1
|
Choudhuri S, Ghosh B. Computational approach for decoding malaria drug targets from single-cell transcriptomics and finding potential drug molecule. Sci Rep 2024; 14:24064. [PMID: 39402081 PMCID: PMC11473826 DOI: 10.1038/s41598-024-72427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/06/2024] [Indexed: 10/17/2024] Open
Abstract
Malaria is a deadly disease caused by Plasmodium parasites. While potent drugs are available in the market for malaria treatment, over the years, Plasmodium parasites have successfully developed resistance against many, if not all, front-line drugs. This poses a serious threat to global malaria eradication efforts, and the continued discovery of new drugs is necessary to tackle this debilitating disease. With recent unprecedented progress in machine learning techniques, single-cell transcriptomic in Plasmodium offers a powerful tool for identifying crucial proteins as a drug target and subsequent computational prediction of potential drugs. In this study, We have implemented a mutual-information-based feature reduction algorithm with a classification algorithm to select important proteins from transcriptomic datasets (sexual and asexual stages) for Plasmodium falciparum and then constructed the protein-protein interaction (PPI) networks of the proteins. The analysis of this PPI network revealed key proteins vital for the survival of Plasmodium falciparum. Based on the function and identification of a few strong binding sites on a couple of these key proteins, we computationally predicted a set of potential drug molecules using a deep learning-based technique. Lead drug molecules that satisfy ADMET and drug-likeliness properties are finally reported out of the generated drugs. The study offers a general computational pipeline to identify crucial proteins using scRNA-seq data sets and further development of potential new drugs.
Collapse
Affiliation(s)
- Soham Choudhuri
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Bhaswar Ghosh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
2
|
Alzan HF, Bastos RG, Laughery JM, Scoles GA, Ueti MW, Johnson WC, Suarez CE. A Culture-Adapted Strain of Babesia bovis Has Reduced Subpopulation Complexity and Is Unable to Complete Its Natural Life Cycle in Ticks. Front Cell Infect Microbiol 2022; 12:827347. [PMID: 35223550 PMCID: PMC8867610 DOI: 10.3389/fcimb.2022.827347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Babesia bovis natural field strains are composed of several geno-phenotypically distinct subpopulations. This feature, together with possible epigenetic modifications, may facilitate adaptation to variable environmental conditions. In this study we compare geno-phenotypical features among long-term (more than 12 years) (LTCP) and short-term cultured B. bovis parasites (STCP) derived from the B. bovis S74-T3Bo strain. LTCPs intraerythrocytic forms are smaller in size than STCPs and have faster in vitro growth rate. In contrast to its parental strain, the LTCP lack expression of the sexual stage specific 6cysA and 6cysB proteins and are unable to develop sexual forms upon in vitro sexual stage induction. Consistently, in contrast to its parental strain, LTCPs have reduced virulence and are not transmissible to cattle by vector competent Rhipicephalus microplus (R. microplus). Similar to previous comparisons among attenuated and virulent B. bovis strains, the LTCP line has decreased genomic diversity compared to the STCP line. Thus, LTCP may contribute to our understanding of adaptive mechanisms used by the parasites in response to environmental changes, protective immunity, virulence, and transmission by ticks. In addition, LTCPs may be considered as candidates for a non-tick transmissible vaccine against bovine babesiosis.
Collapse
Affiliation(s)
- Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, National Research Center, Giza, Egypt
- Tick and Tick-Borne Disease Research Unit, National Research Center, Giza, Egypt
- *Correspondence: Heba F. Alzan, ; Carlos E. Suarez,
| | - Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Glen A. Scoles
- Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, Beltsville, MD, United States
| | - Massaro W. Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
| | - Wendell C. Johnson
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- *Correspondence: Heba F. Alzan, ; Carlos E. Suarez,
| |
Collapse
|
3
|
Baia-da-Silva DC, Orfanó AS, Nacif-Pimenta R, de Melo FF, Simões S, Cabral I, Lacerda MVG, Guerra MDGB, Monteiro WM, Secundino NFC, Pimenta PFP. The Midgut Muscle Network of Anopheles aquasalis (Culicidae, Anophelinae): Microanatomy and Structural Modification After Blood Meal and Plasmodium vivax (Haemosporida, Plasmodiidae) Infection. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:421-431. [PMID: 30508123 DOI: 10.1093/jme/tjy199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 06/09/2023]
Abstract
The mosquito midgut is divided into two regions named anterior midgut (AMG) and posterior midgut (PMG). The midgut expands intensely after the blood ingestion to accommodate a large amount of ingested food. To efficiently support the bloodmeal-induced changes, the organization of the visceral muscle fibers has significant adjustments. This study describes the spatial organization of the Anopheles aquasalis (Culicidae, Anophelinae) midgut muscle network and morphological changes after bloodmeal ingestion and infection with Plasmodium vivax (Haemosporida, Plasmodiidae). The midgut muscle network is composed of two types of fibers: longitudinal and circular. The two types of muscle fibers are composed of thick and thin filaments, similar to myosin and actin, respectively. Invagination of sarcoplasm membrane forms the T-system tubules. Sarcoplasmic reticulum cisternae have been observed in association with these invaginations. At different times after the bloodmeal, the fibers in the AMG are not modified. A remarkable dilation characterizes the transitional area between the AMG and the PMG. In the PMG surface, after the completion of bloodmeal ingestion, the stretched muscle fibers became discontinued. At 72 h after bloodmeal digestion, it is possible to observe the presence of disorganized muscle fibers in the midgut regions. The Plasmodium oocyst development along the basal layer of the midgut does not have a significant role in the visceral musculature distribution. This study provides features of the visceral musculature at different blood feeding times of An. aquasalis and shows important changes in midgut topography including when the mosquitoes are infected with P. vivax.
Collapse
Affiliation(s)
- Djane C Baia-da-Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
| | - Alessandra S Orfanó
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| | - Rafael Nacif-Pimenta
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - Suzan Simões
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
| | - Iria Cabral
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
| | - Marcus Vinicíus Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz - Manaus, Manaus, AM, Brazil
| | - Maria das Graças Barbosa Guerra
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
| | - Nagila F C Secundino
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| | - Paulo F P Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, PMG, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, PMG, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Barro Preto, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Dinko B, Ansah F, Agyare-Kwabi C, Tagboto S, Amoah LE, Urban BC, Sutherland CJ, Awandare GA, Williamson KC, Binka FN, Deitsch KW. Gametocyte Development and Carriage in Ghanaian Individuals with Uncomplicated Plasmodium falciparum Malaria. Am J Trop Med Hyg 2018; 99:57-64. [PMID: 29692310 PMCID: PMC6085798 DOI: 10.4269/ajtmh.18-0077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/23/2018] [Indexed: 01/29/2023] Open
Abstract
Plasmodium falciparum gametocytes develop over 9-12 days while sequestered in deep tissues. On emergence into the bloodstream, they circulate for varied amounts of time during which certain host factors might influence their further development. We aimed to evaluate the potential association of patient clinical parameters with gametocyte development and carriage via in vivo methods. Seventy-two patients were enrolled from three hospitals in the Volta region of Ghana in 2016. Clinical parameters were documented for all patients, and gametocyte prevalence by microscopy was estimated at 12.5%. By measuring RNA transcripts representing two distinct gametocyte developmental stages using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), we obtained a more precise estimate of gametocyte carriage while also inferring gametocyte maturation. Fifty-three percent of the study participants harbored parasites expressing transcripts of the immature gametocyte-specific gene (PF3D7_1477700), whereas 36% harbored PF3D7_1438800 RNA-positive parasites, which is enriched in mid and mature gametocytes, suggesting the presence of more immature stages. Linear logistic regression showed that patients older than 5 years but less than 16 years were more likely to carry gametocytes expressing both PF3D7_1477700 and PF3D7_1438800 compared with younger participants, and gametocytemia was more likely in mildly anemic individuals compared with those with severe/moderate anemia. These data provide further evidence that a greater number of malaria patients harbor gametocytes than typically estimated by microscopy and suggest a possible association between age, fever, anemia, and gametocytemia.
