptor shows complex interactions with intracellular signalling partners, and responses to cannabinoid ligands are likely to be influenced by concomitant inputs modifying the overall tone of signalling cascades. This appears even more relevant as we previously evidenced opposite regulations of tyrosine hydroxylase (TH) expression by the two common cannabinoid agonists HU 210 and CP 55,940. Therefore, we studied the consequences of manipulating adenylyl cyclase activity with forskolin on the regulation of TH gene transcription in neuroblastoma cells (N1E-115). Reporter gene experiments performed with the luciferase sequence cloned under the control of modified fragments of the TH gene promoter revealed that the AP-1 consensus sequence is essential for cannabinoid-mediated regulation of TH expression. Consistently, inhibition of PKC totally blocked the responses mediated by both HU 210 and CP 55,940. In addition, forskolin which boosts adenylyl cyclase activity remarkably modified the responses to the cannabinoid agonists. Thus, in these conditions, both agonists efficiently reduced TH gene promoter activity, a response requiring functional PKA/CRE-dependent signallings. Finally, the modulations of the promoter were inhibited in pertussis toxin treated cells, suggesting that responses to both agonists are mediated through G(i/o)-dependent mechanisms. Emphasising on the importance of functional selectivity at GPCRs, these data demonstrate that the concomitant activation of adenylyl cyclase by forskolin strongly influences the biochemical responses triggered by distinct cannabinoid agonists. Together our results suggest that the physiological modulation of TH expression by cannabinoid agonists in dopaminergic neurons would be influenced by additional endogenous inputs.
Collapse
Affiliation(s)
- Barbara Bosier
- Unité de Chimie Pharmaceutique et de Radiopharmacie, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
23
|
Kojima M, Suzuki T, Maekawa T, Ishii S, Sumi-Ichinose C, Nomura T, Ichinose H. Increased expression of tyrosine hydroxylase and anomalous neurites in catecholaminergic neurons of ATF-2 null mice. J Neurosci Res 2008; 86:544-52. [PMID: 17896792 DOI: 10.1002/jnr.21510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ATF-2/CRE-BP1 was originally identified as a cAMP-responsive element (CRE) binding protein abundant in the brain. We previously reported that phosphorylation of ATF-2 increased the expression of tyrosine hydroxylase (TH), which is the rate-limiting enzyme for catecholamine biosynthesis, directly acting on the CRE in the promoter region of the TH gene in PC12D cells (Suzuki et al. [2002] J. Biol. Chem. 277:40768-40774). To examine the role of ATF-2 on transcriptional control of the TH gene in the brain, we investigated the TH expression in ATF-2-/- mice. We found that TH expression was greatly increased in medulla oblongata and locus ceruleus of the ATF-2-deficient embryos. Ectopic expression of TH was observed in the raphe magnus nucleus, where serotonergic neural cell bodies are located. Interestingly, A10 dorsal neurons were lost in the embryos of ATF-2-/- mice. There was no difference in the TH immunoreactivity in the olfactory bulb. The data showed that alteration in TH expression by absence of ATF-2 gradually declined from caudal to rostral part of the brain. We also found anomalous neurite extension in catecholaminergic neurons of ATF-2 null mice, i.e., increased dendritic arborization and shortened axons. These data suggest that ATF-2 plays critical roles for proper expression of the TH gene and for neurite extension of catecholaminergic neurons, possibly through a repressor-like action.
Collapse
Affiliation(s)
- Masayo Kojima
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Teh CHL, Loh CC, Lam KKY, Loo JM, Yan T, Lim TM. Neuronal PAS domain protein 1 regulates tyrosine hydroxylase level in dopaminergic neurons. J Neurosci Res 2007; 85:1762-73. [PMID: 17457889 DOI: 10.1002/jnr.21312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Catecholamines (dopamine, norepinephrine, and epinephrine) are all synthesized from a common pathway in which tyrosine hydroxylase (TH) is the rate-limiting enzyme. Dopamine is the main neurotransmitter present in dopaminergic neurons of the ventral midbrain, where dysfunction of these neurons can lead to Parkinson's disease and schizophrenia. Neuronal PAS domain protein 1 (NPAS1) was identified as one of the genes up-regulated during dopaminergic MN9D cell differentiation. We found that there was a corresponding decrease in TH level during MN9D differentiation. Overexpression and siRNA experiments revealed that NPAS1, in concert with ARNT, negatively regulates the expression of TH and that this regulation is mediated by a direct binding of NPAS1 on the TH promoter. Expression studies also confirmed a decrease in TH level in the ventral midbrain during mouse development, concomitant with an increase in NPAS1 level. These results suggest that NPAS1 plays a novel and important role in regulating TH level of dopaminergic neurons in the ventral midbrain during development.
