1
|
Segrestin J, Lisner A, Götzenberger L, Hájek T, Janíková E, Jílková V, Konečná M, Švancárová T, Lepš J. Biodiversity loss disrupts seasonal carbon dynamics in a species-rich temperate grassland. Ecology 2025; 106:e70091. [PMID: 40342156 PMCID: PMC12060612 DOI: 10.1002/ecy.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Biodiversity loss poses a significant threat to ecosystem functioning. However, much of the empirical evidence for these effects is based on artificial experiments that often fail to simulate the structure of natural communities. Hence, it is still unclear whether natural diversity losses would significantly affect the functioning of "real-world" ecosystems. As subordinate and rare species constitute most of the diversity in natural communities and are often more vulnerable to local extinction, we evaluated their contribution to ecosystem functioning in a naturally species-rich grassland. We focused on two mechanisms by which they can support ecosystem functions: redundancy and complementarity. We conducted two long-term field experiments (>6 years) simulating contrasting biodiversity loss scenarios through the manual removal of plant species and measured the consequences of species loss on various ecosystem functions related to carbon dynamics. The latter were examined seasonally to explore diversity effects outside the typical peak of vegetation. We found that dominant removal led to substantial reductions in aboveground phytomass and litter production and altered the annual carbon fixation capacity of the vegetation, highlighting the pivotal role of dominant species in driving ecosystem functioning. Despite high species diversity, other species could not fully compensate for the loss of a single dominant even after more than 25 years, challenging assumptions about redundancy. Complementarity effects were not detected at the peak of vegetation but were evident in early spring and autumn when subordinate and rare species enhanced ecosystem functions. Surprisingly, belowground phytomass, soil organic carbon content, and litter decomposition were unaffected by species removal, suggesting complex interactions in belowground processes. These findings underscore the importance of dominant species in maintaining ecosystem functioning and emphasize the need for nuanced approaches to studying biodiversity loss in real-world communities. Comprehensive seasonal measurements are essential for accurately discerning the effects of biodiversity on ecosystem dynamics and informing effective conservation strategies that maintain ecosystem functioning.
Collapse
Affiliation(s)
- Jules Segrestin
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Aleš Lisner
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Lars Götzenberger
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
- Institute of Botany of the Czech Academy of SciencesTřeboňCzech Republic
| | - Tomáš Hájek
- Department of Experimental Plant BiologyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Eva Janíková
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Veronika Jílková
- Biology Centre of the Czech Academy of SciencesInstitute of Soil Biology and BiogeochemistryČeské BudějoviceCzech Republic
| | - Marie Konečná
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Tereza Švancárová
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Jan Lepš
- Department of BotanyFaculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| |
Collapse
|
2
|
Yeeles P, Lach L, Hobbs RJ, Didham RK. Functional redundancy compensates for decline of dominant ant species. Nat Ecol Evol 2025; 9:779-788. [PMID: 40263395 PMCID: PMC12066353 DOI: 10.1038/s41559-025-02690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Evidence is accumulating of declines in widespread, abundant insect species. The consequences of these losses for ecosystem functioning are predicted to be severe but remain poorly tested in real-world ecosystems. Here we tested the relative importance of functional redundancy versus complementarity in conferring stability of multifunctional performance in the face of dominant insect species decline. We conducted an experimental manipulation of functional trait-space occupancy within naturally occurring ant communities in Australia. Experimental suppression of dominant ant species in multiple trait groupings caused a counterintuitive increase in multifunctional performance, which was associated with an increase in species richness. The resident ant community had high functional redundancy, contributing to rapid compensatory dynamics following suppression. However, colonization by new species with increased trait complementarity drove higher multifunctional performance. This increased multifunctionality probably occurred via reduced interspecific competition but at the cost of increased sensitivity of ecosystem multifunctionality to further species loss. Our findings show that functional redundancy can buffer multifunctional performance of a community against decline of dominant insect species but suggest that future stability of ecosystem multifunctionality depends more on functional complementarity and altered competitive interactions.
Collapse
Affiliation(s)
- Peter Yeeles
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia.
| | - Lori Lach
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Richard J Hobbs
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Raphael K Didham
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.
- CSIRO Health and Biosecurity, Centre for Environment and Life Sciences, Floreat, Western Australia, Australia.
| |
Collapse
|
3
|
Chang X, Wang W, Zhou H. Nitrogen Acquisition by Invasive Plants: Species Preferential N Uptake Matching with Soil N Dynamics Contribute to Its Fitness and Domination. PLANTS (BASEL, SWITZERLAND) 2025; 14:748. [PMID: 40094724 PMCID: PMC11901465 DOI: 10.3390/plants14050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Plant invasions play a significant role in global environmental change. Traditionally, it was believed that invasive plants absorb and utilize nitrogen (N) more efficiently than native plants by adjusting their preferred N forms in accordance with the dominant N forms present in the soil. More recently, invasive plants are now understood to optimize their N acquisition by directly mediating soil N transformations. This review highlights how exotic species optimize their nitrogen acquisition by influencing soil nitrogen dynamics based on their preferred nitrogen forms, and the various mechanisms, including biological nitrification inhibitor (BNI) release, pH alterations, and changes in nutrient stoichiometry (carbon to nitrogen ratio), that regulate the soil nitrogen dynamics of exotic plants. Generally, invasive plants accelerate soil gross nitrogen transformations to maintain a high supply of NH4+ and NO3- in nitrogen-rich ecosystems irrespective of their preference. However, they tend to minimize nitrogen losses to enhance nitrogen availability in nitrogen-poor ecosystems, where, in such situations, plants with different nitrogen preferences usually affect different nitrogen transformation processes. Therefore, a comprehensive understanding requires more situ data on the interactions between invasive plant species' preferential N form uptake and the characteristics of soil N transformations. Understanding the combination of these processes is essential to elucidate how exotic plants optimize nitrogen use efficiency (NUE) and minimize nitrogen losses through denitrification, leaching, or runoff, which are considered critical for the success of invasive plant species. This review also highlights some of the most recent discoveries in the responses of invasive plants to the different forms and amounts of N and how plants affect soil N transformations to optimize their N acquisition, emphasizing the significance of how plant-soil interactions potentially influence soil N dynamics.
Collapse
Affiliation(s)
- Xingang Chang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Wenying Wang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;
| |
Collapse
|
4
|
Wei J, Zhang Z, Ma L, Hu X, Ade H, Su H, Shi Z, Li H, Zhou H. Effects of short- and long-term plant functional group removal on alpine meadow community niche. FRONTIERS IN PLANT SCIENCE 2024; 15:1474272. [PMID: 39610889 PMCID: PMC11602315 DOI: 10.3389/fpls.2024.1474272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
The rapid loss of global biodiversity affects the creation and maintenance of community biodiversity and ecosystem structure and function. Thus, it is insufficient to focus solely on the effects of biodiversity loss on community biodiversity without also considering other impacts such as community assembly, niches, interspecific relationships, community stability, and biodiversity-ecosystem function. In this study, a 3- and 10-year biodiversity manipulation experiment was conducted in an alpine meadow to examine the effects of the individual plant functional group (PFG) removal on the niches of community dominant species by removal of Gramineae, Cyperaceae, legumes, and other forbs. The results indicated that PFG removal led to variation in community niches. The long-term PFG removal led to a gradual decline in the number of Gramineae and Cyperaceae species in the community. Over time, the niche widths of dominant Gramineae and Cyperaceae species gradually narrowed, and the degree of niche overlapping decreased. The number of positively and negatively associated species tended to decrease and increase, respectively. Reduced species diversity led to significant differences in the niches of the remaining species within the community. Thus, species niche differences, resulting from variation in resource allocation, commonly determined the dynamic construction of species composition within the community.
Collapse
Affiliation(s)
- Jingjing Wei
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhonghua Zhang
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Li Ma
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xue Hu
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Haze Ade
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongye Su
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengchen Shi
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Honglin Li
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
5
|
Suding KN, Collins CG, Hallett LM, Larios L, Brigham LM, Dudney J, Farrer EC, Larson JE, Shackelford N, Spasojevic MJ. Biodiversity in changing environments: An external-driver internal-topology framework to guide intervention. Ecology 2024; 105:e4322. [PMID: 39014865 DOI: 10.1002/ecy.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 07/18/2024]
Abstract
Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant-plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external-driver internal-topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
Collapse
Affiliation(s)
- Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Courtney G Collins
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Hallett
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| | - Loralee Larios
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Laurel M Brigham
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Joan Dudney
- Environmental Studies Program, Santa Barbara, California, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Emily C Farrer
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Julie E Larson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, Oregon, USA
| | - Nancy Shackelford
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Marko J Spasojevic
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
6
|
Monteux S, Blume-Werry G, Gavazov K, Kirchhoff L, Krab EJ, Lett S, Pedersen EP, Väisänen M. Controlling biases in targeted plant removal experiments. THE NEW PHYTOLOGIST 2024; 242:1835-1845. [PMID: 38044568 DOI: 10.1111/nph.19386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/05/2023]
Abstract
Targeted removal experiments are a powerful tool to assess the effects of plant species or (functional) groups on ecosystem functions. However, removing plant biomass in itself can bias the observed responses. This bias is commonly addressed by waiting until ecosystem recovery, but this is inherently based on unverified proxies or anecdotal evidence. Statistical control methods are efficient, but restricted in scope by underlying assumptions. We propose accounting for such biases within the experimental design, using a gradient of biomass removal controls. We demonstrate the relevance of this design by presenting (1) conceptual examples of suspected biases and (2) how to observe and control for these biases. Using data from a mycorrhizal association-based removal experiment, we show that ignoring biomass removal biases (including by assuming ecosystem recovery) can lead to incorrect, or even contrary conclusions (e.g. false positive and false negative). Our gradient design can prevent such incorrect interpretations, regardless of whether aboveground biomass has fully recovered. Our approach provides more objective and quantitative insights, independently assessed for each variable, than using a proxy to assume ecosystem recovery. Our approach circumvents the strict statistical assumptions of, for example, ANCOVA and thus offers greater flexibility in data analysis.