Collapse
Affiliation(s)
- Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Comfort Agyare-Kwabi
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Senyo Tagboto
- Department of Internal Medicine, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Britta C. Urban
- Faculty of Biological Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Colin J. Sutherland
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Kim C. Williamson
- Microbiology and Immunology Department, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Fred N. Binka
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York
| |
Collapse
|
5
|
Modulation of transmission success of Plasmodium falciparum gametocytes (sexual stages) in various species of Anopheles by erythrocytic asexual stage parasites. Acta Trop 2017; 176:263-269. [PMID: 28859956 DOI: 10.1016/j.actatropica.2017.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022]
Abstract
During malaria infection, a small proportion of erythrocytic asexual stages undergo sexual differentiation. Male and female gametocytes ingested in the blood meal initiate the sexual development of malaria parasites in the mosquito midgut. During blood feeding on a host, a mosquito ingests, in addition to mature gametocytes, host immune factors present in the blood, as well as large excess of erythrocytic asexual stages. In the current study we addressed the impact of the presence of large excess of asexual stages, hitherto not known or even suspected to influence, on the infectivity of gametocytes in the mosquito. Asexual stages resulted in a dose-dependent inhibition of infectiousness of gametocytes, and some of this could be explained by the presumed effect of hemozoin and other unknown asexual-stage components on the mosquito immune system, affecting survival and maturation of parasites in the mosquito midgut. Interactions between asexual and sexual stages, maturity and ratio of male and female gametocytes, host immune factors and mosquito innate immune factors are some of the variables that determine the infectiousness of gametocytes in the mosquitoes and ultimately malaria transmission success. Understanding of determinants affecting malaria transmission will be critical to approaches directly targeting the transmission process for malaria elimination.
Collapse
|
6
|
Jalovecka M, Bonsergent C, Hajdusek O, Kopacek P, Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasit Vectors 2016; 9:439. [PMID: 27502772 PMCID: PMC4977898 DOI: 10.1186/s13071-016-1731-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/27/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Babesia divergens is the most common blood parasite in Europe causing babesiosis, a tick-borne malaria-like disease. Despite an increasing focus on B. divergens, especially regarding veterinary and human medicine, the sexual development of Babesia is poorly understood. Development of Babesia sexual stages in the host blood (gametocytes) plays a decisive role in parasite acquisition by the tick vector. However, the exact mechanism of gametocytogenesis is still unexplained. METHODS Babesia divergens gametocytes are characterized by expression of bdccp1, bdccp2 and bdccp3 genes. Using previously described sequences of bdccp1, bdccp2 and bdccp3, we have established a quantitative real-time PCR (qRT-PCR) assay for detection and assessment of the efficiency of B. divergens gametocytes production in bovine blood. We analysed fluctuations in expression of bdccp genes during cultivation in vitro, as well as in cultures treated with different drugs and stimuli. RESULTS We demonstrated that all B. divergens clonal lines tested, originally derived from naturally infected cows, exhibited sexual stages. Furthermore, sexual commitment was stimulated during continuous growth of the cultures, by addition of specific stress-inducing drugs or by alternating cultivation conditions. Expression of bdccp genes was greatly reduced or even lost after long-term cultivation, suggesting possible problems in the artificial infections of ticks in feeding assays in vitro. CONCLUSIONS Our research provides insight into sexual development of B. divergens and may facilitate the development of transmission models in vitro, enabling a more detailed understanding of Babesia-tick interactions.
Collapse
Affiliation(s)
- Marie Jalovecka
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France. .,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France. .,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic. .,Faculty of Science, University of South Bohemia, CZ-370 05, Ceske Budejovice, Czech Republic.
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France.,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France.,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France
| |
Collapse
|
7
|
Cursino-Santos JR, Singh M, Pham P, Rodriguez M, Lobo CA. Babesia divergensbuilds a complex population structure composed of specific ratios of infected cells to ensure a prompt response to changing environmental conditions. Cell Microbiol 2016; 18:859-74. [DOI: 10.1111/cmi.12555] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Jeny R. Cursino-Santos
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Manpreet Singh
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Petra Pham
- Flow Cytometry Core Facility, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Marilis Rodriguez
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Cheryl A. Lobo
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| |
Collapse
|
8
|
Abdul-Ghani R, Basco LK, Beier JC, Mahdy MAK. Inclusion of gametocyte parameters in anti-malarial drug efficacy studies: filling a neglected gap needed for malaria elimination. Malar J 2015; 14:413. [PMID: 26481312 PMCID: PMC4617745 DOI: 10.1186/s12936-015-0936-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022] Open
Abstract
Standard anti-malarial drug efficacy and drug resistance assessments neglect the gametocyte parameters in their protocols. With the spread of drug resistance and the absence of clinically proven vaccines, the use of gametocytocidal drugs or drug combinations with transmission-blocking activity is a high priority for malaria control and elimination. However, the limited repertoire of gametocytocidal drugs and induction of gametocytogenesis after treatment with certain anti-malarial drugs necessitate both regular monitoring
of gametocytocidal activities of anti-malarial drugs in clinical use and the effectiveness of candidate gametocytocidal agents. Therefore, updating current protocols of anti-malarial drug efficacy is needed to reflect the effects of anti-malarial drugs or drug combinations on gametocyte carriage and gametocyte density along with asexual parasite density. Developing protocols of anti-malarial drug efficacy that include gametocyte parameters related to both microscopic and submicroscopic gametocytaemias is important if drugs or drug combinations are to be strategically used in transmission-blocking interventions in the context of malaria elimination. The present piece of opinion highlights the challenges in gametocyte detection and follow-up and discuss the need for including the gametocyte parameter in anti-malarial efficacy studies.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen.
| | - Leonardo K Basco
- Unité de Recherche 198, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Institut de Recherche pour le Développement, Faculté de Médecine La Timone, Aix-Marseille Université, Marseille, France.
| | - John C Beier
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Mohammed A K Mahdy
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen. .,Tropical Disease Research Center, University of Science and Technology, Sana'a, Yemen.
| |
Collapse
|
9
|
Val FF, Sampaio VS, Cassera MB, Andrade RT, Tauil PL, Monteiro WM, Lacerda MVG. Plasmodium vivax malaria elimination: should innovative ideas from the past be revisited? Mem Inst Oswaldo Cruz 2015; 109:522-4. [PMID: 25184997 PMCID: PMC4156444 DOI: 10.1590/0074-0276140240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 01/13/2023] Open
Abstract
In the 1950s, the strategy of adding chloroquine to food salt as a prophylaxis
against malaria was considered to be a successful tool. However, with the development
of Plasmodium resistance in the Brazilian Amazon, this control
strategy was abandoned. More than 50 years later, asexual stage resistance can be
avoided by screening for antimalarial drugs that have a selective action against
gametocytes, thus old prophylactic measures can be revisited. The efficacy of the old
methods should be tested as complementary tools for the elimination of malaria.
Collapse
Affiliation(s)
| | | | - Maria Belén Cassera
- Department of Biochemistry, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, USA
| | | | - Pedro Luiz Tauil
- Faculdade de Medicina, Universidade de Brasília, Brasília, DF, Brasil
| | | | | |
Collapse
|
10
|
Samad H, Coll F, Preston MD, Ocholla H, Fairhurst RM, Clark TG. Imputation-based population genetics analysis of Plasmodium falciparum malaria parasites. PLoS Genet 2015; 11:e1005131. [PMID: 25928499 PMCID: PMC4415759 DOI: 10.1371/journal.pgen.1005131] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022] Open
Abstract
Whole-genome sequencing technologies are being increasingly applied to Plasmodium falciparum clinical isolates to identify genetic determinants of malaria pathogenesis. However, genome-wide discovery methods, such as haplotype scans for signatures of natural selection, are hindered by missing genotypes in sequence data. Poor correlation between single nucleotide polymorphisms (SNPs) in the P. falciparum genome complicates efforts to apply established missing-genotype imputation methods that leverage off patterns of linkage disequilibrium (LD). The accuracy of state-of-the-art, LD-based imputation methods (IMPUTE, Beagle) was assessed by measuring allelic r2 for 459 P. falciparum samples from malaria patients in 4 countries: Thailand, Cambodia, Gambia, and Malawi. In restricting our analysis to 86 k high-quality SNPs across the populations, we found that the complete-case analysis was restricted to 21k SNPs (24.5%), despite no single SNP having more than 10% missing genotypes. The accuracy of Beagle in filling in missing genotypes was consistently high across all populations (allelic r2, 0.87-0.96), but the performance of IMPUTE was mixed (allelic r2, 0.34-0.99) depending on reference haplotypes and population. Positive selection analysis using Beagle-imputed haplotypes identified loci involved in resistance to chloroquine (crt) in Thailand, Cambodia, and Gambia, sulfadoxine-pyrimethamine (dhfr, dhps) in Cambodia, and artemisinin (kelch13) in Cambodia. Tajima's D-based analysis identified genes under balancing selection that encode well-characterized vaccine candidates: apical merozoite antigen 1 (ama1) and merozoite surface protein 1 (msp1). In contrast, the complete-case analysis failed to identify any well-validated drug resistance or candidate vaccine loci, except kelch13. In a setting of low LD and modest levels of missing genotypes, using Beagle to impute P. falciparum genotypes is a viable strategy for conducting accurate large-scale population genetics and association analyses, and supporting global surveillance for drug resistance markers and candidate vaccine antigens.