Collapse
Affiliation(s)
- Christina H L Teh
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
25
|
Sabban EL, Liu X, Serova L, Gueorguiev V, Kvetnansky R. Stress triggered changes in gene expression in adrenal medulla: transcriptional responses to acute and chronic stress. Cell Mol Neurobiol 2006; 26:845-56. [PMID: 16691439 PMCID: PMC11520602 DOI: 10.1007/s10571-006-9069-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 03/24/2006] [Indexed: 02/02/2023]
Abstract
1. Stress elicits activation of several transcription factors involved in the regulation of catecholamine biosynthetic enzyme gene expression depending on its duration or repetition. However, the dynamic of the conversion of transient transcriptional activation with acute stress to sustained changes in transcription in response to repeated exposure to stress in adrenomedullary catecholaminergic systems is not clear. 2. Here, we analyzed changes in levels of phospho-CREB (P-CREB), phospho-ERK1/2 (P-ERK1/2) and Fra-2 by Western Blot analysis in adrenal medulla of Sprague Dawley male rats exposed to single or repeated immobilization stress (IMO). For single stress, rats were immobilized for 5 min, 30 min, or 2 h and sacrificed immediately afterwards. In the repeated stress conditions, animals were immobilized for 2 h daily on each consecutive day prior to the final day (day 2 for 2x IMO, day 6 for 6x IMO) in which the rats were immobilized for a session lasting 5 min, 30 min or 2 h. There were two control groups, an absolute control (AC) not exposed to stress, and a handled control (HC) gently handled daily for 6 days. 3. Phosphorylation of CREB was rapid and elevated at the earliest time examined, even with single stress. However, with a second daily episode of stress the increase in P-CREB was observed for at least the entire duration of the stress. In contrast, phosphorylation of ERK1/2 was only significant after brief exposure to a single IMO. The elevation of Fra-2 protein level was slower, but was significant after 2 h of a single IMO. With repeated IMO, there were marked elevations of Fra-2 throughout the 2 h IMO, which were especially pronounced at the end of the immobilization. 4. The transient nature of the phosphorylation of CREB may be responsible for the short-lived induction of transcription of catecholamine biosynthetic enzymes after brief exposure to a single immobilization stress. The sustained phosphorylation of CREB throughout the repeated stress coupled with induction of Fra-2 may mediate the longer lasting responses to repeated stress.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | |
Collapse
|
26
|
Cavadas C, Céfai D, Rosmaninho-Salgado J, Vieira-Coelho MA, Moura E, Busso N, Pedrazzini T, Grand D, Rotman S, Waeber B, Aubert JF, Grouzmann E. Deletion of the neuropeptide Y (NPY) Y1 receptor gene reveals a regulatory role of NPY on catecholamine synthesis and secretion. Proc Natl Acad Sci U S A 2006; 103:10497-10502. [PMID: 16798884 PMCID: PMC1502486 DOI: 10.1073/pnas.0600913103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contribution of neuropeptide Y (NPY), deriving from adrenal medulla, to the adrenosympathetic tone is unknown. We found that in response to NPY, primary cultures of mouse adrenal chromaffin cells secreted catecholamine, and that this effect was abolished in cultures from NPY Y(1) receptor knockout mice (Y(1)-/-). Compared with wild-type mice (Y(1)+/+), the adrenal content and constitutive release of catecholamine were increased in chromaffin cells from Y(1)-/- mice. In resting animals, catecholamine plasma concentrations were higher in Y(1)-/- mice. Comparing the adrenal glands of both genotypes, no differences were observed in the area of the medulla, cortex, and X zone. The high turnover of adrenal catecholamine in Y(1)-/- mice was explained by the enhancement of tyrosine hydroxylase (TH) activity, although no change in the affinity of the enzyme was observed. The molecular interaction between the Y(1) receptor and TH was demonstrated by the fact that NPY markedly inhibited the forskolin-induced luciferin activity in Y(1) receptor-expressing SK-N-MC cells transfected with a TH promoter sequence. We propose that NPY controls the release and synthesis of catecholamine from the adrenal medulla and consequently contributes to the sympathoadrenal tone.