Collapse
Affiliation(s)
- Sylvain Monteux
- Department of Environmental Science, Stockholm University, SE-10691, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-10691, Stockholm, Sweden
- UiT The Arctic University Museum of Norway, NO-9006, Tromsø, Norway
| | - Gesche Blume-Werry
- Department of Ecology and Environmental Sciences, Climate Impacts Research Centre, Umeå University, SE-98107, Abisko, Sweden
| | - Konstantin Gavazov
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Leah Kirchhoff
- Department of Ecology and Environmental Sciences, Climate Impacts Research Centre, Umeå University, SE-98107, Abisko, Sweden
| | - Eveline J Krab
- Department of Soil and Environment, Swedish University for Agricultural Sciences SLU, SE-75651, Uppsala, Sweden
| | - Signe Lett
- Department of Biology, University of Copenhagen, DK-1165, Copenhagen, Denmark
| | - Emily P Pedersen
- Department of Ecology and Environmental Sciences, Climate Impacts Research Centre, Umeå University, SE-98107, Abisko, Sweden
- Swedish Polar Research Secretariat, Abisko Scientific Research Station, SE-98107, Abisko, Sweden
| | - Maria Väisänen
- Ecology and Genetics Research Unit, University of Oulu, FI-90014, Oulu, Finland
| |
Collapse
|
7
|
Wang M, Osborn LJ, Jain S, Meng X, Weakley A, Yan J, Massey WJ, Varadharajan V, Horak A, Banerjee R, Allende DS, Chan ER, Hajjar AM, Wang Z, Dimas A, Zhao A, Nagashima K, Cheng AG, Higginbottom S, Hazen SL, Brown JM, Fischbach MA. Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome. Cell 2023; 186:2839-2852.e21. [PMID: 37352836 PMCID: PMC10299816 DOI: 10.1016/j.cell.2023.05.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/10/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold. In single-strain dropout communities, Cs and Ch reach the same relative abundance and dehydroxylate bile acids to a similar extent. However, Clostridium sporogenes increases >1,000-fold in the ΔCs but not ΔCh dropout, reshaping the pool of microbiome-derived phenylalanine metabolites. Thus, strains that are functionally redundant within a niche can have widely varying impacts outside the niche, and a strain swap can ripple through the community in an unpredictable manner, resulting in a large impact on an unrelated community-level phenotype.
Collapse
Affiliation(s)
- Min Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sunit Jain
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Xiandong Meng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Allison Weakley
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jia Yan
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniela S Allende
- Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adeline M Hajjar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alejandra Dimas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Aishan Zhao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Kazuki Nagashima
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice G Cheng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Gorobtsova ON, Chadaeva VA, Pshegusov RK, Gedgafova FV, Uligova TS, Tembotov RK. The current state of forest ecosystems in the Khosta Yew-Boxwood Grove. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:183. [PMID: 36481928 DOI: 10.1007/s10661-022-10806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In this study, we aimed to assess the current state of forest ecosystems on the Black Sea coast of the Caucasus after the mass mortality of boxwoods. Soil and geobotanical studies were carried out in the Khosta Yew-Boxwood Grove, a convenient proving ground for assessment of the consequences of Cydalima perspectalis expansion. Hierarchical cluster analysis (nearest-neighbour and Euclidean distance methods), One-way ANOVA, and correlation analysis (Euclidean distance matrices for standardised data) were applied to process the soil and vegetation data. An increase in the illumination of the lower forest tiers due to the Buxus colchica destruction resulted in an intensive growth of vegetation cover and the formation of a soddy horizon in soils. These processes contributed to the accumulation of organic matter and high biological activity of the soils. The number of Buxus colchica seedlings was negatively correlated with the vegetation coverage and the number of grass and shrub species, as well as with some biological parameters of the soils. The most intensive seed regeneration of Buxus colchica was observed in forest plots with high crown density in the upper tier, undeveloped vegetation cover, and soddy soil horizon.
Collapse
Affiliation(s)
- O N Gorobtsova
- Tembotov Institute of Ecology of Mountain Territories RAS, I. Armand 37a, Nalchik, Russian Federation
| | - V A Chadaeva
- Tembotov Institute of Ecology of Mountain Territories RAS, I. Armand 37a, Nalchik, Russian Federation
| | - R Kh Pshegusov
- Tembotov Institute of Ecology of Mountain Territories RAS, I. Armand 37a, Nalchik, Russian Federation
| | - F V Gedgafova
- Tembotov Institute of Ecology of Mountain Territories RAS, I. Armand 37a, Nalchik, Russian Federation
| | - T S Uligova
- Tembotov Institute of Ecology of Mountain Territories RAS, I. Armand 37a, Nalchik, Russian Federation
| | - R Kh Tembotov
- Tembotov Institute of Ecology of Mountain Territories RAS, I. Armand 37a, Nalchik, Russian Federation.
| |
Collapse
|
9
|
Abiem I, Dickie I, Kenfack D, Chapman HM. Factors limiting plant recruitment in a tropical Afromontane Forest. Biotropica 2022. [DOI: 10.1111/btp.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Iveren Abiem
- School of Biological Sciences University of Canterbury Christchurch New Zealand
- Department of Plant Science and Biotechnology University of Jos Jos Nigeria
- Nigerian Montane Forest Project Yelwa Village Nigeria
| | - Ian Dickie
- School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - David Kenfack
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute Washington District of Columbia USA
| | - Hazel M. Chapman
- School of Biological Sciences University of Canterbury Christchurch New Zealand
- Nigerian Montane Forest Project Yelwa Village Nigeria
| |
Collapse
|
10
|
Zhang X, Lu ZX, Zhang NN, Chen YQ. Data of ant community compositions and functional traits responding to land-use change at the local scale. Biodivers Data J 2022; 10:e85119. [PMID: 36761575 PMCID: PMC9848497 DOI: 10.3897/bdj.10.e85119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022] Open
Abstract
Aim: Off-reserve conservation is a major contributor to China biodiversity conservation efforts, biodiversity conservation being achieved within afforestation and low-intensity agriculture in fragmented landscapes. Functional trait is more strongly related to ecological processes than taxonomic diversity and reflects ecosystem functioning and species responses to environmental changes. In this study, we selected five habitats that differ in degree of disturbance to explore the effects of land use on ant community compositions, traits distributions and functional diversity change. We assessed how habitat disturbance affects the ant community compositions and traits distributions and asked if ant functional diversity respond to disturbance at the local scale? Location: Lüchun County, Yunnan Province, southwest China. Methods: Pitfall traps were used to survey ant communities. Additionally, we measured four ant morphological traits (eyes diameter, distance between eyes, femur length of the hind-leg and Weber's length) to assess the functional traits distributions and functional diversity. Shade plot of ant relative abundance was used to explore species distribution amongst different habitats. Kernel density plot was used to explore ant traits distribution patterns amongst different habitats. Non-metric multi-dimensional scaling ordination, based on ant Weber's length, was used to explore the ant traits compositions amongst different habitats. The fourth corner model was used to evaluate the association between ant traits and environmental variables. The FRic, RaoQ and FEve indices were selected as three complementary measures of the multivariate functional traits space and functional redundancy of different habitats. Results: We collected 14258 ants, representing 89 species, 40 genera and seven subfamilies. Aphaenogasterschurri and Tetramoriumciliatum were the common species of secondary forest; P.sagei, P.pieli, Cardiocondylawroughtonii, Recurvidrisnuwa, Tapinnomamelanocephalum, Monomoriumpharaonis and M.orientale were the common species in plantations; and Iridomyrmexanceps and Cardiocondylanuda were the common species in managed farms. Ants had medium eye diameters, narrow distances between eyes, medium leg lengths and smaller body sizes in greatly-disturbed habitats; and ants had an increasing eye diameter and narrowing of the space between eyes, while the leg length and Weber's length became shorter in moderately-disturbed habitats. Ant trait composition, based on Weber's length, showed significantly differences amongst five habitats. The fourth corner analysis indicated that ant species traits were significantly correlated with environmental variables. The functional diversity of secondary forest, lac plantation and lac plantation-corn agroforest were higher than those in dryland farm and rice paddy. Functional diversities were significantly negatively correlated with bare ground cover and significantly positively correlated with leaf-litter cover, leaf-litter thickness and plant cover. Main conclusion: Our results indicated that ant traits distribution patterns were affected by land-use changes, followed by anthropogenic disturbance pressures at the local scale. Ant traits compositions in greatly-disturbed habitats also differed from the habitats with less disturbance. It is unfavourable for the survival of the large body-size ants in more open habitats with more anthropogenic disturbance. Compared with secondary forest, dryland farm and rice paddies were less resistant and more vulnerable and lac plantations had approximately functional diversity of ant communities, suggesting that lac plantations might be resistant as secondary forest to species loss.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, ChinaInstitute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
| | - Zhi-xing Lu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, ChinaInstitute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
| | - Nian-nian Zhang
- Guizhou Academy of Forestry, Guiyang, ChinaGuizhou Academy of ForestryGuiyangChina
| | - You-qing Chen
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, ChinaInstitute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
| |
Collapse
|
11
|
Pathways for cross-boundary effects of biodiversity on ecosystem functioning. Trends Ecol Evol 2022; 37:454-467. [DOI: 10.1016/j.tree.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
|
12
|
Gong Y, Wu J. Vegetation composition modulates the interaction of climate warming and elevated nitrogen deposition on nitrous oxide flux in a boreal peatland. GLOBAL CHANGE BIOLOGY 2021; 27:5588-5598. [PMID: 34437735 DOI: 10.1111/gcb.15865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/22/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Northern peatlands with large organic nitrogen (N) storage have the potential to be N2 O hotspots under climate warming, elevated N deposition, and vegetation composition change caused by climate change. However, the interactions of these three factors and the primary controls on N2 O fluxes in peatlands are not well-known. Here, the three factors were manipulated in a boreal bog in western Newfoundland, Canada for 5 years. We found that warming mitigated the positive N effect on N2 O fluxes in the mid-growing season under intact vegetation owing to the increase of available N uptake by vegetation and less N for N2 O production. In contrast, warming strengthened the N effect on N2 O fluxes in the early growing season under the absence of graminoids or shrubs, which could be attributed to the increase of available carbon and nitrogen for N2 O production. It should be noted that these effects were not observed under the condition of low carbon availability. In addition, gross primary production was found as a critical control on N2 O fluxes under N addition. Our findings emphasize that the interaction of abiotic (warming and elevated nitrogen deposition) and biotic factors (vegetation composition change) on N2 O fluxes should be taken into account in order to project N2 O fluxes in peatland ecosystems accurately.
