1
|
Hong AT, Luu IYK, Lin F, Vij AP, Lewis KA, Wilson ML, Klausner JD. Association between herpes simplex virus 1 and dementia: a systematic review protocol. BMJ Open 2025; 15:e088632. [PMID: 40254300 PMCID: PMC12010296 DOI: 10.1136/bmjopen-2024-088632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
INTRODUCTION Herpes simplex virus 1 (HSV-1) infects approximately two-thirds of the global population under the age of 50 years. Although widely prevalent, the possible implications of HSV-1 in neurodegenerative diseases, especially dementia and Alzheimer's disease, remain poorly understood. This review seeks to elucidate this association and explore the potential benefits of preventing or treating herpesvirus infections on dementia risk. The goal is to enhance our understanding of HSV-1's potential role in dementia, which could inform the development of future therapeutic interventions for these conditions. METHODS AND ANALYSIS PubMed, Embase (Elsevier/Ovid), Web of Science, Scopus, Global Health, PsycInfo, Cochrane Library and Clinicaltrials.gov will be searched from the inception of each respective database. Studies that have HSV-1 as an exposure and dementia, or its subtypes, as a primary outcome will be included. Two researchers will independently screen titles, abstracts and full texts, with discrepancies resolved by a third researcher. Systematic data extraction from eligible studies will be performed using a standardised template. Risk of bias of individual studies will be assessed with the Cochrane Collaboration approach. We will assess the overall quality of cumulative evidence using the Grading of Recommendations, Assessment, Development and Evaluations criteria. Statistical analysis will employ a random effects model, and heterogeneity will be determined with Cochrane's Q test and assessed using I2. Studies will be grouped by population subgroups and dementia subtypes when possible to explore nuances in results. We will consider performing meta-regression if heterogeneity remains after subgroup analyses. All statistical analyses will be conducted using Stata V.18 software (College Station, Texas, USA). ETHICS AND DISSEMINATION No ethical approval is required since data will be collected from existing studies. The review will be disseminated through peer-reviewed publication and at national and international conferences. PROSPERO REGISTRATION NUMBER CRD42024516789.
Collapse
Affiliation(s)
- Alexander T Hong
- University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Ivan Yun-Kuen Luu
- University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Forest Lin
- University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Arjun P Vij
- University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Katherine A Lewis
- University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Melissa L Wilson
- Department of Medicine, Population and Public Health Sciences, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Jeffrey D Klausner
- Department of Medicine, Population and Public Health Sciences, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
2
|
Zhang X, Zhu Z, Huang Y, Shang X, O'Brien TJ, Kwan P, Ha J, Wang W, Liu S, Zhang X, Kiburg K, Bao Y, Wang J, Yu H, He M, Zhang L. Shared genetic aetiology of Alzheimer's disease and age-related macular degeneration by APOC1 and APOE genes. BMJ Neurol Open 2024; 6:e000570. [PMID: 38646507 PMCID: PMC11029327 DOI: 10.1136/bmjno-2023-000570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Background Alzheimer's disease (AD) and age-related macular degeneration (AMD) share similar pathological features, suggesting common genetic aetiologies between the two. Investigating gene associations between AD and AMD may provide useful insights into the underlying pathogenesis and inform integrated prevention and treatment for both diseases. Methods A stratified quantile-quantile (QQ) plot was constructed to detect the pleiotropy among AD and AMD based on genome-wide association studies data from 17 008 patients with AD and 30 178 patients with AMD. A Bayesian conditional false discovery rate-based (cFDR) method was used to identify pleiotropic genes. UK Biobank was used to verify the pleiotropy analysis. Biological network and enrichment analysis were conducted to explain the biological reason for pleiotropy phenomena. A diagnostic test based on gene expression data was used to predict biomarkers for AD and AMD based on pleiotropic genes and their regulators. Results Significant pleiotropy was found between AD and AMD (significant leftward shift on QQ plots). APOC1 and APOE were identified as pleiotropic genes for AD-AMD (cFDR <0.01). Network analysis revealed that APOC1 and APOE occupied borderline positions on the gene co-expression networks. Both APOC1 and APOE genes were enriched on the herpes simplex virus 1 infection pathway. Further, machine learning-based diagnostic tests identified that APOC1, APOE (areas under the curve (AUCs) >0.65) and their upstream regulators, especially ZNF131, ADNP2 and HINFP, could be potential biomarkers for both AD and AMD (AUCs >0.8). Conclusion In this study, we confirmed the genetic pleiotropy between AD and AMD and identified APOC1 and APOE as pleiotropic genes. Further, the integration of multiomics data identified ZNF131, ADNP2 and HINFP as novel diagnostic biomarkers for AD and AMD.