Collapse
Affiliation(s)
- Hanif Samad
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francesc Coll
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mark D. Preston
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Harold Ocholla
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi and Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
11
|
Isoprenoid precursor biosynthesis is the essential metabolic role of the apicoplast during gametocytogenesis in Plasmodium falciparum. EUKARYOTIC CELL 2014; 14:128-39. [PMID: 25446055 DOI: 10.1128/ec.00198-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The malaria parasite harbors a relict plastid called the apicoplast and its discovery opened a new avenue for drug discovery and development due to its unusual, nonmammalian metabolism. The apicoplast is essential during the asexual intraerythrocytic and hepatic stages of the parasite, and there is strong evidence supporting its essential metabolic role during the mosquito stages of the parasite. Supply of the isoprenoid building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) is the essential metabolic function of the apicoplast during the asexual intraerythrocytic stages. However, the metabolic role of the apicoplast during gametocyte development, the malaria stages transmitted to the mosquito, remains unknown. In this study, we showed that production of IPP for isoprenoid biosynthesis is the essential metabolic function of the apicoplast during gametocytogenesis, by obtaining normal gametocytes lacking the apicoplast when supplemented with IPP. When IPP supplementation was removed early in gametocytogenesis, developmental defects were observed, supporting the essential role of isoprenoids for normal gametocytogenesis. Furthermore, mosquitoes infected with gametocytes lacking the apicoplast developed fewer and smaller oocysts that failed to produce sporozoites. This finding further supports the essential role of the apicoplast in establishing a successful infection in the mosquito vector. Our study supports isoprenoid biosynthesis as a valid drug target for development of malaria transmission-blocking inhibitors.
Collapse
|
12
|
Ankarklev J, Brancucci NMB, Goldowitz I, Mantel PY, Marti M. Sex: how malaria parasites get turned on. Curr Biol 2014; 24:R368-70. [PMID: 24801188 DOI: 10.1016/j.cub.2014.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms underlying sexual stage switching in Plasmodium spp. have hitherto remained a mystery. However, two recent studies have revealed that an apicomplexan-specific DNA-binding protein is essential for the initiation of this cell fate decision, ultimately providing the malaria community with a novel and important tool in the battle to prevent malaria transmission.
Collapse
Affiliation(s)
- Johan Ankarklev
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, 665 Huntington Ave, Boston, MA 02115, USA
| | - Nicolas M B Brancucci
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, 665 Huntington Ave, Boston, MA 02115, USA
| | - Ilana Goldowitz
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, 665 Huntington Ave, Boston, MA 02115, USA
| | - Pierre-Yves Mantel
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, 665 Huntington Ave, Boston, MA 02115, USA
| | - Matthias Marti
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, 665 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Neal AT, Schall JJ. TESTING SEX RATIO THEORY WITH THE MALARIA PARASITEPLASMODIUM MEXICANUMIN NATURAL AND EXPERIMENTAL INFECTIONS. Evolution 2014; 68:1071-81. [DOI: 10.1111/evo.12334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Allison T. Neal
- Department of Biology; University of Vermont; Burlington Vermont 05405
| | - Jos. J. Schall
- Department of Biology; University of Vermont; Burlington Vermont 05405
| |
Collapse
|
14
|
Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood 2013; 123:959-66. [PMID: 24335496 DOI: 10.1182/blood-2013-08-520767] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plasmodium falciparum immature gametocytes are not observed in peripheral blood. However, gametocyte stages in organs such as bone marrow have never been assessed by molecular techniques, which are more sensitive than optical microscopy. We quantified P falciparum sexual stages in bone marrow (n = 174) and peripheral blood (n = 70) of Mozambican anemic children by quantitative polymerase chain reaction targeting transcripts specific for early (PF14_0748; PHISTa), intermediate (PF13_0247; Pfs48/45), and mature (PF10_0303; Pfs25) gametocytes. Among children positive for the P falciparum housekeeping gene (PF08_0085; ubiquitin-conjugating enzyme gene) in bone marrow (n = 136) and peripheral blood (n = 25), prevalence of immature gametocytes was higher in bone marrow than peripheral blood (early: 95% vs 20%, P < .001; intermediate: 80% vs 16%; P < .001), as were transcript levels (P < .001 for both stages). In contrast, mature gametocytes were more prevalent (100% vs 51%, P < .001) and abundant (P < .001) in peripheral blood than in the bone marrow. Severe anemia (3.57, 95% confidence interval 1.49-8.53) and dyserythropoiesis (6.21, 95% confidence interval 2.24-17.25) were independently associated with a higher prevalence of mature gametocytes in bone marrow. Our results highlight the high prevalence and abundance of early sexual stages in bone marrow, as well as the relationship between hematological disturbances and gametocyte development in this tissue.
Collapse
|
15
|
Eksi S, Morahan BJ, Haile Y, Furuya T, Jiang H, Ali O, Xu H, Kiattibutr K, Suri A, Czesny B, Adeyemo A, Myers TG, Sattabongkot J, Su XZ, Williamson KC. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLoS Pathog 2012; 8:e1002964. [PMID: 23093935 PMCID: PMC3475683 DOI: 10.1371/journal.ppat.1002964] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
Malaria transmission requires the production of male and female gametocytes in the human host followed by fertilization and sporogonic development in the mosquito midgut. Although essential for the spread of malaria through the population, little is known about the initiation of gametocytogenesis in vitro or in vivo. Using a gametocyte-defective parasite line and genetic complementation, we show that Plasmodium falciparumgametocyte development 1 gene (Pfgdv1), encoding a peri-nuclear protein, is critical for early sexual differentiation. Transcriptional analysis of Pfgdv1 negative and positive parasite lines identified a set of gametocytogenesis early genes (Pfge) that were significantly down-regulated (>10 fold) in the absence of Pfgdv1 and expression was restored after Pfgdv1 complementation. Progressive accumulation of Pfge transcripts during successive rounds of asexual replication in synchronized cultures suggests that gametocytes are induced continuously during asexual growth. Comparison of Pfge gene transcriptional profiles in patient samples divided the genes into two groups differing in their expression in mature circulating gametocytes and providing candidates to evaluate gametocyte induction and maturation separately in vivo. The expression profile of one of the early gametocyte specific genes, Pfge1, correlated significantly with asexual parasitemia, which is consistent with the ongoing induction of gametocytogenesis during asexual growth observed in vitro and reinforces the need for sustained transmission-blocking strategies to eliminate malaria. As malaria control efforts move toward eradication it becomes increasingly important to develop interventions that block transmission. Consequently, advances are needed in our understanding of the production of gametocytes, which are required to transmit the disease. This report provides a first view of the initial stages of gametocytogenesis in vitro and in vivo and demonstrates that during each asexual replication cycle a subpopulation of parasites convert to gametocyte development providing a long transmission window. We also identify a gene that is critical for gametocyte production, P. falciparumgametocyte development 1 (Pfgdv1) and a set of genes specifically expressed during early gametocytogenesis in P. falciparum (Pfge genes). The expression profile and peri-nuclear location of Pfgdv1 in a subpopulation of schizonts is consistent with a role in an early step in gametocytogenesis. The RNA levels of Pfgdv1 and the Pfge genes accumulated gradually over several asexual cycles in vitro suggesting ongoing gametocyte formation during asexual growth. The further evaluation of these genes in a cohort of malaria infected patients indicated they are good candidates for markers to distinguish ring stage parasites committed to gametocyte production from circulating mature gametocytes, allowing direct analysis of the initiation of sexual differentiation in vivo.