Collapse
Affiliation(s)
- Yu Gong
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, PR China
- Environment and Sustainability, School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, Newfoundland, Canada
- Graduate Program in Environmental Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Jianghua Wu
- Environment and Sustainability, School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, Newfoundland, Canada
- Graduate Program in Environmental Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
13
|
Chen H, Ma K, Huang Y, Yao Z, Chu C. Stable Soil Microbial Functional Structure Responding to Biodiversity Loss Based on Metagenomic Evidences. Front Microbiol 2021; 12:716764. [PMID: 34690962 PMCID: PMC8529109 DOI: 10.3389/fmicb.2021.716764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022] Open
Abstract
Anthropogenic disturbances and global climate change are causing large-scale biodiversity loss and threatening ecosystem functions. However, due to the lack of knowledge on microbial species loss, our understanding on how functional profiles of soil microbes respond to diversity decline is still limited. Here, we evaluated the biotic homogenization of global soil metagenomic data to examine whether microbial functional structure is resilient to significant diversity reduction. Our results showed that although biodiversity loss caused a decrease in taxonomic species by 72%, the changes in the relative abundance of diverse functional categories were limited. The stability of functional structures associated with microbial species richness decline in terrestrial systems suggests a decoupling of taxonomy and function. The changes in functional profile with biodiversity loss were function-specific, with broad-scale metabolism functions decreasing and typical nutrient-cycling functions increasing. Our results imply high levels of microbial physiological versatility in the face of significant biodiversity decline, which, however, does not necessarily mean that a loss in total functional abundance, such as microbial activity, can be overlooked in the background of unprecedented species extinction.
Collapse
Affiliation(s)
- Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Kayan Ma
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Life Sciences and School of Ecology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Rewcastle KE, Henning JA, Read QD, Irwin RE, Sanders NJ, Classen AT. Plant removal across an elevational gradient marginally reduces rates, substantially reduces variation in mineralization. Ecology 2021; 103:e03546. [PMID: 34618916 DOI: 10.1002/ecy.3546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022]
Abstract
The loss of aboveground plant diversity alters belowground ecosystem function; yet, the mechanisms underpinning this relationship and the degree to which plant community structure and climate mediate the effects of plant species loss remain unclear. Here, we explored how plant species loss through experimental removal shaped belowground function in ecosystems characterized by different climatic regimes and edaphic properties. We measured plant community composition as well as potential carbon (C) and nitrogen (N) mineralization and microbial extracellular enzyme activity in soils collected from four unique plant removal experiments located along an elevational gradient in Colorado, USA. We found that, regardless of the identity of the removed species or the climate at each site, plant removal decreased the absolute variation in potential N mineralization rates and marginally reduced the magnitude of N mineralization rates. While plant species removal also marginally reduced C mineralization rates, C mineralization, unlike N mineralization, displayed sensitivity to the climatic and edaphic differences among sites, where C mineralization was greatest at the high elevation site that receives the most precipitation annually and contains the largest soil total C pool. Plant removal had little impact on soil enzyme activity. Removal effects were not contingent on the amount of biomass removed annually, and shifts in mineralization rates occurred despite only marginal shifts in plant community structure following plant species removal. Our results present a surprisingly simple and consistent pattern of belowground response to the loss of dominant plant species across an elevational gradient with different climatic and edaphic properties, suggesting a common response of belowground ecosystem function to plant species loss regardless of which plant species are lost or the broader climatic context.
Collapse
Affiliation(s)
- Kenna E Rewcastle
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr., Burlington, Vermont, 05405, USA.,Gund Institute for Environment, University of Vermont, 210 Colchester Ave., Burlington, Vermont, 05405, USA.,Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA
| | - Jeremiah A Henning
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Biology, University of South Alabama, 5871 USA Dr. N, Mobile, Alabama, 36688, USA
| | - Quentin D Read
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,National Socio-Environmental Synthesis Center (SESYNC), 1 Park Pl., Annapolis, Maryland, 21401, USA
| | - Rebecca E Irwin
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Applied Ecology, North Carolina State University, Campus Box 7617, Raleigh, North Carolina, 27695, USA
| | - Nathan J Sanders
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave., Ann Arbor, Michigan, 48109, USA
| | - Aimée T Classen
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave., Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
15
|
Jaiswal D, Pandey U, Mishra V, Pandey J. Integrating resilience with functional ecosystem measures: A novel paradigm for management decisions under multiple-stressor interplay in freshwater ecosystems. GLOBAL CHANGE BIOLOGY 2021; 27:3699-3717. [PMID: 33915017 DOI: 10.1111/gcb.15662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Moving beyond monitoring the state of water quality to understanding how the sensitive ecosystems "respond" to complex interplay of climatic and anthropogenic perturbations, and eventually the mechanisms that underpin alterations leading to transitional shifts is crucial for managing freshwater resources. The multiple disturbance dynamics-a single disturbance as opposed to multiple disturbances for recovery and other atrocities-alter aquatic ecosystem in multiple ways, yet the global models lack representation of key processes and feedbacks, impeding potential management decisions. Here, the procedure we have embarked for what is known about the biogeochemical and ecological functions in freshwaters in context of ecosystem resilience, feedbacks, stressors synergies, and compensatory dynamics, is highly relevant for process-based ecosystem models and for developing a novel paradigm toward potential management decisions. This review advocates the need for a more aggressive approach with improved understanding of changes in key ecosystem processes and mechanistic links thereof, regulating resilience and compensatory dynamics concordant with climate and anthropogenic perturbations across a wide range of spatio-temporal scales. This has relevance contexting climate change and anthropogenic pressures for developing proactive and adaptive management strategies for safeguarding freshwater resources and services they provide.
Collapse
Affiliation(s)
- Deepa Jaiswal
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Usha Pandey
- Department of Botany, Faculty of Science and Technology, Mahatma Gandhi Kashividyapith University, Varanasi, India
| | - Vibha Mishra
- Department of Chemistry, Maulana Azad Institute of Humanity, Science and Technology, Sitapur, India
| | - Jitendra Pandey
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
16
|
Thakur MP, van der Putten WH, Wilschut RA, Veen GFC, Kardol P, van Ruijven J, Allan E, Roscher C, van Kleunen M, Bezemer TM. Plant-Soil Feedbacks and Temporal Dynamics of Plant Diversity-Productivity Relationships. Trends Ecol Evol 2021; 36:651-661. [PMID: 33888322 DOI: 10.1016/j.tree.2021.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Plant-soil feedback (PSF) and diversity-productivity relationships are important research fields to study drivers and consequences of changes in plant biodiversity. While studies suggest that positive plant diversity-productivity relationships can be explained by variation in PSF in diverse plant communities, key questions on their temporal relationships remain. Here, we discuss three processes that change PSF over time in diverse plant communities, and their effects on temporal dynamics of diversity-productivity relationships: spatial redistribution and changes in dominance of plant species; phenotypic shifts in plant traits; and dilution of soil pathogens and increase in soil mutualists. Disentangling these processes in plant diversity experiments will yield new insights into how plant diversity-productivity relationships change over time.
Collapse
Affiliation(s)
- Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Rutger A Wilschut
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Christiane Roscher
- Helmholtz Centre for Environmental Research, Physiological Diversity - UFZ, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands; Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, 2300, RA, Leiden, The Netherlands
| |
Collapse
|
17
|
Ellis CJ, Asplund J, Benesperi R, Branquinho C, Di Nuzzo L, Hurtado P, Martínez I, Matos P, Nascimbene J, Pinho P, Prieto M, Rocha B, Rodríguez-Arribas C, Thüs H, Giordani P. Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity. Microorganisms 2021; 9:766. [PMID: 33917569 PMCID: PMC8067525 DOI: 10.3390/microorganisms9040766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 01/29/2023] Open
Abstract
Community ecology has experienced a major transition, from a focus on patterns in taxonomic composition, to revealing the processes underlying community assembly through the analysis of species functional traits. The power of the functional trait approach is its generality, predictive capacity such as with respect to environmental change, and, through linkage of response and effect traits, the synthesis of community assembly with ecosystem function and services. Lichens are a potentially rich source of information about how traits govern community structure and function, thereby creating opportunity to better integrate lichens into 'mainstream' ecological studies, while lichen ecology and conservation can also benefit from using the trait approach as an investigative tool. This paper brings together a range of author perspectives to review the use of traits in lichenology, particularly with respect to European ecosystems from the Mediterranean to the Arctic-Alpine. It emphasizes the types of traits that lichenologists have used in their studies, both response and effect, the bundling of traits towards the evolution of life-history strategies, and the critical importance of scale (both spatial and temporal) in functional trait ecology.
Collapse
Affiliation(s)
| | - Johan Asplund
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 5003 NO-1432 Ås, Norway;
| | - Renato Benesperi
- Dipartimento di Biologia, Università di Firenze, Via la Pira, 450121 Florence, Italy; (R.B.); (L.D.N.)