Collapse
Affiliation(s)
- Cláudia Cavadas
- *Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | - Joana Rosmaninho-Salgado
- *Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | - Eduardo Moura
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | | | | | | - Samuel Rotman
- Institute of Pathology, Centre Hospitalier Universaire Vaudois, 1011 Lausanne, Switzerland; and
| | | | | | | |
Collapse
|
27
|
Shepard JD, Liu Y, Sassone-Corsi P, Aguilera G. Role of glucocorticoids and cAMP-mediated repression in limiting corticotropin-releasing hormone transcription during stress. J Neurosci 2006; 25:4073-81. [PMID: 15843609 PMCID: PMC6724949 DOI: 10.1523/jneurosci.0122-05.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of glucocorticoids and the repressor isoform of cAMP response element (CRE) modulator (CREM), inducible cAMP early repressor (ICER), in limiting corticotropin-releasing hormone (CRH) transcription during restraint stress were examined in both intact and adrenalectomized rats receiving glucocorticoid replacement. CRH primary transcript, measured by intronic in situ hybridization, increased after 30 min of restraint and returned to basal levels by 90 min, despite the persistent stressor. The decline was independent of circulating glucocorticoids, because adrenalectomized rats displayed an identical pattern. ICER mRNA in the hypothalamic paraventricular nucleus (PVN) increased after 30 min and remained elevated for up to 4 h in a glucocorticoid-independent manner. Western blot and electrophoretic mobility shift assay analyses showed increases in endogenous ICER in the PVN of rats subjected to restraint stress for 3 h. Chromatin immunoprecipitation assays showed the recruitment of CREM by the CRH CRE in conjunction with decreases in RNA polymerase II (Pol II) binding in the PVN region of rats restrained for 3 h. These data show that stress-induced glucocorticoids do not mediate the limitation of CRH transcription. Furthermore, the ability of CREM to bind the CRH CRE and the time relationship between elevated CREM and reduced Pol II recruitment by the CRH promoter suggest that inhibitory isoforms of CREM induced during stress contribute to the decline in CRH gene transcription during persistent stimulation.
Collapse
Affiliation(s)
- Jack D Shepard
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20891, USA
| | | | | | | |
Collapse
|
28
|
Osterhout CA, Sterling CR, Chikaraishi DM, Tank AW. Induction of tyrosine hydroxylase in the locus coeruleus of transgenic mice in response to stress or nicotine treatment: lack of activation of tyrosine hydroxylase promoter activity. J Neurochem 2005; 94:731-41. [PMID: 16033421 DOI: 10.1111/j.1471-4159.2005.03222.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prolonged stress or chronic nicotine administration leads to induction of tyrosine hydroxylase (TH) in adrenal medulla and locus coeruleus (LC) of the rat. In this study we use mice that express a transgene encoding 4.5 kb of TH gene 5'-flanking region fused upstream of the reporter gene, human alkaline phosphatase (hAP) to test whether TH gene promoter activity is stimulated by immobilization stress, cold exposure or nicotine administration in adrenal medulla and LC. TH-hAP transgene expression is increased in response to all three stimuli in the adrenal medulla. In contrast, TH-hAP expression does not increase in response to either immobilization stress or nicotine administration in the LC and only a small induction of LC TH-hAP mRNA is observed in response to cold exposure. TH mRNA is induced 2-3 fold and TH activity is increased significantly by all three stimuli in both the adrenal and LC. These results support the hypothesis that TH expression is induced by stress or nicotine treatment in both the adrenal medulla and LC of the mouse. The induction in the adrenal is dependent primarily on transcriptional mechanisms, whereas that in the LC is apparently dependent primarily on post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Cheryl A Osterhout
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
29
|
Maharjan S, Serova L, Sabban EL. Transcriptional regulation of tyrosine hydroxylase by estrogen: opposite effects with estrogen receptors alpha and beta and interactions with cyclic AMP. J Neurochem 2005; 93:1502-14. [PMID: 15935066 DOI: 10.1111/j.1471-4159.2005.03142.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Reported effects of estrogen administration on tyrosine hydroxylase (TH) gene expression are confusing. Therefore, we studied the mechanism of regulation of TH transcription by estrogen with different estradiol receptor (ER) subtypes. PC12 cells, transiently co-transfected with expression vector for ERalpha or ERbeta, and luciferase gene under control of the TH promoter, were treated with 17 beta-estradiol (E2). E2 doubled luciferase activity with ERalpha; however, it was decreased with ERbeta. Mapping the TH promoter showed that the putative half estrogen response element (ERE) motif at - 675, as well as the activation protein 1 motif at - 205, were not required for response to E2 with either ER. The specificity protein 1/early growth response gene 1 (Egr 1) motif was required for the E2-elicited response with ERbeta, but not with ERalpha. Deletion of the cyclic AMP/Ca2+ response element (CRE/CaRE) nearly abolished E2-triggered responses with either ER. Further analysis revealed an imperfect canonical putative ERE overlapping with CRE/CaRE and Nurr1 response element. Oligonucleotides spanning this ERE displayed binding to ER, Cyclic AMP Response Element Binding Protein (CREB) and other proteins. Moreover, E2 attenuated the increase in TH transcription seen with cyclic AMP analogs. Thus, TH is transcriptionally regulated by estradiol in opposite directions depending on ER subtype. The overlapping ERE and CRE/CaRE may integrate interactions elicited by various regulators of TH transcription including cAMP and estrogens.