Collapse
Affiliation(s)
- Saliha Eksi
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Belinda J. Morahan
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yoseph Haile
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Tetsuya Furuya
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hongying Jiang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Omar Ali
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Huichun Xu
- Center for Research on Genomics and Global Health, Inherited Disease Research Branch, National Human Genomics Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kirakorn Kiattibutr
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Amreena Suri
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Beata Czesny
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, Inherited Disease Research Branch, National Human Genomics Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jetsumon Sattabongkot
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kim C. Williamson
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Boisson B, Lacroix C, Bischoff E, Gueirard P, Bargieri DY, Franke-Fayard B, Janse CJ, Ménard R, Baldacci P. The novel putative transporter NPT1 plays a critical role in early stages of Plasmodium berghei sexual development. Mol Microbiol 2011; 81:1343-57. [PMID: 21752110 DOI: 10.1111/j.1365-2958.2011.07767.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transmission of Plasmodium species from a mammalian host to the mosquito vector requires the uptake, during an infected blood meal, of gametocytes, the precursor cells of the gametes. Relatively little is known about the molecular mechanisms involved in the developmental switch from asexual development to sexual differentiation or the maturation and survival of gametocytes. Here, we show that a gene coding for a novel putative transporter, NPT1, plays a crucial role in the development of Plasmodium berghei gametocytes. Parasites lacking NPT1 are severely compromised in the production of gametocytes and the rare gametocytes produced are unable to differentiate into fertile gametes. This is the earliest block in gametocytogenesis obtained by reverse genetics and the first to demonstrate the role of a protein with a putative transport function in sexual development. These results and the high degree of conservation of NPT1 in Plasmodium species suggest that this protein could be an attractive target for the development of novel drugs to block the spread of malaria.
Collapse
Affiliation(s)
- Bertrand Boisson
- Institut Pasteur, Biologie et Génétique du Paludisme, 75724 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Male gametocyte fecundity and sex ratio of a malaria parasite, Plasmodium mexicanum. Parasitology 2011; 138:1203-10. [DOI: 10.1017/s0031182011000941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYEvolutionary theory predicts that the sex ratio of Plasmodium gametocytes will be determined by the number of gametes produced per male gametocyte (male fecundity), parasite clonal diversity and any factor that reduces male gametes' ability to find and combine with female gametes. Despite the importance of male gametocyte fecundity for sex ratio theory as applied to malaria parasites, few data are available on gamete production by male gametocytes. In this study, exflagellating gametes, a measure of male fecundity, were counted for 866 gametocytes from 26 natural infections of the lizard malaria parasite, Plasmodium mexicanum. The maximum male fecundity observed was 8, but most gametocytes produced 2–3 gametes, a value consistent with the typical sex ratio observed for P. mexicanum. Male gametocytes in infections with higher gametocytaemia had lower fecundity. Male fecundity was not correlated with gametocyte size, but differed among infections, suggesting genetic variation for fecundity. Fecundity and sex ratio were correlated (more female gametocytes with higher fecundity) as predicted by theory. Results agree with evolutionary theory, but also suggest a possible tradeoff between production time and fecundity, which could explain the low fecundity of this species, the variation among infections, and the correlation with gametocytaemia.
Collapse
|
18
|
Ouédraogo AL, Bousema T, de Vlas SJ, Cuzin-Ouattara N, Verhave JP, Drakeley C, Luty AJF, Sauerwein R. The plasticity of Plasmodium falciparum gametocytaemia in relation to age in Burkina Faso. Malar J 2010; 9:281. [PMID: 20939916 PMCID: PMC3020678 DOI: 10.1186/1475-2875-9-281] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/12/2010] [Indexed: 11/13/2022] Open
Abstract
Background Malaria transmission depends on the presence of gametocytes in the peripheral blood. In this study, the age-dependency of gametocytaemia was examined by microscopy and molecular tools. Methods A total of 5,383 blood samples from individuals of all ages were collected over six cross sectional surveys in Burkina Faso. One cross-sectional study used quantitative nucleic acid sequence based amplification (QT-NASBA) for parasite quantification (n = 412). The proportion of infections with concurrent gametocytaemia and median proportion of gametocytes among all parasites were calculated. Results Asexual parasite prevalence and gametocyte prevalence decreased with age. Gametocytes made up 1.8% of the total parasite population detected by microscopy in the youngest age group. This proportion gradually increased to 18.2% in adults (p < 0.001). Similarly, gametocytes made up 0.2% of the total parasite population detected by QT-NASBA in the youngest age group, increasing to 5.7% in adults (p < 0.001). This age pattern in gametocytaemia was also evident in the proportion of gametocyte positive slides without concomitant asexual parasites which increased from 13.4% (17/127) in children to 45.6% (52/114) in adults (OR 1.55, 95% CI 1.38-1.74, p < 0.001). Conclusions The findings of this study suggest that although gametocytes are most commonly detected in children, the proportion of asexual parasites that is committed to develop into gametocytes may increase with age. These findings underscore the importance of adults for the human infectious reservoir for malaria.
Collapse
Affiliation(s)
- André Lin Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Burkina Faso.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
van Dijk MR, van Schaijk BCL, Khan SM, van Dooren MW, Ramesar J, Kaczanowski S, van Gemert GJ, Kroeze H, Stunnenberg HG, Eling WM, Sauerwein RW, Waters AP, Janse CJ. Three members of the 6-cys protein family of Plasmodium play a role in gamete fertility. PLoS Pathog 2010; 6:e1000853. [PMID: 20386715 PMCID: PMC2851734 DOI: 10.1371/journal.ppat.1000853] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/09/2010] [Indexed: 01/16/2023] Open
Abstract
The process of fertilization is critically dependent on the mutual recognition of gametes and in Plasmodium, the male gamete surface protein P48/45 is vital to this process. This protein belongs to a family of 10 structurally related proteins, the so called 6-cys family. To identify the role of additional members of this family in Plasmodium fertilisation, we performed genetic and functional analysis on the five members of the 6-cys family that are transcribed during the gametocyte stage of P. berghei. This analysis revealed that in addition to P48/45, two members (P230 and P47) also play an essential role in the process of parasite fertilization. Mating studies between parasites lacking P230, P48/45 or P47 demonstrate that P230, like P48/45, is a male fertility factor, consistent with the previous demonstration of a protein complex containing both P48/45 and P230. In contrast, disruption of P47 results in a strong reduction of female fertility, while males remain unaffected. Further analysis revealed that gametes of mutants lacking expression of p48/45 or p230 or p47 are unable to either recognise or attach to each other. Disruption of the paralog of p230, p230p, also specifically expressed in gametocytes, had no observable effect on fertilization. These results indicate that the P. berghei 6-cys family contains a number of proteins that are either male or female specific ligands that play an important role in gamete recognition and/or attachment. The implications of low levels of fertilisation that exist even in the absence of these proteins, indicating alternative pathways of fertilisation, as well as positive selection acting on these proteins, are discussed in the context of targeting these proteins as transmission blocking vaccine candidates. Sexual reproduction for malaria parasites is an essential process and is necessary for parasite transmission between hosts. Fertilisation between female and male gametes occurs in the midgut of the mosquito and proteins on the surface of gametes are principle targets in transmission blocking strategies. Despite their importance, relatively little is known about the malaria proteins involved in fertilisation. In this study we show that two gamete proteins, one expressed on the surface of males, the other on the surface of females, have important roles in the mutual recognition and attachment of gametes. Mutant parasites that lack the presence of these surface proteins show a strong reduction in fertility. Comparison of these gamete surface proteins in different malaria parasites showed that these proteins are evolving rapidly either across their length or at discreet regions/domains. We found, that despite the drastic reduction in zygote formation, low levels of fertilisation can still occur in the absence of these surface proteins, indicating that gametes can use alternative proteins to recognize each other. Both genetic variation of gamete surface proteins and the presence of different fertilisation pathways have important implications for transmission blocking vaccines targeting gamete surface proteins.
Collapse
Affiliation(s)
- Melissa R. van Dijk
- Laboratory for Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ben C. L. van Schaijk
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Shahid M. Khan
- Laboratory for Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Maaike W. van Dooren
- Laboratory for Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jai Ramesar
- Laboratory for Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Szymon Kaczanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Hans Kroeze
- Laboratory for Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, NCMLS, University of Nijmegen, Nijmegen, The Netherlands
| | - Wijnand M. Eling
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Andrew P. Waters
- Division of Infection and Immunity, Institute of Biomedical Life Sciences & Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland
| | - Chris J. Janse
- Laboratory for Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
20
|
Abstract
An estimated 750 million people are at risk of infections with food-borne trematodes, which comprise liver flukes (Clonorchis sinensis, Fasciola gigantica, Fasciola hepatica, Opisthorchis felineus, and Opisthorchis viverrini), lung flukes (Paragonimus spp.), and intestinal flukes (e.g., Echinostoma spp., Fasciolopsis buski, and the heterophyids). Food-borne trematodiases pose a significant public health and economic problem, yet these diseases are often neglected. In this review, we summarize the taxonomy, morphology, and life cycle of food-borne trematodes. Estimates of the at-risk population and number of infections, geographic distribution, history, and ecological features of the major food-borne trematodes are reviewed. We summarize clinical manifestations, patterns of infection, and current means of diagnosis, treatment, and other control options. The changing epidemiological pattern and the rapid growth of aquaculture and food distribution networks are highlighted, as these developments might be associated with an elevated risk of transmission of food-borne trematodiases. Current research needs are emphasized.