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisboa, Portugal; (C.B.); (P.P.); (B.R.)
| | - Luca Di Nuzzo
- Dipartimento di Biologia, Università di Firenze, Via la Pira, 450121 Florence, Italy; (R.B.); (L.D.N.)
| | - Pilar Hurtado
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Spain; (P.H.); (I.M.); marí (M.P.); (C.R.-A.)
- Departamento de Biología (Botánica), Universidad Autónoma de Madrid, c/Darwin, 2, 28049 Madrid, Spain
| | - Isabel Martínez
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Spain; (P.H.); (I.M.); marí (M.P.); (C.R.-A.)
| | - Paula Matos
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Juri Nascimbene
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum, University of Bologna, I-40126 Bologna, Italy;
| | - Pedro Pinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisboa, Portugal; (C.B.); (P.P.); (B.R.)
| | - María Prieto
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Spain; (P.H.); (I.M.); marí (M.P.); (C.R.-A.)
| | - Bernardo Rocha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisboa, Portugal; (C.B.); (P.P.); (B.R.)
| | - Clara Rodríguez-Arribas
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Spain; (P.H.); (I.M.); marí (M.P.); (C.R.-A.)
| | - Holger Thüs
- Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany;
| | - Paolo Giordani
- DIFAR, University of Genova, Viale Cembrano, 4, I-16148 Genova, Italy;
| |
Collapse
|
18
|
Roy J, Rineau F, De Boeck HJ, Nijs I, Pütz T, Abiven S, Arnone JA, Barton CVM, Beenaerts N, Brüggemann N, Dainese M, Domisch T, Eisenhauer N, Garré S, Gebler A, Ghirardo A, Jasoni RL, Kowalchuk G, Landais D, Larsen SH, Leemans V, Le Galliard J, Longdoz B, Massol F, Mikkelsen TN, Niedrist G, Piel C, Ravel O, Sauze J, Schmidt A, Schnitzler J, Teixeira LH, Tjoelker MG, Weisser WW, Winkler B, Milcu A. Ecotrons: Powerful and versatile ecosystem analysers for ecology, agronomy and environmental science. GLOBAL CHANGE BIOLOGY 2021; 27:1387-1407. [PMID: 33274502 PMCID: PMC7986626 DOI: 10.1111/gcb.15471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 05/08/2023]
Abstract
Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.
Collapse
|
19
|
Coutinho JGE, Hipólito J, Santos RLS, Moreira EF, Boscolo D, Viana BF. Landscape Structure Is a Major Driver of Bee Functional Diversity in Crops. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Land-use change is having a negative effect on pollinator communities, and these changes in community structure may have unexpected impacts on the functional composition of those communities. Such changes in functional composition may impact the capacity of these assemblages to deliver pollination services, affecting the reproduction of native and wild plants. However, elucidating those relationships requires studies in multiple spatial scales because effects and consequences are different considering biological groups and interactions. In that sense, by using a multi-trait approach, we evaluated whether the landscape structure and/or local environmental characteristics could explain the functional richness, divergence, and dispersion of bee communities in agroecosystems. In addition, we investigated to what extent this approach helps to predict effects on pollination services. This study was conducted in an agroecosystem situated in the Chapada Diamantina region, State of Bahia, Brazil. Bees were collected using two complementary techniques in 27 sample units. They were classified according to their response traits (e.g., body size, nesting location) and effect traits (e.g., means of pollen transportation, specialty in obtaining resources). The Akaike information criterion was used to select the best models created through the additive combination of landscape descriptors (landscape diversity, mean patch shape, and local vegetation structure) at the local, proximal, and broad landscape levels. Our results indicate that both landscape heterogeneity and configuration matter in explaining the three properties of bee functional diversity. We indicate that functional diversity is positively correlated with compositional and configurational heterogeneity. These results suggest that landscape and local scale management to promote functional diversity in pollinator communities may be an effective mechanism for supporting increased pollination services.
Collapse
|
20
|
Koranda M, Michelsen A. Mosses reduce soil nitrogen availability in a subarctic birch forest via effects on soil thermal regime and sequestration of deposited nitrogen. THE JOURNAL OF ECOLOGY 2021; 109:1424-1438. [PMID: 33776135 PMCID: PMC7986113 DOI: 10.1111/1365-2745.13567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/01/2020] [Indexed: 05/16/2023]
Abstract
In high-latitude ecosystems bryophytes are important drivers of ecosystem functions. Alterations in abundance of mosses due to global change may thus strongly influence carbon (C) and nitrogen (N) cycling and hence cause feedback on climate. The effects of mosses on soil microbial activity are, however, still poorly understood. Our study aims at elucidating how and by which mechanisms bryophytes influence microbial decomposition processes of soil organic matter and thus soil nutrient availability.We present results from a field experiment in a subarctic birch forest in northern Sweden, where we partly removed the moss cover and replaced it with an artificial soil cover for simulating moss effects on soil temperature and moisture. We combined this with a fertilization experiment with 15N-labelled N for analysing the effects of moss N sequestration on soil processes.Our results demonstrate the capacity of mosses to reduce soil N availability and retard N cycling. The comparison with artificial soil cover plots suggests that the effect of mosses on N cycling is linked to the thermal insulation capacity of mosses causing low average soil temperature in summer and strongly reduced soil temperature fluctuations, the latter also leading to a decreased frequency of freeze-thaw events in autumn and spring. Our results also showed, however, that the negative temperature effect of mosses on soil microbial activity was in part compensated by stimulatory effects of the moss layer, possibly linked to leaching of labile substrates from the moss. Furthermore, our results revealed that bryophytes efficiently sequester added N from wet deposition and thus prevent effects of increased atmospheric N deposition on soil N availability and soil processes. Synthesis. Our study emphasizes the important role of mosses in carbon and nutrient cycling in high-latitude ecosystems and the potential strong impacts of reductions in moss abundance on microbial decomposition processes and nutrient availability in subarctic and boreal forests.
Collapse
Affiliation(s)
- Marianne Koranda
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for PermafrostUniversity of CopenhagenCopenhagenDenmark
- Division of Terrestrial Ecosystem ResearchCentre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Anders Michelsen
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for PermafrostUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
21
|
Abella SR, Gentilcore DM, Chiquoine LP. Resilience and alternative stable states after desert wildfires. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Scott R. Abella
- School of Life Sciences University of Nevada Las Vegas Las Vegas Nevada89154‐4004USA
| | - Dominic M. Gentilcore
- School of Life Sciences University of Nevada Las Vegas Las Vegas Nevada89154‐4004USA
| | - Lindsay P. Chiquoine
- School of Life Sciences University of Nevada Las Vegas Las Vegas Nevada89154‐4004USA
| |
Collapse
|
22
|
Individual species provide multifaceted contributions to the stability of ecosystems. Nat Ecol Evol 2020; 4:1594-1601. [PMID: 33046872 DOI: 10.1038/s41559-020-01315-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/27/2020] [Indexed: 11/08/2022]
Abstract
Exploration of the relationship between species diversity and ecological stability has occupied a prominent place in ecological research for decades. Yet, a key component of this puzzle-the contributions of individual species to the overall stability of ecosystems-remains largely unknown. Here, we show that individual species simultaneously stabilize and destabilize ecosystems along different dimensions of stability, and also that their contributions to functional (biomass) and compositional stability are largely independent. By simulating experimentally the extinction of three consumer species (the limpet Patella, the periwinkle Littorina and the topshell Gibbula) from a coastal rocky shore, we found that the capacity to predict the combined contribution of species to stability from the sum of their individual contributions varied among stability dimensions. This implies that the nature of the diversity-stability relationship depends upon the dimension of stability under consideration, and may be additive, synergistic or antagonistic. We conclude that, although the profoundly multifaceted and context-dependent consequences of species loss pose a significant challenge, the predictability of cumulative species contributions to some dimensions of stability provide a way forward for ecologists trying to conserve ecosystems and manage their stability under global change.
Collapse
|
23
|
Dong L, Zeng W, Wang A, Tang J, Yao X, Wang W. Response of Soil Respiration and Its Components to Warming and Dominant Species Removal along an Elevation Gradient in Alpine Meadow of the Qinghai-Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10472-10482. [PMID: 32786592 DOI: 10.1021/acs.est.0c01545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Qinghai-Tibetan Plateau is experiencing unprecedented temperature rises and changes in plant community composition owing to global warming. Few studies focused on the combined effects of warming and changes in species composition on soil respiration (Rs). We conducted a 4-year experiment (2015-2018) to examine the influences of warming and dominant plant species removal on Rs and its autotrophic (Ra) and heterotrophic (Rh) components along an elevation gradient (3200, 3700, and 4000 m) for alpine meadow of the Qinghai-Tibetan Plateau. Results showed that warming positively affected Rs, and the stimulation of Rs gradually diminished at 3200 m but remained stable at 3700 and 4000 m as warming progressed. Warming did not influence Ra at all sites. Dominant species removal produced hysteretic behavior that decreased Ra (29%) at 3700 m but increased Ra (55%) at 4000 m in 2018. No significant effect of dominant species removal on Rh was observed. Significant interactive effects of warming and dominant species removal were detected only on Ra at 3700 and 4000 m. Accordingly, under future warming, soil organic matter decomposition at higher elevation will enhance positive feedback to atmospheric CO2 concentration more than that at lower elevation, thus accelerating soil organic carbon loss.