Collapse
Affiliation(s)
- Xueli Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Zhuoting Zhu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jason Ha
- Alfred Health, Melbourne, Victoria, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Shunming Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiayin Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Katerina Kiburg
- Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia
| | - Yining Bao
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Wang
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mingguang He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Lei Zhang
- Clinical Medical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Eteleeb AM, Novotny BC, Tarraga CS, Sohn C, Dhungel E, Brase L, Nallapu A, Buss J, Farias F, Bergmann K, Bradley J, Norton J, Gentsch J, Wang F, Davis AA, Morris JC, Karch CM, Perrin RJ, Benitez BA, Harari O. Brain high-throughput multi-omics data reveal molecular heterogeneity in Alzheimer's disease. PLoS Biol 2024; 22:e3002607. [PMID: 38687811 PMCID: PMC11086901 DOI: 10.1371/journal.pbio.3002607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/10/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.
Collapse
Affiliation(s)
- Abdallah M. Eteleeb
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
| | - Brenna C. Novotny
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Carolina Soriano Tarraga
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Christopher Sohn
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Eliza Dhungel
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Logan Brase
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Aasritha Nallapu
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Jared Buss
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
| | - Fabiana Farias
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Kristy Bergmann
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Joseph Bradley
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Joanne Norton
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Jen Gentsch
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Fengxian Wang
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
| | - Albert A. Davis
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - John C. Morris
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - Celeste M. Karch
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics Center, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| | - Richard J. Perrin
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Bruno A. Benitez
- Department of Neurology and Neuroscience, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Oscar Harari
- Department of Psychiatry, Washington University, Saint Louis, St. Louis, Missouri, United States of America
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
4
|
Duchesne S, Rousseau LS, Belzile-Marsolais F, Welch LA, Cournoyer B, Arseneau M, Lapierre V, Poulin SM, Potvin O, Hudon C. A Scoping Review of Alzheimers Disease Hypotheses: An Array of Uni- and Multi-Factorial Theories. J Alzheimers Dis 2024; 99:843-856. [PMID: 38788067 PMCID: PMC11191496 DOI: 10.3233/jad-230772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/26/2024]
Abstract
Background There is a common agreement that Alzheimers disease (AD) is inherently complex; otherwise, a general disagreement remains on its etiological underpinning, with numerous alternative hypotheses having been proposed. Objective To perform a scoping review of original manuscripts describing hypotheses and theories of AD published in the past decades. Results We reviewed 131 original manuscripts that fulfilled our inclusion criteria out of more than 13,807 references extracted from open databases. Each entry was characterized as having a single or multifactorial focus and assigned to one of 15 theoretical groupings. Impact was tracked using open citation tools. Results Three stages can be discerned in terms of hypotheses generation, with three quarter of studies proposing a hypothesis characterized as being single-focus. The most important theoretical groupings were the Amyloid group, followed by Metabolism and Mitochondrial dysfunction, then Infections and Cerebrovascular. Lately, evidence towards Genetics and especially Gut/Brain interactions came to the fore. Conclusions When viewed together, these multi-faceted reports reinforce the notion that AD affects multiple sub-cellular, cellular, anatomical, and physiological systems at the same time but at varying degree between individuals. The challenge of providing a comprehensive view of all systems and their interactions remains, alongside ways to manage this inherent complexity.