Collapse
|
21
|
Eksi S, Suri A, Williamson KC. Sex- and stage-specific reporter gene expression in Plasmodium falciparum. Mol Biochem Parasitol 2008; 160:148-51. [PMID: 18490066 PMCID: PMC2556552 DOI: 10.1016/j.molbiopara.2008.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 04/03/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
For malaria transmission, Plasmodium parasites must successfully complete gametocytogenesis in the vertebrate host. Differentiation into mature male or female Plasmodium falciparum gametocytes takes 9-12 days as the parasites pass through five distinct morphologic stages (I-V). To evaluate the signals controlling the initiation of stage- and/or sex-specific expression, reporter constructs containing the 5'-flanking regions (FR) of seven genes with distinct expression patterns through gametogenesis were developed. The regulatory information present in the 5'-FR of each selected gene was found to be sufficient to drive appropriate sex- and stage-specific reporter gene expression. The transformed parasite lines also provide in vivo markers to identify gametocytes at specific stages, including a subpopulation of schizonts that express early gametocyte markers.
Collapse
Affiliation(s)
- Saliha Eksi
- Department of Biology, Loyola University Chicago, Chicago, IL
| | - Amreena Suri
- Department of Biology, Loyola University Chicago, Chicago, IL
| | | |
Collapse
|
22
|
Mlambo G, Mutambu SL, Mduluza T, Soko W, Mbedzi J, Chivenga J, Lanar DE, Singh S, Carucci D, Gemperli A, Kumar N. Antibody responses to Plasmodium falciparum vaccine candidate antigens in three areas distinct with respect to altitude. Acta Trop 2006; 100:70-8. [PMID: 17113021 DOI: 10.1016/j.actatropica.2006.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 09/18/2006] [Accepted: 09/22/2006] [Indexed: 10/23/2022]
Abstract
Antibody levels against malaria antigens were measured among patients presenting with uncomplicated malaria at health centers from three locations in Zimbabwe (Bindura, Chiredzi and Kariba) that are distinct with regard to altitude and climatic conditions. Antibody levels were determined by ELISA using the antigens, apical membrane antigen 1 (AMA-1), erythrocyte binding antigen 175 (EBA-175), circumsporozoite surface protein (CSP), merozoite surface protein 1 (MSP-1) and Pfg27. For all the antigens tested, IgG and IgM levels were higher for Bindura (altitude 1100 m) compared to Kariba (<600 m, altitude) and Chiredzi (approximately 600 m, altitude) with the exception of IgG and IgM to AMA-1 and EBA-175 which were similar between Chiredzi and Bindura. Plasma samples were further analyzed for their functional activity by testing their ability to inhibit the growth of Plasmodium falciparum in culture. Our results, determined by microscopy and verified by the LDH assay revealed that plasma from the three locations had similar inhibitory activity against the growth of P. falciparum in vitro. Our data revealed that highest growth inhibition correlated with the highest levels of MSP-1 antibody values.
Collapse
Affiliation(s)
- Godfree Mlambo
- Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Eksi S, Haile Y, Furuya T, Ma L, Su X, Williamson KC. Identification of a subtelomeric gene family expressed during the asexual-sexual stage transition in Plasmodium falciparum. Mol Biochem Parasitol 2005; 143:90-9. [PMID: 15996767 DOI: 10.1016/j.molbiopara.2005.05.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 05/05/2005] [Accepted: 05/25/2005] [Indexed: 11/24/2022]
Abstract
For malaria transmission, the parasite must undergo sexual differentiation into mature gametocytes. However, the molecular basis for this critical transition in the parasites life cycle is unknown. Six previously uncharacterized genes, Pfg14.744, Pfg14.745, Pfg14.748, Pfg14.763, Pfg14.752 and Pfg6.6 that are members of a 36 gene Plasmodium falciparum-specific subtelomeric superfamily were found to be expressed in parasites that are committed to sexual development as suggested by co-expression of Pfs16 and Pfg27. Northern blots demonstrated that Pfg14.744 and Pfg14.748 were first expressed before the parasites differentiated into morphologically distinct gametocytes, transcription continued to increase until stage II gametocytes were formed and then rapidly decreased. Immunofluorescence assays indicated that both proteins were only produced in the subpopulation of ring stage parasites that are committed to gametocytogenesis and both localized to the parasitophorous vacuole (PV)b of the early ring stage parasites. As the parasites continued to develop Pfg14.748 remained within the parasitophorous vacuole, while Pfg14.744 was detected in the erythrocyte. The 5' flanking region of either gene alone was sufficient to drive early gametocyte specific expression of green fluorescent protein (GFP). In parasites transfected with a plasmid containing the Pfg14.748 5' flanking region immediately upstream of GFP, fluorescence was observed in a small number of schizonts the cycle before stage I gametocytes were observed. This expression pattern is consistent with commitment to sexual differentiation prior to merozoite release and erythrocyte invasion. Further investigation into the role of these genes in the transition from asexual to sexual differentiation could provide new strategies to block malaria transmission.
Collapse
Affiliation(s)
- Saliha Eksi
- Loyola University Chicago, Department of Biology, 6525 North Sheridan Road, Chicago, IL 60626, USA
| | | | | | | | | | | |
Collapse
|
24
|
Wargo AR, Randle N, Chan BHK, Thompson J, Read AF, Babiker HA. Plasmodium chabaudi: reverse transcription PCR for the detection and quantification of transmission stage malaria parasites. Exp Parasitol 2005; 112:13-20. [PMID: 16256988 DOI: 10.1016/j.exppara.2005.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 11/28/2022]
Abstract
We have developed two reverse transcription polymerase chain reaction (RT-PCR) techniques to detect and quantify the transmission stages (gametocytes) of Plasmodium chabaudi malaria parasites. Both the qualitative and quantitative techniques are based on the amplification of mRNA coding for the P. chabaudi protein Pcs230, which is expressed exclusively in gametocytes. The quantitative RT-PCR (qRT-PCR) technique was developed and validated by examining serial dilutions of known gametocyte densities. The method generated a high correlation between calibration curves of blind samples (R(2)=0.86). The technique was found to be specific, reproducible, and time efficient for quantification of both patent and sub-patent gametocytemia with a sensitivity level 100-1000 times greater than microscopy. The qualitative RT-PCR (RT-PCR) technique was used to monitor the persistence and dynamics of P. chabaudi gametocytes following acute infection. Mice in two independent experiments were sampled for up to 87 days post-infection. RT-PCR showed that gametocytes can persist for up to 8 weeks, post-infection, whereas microscopy could only detect gametocytes up to 6 weeks. Potential applications of the above techniques for studying the ecology, evolution, and epidemiology of malaria transmission are discussed.
Collapse
Affiliation(s)
- Andrew R Wargo
- Institutes of Evolution, Immunology and Infection Research, Ashworth Laboratories, School of Biological Science, University of Edinburgh, The Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Trager W. What triggers the gametocyte pathway in Plasmodium falciparum? Trends Parasitol 2005; 21:262-4. [PMID: 15922244 DOI: 10.1016/j.pt.2005.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 02/28/2005] [Accepted: 04/11/2005] [Indexed: 11/17/2022]
|
26
|
Gardiner DL, Dixon MWA, Spielmann T, Skinner-Adams TS, Hawthorne PL, Ortega MR, Kemp DJ, Trenholme KR. Implication of a Plasmodium falciparum gene in the switch between asexual reproduction and gametocytogenesis. Mol Biochem Parasitol 2005; 140:153-60. [PMID: 15760655 DOI: 10.1016/j.molbiopara.2004.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 12/27/2004] [Accepted: 12/27/2004] [Indexed: 10/25/2022]
Abstract
Gametocytogenesis is fundamental for transmission of the malaria parasite Plasmodium falciparum from the human host to the mosquito vector, yet very little is understood about what triggers the switch between asexual reproduction and gametocytogenesis. Arresting the progression through the sexual cycle would block transmission of this disease. Here we identify a novel gene in P. falciparum that when genetically silenced reduces gametocyte production by a factor of 6, and when complemented up-regulates gametocyte-specific gene transcription.