Collapse
Affiliation(s)
- Lizheng Dong
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Wenjing Zeng
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Ankuo Wang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Junjie Tang
- Center for Statistical Science, School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Xiaodong Yao
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Wei Wang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Six-year removal of co-dominant grasses alleviated competitive pressure on subdominant grasses but dominant shrub removal had neutral effects in a subalpine ecosystem. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Domeignoz-Horta LA, Pold G, Liu XJA, Frey SD, Melillo JM, DeAngelis KM. Microbial diversity drives carbon use efficiency in a model soil. Nat Commun 2020; 11:3684. [PMID: 32703952 PMCID: PMC7378083 DOI: 10.1038/s41467-020-17502-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/19/2020] [Indexed: 02/01/2023] Open
Abstract
Empirical evidence for the response of soil carbon cycling to the combined effects of warming, drought and diversity loss is scarce. Microbial carbon use efficiency (CUE) plays a central role in regulating the flow of carbon through soil, yet how biotic and abiotic factors interact to drive it remains unclear. Here, we combine distinct community inocula (a biotic factor) with different temperature and moisture conditions (abiotic factors) to manipulate microbial diversity and community structure within a model soil. While community composition and diversity are the strongest predictors of CUE, abiotic factors modulated the relationship between diversity and CUE, with CUE being positively correlated with bacterial diversity only under high moisture. Altogether these results indicate that the diversity × ecosystem-function relationship can be impaired under non-favorable conditions in soils, and that to understand changes in soil C cycling we need to account for the multiple facets of global changes.
Collapse
Affiliation(s)
| | - Grace Pold
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Xiao-Jun Allen Liu
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Serita D Frey
- School of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA
| | - Jerry M Melillo
- The Ecosystems Center, Marine Biological Laboratories, Woods Hole, MA, 02543, USA
| | - Kristen M DeAngelis
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
26
|
Sundqvist MK, Sanders NJ, Dorrepaal E, Lindén E, Metcalfe DB, Newman GS, Olofsson J, Wardle DA, Classen AT. Responses of tundra plant community carbon flux to experimental warming, dominant species removal and elevation. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maja K. Sundqvist
- Department of Earth Sciences University of Gothenburg Gothenburg Sweden
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
- Climate Impacts Research Centre Department of Ecology and Environmental Science Umeå University Abisko Sweden
- The Center for Macroecology, Evolution and Climate The Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Nathan J. Sanders
- The Center for Macroecology, Evolution and Climate The Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Environmental Program Rubenstein School of Environment and Natural Resources University of Vermont Burlington VT USA
- Gund Institute for Environment University of Vermont Burlington VT USA
| | - Ellen Dorrepaal
- Climate Impacts Research Centre Department of Ecology and Environmental Science Umeå University Abisko Sweden
| | - Elin Lindén
- Department of Ecology and Environmental Science Umeå University Umeå Sweden
| | - Daniel B. Metcalfe
- Department of Physical Geography and Ecosystem Science Lund University Lund Sweden
| | - Gregory S. Newman
- The Center for Macroecology, Evolution and Climate The Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Oklahoma Biological Survey The University of Oklahoma Norman Oklahoma USA
| | - Johan Olofsson
- Department of Ecology and Environmental Science Umeå University Umeå Sweden
| | - David A. Wardle
- Asian School of the Environment Nanyang Technological University Singapore
| | - Aimée T. Classen
- The Center for Macroecology, Evolution and Climate The Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Gund Institute for Environment University of Vermont Burlington VT USA
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington VT USA
| |
Collapse
|
27
|
Hillman JR, Stephenson F, Thrush SF, Lundquist CJ. Investigating changes in estuarine ecosystem functioning under future scenarios. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02090. [PMID: 32022961 DOI: 10.1002/eap.2090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Estuaries are subject to disturbance by land-based sediment and nutrient inputs, resulting in changes to the ecosystems and the functions and services that they support. Spatial mapping tools that identify how functional hotspots in the estuary may shift in location and intensity under different disturbance scenarios highlight to managers the trajectory of change and the value of active management and restoration, but to date these tools are only available in the most intensively researched ecosystems. Using empirical data derived from long-term monitoring and multi-habitat field experiments we developed future scenarios representing different impacts of environmental degradation on estuarine ecosystem functions that are important for supporting ecosystem services. We used the spatial prioritization software Zonation in a novel fashion to assess effects of different disturbance scenarios on critical soft-sediment ecosystem processes (nutrient fluxes and sediment erodibility measures) that are influenced by macrofaunal communities and local environment conditions. We compared estimates of current conditions with three scenarios linked to changes in land-use and resulting downstream impacts on estuarine ecosystems to determine how disturbance influences the distribution of high value areas for ecosystem function. Scenarios investigated the implications of habitat degradation associated with sediment deposition and declines in large sediment-dwelling animal abundance whose behavior has important influences on ecosystem function. Our analyses demonstrate decreases in the majority of ecosystem processes under scenarios associated with disturbances. These results suggest that it is important to restore biodiversity and ecosystem function and that the application of Zonation in this context offers a simple, rapid and cost-effective way of identifying priority actions and locations for restoration, and how these shift due to multiple impacts.
Collapse
Affiliation(s)
- Jenny R Hillman
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Fabrice Stephenson
- National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton, 3251, New Zealand
| | - Simon F Thrush
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Carolyn J Lundquist
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton, 3251, New Zealand
| |
Collapse
|
28
|
Graminoid Removal Reduces the Increase in N2O Fluxes Due to Nitrogen Fertilization in a Boreal Peatland. Ecosystems 2020. [DOI: 10.1007/s10021-020-00516-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Huang M, Liu X, Cadotte MW, Zhou S. Functional and phylogenetic diversity explain different components of diversity effects on biomass production. OIKOS 2020. [DOI: 10.1111/oik.07032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mengjiao Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Shanghai Inst. of Eco‐Chongming (SIEC), and School of Life Sciences, Fudan Univ. 2005 Songhu Road CN‐200438 Shanghai PR China
| | - Xiang Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Shanghai Inst. of Eco‐Chongming (SIEC), and School of Life Sciences, Fudan Univ. 2005 Songhu Road CN‐200438 Shanghai PR China
| | - Marc W. Cadotte
- Dept of Biological Sciences, Univ. of Toronto‐Scarborough, Toronto, ON, Canada, and: Ecology and Evolutionary Biology, Univ. of Toronto Toronto ON Canada
| | - Shurong Zhou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Shanghai Inst. of Eco‐Chongming (SIEC), and School of Life Sciences, Fudan Univ. 2005 Songhu Road CN‐200438 Shanghai PR China
| |
Collapse
|
30
|
Šmilauer P, Šmilauerová M, Kotilínek M, Košnar J. Foraging speed and precision of arbuscular mycorrhizal fungi under field conditions: An experimental approach. Mol Ecol 2020; 29:1574-1587. [DOI: 10.1111/mec.15425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Petr Šmilauer
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Marie Šmilauerová
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Milan Kotilínek
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Jiří Košnar
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| |
Collapse
|
31
|
Jerrentrup JS, Komainda M, Seither M, Cuchillo-Hilario M, Wrage-Mönnig N, Isselstein J. Diverse Swards and Mixed-Grazing of Cattle and Sheep for Improved Productivity. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2019.00125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Šmilauer P, Košnar J, Kotilínek M, Šmilauerová M. Contrasting effects of host identity, plant community, and local species pool on the composition and colonization levels of arbuscular mycorrhizal fungal community in a temperate grassland. THE NEW PHYTOLOGIST 2020; 225:461-473. [PMID: 31408907 DOI: 10.1111/nph.16112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMFs) are important plant symbionts, but we know little about the effects of plant taxonomic identity or functional group on the AMF community composition. To examine the effects of the surrounding plant community, of the host, and of the AMF pool on the AMF community in plant roots, we manipulated plant community composition in a long-term field experiment. Within four types of manipulated grassland plots, seedlings of eight grassland plant species were planted for 12 wk, and AMFs in their roots were quantified. Additionally, we characterized the AMF community of individual plots (as their AMF pool) and quantified plot abiotic conditions. The largest determinant of AMF community composition was the pool of available AMFs, varying at metre scale due to changing soil conditions. The second strongest predictor was the host functional group. The differences between grasses and dicotyledonous forbs in AMF community variation and diversity were much larger than the differences among species within those groups. High cover of forbs in the surrounding plant community had a strong positive effect on AMF colonization intensity in grass hosts. Using a manipulative field experiment enabled us to demonstrate direct causal effects of plant host and surrounding vegetation.
Collapse
Affiliation(s)
- Petr Šmilauer
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Jiří Košnar
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Milan Kotilínek
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Marie Šmilauerová
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
33
|
|
34
|
Avolio ML, Forrestel EJ, Chang CC, La Pierre KJ, Burghardt KT, Smith MD. Demystifying dominant species. THE NEW PHYTOLOGIST 2019; 223:1106-1126. [PMID: 30868589 DOI: 10.1111/nph.15789] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 02/17/2019] [Indexed: 05/25/2023]
Abstract
The pattern of a few abundant species and many rarer species is a defining characteristic of communities worldwide. These abundant species are often referred to as dominant species. Yet, despite their importance, the term dominant species is poorly defined and often used to convey different information by different authors. Based on a review of historical and contemporary definitions we develop a synthetic definition of dominant species. This definition incorporates the relative local abundance of a species, its ubiquity across the landscape, and its impact on community and ecosystem properties. A meta-analysis of removal studies shows that the loss of species identified as dominant by authors can significantly impact ecosystem functioning and community structure. We recommend two metrics that can be used jointly to identify dominant species in a given community and provide a roadmap for future avenues of research on dominant species. In our review, we make the case that the identity and effects of dominant species on their environments are key to linking patterns of diversity to ecosystem function, including predicting impacts of species loss and other aspects of global change on ecosystems.