Collapse
Affiliation(s)
- Simon Duchesne
- Department of Radiology and Nuclear Medicine, Université, Laval, Quebec City, QC, Canada
| | - Louis-Simon Rousseau
- CERVO Brain Research Centre, Quebec City, QC, Canada
- School of Psychology, Université, Laval, Quebec City, QC, Canada
| | - Florence Belzile-Marsolais
- CERVO Brain Research Centre, Quebec City, QC, Canada
- School of Psychology, Université, Laval, Quebec City, QC, Canada
| | - Laurie-Ann Welch
- CERVO Brain Research Centre, Quebec City, QC, Canada
- School of Psychology, Université, Laval, Quebec City, QC, Canada
| | | | | | - Véronick Lapierre
- CERVO Brain Research Centre, Quebec City, QC, Canada
- School of Psychology, Université, Laval, Quebec City, QC, Canada
| | | | - Olivier Potvin
- Quebec Heart and Lung Research Institute, Quebec City, QC, Canada
- CERVO Brain Research Centre, Quebec City, QC, Canada
| | - Carol Hudon
- CERVO Brain Research Centre, Quebec City, QC, Canada
- School of Psychology, Université, Laval, Quebec City, QC, Canada
- VITAM Research Centre, Quebec City, QC, Canada
| |
Collapse
|
5
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
6
|
How viral infections cause neuronal dysfunction: a focus on the role of microglia and astrocytes. Biochem Soc Trans 2023; 51:259-274. [PMID: 36606670 DOI: 10.1042/bst20220771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
In recent decades, a number of infectious viruses have emerged from wildlife or reemerged that pose a serious threat to global health and economies worldwide. Although many of these viruses have a specific target tissue, neurotropic viruses have evolved mechanisms to exploit weaknesses in immune defenses that eventually allow them to reach and infect cells of the central nervous system (CNS). Once in the CNS, these viruses can cause severe neuronal damage, sometimes with long-lasting, life-threatening consequences. Remarkably, the ability to enter the CNS and cause neuronal infection does not appear to determine whether a viral strain causes neurological complications. The cellular mechanisms underlying the neurological consequences of viral infection are not fully understood, but they involve neuroimmune interactions that have so far focused mainly on microglia. As the major immune cells in the brain, reactive microglia play a central role in neuroinflammation by responding directly or indirectly to viruses. Chronic reactivity of microglia leads to functions that are distinct from their beneficial roles under physiological conditions and may result in neuronal damage that contributes to the pathogenesis of various neurological diseases. However, there is increasing evidence that reactive astrocytes also play an important role in the response to viruses. In this review article, we summarize the recent contributions of microglia and astrocytes to the neurological impairments caused by viral infections. By expanding knowledge in this area, therapeutic approaches targeting immunological pathways may reduce the incidence of neurological and neurodegenerative disorders and increase the therapeutic window for neural protection.
Collapse
|
7
|
Tettevi EJ, Maina M, Simpong DL, Osei-Atweneboana MY, Ocloo A. A Review of African Medicinal Plants and Functional Foods for the Management of Alzheimer's Disease-related Phenotypes, Treatment of HSV-1 Infection and/or Improvement of Gut Microbiota. J Evid Based Integr Med 2022; 27:2515690X221114657. [PMID: 35866220 PMCID: PMC9310297 DOI: 10.1177/2515690x221114657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD), which is a progressive neurodegenerative disorder is the most common form of dementia globally. Several studies have suggested alteration in the gut microbiota and HSV-1 infection as contributing factors to the development of the disease. As at now, there are no AD attenuating agents and AD pharmacotherapy is focused on managing symptoms while plants used in ethnomedicine remain potential sources of drugs for the treatment of the condition. Here, we reviewed published databases for African ethnomedicinal plants and functional foods of African origin that are used in the management of AD-related phenotypes, treatment of herpes simplex virus −1 (HSV-1) and/or improvement of gut microbiota. A total of 101 unique plant species and 24 different types of traditionally prepared African functional foodstuff were identified. Of the 101 identified plant species, 50 species serve as functional foodstuffs. Twenty-three (23) of the ethnomedicinal plant families were successfully identified for the treatment and management of AD-related phenotypes and age-related dementia. Eighteen (18) African plant species from 15 families were also identified as potent remedies for HSV-1; while many African wild fruits (3 species), roots and tubers (7 species), leafy vegetables (14 species), and seaweeds (26 species) were functional foods for modifying AD-related phenotypes. It was concluded that African medicinal plants are potential sources of both AD attenuating agents and phytocompounds that may be used against HSV-1 infection and alteration of gut microbiota. Additionally, a number of African functional foods are important sources of prebiotics and probiotics.