Collapse
Affiliation(s)
- Shreekrishna Maharjan
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | |
Collapse
|
30
|
Rusnak M, Gainer H. Differential effects of forskolin on tyrosine hydroxylase gene transcription in identified brainstem catecholaminergic neuronal subtypes in organotypic culture. Eur J Neurosci 2005; 21:889-98. [PMID: 15787695 DOI: 10.1111/j.1460-9568.2005.03913.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regulation of gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, was studied in brainstem noradrenergic nuclei, locus coeruleus (LC), A2 and A1, in vitro. Several novel experimental approaches employed in this study included: (i) the development of a slice-explant model in which these brainstem nuclei maintained a high survival of the noradrenergic neurons, an organotypic topology and the coexpression of two identifying markers in addition to TH, i.e. norepinephrine transporter (NET) and vesicular monoamine transporter 2 (VMAT2); (ii) quantitative analysis of TH transcription in these nuclei was made using a labelled intronic probe to measure TH heteronuclear RNA (hnRNA) and (iii) the use of tetrodotoxin in the media to eliminate spontaneous neural activity in these nuclei, thereby providing a basal state as the starting point for the study of TH transcription under various pharmacological perturbations. In the presence of TTX, the adenylcyclase stimulator, forskolin, produced a 155% increase in LC, a 130% increase in A1, and a 220% increase in A2 in TH hnRNA as compared to control nuclei. This effect of forskolin was abolished in the LC and A1 by the PKA inhibitor, H89 (5 microm), but not by the MAP kinase pathway (MEK) inhibitor, PD98059 (75 microm). In contrast, the robust increase in TH transcription produced by forskolin in A2 neurons, was completely inhibited by PD98059, and only partially inhibited by H89, showing that induced TH transcription is mediated by different kinase pathways in specific central noradrenergic neuronal subtypes.
Collapse
Affiliation(s)
- Milan Rusnak
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
31
|
Suzuki T, Kurahashi H, Ichinose H. Ras/MEK pathway is required for NGF-induced expression of tyrosine hydroxylase gene. Biochem Biophys Res Commun 2004; 315:389-96. [PMID: 14766220 DOI: 10.1016/j.bbrc.2004.01.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Indexed: 12/31/2022]
Abstract
Neurotrophins are essential for the development and survival of catecholaminergic neurons. However, the critical pathway for expression of the tyrosine hydroxylase (TH) gene induced by neurotrophin is still unclear. Here we found that Ras/MEK pathway is required for NGF-induced expression of the TH gene in PC12D cells. Induction of TH mRNA by NGF was abolished by pretreatment of the cells with U0126, an inhibitor for MEK1/2, but not with inhibitors for p38 MAPK, PI3K, and PKA. U0126 inhibited TH promoter activity at the same concentration as it acted on ERK1/2 phosphorylation. A dominant-negative form of Ras suppressed the NGF-induced activation of the TH reporter gene, and transient transfection of cells with wild-type Ras and an active form of MEK1 increased the TH promoter activity. The reporter assay also demonstrated that the Ras/MEK pathway acted on both the AP-1-binding motif and the cAMP-responsive element in the TH promoter.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan.