Collapse
Affiliation(s)
- Meghan L Avolio
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, 21211, USA
| | - Elisabeth J Forrestel
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Cynthia C Chang
- Division of Biology, University of Washington Bothell, 18807 Beardslee Blvd, Bothell, WA, 98011, USA
| | - Kimberly J La Pierre
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD, 21037, USA
| | - Karin T Burghardt
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Melinda D Smith
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
35
|
Stavert JR, Bartomeus I, Beggs JR, Gaskett AC, Pattemore DE. Plant species dominance increases pollination complementarity and plant reproductive function. Ecology 2019; 100:e02749. [PMID: 31339564 DOI: 10.1002/ecy.2749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 11/09/2022]
Abstract
Worldwide, anthropogenic change is causing biodiversity loss, disrupting many critical ecosystem functions. Most studies investigating the relationship between biodiversity and ecosystem functioning focus on species richness, predominantly within the context of productivity-related functions. Consequently, there is limited understanding of how other biodiversity measures, such as species evenness (the distribution of abundance among species), affect complex multitrophic functions such as pollination. We explore the effect of species evenness on the ecosystem function of pollination using a controlled experiment with selected plants and insects in flight cages. We manipulated the relative abundances of plant and pollinator species, while holding species richness, composition, dominance order, and total abundance constant. Then, we tested how numerical species evenness affected network structure and consequently, seed production, in our artificial communities. Contrary to our expectation, numerical dominance in plant communities increased complementarity in pollinator use (reduced pollinator sharing) among plant species. As predicted by theory, this increased complementarity resulted in higher seed production for the most dominant and rare plant species in our cages. Our results show that in a controlled experimental setting, numerical species evenness can alter important aspects of plant-pollinator networks and plant reproduction, irrespective of species richness, composition, and total abundance. Extending this understanding of how species evenness affects ecosystem functioning to natural systems is crucial as anthropogenic disturbances continue to alter species' abundances, likely disrupting ecosystem functions long before extinctions occur.
Collapse
Affiliation(s)
- Jamie R Stavert
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,School of Environmental and Rural Science, University of New England (UNE), Armidale, New South Wales, Australia
| | - Ignasi Bartomeus
- Integrative Ecology Department, Estación Biológica de Doñana (EBD-CSIC), Avenida Américo Vespucio 26, Isla de la Cartuja, Sevilla, E-41092, Spain
| | - Jacqueline R Beggs
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Anne C Gaskett
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - David E Pattemore
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,The New Zealand Institute for Plant & Food Research Limited, Hamilton, New Zealand
| |
Collapse
|
36
|
Eisenhauer N, Schielzeth H, Barnes AD, Barry K, Bonn A, Brose U, Bruelheide H, Buchmann N, Buscot F, Ebeling A, Ferlian O, Freschet GT, Giling DP, Hättenschwiler S, Hillebrand H, Hines J, Isbell F, Koller-France E, König-Ries B, de Kroon H, Meyer ST, Milcu A, Müller J, Nock CA, Petermann JS, Roscher C, Scherber C, Scherer-Lorenzen M, Schmid B, Schnitzer SA, Schuldt A, Tscharntke T, Türke M, van Dam NM, van der Plas F, Vogel A, Wagg C, Wardle DA, Weigelt A, Weisser WW, Wirth C, Jochum M. A multitrophic perspective on biodiversity-ecosystem functioning research. ADV ECOL RES 2019; 61:1-54. [PMID: 31908360 PMCID: PMC6944504 DOI: 10.1016/bs.aecr.2019.06.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Concern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon. In this paper, we argue that a multitrophic perspective of biotic interactions in random and non-random biodiversity change scenarios is key to advance future BEF research and to address some of its most important remaining challenges. We discuss that the study and the quantification of multitrophic interactions in space and time facilitates scaling up from small-scale biodiversity manipulations and ecosystem function assessments to management-relevant spatial scales across ecosystem boundaries. We specifically consider multitrophic conceptual frameworks to understand and predict the context-dependency of BEF relationships. Moreover, we highlight the importance of the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that FAIR data (meeting the standards of findability, accessibility, interoperability, and reusability) and reproducible processing will be key to advance this field of research by making it more integrative. Finally, we show how these BEF insights may be implemented for ecosystem management, society, and policy. Given that human well-being critically depends on the multiple services provided by diverse, multitrophic communities, integrating the approaches of evolutionary ecology, community ecology, and ecosystem ecology in future BEF research will be key to refine conservation targets and develop sustainable management strategies.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Holger Schielzeth
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Andrew D Barnes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Kathryn Barry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- EcoNetLab, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitätstr. 2, 8092 Zurich, Switzerland
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Soil Ecology Department, Theodor-Lieser-Straße 4, 06120 Halle Saale, Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Grégoire T Freschet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Darren P Giling
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Stephan Hättenschwiler
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Helmut Hillebrand
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute for Chemistry and Biology of Marine Environments [ICBM], Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | - Eva Koller-France
- Karlsruher Institut für Technologie (KIT), Institut für Geographie und Geoökologie, Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany
| | - Birgitta König-Ries
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Computer Science, Friedrich Schiller Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Hans de Kroon
- Radboud University, Institute for Water and Wetland Research, Animal Ecology and Physiology & Experimental Plant Ecology, PO Box 9100, 6500 GL Nijmegen, The Netherlands
| | - Sebastian T Meyer
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Alexandru Milcu
- Ecotron Européen de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Service 3248, Campus Baillarguet, Montferrier-sur-Lez, France
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, Freyunger Str. 2, 94481 Grafenau, Germany
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
- Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Canada, T6G 2H1
| | - Jana S Petermann
- Department of Biosciences, University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Department Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Christoph Scherber
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
| | - Michael Scherer-Lorenzen
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | | | - Andreas Schuldt
- Forest Nature Conservation, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Buesgenweg 3, 37077 Goettingen, Germany
| | - Teja Tscharntke
- Agroecology, Dept. of Crop Sciences, University of Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Germany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München (HMGU) - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Fons van der Plas
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Anja Vogel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Cameron Wagg
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, E3B 8B7, Fredericton, Canada
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | - David A Wardle
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
37
|
Kéfi S, Domínguez‐García V, Donohue I, Fontaine C, Thébault E, Dakos V. Advancing our understanding of ecological stability. Ecol Lett 2019; 22:1349-1356. [DOI: 10.1111/ele.13340] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, EPHE, IRD Montpellier France
| | | | - Ian Donohue
- Department of Zoology, School of Natural Sciences Trinity College Dublin Dublin 2 Ireland
| | | | - Elisa Thébault
- CNRS, Sorbonne Université, Institute of Ecology and Environmental Sciences of Paris Paris 75005 France
| | - Vasilis Dakos
- ISEM, CNRS, Univ. Montpellier, EPHE, IRD Montpellier France
| |
Collapse
|
38
|
Tan B, Yang F, Lan L, You C, Zhang J, Xu Z, Liu Y, Zhang L, Li H. Naphthalene exerts substantial nontarget effects on soil nitrogen mineralization processes in a subalpine forest soil: A microcosm study. PLoS One 2019; 14:e0217178. [PMID: 31107923 PMCID: PMC6527233 DOI: 10.1371/journal.pone.0217178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/06/2019] [Indexed: 11/18/2022] Open
Abstract
Naphthalene has been widely used to test the functional roles of soil fauna, but its nontarget effects remain uncertain in various soils. To determine whether there is a potential nontarget effect on soil biochemical properties in subalpine forest soil, soils in a subalpine forest on the western Qinghai-Tibet Plateau were treated by naphthalene in microcosms. The responses of soil microbial activity and nutrients to naphthalene were studied following 52 days of incubation. The results showed that the naphthalene application obviously decreased the microbial respiration rate in the first 10 days of the incubation and then increased the rate in the following days of the incubation. Moreover, the naphthalene application did not significantly affect the microbial activities overall, measured as soil microbial phospholipid fatty acid (PLFA) abundances and biomasses, or most enzyme activities (invertase, nitrate reductase and nitrite reductase) during the whole incubation period. However, naphthalene suppressed increases in the DON, NH4+-N and NO3--N contents and urease activity and led to the net mineralization of inorganic N (NH4+-N + NO3--N), in contrast to the net immobilization result in the controls. These results suggest that naphthalene can exert direct nontarget effects on soil microbial respiration and N mineralization processes in subalpine soils. Caution should be taken when using naphthalene to repel soil animals in field experiments.
Collapse
Affiliation(s)
- Bo Tan
- Institute of Ecology & Forestry, Sichuan Agricultural University, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Alpine Forest Ecosystem Research Station, Soil and Water Conservation and Desertification Control Key Laboratory of Sichuan Province, Chengdu, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu, China
- * E-mail:
| | - Fan Yang
- Institute of Ecology & Forestry, Sichuan Agricultural University, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Alpine Forest Ecosystem Research Station, Soil and Water Conservation and Desertification Control Key Laboratory of Sichuan Province, Chengdu, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu, China
| | - Liying Lan
- Institute of Ecology & Forestry, Sichuan Agricultural University, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Alpine Forest Ecosystem Research Station, Soil and Water Conservation and Desertification Control Key Laboratory of Sichuan Province, Chengdu, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu, China
| | - Chengming You
- Institute of Ecology & Forestry, Sichuan Agricultural University, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Alpine Forest Ecosystem Research Station, Soil and Water Conservation and Desertification Control Key Laboratory of Sichuan Province, Chengdu, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu, China
| | - Jian Zhang
- Institute of Ecology & Forestry, Sichuan Agricultural University, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Alpine Forest Ecosystem Research Station, Soil and Water Conservation and Desertification Control Key Laboratory of Sichuan Province, Chengdu, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu, China
| | - Zhenfeng Xu
- Institute of Ecology & Forestry, Sichuan Agricultural University, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Alpine Forest Ecosystem Research Station, Soil and Water Conservation and Desertification Control Key Laboratory of Sichuan Province, Chengdu, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu, China
| | - Yang Liu
- Institute of Ecology & Forestry, Sichuan Agricultural University, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Alpine Forest Ecosystem Research Station, Soil and Water Conservation and Desertification Control Key Laboratory of Sichuan Province, Chengdu, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu, China
| | - Li Zhang
- Institute of Ecology & Forestry, Sichuan Agricultural University, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Alpine Forest Ecosystem Research Station, Soil and Water Conservation and Desertification Control Key Laboratory of Sichuan Province, Chengdu, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu, China
| | - Han Li
- Institute of Ecology & Forestry, Sichuan Agricultural University, Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Alpine Forest Ecosystem Research Station, Soil and Water Conservation and Desertification Control Key Laboratory of Sichuan Province, Chengdu, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu, China
| |
Collapse
|
39
|
Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. ADV ECOL RES 2019. [DOI: 10.1016/bs.aecr.2019.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
40
|
Abstract
The concept of forest degradation tends to be addressed in broad terms, and existing definitions are difficult to apply in practice. These definitions are based on a reduction in the production of ecosystem goods and services, but fail to address how, when and to what degree this reduction—which ultimately leads to degradation of a forest—occurs. Generally speaking, degradation is the result of a progressive decline in the structure, composition and functions upon which the vigor and RESILIENCE of a forest is based. A degraded forest is one whose structure, function, species composition, or productivity have been severely modified or permanently lost as a result of damaging human activities. So far, no guidelines have been developed for classification and evaluation of a degraded forest at the stand level, nor are there methodologies for assessing the degree of degradation found. The present work proposes stand-level guidelines for identification of a degraded forest according to a list of structural, compositional and regeneration criteria and characteristics. Emphasis is put on the need for local definitions of forest degradation, and identification of thresholds that determine the points where the processes of degradation finalize into degraded forests. Finally, the present work makes a call to move forwards in sustainable management in order to prevent degradation, and in implementation of restoration or rehabilitation practices in degraded forests.