Collapse
Affiliation(s)
- Edward Jenner Tettevi
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, School of Biological Science, University of Ghana, Legon, Ghana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research—Water Research Institute, Accra, Ghana
| | - Mahmoud Maina
- Serpell Laboratory, Sussex Neuroscience, School of Life Sciences, University of Sussex, Sussex, UK
- Biomedical Science Research and Training Centre, College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - David Larbi Simpong
- Department of Medical Laboratory Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mike Y. Osei-Atweneboana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research—Water Research Institute, Accra, Ghana
- CSIR-College of Science and Technology, 2nd CSIR Close, Airport Residential Area, Behind Golden Tulip Hotel, Accra, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Legon, Ghana
- Augustine Ocloo, Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Volta Road, Legon LG54, Ghana.
| |
Collapse
|
8
|
A Protein Assembly Hypothesis for Population-Specific Decrease in Dementia with Time. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A recent report in the journal, Neurology, documents age-normalized, nation-specific (e.g., United States and Western Europe), progressive decrease of dementia, beginning about 25 years ago. This observation has, thus far, not had explanation. We begin our proposed explanation with the following previous disease construct. (1) Some dementia is caused by innate immune over-response to infections. (2) The innate immune over-response occurs via excessive conversion of amyloid protein to α-sheet conformation. (3) This conversion evolved to inhibit invading microbes by binding microbe-associated α-sheet, e.g., in hyper-expanded capsid intermediates of some viruses. The rarity of human α-sheet makes this inhibition specific for microbial invaders. As foundation, here we observe directly, for the first time, extreme, sheet-like outer shell thinness in a hyper-expanded capsid of phage T3. Based on phage/herpesvirus homology, we propose the following. The above decrease in dementia is caused by varicella-zoster virus (VZV) vaccination, USFDA-approved about 25 years ago; VZV is a herpesvirus and causes chickenpox and shingles. In China and Japan, a cotemporaneous non-decrease is explained by lower anti-VZV vaccination. Co-assembly extension of α-sheet is relatively independent of amino acid sequence. Thus, we project that additional dementia is suppressible by vaccination against other viruses, including other herpesviruses.
Collapse
|
9
|
Gaglione R, Pizzo E, Notomista E, de la Fuente-Nunez C, Arciello A. Host Defence Cryptides from Human Apolipoproteins: Applications in Medicinal Chemistry. Curr Top Med Chem 2021; 20:1324-1337. [PMID: 32338222 DOI: 10.2174/1568026620666200427091454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Several eukaryotic proteins with defined physiological roles may act as precursors of cryptic bioactive peptides released upon protein cleavage by the host and/or bacterial proteases. Based on this, the term "cryptome" has been used to define the unique portion of the proteome encompassing proteins with the ability to generate bioactive peptides (cryptides) and proteins (crypteins) upon proteolytic cleavage. Hence, the cryptome represents a source of peptides with potential pharmacological interest. Among eukaryotic precursor proteins, human apolipoproteins play an important role, since promising bioactive peptides have been identified and characterized from apolipoproteins E, B, and A-I sequences. Human apolipoproteins derived peptides have been shown to exhibit antibacterial, anti-biofilm, antiviral, anti-inflammatory, anti-atherogenic, antioxidant, or anticancer activities in in vitro assays and, in some cases, also in in vivo experiments on animal models. The most interesting Host Defence Peptides (HDPs) identified thus far in human apolipoproteins are described here with a focus on their biological activities applicable to biomedicine. Altogether, reported evidence clearly indicates that cryptic peptides represent promising templates for the generation of new drugs and therapeutics against infectious diseases.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.,Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| |
Collapse
|
10
|