| | | | | |
Collapse
|
32
|
Holm PC, Rodríguez FJ, Kresse A, Canals JM, Silos-Santiago I, Arenas E. Crucial role of TrkB ligands in the survival and phenotypic differentiation of developing locus coeruleus noradrenergic neurons. Development 2003; 130:3535-45. [PMID: 12810600 DOI: 10.1242/dev.00565] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of glial cell-line derived neurotrophic factor (GDNF) and neurotrophins in the development of locus coeruleus noradrenergic neurons was evaluated. We found that two neurotrophic factors previously reported to prevent the degeneration of lesioned adult central noradrenergic neurons, GDNF and neurotrophin 3 (NT3), do not play significant roles in the prenatal development of locus coeruleus noradrenergic neurons, as demonstrated by: (1) the lack of alterations in double Gdnf/Nt3 null mutant mice; and (2) the lack of survival-promoting effects of GDNF and/or NT3 in rat E13.5 primary cultures. In contrast, null mutant mice for TrkB, the tyrosine kinase receptor for brain-derived neurotrophic factor and neurotrophin 4, displayed a clear loss of locus coeruleus noradrenergic neurons. In accordance with this, treatment of rat E13.5 primary cultures with TrkB ligands prevented the early loss of noradrenergic neurons and maintained their survival for up to 6 days in vitro. Moreover, an additional 5-10-fold increase in the number of tyrosine hydroxylase positive noradrenergic neurons was detected after 12 hours in culture. This second effect of TrkB ligands involved neither proliferation nor survival, because the number of BrdU- or TUNEL-positive noradrenergic neurons did not change and the effect was elicited by delayed administration of either factor. Because TrkB ligands increased the number of tyrosine hydroxylase-positive cells expressing Phox2a, a paired homeodomain protein required for the development of locus coeruleus noradrenergic neurons, but did not affect the number of Phox2a-positive tyrosine hydroxylase-negative cells, our results suggest that the second effect of TrkB ligands may involve promoting or inducing a noradrenergic phenotype. In summary, our findings suggest that, unlike NT3 and GDNF, TrkB ligands are required and sufficient to promote the development of central noradrenergic neurons.
Collapse
Affiliation(s)
- Pontus C Holm
- Department of Medical Biochemistry and Biophysics, Laboratory of Molecular Neurobiology, Karolinska Institutet, Stockholm S-171 77, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Sun B, Tank AW. c-Fos is essential for the response of the tyrosine hydroxylase gene to depolarization or phorbol ester. J Neurochem 2003; 85:1421-30. [PMID: 12787062 DOI: 10.1046/j.1471-4159.2003.01789.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosine hydroxylase (TH) gene transcription rate increases in response to numerous pharmacological and physiological stimuli. The AP1 site within the TH gene proximal promoter is thought to play an important role in mediating many of these responses; however, it is unclear which AP1 factors are required. To investigate whether c-Fos is essential for the response of the TH gene to different stimuli, c-Fos-deficient PC12 cell lines were produced utilizing an antisense RNA strategy. In these cell lines, stimulus-induced increases in c-Fos protein levels were dramatically attenuated, while c-Jun and CREB levels remained unchanged. TH gene transcription rate increased from four- to eight-fold in control cells after treatment with either 50 mM KCl or TPA. These responses were dramatically decreased in the c-Fos-deficient cell lines. In contrast, c-Fos down-regulation had little effect on the response of the TH gene to forskolin. Stimulation of TH gene promoter activity, which was observed in control cell lines treated with either 50 mm KCl or TPA was also dramatically inhibited in the c-Fos-deficient cells. These results suggest that c-Fos induction is essential for maximal stimulation of the TH gene in response to either depolarization or PKC activation in PC12 cells.
Collapse
Affiliation(s)
- Baoyong Sun
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | |
Collapse
|
34
|
Tai TC, Wong DL. Protein kinase A and protein kinase C signaling pathway interaction in phenylethanolamine N-methyltransferase gene regulation. J Neurochem 2003; 85:816-29. [PMID: 12694408 DOI: 10.1046/j.1471-4159.2003.01728.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protein kinase A (PKA) and protein kinase C (PKC) signaling pathways appear to interact in regulating phenylethanolamine N-methyltransferase (PNMT) promoter-driven gene transcription in PC12 cells. Forskolin treatment of cells transfected with the rat PNMT promoter-luciferase reporter gene construct pGL3RP893 increased promoter activity approximately two-fold whereas phorbol-12-myristate-13 acetate (PMA) treatment had no effect. However, simultaneous forskolin and PMA treatment synergistically activated the PNMT promoter approximately four-fold, suggesting that PKC stimulation requires prior induction of the PKA pathway. Consistent with this possibility the adenylate cyclase inhibitor MDL12,330A, and the PKA inhibitor H-89 prevented PNMT promoter stimulation by the combination of forskolin and PMA. PKA and PKC regulation seems to be mediated in part by Egr-1 and Sp1 through their consensus elements in the PNMT promoter. Forskolin and PMA treatment of PC12 cells increased Egr-1 protein and phosphorylated Egr-1/DNA-binding complex formation to the same extent but only increased phosphorylated Sp1/DNA binding complex formation without altering Sp1 protein levels. Mutation of the - 165 bp Egr-1 and - 48 bp Sp1 sites, respectively, attenuated and abolished combined forskolin and PMA-mediated promoter activation. PNMT promoter analysis further showed that synergistic stimulation by PKA and PKC involves DNA sequences between - 442 and - 392 bp, and potentially a GCM binding element lying within this region.