Collapse
|
41
|
LaPlante E, Souza L. Plant dominance in a subalpine montane meadow: biotic vs. abiotic controls of subordinate diversity within and across sites. PeerJ 2018; 6:e5619. [PMID: 30258717 PMCID: PMC6152469 DOI: 10.7717/peerj.5619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/18/2018] [Indexed: 11/26/2022] Open
Abstract
Background Understanding the underlying factors that determine the relative abundance of plant species is critical to predict both biodiversity and ecosystem function. Biotic and abiotic factors can shape the distribution and the relative abundance of species across natural communities, greatly influencing local biodiversity. Methods Using a combination of an observational study and a five-year plant removal experiment we: (1) documented how plant diversity and composition of montane meadow assemblages vary along a plant dominance gradient using an observational study; (2) tracked above- and belowground functional traits of co-dominant plant species Potentilla and Festuca along a plant dominance gradient in an observational study; (3) determined whether plant species diversity and composition was directly influenced by commonly occurring species Potentilla and Festuca with the use of a randomized plot design, 5-year plant removal experiment (no removal control, Potentilla removed, Festuca removed, n = 10). Results We found that subordinate species diversity and compositional dissimilarity were greatest in Potentilla and Festuca co-dominated sites, where neither Potentilla nor Festuca dominated, rather than at sites where either species became dominant. Further, while above- and belowground plant functional traits varied along a dominance gradient, they did so in a way that inconsistently predicted plant species relative abundance. Also, neither variation in plant functional traits of Festuca and Potentilla nor variation in resources and conditions (such as soil nitrogen and temperature) explained our subordinate diversity patterns. Finally, neither Potentilla nor Festuca influenced subordinate diversity or composition when we directly tested for their impacts in a plant removal experiment. Discussion Taken together, patterns of subordinate diversity and composition were likely driven by abiotic factors rather than biotic interactions. As a result, the role of abiotic factors influencing local-level species interactions can be just as important as biotic interactions themselves in structuring plant communities.
Collapse
Affiliation(s)
- Erika LaPlante
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America.,Department of Integrative Biology, University of Californnia Berkeley, Berkeley, CA, United States of America
| | - Lara Souza
- Oklahoma Biological Survey & Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States of America
| |
Collapse
|
42
|
Pan Q, Tian D, Naeem S, Auerswald K, Elser JJ, Bai Y, Huang J, Wang Q, Wang H, Wu J, Han X. Effects of functional diversity loss on ecosystem functions are influenced by compensation. Ecology 2018; 97:2293-2302. [PMID: 27859077 DOI: 10.1002/ecy.1460] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/10/2016] [Accepted: 04/11/2016] [Indexed: 11/08/2022]
Abstract
Understanding the impacts of biodiversity loss on ecosystem functioning and services has been a central issue in ecology. Experiments in synthetic communities suggest that biodiversity loss may erode a set of ecosystem functions, but studies in natural communities indicate that the effects of biodiversity loss are usually weak and that multiple functions can be sustained by relatively few species. Yet, the mechanisms by which natural ecosystems are able to maintain multiple functions in the face of diversity loss remain poorly understood. With a long-term and large-scale removal experiment in the Inner Mongolian grassland, here we showed that losses of plant functional groups (PFGs) can reduce multiple ecosystem functions, including biomass production, soil NO3 -N use, net ecosystem carbon exchange, gross ecosystem productivity, and ecosystem respiration, but the magnitudes of these effects depended largely on which PFGs were removed. Removing the two dominant PFGs (perennial rhizomatous grasses and perennial bunchgrasses) simultaneously resulted in dramatic declines in all examined functions, but such declines were circumvented when either dominant PFG was present. We identify the major mechanism for this as a compensation effect by which each dominant PFG can mitigate the losses of others. This study provides evidence that compensation ensuing from PFG losses can mitigate their negative consequence, and thus natural communities may be more resilient to biodiversity loss than currently thought if the remaining PFGs have strong compensation capabilities. On the other hand, ecosystems without well-developed compensatory functional diversity may be much more vulnerable to biodiversity loss.
Collapse
Affiliation(s)
- Qingmin Pan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, 100093, Beijing, China
| | - Dashuan Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, 100093, Beijing, China.,Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, 100101, Beijing, China
| | - Shahid Naeem
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, Schermerhorn Extension, New York, New York, 10027, USA
| | - Karl Auerswald
- Lehrstuhl für Grünlandlehre, Department of Plant Science, Technische Universität München, Alte Akademie 12, 85350, Freising-Weihenstephan, Germany
| | - James J Elser
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, 100093, Beijing, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, 100093, Beijing, China
| | - Qibing Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, 100093, Beijing, China
| | - Hong Wang
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Box 1030, Swift Current, Saskatchewan, S9H 3X2, Canada
| | - Jianguo Wu
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, 100093, Beijing, China.,State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, The Chinese Academy of Sciences, 110016, Shenyang, China
| |
Collapse
|
43
|
Laan A, de Polavieja GG. Species diversity rises exponentially with the number of available resources in a multi-trait competition model. Proc Biol Sci 2018; 285:20181273. [PMID: 30158308 PMCID: PMC6125918 DOI: 10.1098/rspb.2018.1273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/06/2018] [Indexed: 11/12/2022] Open
Abstract
Theoretical studies of ecosystem models have generally concluded that large numbers of species will not stably coexist if the species are all competing for the same limited set of resources. Here, we describe a simple multi-trait model of competition where the presence of N resources will lead to the stable coexistence of up to 2 N species. Our model also predicts that the long-term dynamics of the population will lie on a neutral attractor hyperplane. When the population shifts within the hyperplane, its dynamics will behave neutrally, while shifts which occur perpendicular to the hyperplane will be subject to restoring forces. This provides a potential explanation of why complex ecosystems might exhibit both niche-like and neutral responses to perturbations. Like the neutral theory of biodiversity, our model generates good fits to species abundance distributions in several datasets but does so without needing to evoke inter-generational stochastic effects, continuous species creation or immigration dynamics. Additionally, our model is able to explain species abundance correlations between independent but similar ecosystems separated by more than 1400 km inside the Amazonian forests.
Collapse
Affiliation(s)
- Andres Laan
- Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
44
|
Karczewski K, Göbel P, Meyer EI. Do composition and diversity of bacterial communities and abiotic conditions of spring water reflect characteristics of groundwater ecosystems exposed to different agricultural activities? Microbiologyopen 2018; 8:e00681. [PMID: 30006971 PMCID: PMC6460265 DOI: 10.1002/mbo3.681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 01/21/2023] Open
Abstract
Modern agricultural practices have undeniably increased global food production. On the other hand, agricultural practices not only lead to a degradation of natural ecosystems but also affect the functioning of ecosystems and the related services they provide. Even though impacts of anthropogenic activities vary across ecosystems, freshwater ecosystems are among those affected to a higher degree. In comparison to surface water ecosystems, groundwater ecosystems are less affected by anthropogenic pollutants, as the overlaying soil retains organic and inorganic substances. However, it has become evident that the excessive use of fertilizers has led to the eutrophication of many aquifers. Bacterial communities, which significantly contribute to the cycling of matter due to their metabolic capacities, are prone to environmental perturbations, and structural variation of bacterial communities may consequently affect the functioning of groundwater ecosystems. Our present paper intends to evaluate the impact of anthropogenic activities on environmental conditions as well as on the structural properties of bacterial communities in groundwater. We repeatedly sampled emerging groundwater at five spring sites belonging to different catchments and determined the concentration of abiotic variables as well as the diversity and composition of bacterial communities on a local scale. We hypothesized that anthropogenic activities influence the concentration of abiotic variables, especially of nitrate, as well as the composition and diversity of bacterial communities in groundwater. Our results show that underground spring catchment areas only slightly differ regarding the concentration of abiotic variables as well as the structure of bacterial communities. Furthermore, abiotic variables, presumably influenced by anthropogenic activities, do not correlate with the diversity and composition of bacterial communities. Although supported only by circumstantial evidence, we suggest that upwelling groundwater from the deeper aquifer affects the diversity and composition of bacterial communities, and we argue that bacterial communities act as useful indicators for environmental changes.