The association between herpes simplex virus type 1 infection and Alzheimer's disease. J Clin Neurosci 2020; 82:63-70. [PMID: 33317741 DOI: 10.1016/j.jocn.2020.10.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/19/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
There is growing evidence demonstrating the relationship between herpes simplex virus type 1 (HSV-1) infection and Alzheimer's disease (AD). We searched PubMed, Embase, and Cochrane databases for relevant articles. The Newcastle-Ottawa Scale (NOS) was used to evaluate the qualities of these studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using random-effects models. We also performed subgroup analyses stratified by apolipoprotein ε4 (APOE ε4), NOS score, and the method of confirming AD. A total of 21 studies between 1990 and 2020 were identified. The pooled OR suggested that HSV-1 infection is a risk factor of AD: pooled OR 1.40 (95% CI: 1.13-1.75; I2 = 3%, P = 0.42). In the subgroup analyses, the pooled ORs of HSV-1 infection associated with AD were 0.75 (95% CI: 0.24-2.37) among the APOE ε4-positive individuals; 0.85 (95% CI: 0.61-1.17) among the APOE ε4-negative individuals; 1.51 (95% CI: 1.10-2.06) in the high NOS score studies; 1.23 (95% CI: 0.85-1.76) in the moderate NOS score studies; 1.47 (95% CI: 1.16-1.87) in the clinical diagnosis group, and 1.20 (95% CI: 0.77-1.87) in the autopsy group. Our up-to-date systematic review and meta-analysis suggest that HSV-1 infection is a risk factor of AD.
Collapse
|
11
|
Iqbal UH, Zeng E, Pasinetti GM. The Use of Antimicrobial and Antiviral Drugs in Alzheimer's Disease. Int J Mol Sci 2020; 21:E4920. [PMID: 32664669 PMCID: PMC7404195 DOI: 10.3390/ijms21144920] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
The aggregation and accumulation of amyloid-β plaques and tau proteins in the brain have been central characteristics in the pathophysiology of Alzheimer's disease (AD), making them the focus of most of the research exploring potential therapeutics for this neurodegenerative disease. With success in interventions aimed at depleting amyloid-β peptides being limited at best, a greater understanding of the physiological role of amyloid-β peptides is needed. The development of amyloid-β plaques has been determined to occur 10-20 years prior to AD symptom manifestation, hence earlier interventions might be necessary to address presymptomatic AD. Furthermore, recent studies have suggested that amyloid-β peptides may play a role in innate immunity as an antimicrobial peptide. These findings, coupled with the evidence of pathogens such as viruses and bacteria in AD brains, suggests that the buildup of amyloid-β plaques could be a response to the presence of viruses and bacteria. This has led to the foundation of the antimicrobial hypothesis for AD. The present review will highlight the current understanding of amyloid-β, and the role of bacteria and viruses in AD, and will also explore the therapeutic potential of antimicrobial and antiviral drugs in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (U.H.I.); (E.Z.)
| |
Collapse
|
12
|
Kim WJ, Choi JW, Jang WJ, Kang YS, Lee CW, Synytsya A, Park YI. Low-molecular weight mannogalactofucans prevent herpes simplex virus type 1 infection via activation of Toll-like receptor 2. Int J Biol Macromol 2017; 103:286-293. [PMID: 28522392 DOI: 10.1016/j.ijbiomac.2017.05.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/01/2017] [Accepted: 05/14/2017] [Indexed: 12/12/2022]
Abstract
Low-molecular-weight mannogalactofucans (LMMGFs, <4000g/mol) were prepared by the enzymatic degradation of Undaria pinnatifida sporophyll galactofucan (MF) and evaluated or their antiviral activities and underlying action mechanisms against herpes simplex virus type 1 (HSV-1). The 50% inhibitory concentrations (IC50) of LMMGFs and MF were 2.64 and 2.42μg/mL, respectively. LMMGFs inhibited the viral entry on the host cell surface and also exhibited inhibitory activity directly against viral particles, as observed in a virucidal assay. LMMGFs dose-dependently enhanced the mRNA expression of Toll-like receptor 2 (TLR2) and stimulated the phosphorylation of Akt and JNK in Vero cells. These results clearly demonstrated that LMMGFs use TLR2 as their receptor, preventing HSV-1 infection on the host cell surface and antagonizing viral adsorption via TLR2 pathway activation in Vero cells.