Collapse
Affiliation(s)
- Donald L Gardiner
- Malaria Biology Laboratory, The Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research, 300 Herston Road, Herston, Qld 4006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kumar N, Cha G, Pineda F, Maciel J, Haddad D, Bhattacharyya M, Nagayasu E. Molecular complexity of sexual development and gene regulation in Plasmodium falciparum. Int J Parasitol 2004; 34:1451-8. [PMID: 15582522 DOI: 10.1016/j.ijpara.2004.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 10/19/2004] [Accepted: 10/19/2004] [Indexed: 11/28/2022]
Abstract
The malaria parasite, Plasmodium falciparum, has a complex life cycle which alternates between the vertebrate host and the invertebrate vector. Various morphological changes as well as stage-specific transcripts and gene expression profiles that accompany parasite's asexual and sexual life cycle suggest that gene regulation is crucial for the parasite's continual adaptations to survive the changing environments as well as for pathogenesis. Development of sexual stages is crucial for malaria transmission and relatively little is known about the role of specific gene products during asexual to sexual differentiation and further development. Therefore, in order to have a full understanding of the biology of the malaria parasite, gene regulation on a genome-wide global level must be understood, an area remaining to be elucidated in P. falciparum. Parasite features, such as A-T bias, difficulties in cloning, labor-intensive culture and purification of specific stages of the parasite, all contribute to the difficulties to investigate many aspects of parasite biology. However, despite these challenges, limited studies have revealed a number of parallelisms with eukaryotic transcription. For example, the parasite's genes are organised in a similar fashion, contain promoter elements and upstream activation sequences, as shown by structural searches and functional assays, and some of the basal machinery and general transcription factors have been found in Plasmodium. The completion of the full genome sequence of P. falciparum and other species of Plasmodium has resulted in the search for specific transcription factors through genome mining. Although genome mining may identify some of the factors, search for these factors solely by primary sequence homology would result in a non-comprehensive list for transcription factors present in the genome. Here, we present further discussion on putative transcription factors like activities detected in the asexual and sexual stages of P. falciparum.
Collapse
Affiliation(s)
- Nirbhay Kumar
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Mitochondria of the malaria parasitePlasmodium falciparumare morphologically different between the asexual and sexual blood stages (gametocytes). In this paper recent findings of mitochondrial heterogeneity are reviewed based on their ultrastructural characteristics, metabolic activities and the differential expression of their genes in these 2 blood stages of the parasite. The existence of NADH dehydrogenase (complex I), succinate dehydrogenase (complex II), cytochrome c reductase (complex III) and cytochrome c oxidase (complex IV) suggests that the biochemically active electron transport system operates in this parasite. There is also an alternative electron transport branch pathway, including an anaerobic function of complex II. One of the functional roles of the mitochondrion in the parasite is the coordination of pyrimidine biosynthesis, the electron transport system and oxygen utilization via dihydroorotate dehydrogenase and coenzyme Q. Complete sets of genes encoding enzymes of the tricarboxylic acid cycle and the ATP synthase complex are predicted fromP. falciparumgenomics information. Other metabolic roles of this organelle include membrane potential maintenance, haem and coenzyme Q biosynthesis, and oxidative phosphorylation. Furthermore, the mitochondrion may be a chemotherapeutic target for antimalarial drug development. The antimalarial drug atovaquone targets the mitochondrion.
Collapse
Affiliation(s)
- J Krungkrai
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
29
|
Kongkasuriyachai D, Fujioka H, Kumar N. Functional analysis of Plasmodium falciparum parasitophorous vacuole membrane protein (Pfs16) during gametocytogenesis and gametogenesis by targeted gene disruption. Mol Biochem Parasitol 2004; 133:275-85. [PMID: 14698439 DOI: 10.1016/j.molbiopara.2003.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gametocytogenesis is a tightly regulated process marked by differentiation through distinct morphological forms and coordinated expression of sexual stage gene products. The earliest known gene product expressed at the onset of Plasmodium falciparum gametocytogenesis is Pfs16 localized on the parasitophorous vacuole membrane (PVM). Targeted gene disruption was undertaken to disrupt expression of Pfs16 and examine its potential role during sexual development. Three independent clones were demonstrated to have the coding sequence of Ps16 gene disrupted by the targeting plasmid by homologous recombination. No full-length transcripts and PVM localized 16 kDa protein were detected. Instead, all three "16ko" clones expressed a protein of 14 kDa recognized by Pfs16 specific antibodies that was mislocalized to an unidentified double membrane compartment in the parasites. Disruption of Pfs16 gene resulted in a significant reduction in gametocyte production, although the small number of gametocytes produced appeared to be normal by molecular and phenotypic evidences. Preliminary observation also suggested impaired ability of male gametocytes to exflagellate in vitro. Pfs16 does not appear to be essential for sexual development, instead may be required for optimal production of sexual parasites. Understanding mechanisms involved in the development of sexual stages of P. falciparum may identify novel targets for drugs and vaccines effective in reducing malaria transmission.
Collapse
Affiliation(s)
- Darin Kongkasuriyachai
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
30
|
Kongkasuriyachai D, Kumar N. Functional characterisation of sexual stage specific proteins in Plasmodium falciparum. Int J Parasitol 2002; 32:1559-66. [PMID: 12435440 DOI: 10.1016/s0020-7519(02)00184-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The various stages of the malaria parasites in the vertebrate host and in the mosquito vector offer numerous candidates for vaccine and drug development. However, the biological complexity of the parasites and the interaction with the immune system of the host continue to frustrate all such efforts thus far. While most of the targets for drug and vaccine design have focused on the asexual stages, the sexual stages of the parasite are critical for transmission and maintenance of parasites among susceptible vertebrate hosts. Sexual stage parasites undergo a series of morphological and biochemical changes during their development, accompanied by a co-ordinated cascade of a distinct expression pattern of sexual stage specific proteins. Mechanisms underlying the developmental switch from asexual parasite to sexual parasite still remain elusive. Methods that can break the malaria transmission cycle thus occupy a central place in the overall malaria control strategies. This paper provides a review of genes expressed in sexually differentiated Plasmodium. In the past few years, a molecular approach based on targeted gene disruption has revealed fascinating biological roles for many of the sexual stage gene products. In addition, we will briefly discuss other functional genomic approaches employed to study not only sexual but also other aspects of host-parasite biology.
Collapse
Affiliation(s)
- Darin Kongkasuriyachai
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
31
|
Cui L, Fan Q, Li J. The malaria parasite Plasmodium falciparum encodes members of the Puf RNA-binding protein family with conserved RNA binding activity. Nucleic Acids Res 2002; 30:4607-17. [PMID: 12409450 PMCID: PMC135818 DOI: 10.1093/nar/gkf600] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A novel class of RNA-binding proteins, Puf, regulates translation and RNA stability by binding to specific sequences in the 3'-untranslated region of target mRNAs. Members of this protein family share a conserved Puf domain consisting of eight 36 amino acid imperfect repeats. Here we report two Puf family member genes, PfPuf1 and PfPuf2, from the human malaria parasite Plasmodium falciparum. Both genes are spliced with four and three introns clustered within or near the Puf domains, respectively. Northern and RT-PCR analysis indicated that both genes were differentially expressed in gametocytes during erythrocytic development of the parasite. Except for similarities in the Puf domain and expression profile, the deduced PfPuf1 and PfPuf2 proteins differ considerably in size and structure. PfPuf1 has 1894 amino acids and a central Puf domain, whereas PfPuf2 is much smaller with a C-terminal Puf domain. The presence of at least two Puf members in other Plasmodium species suggests that these proteins play evolutionarily similar roles during parasite development. Both in vivo studies using the yeast three-hybrid system and in vitro binding assays using the recombinant Puf domain of PfPuf1 expressed in bacteria demonstrated intrinsic binding activity of the PfPuf1 Puf domain to the NRE sequences in the hunchback RNA, the target sequence for Drosophila Pumilio protein. Altogether, these results suggest that PfPufs might function during sexual differentiation and development in Plasmodium through a conserved mechanism of translational regulation of their target mRNAs.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA.
| | | | | |
Collapse
|
32
|
Smith TG, Walliker D, Ranford-Cartwright LC. Sexual differentiation and sex determination in the Apicomplexa. Trends Parasitol 2002; 18:315-23. [PMID: 12379952 DOI: 10.1016/s1471-4922(02)02292-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protozoan parasites of the phylum Apicomplexa have complex life cycles involving various types of asexual division that allow rapid proliferation of parasites within one or more hosts. Such replication is punctuated by obligate sexual differentiation that produces male and female gametocytes. These stages are transmissible to haematophagous vectors or are necessary ultimately to form resistant cysts that are released into the environment. This article examines the sexual differentiation of apicomplexan parasites as it relates to the timing of commitment and the mechanism of the switch from asexual proliferation to the development of male and female sexual stages.