Collapse
Affiliation(s)
- Karsten Karczewski
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Patricia Göbel
- Institute of Geology and Palaeontology, University of Münster, Münster, Germany
| | - Elisabeth I Meyer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
45
|
Long-term effects of species loss on community properties across contrasting ecosystems. Nature 2018; 557:710-713. [PMID: 29795345 DOI: 10.1038/s41586-018-0138-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/16/2018] [Indexed: 11/08/2022]
Abstract
Biodiversity loss can heavily affect the functioning of ecosystems, and improving our understanding of how ecosystems respond to biodiversity decline is one of the main challenges in ecology1-4. Several important aspects of the longer-term effects of biodiversity loss on ecosystems remain unresolved, including how these effects depend on environmental context5-7. Here we analyse data from an across-ecosystem biodiversity manipulation experiment that, to our knowledge, represents the world's longest-running experiment of this type. This experiment has been set up on 30 lake islands in Sweden that vary considerably in productivity and soil fertility owing to differences in fire history8,9. We tested the effects of environmental context on how plant species loss affected two fundamental community attributes-plant community biomass and temporal variability-over 20 years. In contrast to findings from artificially assembled communities10-12, we found that the effects of species loss on community biomass decreased over time; this decrease was strongest on the least productive and least fertile islands. Species loss generally also increased temporal variability, and these effects were greatest on the most productive and most fertile islands. Our findings highlight that the ecosystem-level consequences of biodiversity loss are not constant across ecosystems and that understanding and forecasting these consequences necessitates taking into account the overarching role of environmental context.
Collapse
|
46
|
Fanin N, Gundale MJ, Farrell M, Ciobanu M, Baldock JA, Nilsson MC, Kardol P, Wardle DA. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat Ecol Evol 2017; 2:269-278. [PMID: 29255299 DOI: 10.1038/s41559-017-0415-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/15/2017] [Indexed: 01/07/2023]
Abstract
Understanding how loss of biodiversity affects ecosystem functioning, and thus the delivery of ecosystem goods and services, has become increasingly necessary in a changing world. Considerable recent attention has focused on predicting how biodiversity loss simultaneously impacts multiple ecosystem functions (that is, ecosystem multifunctionality), but the ways in which these effects vary across ecosystems remain unclear. Here, we report the results of two 19-year plant diversity manipulation experiments, each established across a strong environmental gradient. Although the effects of plant and associated fungal diversity loss on individual functions frequently differed among ecosystems, the consequences of biodiversity loss for multifunctionality were relatively invariant. However, the context-dependency of biodiversity effects also worked in opposing directions for different individual functions, meaning that similar multifunctionality values across contrasting ecosystems could potentially mask important differences in the effects of biodiversity on functioning among ecosystems. Our findings highlight that an understanding of the relative contribution of species or functional groups to individual ecosystem functions among contrasting ecosystems and their interactions (that is, complementarity versus competition) is critical for guiding management efforts aimed at maintaining ecosystem multifunctionality and the delivery of multiple ecosystem services.
Collapse
Affiliation(s)
- Nicolas Fanin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden. .,Institut National de la Recherche Agronomique, UMR 1391 Interaction Soil Plant Atmosphere, Bordeaux Sciences Agro, 71 Avenue Edouard Bourlaux, Villenave-d'Ornon, France.
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mark Farrell
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, South Australia, Australia
| | - Marcel Ciobanu
- Institute of Biological Research, Republicii Street 48, Cluj-Napoca, Romania
| | - Jeff A Baldock
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, South Australia, Australia
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David A Wardle
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.,Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore
| |
Collapse
|
47
|
D'Antonio CM, Ostertag R, Cordell S, Yelenik S. Interactions Among Invasive Plants: Lessons from Hawai‘i. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022620] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most ecosystems have multiple-plant invaders rather than single-plant invaders, yet ecological studies and management actions focus largely on single invader species. There is a need for general principles regarding invader interactions across varying environmental conditions, so that secondary invasions can be anticipated and managers can allocate resources toward pretreatment or postremoval actions. By reviewing removal experiments conducted in three Hawaiian ecosystems (a dry tropical forest, a seasonally dry mesic forest, and a lowland wet forest), we evaluate the roles environmental harshness, priority effects, productivity potential, and species interactions have in influencing secondary invasions, defined here as invasions that are influenced either positively (facilitation) or negatively (inhibition/priority effects) by existing invaders. We generate a conceptual model with a surprise index to describe whether long-term plant invader composition and dominance is predictable or stochastic after a system perturbation such as a removal experiment. Under extremely low resource availability, the surprise index is low, whereas under intermediate-level resource environments, invader dominance is more stochastic and the surprise index is high. At high resource levels, the surprise index is intermediate: Invaders are likely abundant in the environment but their response to a perturbation is more predictable than at intermediate resource levels. We suggest further testing across environmental gradients to determine key variables that dictate the predictability of postremoval invader composition.
Collapse
Affiliation(s)
- Carla M. D'Antonio
- Environmental Studies Program and Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106
| | - Rebecca Ostertag
- Department of Biology, University of Hawai‘i, Hilo, Hawai‘i 96720
| | - Susan Cordell
- Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, Hawai‘i 96720
| | - Stephanie Yelenik
- USGS Pacific Islands Ecosystem Research Center, Volcano, Hawai‘i 96718
| |
Collapse
|
48
|
Zhang X, Johnston ER, Barberán A, Ren Y, Lü X, Han X. Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity. GLOBAL CHANGE BIOLOGY 2017; 23:4318-4332. [PMID: 28585356 DOI: 10.1111/gcb.13783] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Anthropogenic environmental changes are accelerating the rate of biodiversity loss on Earth. Plant diversity loss is predicted to reduce soil microbial diversity primarily due to the decreased variety of carbon/energy resources. However, this intuitive hypothesis is supported by sparse empirical evidence, and most underlying mechanisms remain underexplored or obscure altogether. We constructed four diversity gradients (0-3) in a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia, China, and quantified microbial taxonomic and functional diversity with shotgun metagenome sequencing. The treatments had little effect on microbial taxonomic diversity, but were found to decrease functional gene diversity. However, the observed decrease in functional gene diversity was more attributable to a loss in plant productivity, rather than to the loss of any individual plant functional group per se. Reduced productivity limited fresh plant resources supplied to microorganisms, and thus, intensified the pressure of ecological filtering, favoring genes responsible for energy production/conversion, material transport/metabolism and amino acid recycling, and accordingly disfavored many genes with other functions. Furthermore, microbial respiration was correlated with the variation in functional composition but not taxonomic composition. Overall, the amount of carbon/energy resources driving microbial gene diversity was identified to be the critical linkage between above- and belowground communities, contrary to the traditional framework of linking plant clade/taxonomic diversity to microbial taxonomic diversity.
Collapse
Affiliation(s)
- Ximei Zhang
- Key Laboratory of Dryland Agriculture, MOA, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Eric R Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Albert Barberán
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Yi Ren
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Xiaotao Lü
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xingguo Han
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Thrush SF, Hewitt JE, Kraan C, Lohrer AM, Pilditch CA, Douglas E. Changes in the location of biodiversity-ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading. Proc Biol Sci 2017; 284:rspb.2016.2861. [PMID: 28404774 DOI: 10.1098/rspb.2016.2861] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/14/2017] [Indexed: 01/19/2023] Open
Abstract
Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators. We investigated spatial variation in BEF relationships across a 300 000 m2 intertidal sandflat by nesting experimental manipulations of sediment pore water nitrogen concentration into sites with contrasting macrobenthic community composition. Our results highlight the significance of many different elements of biodiversity associated with environmental characteristics, community structure, functional diversity, ecological traits or particular species (ecosystem engineers) to important functions of coastal marine sediments (benthic oxygen consumption, ammonium pore water concentrations and flux across the sediment-water interface). Using the BEF relationships developed from our experiment, we demonstrate patchiness across a landscape in functional performance and the potential for changes in the location of functional hot and cold spots with increasing nutrient loading that have important implications for mapping and predicating change in functionality and the concomitant delivery of ecosystem services.
Collapse
Affiliation(s)
- Simon F Thrush
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Judi E Hewitt
- National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton, New Zealand
| | - Casper Kraan
- Department of Functional Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - A M Lohrer
- National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton, New Zealand
| | - Conrad A Pilditch
- School of Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand
| | - Emily Douglas
- School of Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand
| |
Collapse
|
50
|
Donohue I, Petchey OL, Kéfi S, Génin A, Jackson AL, Yang Q, O'Connor NE. Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. GLOBAL CHANGE BIOLOGY 2017; 23:2962-2972. [PMID: 28346736 DOI: 10.1111/gcb.13703] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/23/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Ecological networks are tightly interconnected, such that loss of a single species can trigger additional species extinctions. Theory predicts that such secondary extinctions are driven primarily by loss of species from intermediate or basal trophic levels. In contrast, most cases of secondary extinctions from natural systems have been attributed to loss of entire top trophic levels. Here, we show that loss of single predator species in isolation can, irrespective of their identity or the presence of other predators, trigger rapid secondary extinction cascades in natural communities far exceeding those generally predicted by theory. In contrast, we did not find any secondary extinctions caused by intermediate consumer loss. A food web model of our experimental system-a marine rocky shore community-could reproduce these results only when biologically likely and plausible nontrophic interactions, based on competition for space and predator-avoidance behaviour, were included. These findings call for a reassessment of the scale and nature of extinction cascades, particularly the inclusion of nontrophic interactions, in forecasts of the future of biodiversity.
Collapse
Affiliation(s)
- Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Owen L Petchey
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sonia Kéfi
- CNRS, IRD, EPHE, CC065, Institut des Sciences de l'Evolution, BioDICée team, Université de Montpellier, Montpellier, France
| | - Alexandre Génin
- CNRS, IRD, EPHE, CC065, Institut des Sciences de l'Evolution, BioDICée team, Université de Montpellier, Montpellier, France
| | - Andrew L Jackson
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Qiang Yang
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Nessa E O'Connor
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|