Collapse
Affiliation(s)
- T C Tai
- Department of Psychiatry, Harvard Medical School, Laboratory of Molecular and Developmental Neurobiology, McLean Hospital, Belmont, Massachusetts 02478, USA
| | | |
Collapse
|
35
|
Ivanova T, Beyer C. Estrogen regulates tyrosine hydroxylase expression in the neonate mouse midbrain. JOURNAL OF NEUROBIOLOGY 2003; 54:638-47. [PMID: 12555275 DOI: 10.1002/neu.10193] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Estrogen plays an important role during differentiation of midbrain dopaminergic neurons. This is indicated by the presence of estrogen receptors and the transient expression of the estrogen-forming enzyme aromatase within the dopaminergic cell groups. We have previously shown that estrogen regulates the plasticity of dopamine cells through the stimulation of neurite growth/arborization. In this study, we have analyzed the capability of estrogen to influence the activity of developing mouse dopamine neurons. The expression of tyrosine hydroxylase (TH) was assessed by competitive RT-PCR and Western blotting. The developmental expression of TH in the ventral midbrain was studied from embryonic day 15 until postnatal day 15 and revealed highest TH levels early postnatally. This profile coincides with the transient aromatase expression in this brain area. Using cultured midbrain cells, we found that estrogen increased TH mRNA/protein levels. The application of the estrogen receptor antagonist ICI 182,780 resulted in a complete inhibition of estrogen effects. To verify these data in vivo, fetuses were exposed in utero from E15 until birth to the aromatase inhibitor CGS 16949A or to CGS supplemented with estrogen. CGS caused a robust reduction in TH mRNA/protein levels in the midbrain, which could be restored by estrogen substitution. Taken together, our data strongly suggest that estrogen controls dopamine synthesis in the developing nigrostriatal dopaminergic system and support the concept that estrogen is implicated in the regulation of ontogenetic steps but also in the function of midbrain dopamine neurons.
Collapse
Affiliation(s)
- Tatiana Ivanova
- Abteilung Anatomie und Zellbiologie, Universität Ulm, D-89069 Ulm, Germany
| | | |
Collapse
|
36
|
Sun B, Sterling CR, Tank AW. Chronic nicotine treatment leads to sustained stimulation of tyrosine hydroxylase gene transcription rate in rat adrenal medulla. J Pharmacol Exp Ther 2003; 304:575-88. [PMID: 12538809 DOI: 10.1124/jpet.102.043596] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotine is a powerful stimulant of the sympathoadrenal system, causing the release of peripheral catecholamines and activation of catecholamine biosynthesis. In previous reports, we have studied the mechanisms by which short-term nicotine treatment regulates tyrosine hydroxylase (TH) in adrenal medulla. In this report, we study the effects of chronic nicotine treatment on adrenal TH gene expression. Rats were injected with either saline or nicotine twice per day for up to 14 days. Chronic nicotine treatment elicited long-lasting, dose-dependent increases in the levels of adrenal TH mRNA, TH protein, and TH activity. In contrast, a single injection of nicotine elicited only a small increase in adrenal TH mRNA levels, which was transient and did not result in the induction of TH enzyme. Chronic nicotine administration also elicited a sustained increase in adrenal TH gene transcription rate, which persisted for up to 7 days after the final nicotine injection. This sustained transcriptional response correlated with a modest sustained increase in adrenal TH AP1 binding, but not in the levels of Fra-2 or other fos or jun proteins. These results demonstrate that repeated nicotine injections administered chronically over 1 to 2 weeks lead to sustained stimulation of the TH gene and consequent induction of TH gene expression in rat adrenal medulla. These studies support the hypothesis that chronic nicotine administration produces long-lasting cellular changes in adrenal medulla that lead to sustained transcriptional responses.
Collapse
Affiliation(s)
- Baoyong Sun
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
37
|
Abstract
The peripheral arterial chemoreceptors of the carotid body participate in the ventilatory responses to hypoxia and hypercapnia, the arousal responses to asphyxial apnea, and the acclimatization to high altitude. In response to an excitatory stimuli, glomus cells in the carotid body depolarize, their intracellular calcium levels rise, and neurotransmitters are released from them. Neurotransmitters then bind to autoreceptors on glomus cells and postsynaptic receptors on chemoafferents of the carotid sinus nerve. Binding to inhibitory or excitatory receptors on chemoafferents control the electrical activity of the carotid sinus nerve, which provides the input to respiratory-related brainstem nuclei. We and others have used gene expression in the carotid body as a tool to determine what neurotransmitters mediate the response of peripheral arterial chemoreceptors to excitatory stimuli, specifically hypoxia. Data from physiological studies support the involvement of numerous putative neurotransmitters in hypoxic chemosensitivity. This article reviews how in situ hybridization histochemistry and other cellular localization techniques confirm, refute, or expand what is known about the role of dopamine, norepinephrine, substance P, acetylcholine, adenosine, and ATP in chemotransmission. In spite of some species differences, review of the available data support that 1). dopamine and norepinephrine are synthesized and released from glomus cells in all species and play an inhibitory role in hypoxic chemosensitivity; 2). substance P and acetylcholine are not synthesized in glomus cells of most species but may be made and released from nerve fibers innervating the carotid body in essentially all species; 3). adenosine and ATP are ubiquitous molecules that most likely play an excitatory role in hypoxic chemosensitivity.