Collapse
Affiliation(s)
- Woo Jung Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea; Biocenter, Gyeonggido Business & Science Accelerator(GBSA), Suwon, Gyeonngi-do 16229, Korea
| | - Ji Won Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Won Jong Jang
- Department of Microbiology, College of Medicine, Kon-Kuk University, Seoul 05029, Korea
| | - Young-Sun Kang
- Department of Biomedical Science & Technology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Chang Won Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemical Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea.
| |
Collapse
|
13
|
De Chiara G, Racaniello M, Mollinari C, Marcocci ME, Aversa G, Cardinale A, Giovanetti A, Garaci E, Palamara AT, Merlo D. Herpes Simplex Virus-Type1 (HSV-1) Impairs DNA Repair in Cortical Neurons. Front Aging Neurosci 2016; 8:242. [PMID: 27803664 PMCID: PMC5067485 DOI: 10.3389/fnagi.2016.00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/03/2016] [Indexed: 11/13/2022] Open
Abstract
Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer’s disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions.
Collapse
Affiliation(s)
- Giovanna De Chiara
- Department of Cell Biology and Neuroscience, Istituto Superiore di SanitàRome, Italy; Institute of Translational Pharmacology, National Research CouncilRome, Italy
| | - Mauro Racaniello
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Cristiana Mollinari
- Department of Cell Biology and Neuroscience, Istituto Superiore di SanitàRome, Italy; Institute of Translational Pharmacology, National Research CouncilRome, Italy
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Rome, Italy
| | - Giorgia Aversa
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center Rome, Italy
| | - Alessio Cardinale
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Pisana Rome, Italy
| | - Anna Giovanetti
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center Rome, Italy
| | | | - Anna Teresa Palamara
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele PisanaRome, Italy; Department of Public Health and Infectious Diseases, Institute Pasteur Cenci Bolognetti Foundation, Sapienza University of RomeRome, Italy
| | - Daniela Merlo
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
14
|
Civitelli L, Marcocci ME, Celestino I, Piacentini R, Garaci E, Grassi C, De Chiara G, Palamara AT. Herpes simplex virus type 1 infection in neurons leads to production and nuclear localization of APP intracellular domain (AICD): implications for Alzheimer's disease pathogenesis. J Neurovirol 2015; 21:480-90. [PMID: 25925093 DOI: 10.1007/s13365-015-0344-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 11/28/2022]
Abstract
Several data indicate that neuronal infection with herpes simplex virus type 1 (HSV-1) causes biochemical alterations reminiscent of Alzheimer's disease (AD) phenotype. They include accumulation of amyloid-β (Aβ), which originates from the cleavage of amyloid precursor protein (APP), and hyperphosphorylation of tau protein, which leads to neurofibrillary tangle deposition. HSV-1 infection triggers APP processing and drives the production of several fragments including APP intracellular domain (AICD) that exerts transactivating properties. Herein, we analyzed the production and intracellular localization of AICD following HSV-1 infection in neurons. We also checked whether AICD induced the transcription of two target genes, neprilysin (nep) and glycogen synthase kinase 3β (gsk3β), whose products play a role in Aβ clearance and tau phosphorylation, respectively. Our data indicate that HSV-1 led to the accumulation and nuclear translocation of AICD in neurons. Moreover, results from chromatin immunoprecipitation assay showed that AICD binds the promoter region of both nep and gsk3β. Time course analysis of NEP and GSK3β expression at both mRNA and protein levels demonstrated that they are differently modulated during infection. NEP expression and enzymatic activity were initially stimulated but, with the progression of infection, they were down-regulated. In contrast, GSK3β expression remained nearly unchanged, but the analysis of its phosphorylation suggests that it was inactivated only at later stages of HSV-1 infection. Thus, our data demonstrate that HSV-1 infection induces early upstream events in the cell that may eventually lead to Aβ deposition and tau hyperphosphorylation and further suggest HSV-1 as a possible risk factor for AD.