Collapse
Affiliation(s)
- Todd G Smith
- Clinical Science Division, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A5.
| | | | | |
Collapse
|
33
|
Eksi S, Williamson KC. Male-specific expression of the paralog of malaria transmission-blocking target antigen Pfs230, PfB0400w. Mol Biochem Parasitol 2002; 122:127-30. [PMID: 12106866 DOI: 10.1016/s0166-6851(02)00091-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Malaria transmission requires that Plasmodium parasites circulating in the vertebrate host develop into male and female gametocytes, which are then taken up by a mosquito to undergo fertilization and further development into infectious sporozoites. To understand the malaria specific events involved in this process, the gene products involved require identification and characterization. This work demonstrates that antibodies generated against the paralog of malaria transmission-blocking antigen Pfs230, PfB0400w, react only with stage V male gametocytes, not gametes or asexual parasites. In contrast, Pfs230 is expressed on the surface of all gametocytes and remains associated with emerged gametes as one of the primary surface antigens for several hours. Consistent with the localization findings, a high molecular weight band is recognized by anti-PfB0400w antibodies on western blots of extracts of late stage gametocytes, not asexual parasites, early (stage II/III) gametocytes, or gametes. PfB0400w mRNA is also not observed in asexual parasites. The transcript levels peak in stage III/IV gametocytes, then sharply decline in gametes. This work identifies a novel male-specific protein with an expression pattern that is distinctly different than its paralog.
Collapse
Affiliation(s)
- Saliha Eksi
- Department of Biology, Loyola University, 6525 North Sheridan Road, Chicago, IL 60626, USA
| | | |
Collapse
|
34
|
Abstract
The gametocyte sex ratio of Plasmodium mexicanum, a malaria parasite of western fence lizards, was studied in a modified garden experiment. Each of 6 naturally infected lizards was used to initiate 20 replicate-infections in naive western fence lizards. A significant donor effect was observed for the sex ratios of recipient infections at their maximal parasitemia, and this effect was associated with the sex ratio of the donor infection. In 20 infections in which sex ratio was followed during the course of the infection, 9 revealed constant sex ratios and 11 showed an increase in proportion of males over time. Recipient sex ratio was correlated with another life-history trait, a composite of rate of asexual replication and peak parasitemia, such that higher Rate-Peak scores were associated with infections with less female-biased sex ratios. These results are placed into the context of sex ratio theory that concludes that the degree of selfing of parasite genotypes (number of parasite clones) within the vector will influence the evolution of gametocyte sex ratio. The theory predicts that the sex ratio should be under some genetic control and thus be heritable as observed in the experiment. Clonal diversity should also influence the life-history trait, Rate-Peak, which was found to be correlated with sex ratio.
Collapse
Affiliation(s)
- Sarah M Osgood
- Department of Biology, University of Vermont, Burlington 05405, USA
| | | | | |
Collapse
|
35
|
Bhattacharyya MK, Hong Z, Kongkasuriyachai D, Kumar N. Plasmodium falciparum protein phosphatase type 1 functionally complements a glc7 mutant in Saccharomyces cerevisiae. Int J Parasitol 2002; 32:739-47. [PMID: 12062492 DOI: 10.1016/s0020-7519(02)00007-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have identified a new homologue of protein phosphatase type 1 from Plasmodium falciparum, designated PfPP1, which shows 83-87% sequence identity with yeast and mammalian PP1s at the amino acid level. The PfPP1 sequence is strikingly different from all other P. falciparum Ser/Thr phosphatases cloned so far. The deduced 304 amino acid sequence revealed the signature sequence of Ser/Thr phosphatase LRGNHE, and two putative protein kinase C and five putative casein kinase II phosphorylation sites. Calyculin A, a potent inhibitor of Ser/Thr phosphatase 1 and 2A showed hyperphosphorylation of a 51kDa protein among other parasite proteins. Okadaic acid on the other hand, was without any effect suggesting that PP1 activity might predominate over PP2A activity in intra-erythrocytic P. falciparum. Complementation studies showed that PfPP1 could rescue low glycogen phenotype of Saccharomyces cerevisiae glc7 (PP1) mutant, strongly suggesting functional interaction of PfPP1 and yeast proteins involved in glycogen metabolism.
Collapse
Affiliation(s)
- Mrinal K Bhattacharyya
- Johns Hopkins Malaria Research Institute, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
36
|
Eksi S, Stump A, Fanning SL, Shenouda MI, Fujioka H, Williamson KC. Targeting and sequestration of truncated Pfs230 in an intraerythrocytic compartment during Plasmodium falciparum gametocytogenesis. Mol Microbiol 2002; 44:1507-16. [PMID: 12067340 DOI: 10.1046/j.1365-2958.2002.02986.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For malaria to be transmitted, the Plasmodium falciparum parasite must invade an erythrocyte and undergo gametocytogenesis. When mature intraerythrocytic gametocytes are taken up in a blood meal by a mosquito they emerge as gametes and, once fertilized, continue to differentiate into infectious sporozoites. One of the major proteins associated with the surface of the parasite during gamete differentiation is Pfs230, a 360 kDa member of a family of P. falciparum proteins that contains a repeated cysteine motif domain. To characterize the role of different regions of Pfs230, the gene was disrupted by targeted integration and clones isolated that expressed distinct sections of Pfs230. Independent clones D1.356 a and b express the first 452 amino acids (aa) of Pfs230 and do not contain a cysteine motif domain, whereas clones D2.850 a and b express the first 950 aa, including the first cysteine motif domain. Although both sets of clones undergo gametogenesis and produce morphologically normal gametes, neither truncated Pfs230 is located on the surface of the gamete. In clones D1.356 a and b, the 452 aa Pfs230 is secreted into the parasitophorous vacuole and released as a soluble protein when the parasite emerges from the erythrocyte as a gamete. In marked contrast, the 950 aa form of Pfs230 expressed by clones D2.850 a and b is sequestered in a novel tubular compartment in the erythrocyte cytoplasm. This sexual-stage tubular intraerythrocytic compartment (STIC) is not recognized by antibodies specific for proteins associated with the parasitophorous vacuole membrane (Pfs16 or Exp-1) or Maurer's clefts (Pfsbp 1 or mAb LWL1) or intraerythrocytic asexual parasite proteins (PfEMP2 or HRP II).
Collapse
Affiliation(s)
- Saliha Eksi
- Department of Biology, Loyola University Chicago, Chicago, IL 60626, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ramsey JM, Tello A, Contreras CO, Ordoñez R, Chirino N, Rojo J, Garcia F. Plasmodium falciparum and P. vivax gametocyte-specific exoantigens stimulate proliferation of TCR gammadelta+ lymphocytes. J Parasitol 2002; 88:59-68. [PMID: 12053981 DOI: 10.1645/0022-3395(2002)088[0059:pfapvg]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Immune modulation of Plasmodium vivax and P. falciparum gametocytes occurs over the course of erythrocytic infection. The response is linked to proliferative and inflammatory responses, which may be stimulated by stage-specific gametocyte proteins. Stage-specific exoantigens were purified from supernatants of P. falciparum and P. vivax gametocyte cultures, and either primary or secondary postinfection lymphocytes were stimulated for proliferation. Five of 25 exoantigens purified from P. falciparum gametocyte cultures and 6 of 28 exoantigens isolated from P. vivax were gametocyte stage specific. Metabolic labeling of soluble P. falciparum gametocyte proteins confirmed synthesis and secretion of 5 stage-specific exoantigens, with molecular masses of 118, 62, 52, 37, and 33 kDa. Purified gametocyte exoantigens within the range of 50 to 100 kDa stage-specifically stimulated proliferation of lymphocytes from postprimary P. falciparum infections, and from postprimary and secondary P. vivax infection patients with homologous purified exoantigens. T-cell receptor (TCR)gammadelta+, and CD3+ CD8+ and CD3+ CD4- CD8- T cells were specifically upregulated from P. falciparum primary- and P. vivax secondary-infection lymphocytes, respectively, using gametocyte stage-specific exoantigens. CD25+ was the major activation marker expressed by CD3+ and gammadelta T cells when stimulated with gametocyte exoantigens. None of the T cell markers was significantly upregulated using gametocyte stage-specific exoantigens with primary-infection P. vivax lymphocytes.