Collapse
Affiliation(s)
- Estelle B Gauda
- Department of Pediatrics, Division of Neonatology, Johns Hopkins Institutions, Baltimore, Maryland 21287-3200, USA.
| |
Collapse
|
38
|
Suzuki T, Yamakuni T, Hagiwara M, Ichinose H. Identification of ATF-2 as a transcriptional regulator for the tyrosine hydroxylase gene. J Biol Chem 2002; 277:40768-74. [PMID: 12196528 DOI: 10.1074/jbc.m206043200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional regulation of catecholamine-synthesizing genes is important for the determination of neurotransmitters during brain development. We found that three catecholamine-synthesizing genes were transcriptionally up-regulated in cloned PC12D cells overexpressing V-1, a protein that is highly expressed during postnatal brain development (1). To reveal the molecular mechanism to regulate the expression of tyrosine hydroxylase (TH), which is the rate-limiting enzyme for catecholamine biosynthesis, we analyzed the transcription factors responsible for TH induction in the V-1 clonal cells. First, by using reporter constructs, we found that the transcription mediated by cAMP-responsive element (CRE) was selectively enhanced in the V-1 cells, and TH promoter activity was totally dependent on the CRE in the promoter region of the TH gene. Next, immunoblot analyses and a transactivation assay using a GAL4 reporter system revealed that ATF-2, but not cAMP-responsive element-binding protein (CREB), was highly phosphorylated and activated in the V-1 cells, while both CREB and ATF-2 were bound to the TH-CRE. Finally, the enhanced TH promoter activity was competitively attenuated by expression of a plasmid containing the ATF-2 transactivation domain. These data demonstrated that activation of ATF-2 resulted in the increased transcription of the TH gene and suggest that ATF-2 may be deeply involved in the transcriptional regulation of catecholamine-synthesizing genes during neural development.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | |
Collapse
|
39
|
Abstract
A large number of molecular biology studies have been performed on chromaffin cells, and many genes involved in catecholamine synthesis, storage, and release have been cloned and their function determined. Catecholamine synthesis takes place in different cellular compartments, and enzymes involved in this process are subject to a fine regulation, as demonstrated by recent studies on their gene promoters. Genes coding for such intravesicular proteins as chromogranin A, B, and secretogranin II (chromogranin C) are also regulated in response to a variety of stimuli. Chromogranin gene promoters and transcription factors involved in their regulation have been elucidated. This review serves as an introduction to the studies described in the chapters to follow.
Collapse
Affiliation(s)
- José-María Trifaro
- Department of Cellular and Molecular Medicine, Faculty of Medicine,University of Ottawa, Ottawa, Ontario, Canada, K1H 8M1.
| |
Collapse
|
40
|
Hagerty T, Fernandez E, Lynch K, Wang SS, Morgan WW, Strong R. Interaction of a glucocorticoid-responsive element with regulatory sequences in the promoter region of the mouse tyrosine hydroxylase gene. J Neurochem 2001; 78:1379-88. [PMID: 11579146 DOI: 10.1046/j.1471-4159.2001.00521.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the work reported here was to determine whether the tyrosine hydroxylase glucocorticoid-responsive element (TH-GRE) interacts with the cyclic AMP pathway and the CRE in regulating mouse TH promoter activity, and whether an additional, previously identified downstream GRE-like element also participates in the function of the TH-GRE and CRE. To determine the role of the cAMP pathway on TH-GRE function, we compared the effects of forskolin and dexamethasone on TH mRNA, TH gene transcription and TH promoter activity in a mutant PC12 cell line (A126-1B2) deficient in cAMP-dependent protein kinase A (PKA) with their effects in the wild-type parental strain. Forskolin treatment increased TH mRNA content, transcriptional activity and the activity of a chimeric gene with 3.6 kb of the TH promoter in wild-type cells, but not in PKA-deficient cells. In contrast, dexamethasone treatment stimulated equivalent increases in TH mRNA, TH gene transcription and TH promoter activity in each cell type. Mutation of the CRE in chimeric constructs containing 3.6 kb of the 5' flanking sequence of the mouse TH gene or coexpression of a dominant-negative mutant of CREB prevented the stimulation of TH promoter activity by forskolin. However, neither the mutation of the CRE nor inhibition of CREB influenced basal or dexamethasone-stimulated promoter activity. Site-directed mutagenesis of the TH-GRE eliminated the response of the promoter to dexamethasone. However, the mutagenesis of a more proximal 15-bp region with a GRE-like sequence had no demonstrable effect on the ability of dexamethasone to stimulate TH promoter activity. Neither mutagenesis of the TH-GRE or the downstream GRE-like sequence had an effect on the ability of forskolin to activate this chimeric gene. Taken together, these results provide evidence that a single GRE is sufficient for maximal induction of transcriptional activity by glucocorticoids and that the CRE is not required for either partial or full activity of this upstream GRE sequence.