Collapse
Affiliation(s)
- Livia Civitelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy. .,Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ignacio Celestino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Roberto Piacentini
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Pisana, Telematic University, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Institute Pasteur Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Steel AJ, Eslick GD. Herpes Viruses Increase the Risk of Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis 2015; 47:351-364. [PMID: 26401558 DOI: 10.3233/jad-140822] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of infectious agents in the development of AD has long been debated, in particular, the herpesviridae family. We therefore conducted a meta-analysis to quantitatively assess all published data to establish whether there is an association. We identified studies that looked for the presence of viral DNA in the brain and/or antibody seropositivity in people with AD from four electronic databases. 35 studies met our inclusion criteria (AD cases = 1294; controls = 3059). There was an increased risk for AD when herpesviridae is present in the brain compared to controls [OR 1.38; 95% CI 1.14-1.66]. Sub-analysis showed that APOE ɛ4 and HSV1 together increased the risk of AD development [OR 2.71; 95% CI 1.08-6.80]. HSV1 together with the presence of the APOE ɛ4 allele increases the risk of developing AD.
Collapse
|
16
|
Jafferany M, Huynh TV, Silverman MA, Zaidi Z. Geriatric dermatoses: a clinical review of skin diseases in an aging population. Int J Dermatol 2012; 51:509-22. [PMID: 22515576 DOI: 10.1111/j.1365-4632.2011.05311.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Geriatric dermatoses are a challenging job for the physician in terms of diagnosis, management, and followup. Since skin of the elderly population is going through a lot of changes from both an intrinsic and extrinsic point of view, it is imperative for the physician to have a better understanding of the pathophysiology of geriatric skin disorders and their specific management, which differs slightly from an adult population. This review focuses on a brief introduction to the pathophysiological aspects of skin disorders in elderly, the description of some common geriatric skin disorders and their management and the new emerging role of psychodermatological aspects of geriatric dermatoses is also discussed. At the end, ten multiple choice questions are also added to further enhance the knowledge base of the readers.
Collapse
Affiliation(s)
- Mohammad Jafferany
- Psychodermatology Clinic, Department of Psychiatry and Behavioral Sciences, Synergy Medical Education Alliance, MI 48603, USA.
| | | | | | | |
Collapse
|
17
|
De Chiara G, Marcocci ME, Sgarbanti R, Civitelli L, Ripoli C, Piacentini R, Garaci E, Grassi C, Palamara AT. Infectious agents and neurodegeneration. Mol Neurobiol 2012; 46:614-38. [PMID: 22899188 PMCID: PMC3496540 DOI: 10.1007/s12035-012-8320-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/31/2012] [Indexed: 12/19/2022]
Abstract
A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host’s specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.
Collapse
Affiliation(s)
- Giovanna De Chiara
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int 2011; 2:107. [PMID: 21886880 PMCID: PMC3157093 DOI: 10.4103/2152-7806.83391] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022] Open
Abstract
Some individuals suffering from mild traumatic brain injuries, especially repetitive mild concussions, are thought to develop a slowly progressive encephalopathy characterized by a number of the neuropathological elements shared with various neurodegenerative diseases. A central pathological mechanism explaining the development of progressive neurodegeneration in this subset of individuals has not been elucidated. Yet, a large number of studies indicate that a process called immunoexcitotoxicity may be playing a central role in many neurodegenerative diseases including chronic traumatic encephalopathy (CTE). The term immunoexcitotoxicity was first coined by the lead author to explain the evolving pathological and neurodevelopmental changes in autism and the Gulf War Syndrome, but it can be applied to a number of neurodegenerative disorders. The interaction between immune receptors within the central nervous system (CNS) and