Collapse
Affiliation(s)
- Janine M Ramsey
- Center for Infectious Disease Research, National Institute for Public Health, Cuernavaca, Morelos, México.
| | | | | | | | | | | | | |
Collapse
|
38
|
Cui L, Rzomp KA, Fan Q, Martin SK, Williams J. Plasmodium falciparum: differential display analysis of gene expression during gametocytogenesis. Exp Parasitol 2001; 99:244-54. [PMID: 11888252 DOI: 10.1006/expr.2001.4669] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With the Plasmodium falciparum genome sequencing near completion, functional analysis of individual parasite genes has become the major task of the postgenomic era. Understanding the expression patterns of individual genes is the initial step toward this goal. In this report, we have examined gene expression during gametocytogenesis of the malaria parasite, P. falciparum, using a modified differential display (DD) method. The modifications of this method include adjusting the dNTP mix, using upstream primers with higher AT contents, and reducing the extension temperature of the polymerase chain reaction (PCR). With a combination of 16 arbitrary upstream primers and 3 one-base-anchored oligo(dT) primers, we have successfully cloned 80 unique cDNA tags from stage IV-V gametocytes. Further analysis by dot blots and semiquantitative reverse transcriptase-PCR showed that at least 49 cDNAs had induced or elevated levels of expression in gametocytes. These results indicate that this modified DD procedure is suitable for large-scale identification of developmentally regulated genes in the AT-rich Plasmodium genome.
Collapse
Affiliation(s)
- L Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802, USA.
| | | | | | | | | |
Collapse
|
39
|
Li JL, Targett GA, Baker DA. Primary structure and sexual stage-specific expression of a LAMMER protein kinase of Plasmodium falciparum. Int J Parasitol 2001; 31:387-92. [PMID: 11306117 DOI: 10.1016/s0020-7519(01)00126-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have isolated a LAMMER-like gene from Plasmodium falciparum by vectorette technique. The gene consists of 3316 bp encoding a protein 881 amino acids with a predicted molecular mass of approximately 106.7 kDa. The encoded protein, termed PfLAMMER, is composed of two distinct domains. The N-terminal domain is not related to any previously described protein kinases and has several interesting features including multiple consensus phosphorylation sites for a range of protein kinases, a number of RS/SR dipeptides, a large proportion of charged amino acids, two putative nuclear localisation signals and 14 copies of a tetramer DKYD repeats. The C-terminal domain is characteristic of a kinase in the LAMMER family with the highest homology to the Arabidopsis thaliana AFC3 kinase. Genomic restriction analysis showed that PfLAMMER is encoded by a single copy gene in the parasite genome. A single transcript of approximately 3800 nucleotides is expressed specifically in the sexual stage, indicating that PfLAMMER may be important in regulating the processes of sexual differentiation of the parasite.
Collapse
Affiliation(s)
- J L Li
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | |
Collapse
|
40
|
Ohnishi Y, Nishimura K, Umeda Y. Relationship between partial inhibition of glycolysis and hemolysis after induction of gametocytogenesis in synchronous cultures of Plasmodium falciparum. Parasitol Int 2001; 50:1-7. [PMID: 11267926 DOI: 10.1016/s1383-5769(00)00062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, the low molecular-weight fraction of the culture supernatant of anti-Plasmodium falciparum antibody-producing hybridoma cells (HybSL) was used in synchronous culture with P. falciparum FVO strain. When synchronous cultures were treated with HybSL solution on day 5, gametocytogenesis was also induced. Gametocytes were consistently found from the third day after treatment and reached a peak on the fourth day. An increase in pH and hemoglobin concentrations and decrease in lactate concentrations were observed on the first day after treatment. These phenomena suggested that HybSL solution partially inhibited glycolysis of erythrocytes parasitized with schizonts and resulted in hemolysis of infected erythrocytes. On the other hand, the production of gametocytes did not increase in cultures treated with HybSL solution on day 4 of synchronous cultures in which ring forms were plentiful. Most ring forms were not killed by HybSL solution and quickly developed to trophozoites and schizonts rather than gametocytes. Consequently, it is assumed that ring forms on day 4 of synchronous cultures have finished differentiation into the asexual stage. The conversion of asexual parasites to gametocytes may be triggered only when late-stage trophozoites or early-stage schizonts are treated with HybSL solution.
Collapse
Affiliation(s)
- Y Ohnishi
- Laboratory of Veterinary Epidemiology, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, 1-1, 599-8531, Sakai, Japan.
| | | | | |
Collapse
|
41
|
Ghosh A, Edwards MJ, Jacobs-Lorena M. The journey of the malaria parasite in the mosquito: hopes for the new century. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:196-201. [PMID: 10782078 DOI: 10.1016/s0169-4758(99)01626-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this review, Anil Ghosh, Marten Edwards and Marcelo Jacobs-Lorena follow the journey of the Plasmodium parasite in the mosquito vector. At each developmental step, they highlight some of the major unanswered questions currently challenging cell and molecular biologists. A more thorough understanding of Plasmodium-mosquito interactions might lead to the development of mosquitoes unable to support parasite development.
Collapse
Affiliation(s)
- A Ghosh
- Case Western Reserve University, Department of Genetics, 10900 Euclid Avenue, Cleveland, OH 44106-4955, USA
| | | | | |
Collapse
|
42
|
Lobo CA, Fujioka H, Aikawa M, Kumar N. Disruption of the Pfg27 locus by homologous recombination leads to loss of the sexual phenotype in P. falciparum. Mol Cell 1999; 3:793-8. [PMID: 10394367 DOI: 10.1016/s1097-2765(01)80011-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transmission of malaria depends upon the differentiation and development of the sexual stages of the parasite. In Plasmodium falciparum, it is a complex, multistage process, involving the expression of a large number of sexual stage-specific proteins. Pfg27 is one such protein, abundantly expressed at the onset of gametocytogenesis. We report successful disruption of the Pfg27 locus using homologous recombination and show that it is essential for the maintenance of the sexual phenotype. Transfectants lacking Pfg27 abort early in sexual development, resulting in vacuolated, highly disarranged, and disintegrating parasites. This suggests a critical role for Pfg27 in the sexual development of the parasite.
Collapse
Affiliation(s)
- C A Lobo
- Department of Molecular Microbiology and Immunology, School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
43
|
Horrocks P, Lanzer M. Differences in nucleosome organization over episomally located plasmids coincides with aberrant promoter activity in P. falciparum. Parasitol Int 1999; 48:55-61. [PMID: 11269326 DOI: 10.1016/s1383-5769(99)00002-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we investigated whether the Plasmodium falciparum GBP130 promoter maintains its developmental activity during the intraerythrocytic cycle when located on an episomal plasmid introduced using transient transfection. Comparing its activity with that of the endogenous chromosomally located GBP130 promoter indicates that the episomally located GBP130 promoter looses its developmental restriction, being rendered constitutively active. Loss of developmental restriction coincides with the absence of phased nucleosomal arrays over the episome. These data suggest that epigenetic factors may play a role in developmentally regulated gene expression in P. falciparum.
Collapse
Affiliation(s)
- P Horrocks
- Zentrum für Infektionsforschung der Universität Würzburg, Germany
| | | |
Collapse
|
44
|
Dechering KJ, Kaan AM, Mbacham W, Wirth DF, Eling W, Konings RN, Stunnenberg HG. Isolation and functional characterization of two distinct sexual-stage-specific promoters of the human malaria parasite Plasmodium falciparum. Mol Cell Biol 1999; 19:967-78. [PMID: 9891033 PMCID: PMC116028 DOI: 10.1128/mcb.19.2.967] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of malaria depends on the successful development of the sexual stages of the parasite within the midgut of the mosquito vector. The differentiation process leading to the production of the sexual stages is delineated by several developmental switches. Arresting the progression through this sexual differentiation pathway would effectively block the spread of the disease. The successful development of such transmission-blocking agents is hampered by the lack of a detailed understanding of the program of gene expression that governs sexual differentiation of the parasite. Here we describe the isolation and functional characterization of the Plasmodium falciparum pfs16 and pfs25 promoters, whose activation marks the developmental switches executed during the sexual differentiation process. We have studied the differential activation of the pfs16 and pfs25 promoters during intraerythrocytic development by transfection of P. falciparum and during gametogenesis and early sporogonic development by transfection of the related malarial parasite P. gallinaceum. Our data indicate that the promoter of the pfs16 gene is activated at the onset of gametocytogenesis, while the activity of the pfs25 promoter is induced following the transition to the mosquito vector. Both promoters have unusual DNA compositions and are extremely A/T rich. We have identified the regions in the pfs16 and pfs25 promoters that are essential for high transcriptional activity. Furthermore, we have identified a DNA-binding protein, termed PAF-1, which activates pfs25 transcription in the mosquito midgut. The data presented here shed the first light on the details of processes of gene regulation in the important human pathogen P. falciparum.
Collapse
Affiliation(s)
- K J Dechering
- Department of Molecular Biology, University of Nijmegen, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|