Collapse
Affiliation(s)
- T Hagerty
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
41
|
Eells JB, Rives JE, Yeung SK, Nikodem VM. In vitro regulated expression of tyrosine hydroxylase in ventral midbrain neurons from Nurr1-null mouse pups. J Neurosci Res 2001; 64:322-30. [PMID: 11340638 DOI: 10.1002/jnr.1082] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transcription factor Nurr1, an orphan member of the steroid-thyroid hormone nuclear receptor superfamily, is essential for the proper terminal differentiation of ventral midbrain dopaminergic neurons. Disruption of the Nurr1 gene in mice by homologous recombination abolishes synthesis of dopamine (DA) and expression of DA biosynthetic enzymes, including tyrosine hydroxylase (TH), in the ventral midbrain without affecting the synthesis of DA in other areas of the brain. At birth, however, dopaminergic neuron precursors in Nurr1 null (-/-) pups remain as shown by continued expression of residual, untranslated Nurr1 mRNA not altered by homologous recombination. Since Nurr1 disruption is lethal shortly after birth, to further investigate the developmental properties of these neurons, dissociated ventral midbrain neurons from newborn pups were grown for 5 days on an astrocyte feeder layer, subjected to various treatments and then evaluated for expression of TH by fluorescent immunocytochemistry. Initially, a small percentage of neurons (0.26% +/- 0.07%) from the ventral midbrain of Nurr1 -/- pups were TH-immunoreactive (TH-IR). No change in TH expression was observed in the presence of glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), or DA alone or in combination. Treatment with forskolin (Fsk), however, significantly increased the percentage of TH-IR neurons (1.36% +/- 0.15%). Combination of Fsk, BNDF, and DA further increased the percentage of TH-IR neurons (2.58% +/- 0.50%). Therefore, these data suggest that dopaminergic neuron precursors, which develop in vivo without Nurr1, remain in an undifferentiated condition that is permissive to the induction of TH in vitro. J. Neurosci. Res. 64:322-330, 2001. Published 2001 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- J B Eells
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
42
|
Piech-Dumas KM, Best JA, Chen Y, Nagamoto-Combs K, Osterhout CA, Tank AW. The cAMP responsive element and CREB partially mediate the response of the tyrosine hydroxylase gene to phorbol ester. J Neurochem 2001; 76:1376-85. [PMID: 11238722 DOI: 10.1046/j.1471-4159.2001.00127.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosine hydroxylase (TH) gene promoter activity is increased in PC12 cells that are treated with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA). Mutagenesis of either the cAMP responsive element (CRE) or the activator protein-1 element (AP1) within the TH gene proximal promoter leads to a dramatic inhibition of the TPA response. The TH CRE and TH AP1 sites are also independently responsive to TPA in minimal promoter constructs. TPA treatment results in phosphorylation of cAMP responsive element binding protein (CREB) and activation of cAMP-dependent protein kinase (PKA) in PC12 cells; hence, we tested whether CREB and/or PKA are essential for the TPA response. In CREB-deficient cells, the response of the full TH gene proximal promoter or the independent response of the TH CRE by itself to TPA is inhibited. The TPA-inducibility of TH mRNA is also blocked in CREB-deficient cells. Expression of the PKA inhibitor protein, PKI, also inhibits the independent response of the TH CRE to TPA. Our results support the hypothesis that TPA stimulates the TH gene promoter via signaling pathways that activate either the TH AP1 or TH CRE sites. Both signaling pathways are dependent on CREB and the TH CRE-mediated pathway is dependent on PKA.
Collapse
Affiliation(s)
- K M Piech-Dumas
- Department of Pharmacology and Physiology, and the Neuroscience Program, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | |
Collapse
|