excitatory glutamate receptors trigger a series of events, such as extensive reactive oxygen species/reactive nitrogen species generation, accumulation of lipid peroxidation products, and prostaglandin activation, which then leads to dendritic retraction, synaptic injury, damage to microtubules, and mitochondrial suppression. In this paper, we discuss the mechanism of immunoexcitotoxicity and its link to each of the pathophysiological and neurochemical events previously described with CTE, with special emphasis on the observed accumulation of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, LLC Visiting Professor of Biology, Belhaven University, Jackson, MS 315 Rolling Meadows Rd, Ridgeland, MS 39157, USA
| | | |
Collapse
|
19
|
APP processing induced by herpes simplex virus type 1 (HSV-1) yields several APP fragments in human and rat neuronal cells. PLoS One 2010; 5:e13989. [PMID: 21085580 PMCID: PMC2981559 DOI: 10.1371/journal.pone.0013989] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022] Open
Abstract
Lifelong latent infections of the trigeminal ganglion by the neurotropic herpes simplex virus type 1 (HSV-1) are characterized by periodic reactivation. During these episodes, newly produced virions may also reach the central nervous system (CNS), causing productive but generally asymptomatic infections. Epidemiological and experimental findings suggest that HSV-1 might contribute to the pathogenesis of Alzheimer's disease (AD). This multifactorial neurodegenerative disorder is related to an overproduction of amyloid beta (Aβ) and other neurotoxic peptides, which occurs during amyloidogenic endoproteolytic processing of the transmembrane amyloid precursor protein (APP). The aim of our study was to identify the effects of productive HSV-1 infection on APP processing in neuronal cells. We found that infection of SH-SY5Y human neuroblastoma cells and rat cortical neurons is followed by multiple cleavages of APP, which result in the intra- and/or extra-cellular accumulation of various neurotoxic species. These include: i) APP fragments (APP-Fs) of 35 and 45 kDa (APP-F35 and APP-F45) that comprise portions of Aβ; ii) N-terminal APP-Fs that are secreted; iii) intracellular C-terminal APP-Fs; and iv) Aβ1-40 and Aβ1-42. Western blot analysis of infected-cell lysates treated with formic acid suggests that APP-F35 may be an Aβ oligomer. The multiple cleavages of APP that occur in infected cells are produced in part by known components of the amyloidogenic APP processing pathway, i.e., host-cell β-secretase, γ-secretase, and caspase-3-like enzymes. These findings demonstrate that HSV-1 infection of neuronal cells can generate multiple APP fragments with well-documented neurotoxic potentials. It is tempting to speculate that intra- and extracellular accumulation of these species in the CNS resulting from repeated HSV-1 reactivation could, in the presence of other risk factors, play a co-factorial role in the development of AD.
Collapse
|
20
|
Dawood KM, Abdel-Gawad H, Mohamed HA, Badria FA. Synthesis, anti-HSV-1, and cytotoxic activities of some new pyrazole- and isoxazole-based heterocycles. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9420-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Abdel-Aziza HA, Abdel-Wahab BF, Badria FA. Stereoselective synthesis and antiviral activity of (1E,2Z,3E)-1-(piperidin-1-yl)-1-(arylhydrazono)-2-[(benzoyl/benzothiazol-2-oyl)hydrazono]-4-(aryl(1))but-3-enes. Arch Pharm (Weinheim) 2010; 343:152-9. [PMID: 20186867 DOI: 10.1002/ardp.200900195] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The reaction of benzoyl hydrazine 1a or benzothiazole-2-carbohydrazide 1b with 2-oxo-N-arylpropanehydrazonoyl chlorides 2a-d yielded (1Z,2E)-2-[(benzoyl/benzothiazol-2-oyl)hydrazono]-N-(aryl)propanehydrazonoyl chlorides 3a-e. The reaction of 3a-c with sodium benzenesulphinate furnished sulphones 5a-c while the reaction of 5d, e with hydroxyl amine afforded hydroxomoyl derivatives 6a, b. The one-pot sterioselective reaction of N-(aryl)propanehydrazonoyl chlorides 3 with certain aromatic aldehydes in the presence of piperidine resulted in the formation of (1E,2Z,3E)-1-(piperidin-1-yl)-1-(arylhydrazono)-2-[(benzoyl/benzothiazol-2-oyl)hydrazono]-4-(aryl1)-but-3-enes 7a-g. X-ray analysis of piperidinyl amidrazone 7g showed a conversion of its geometrical structure with respect to that of compound 3 and confirmed the stereoselectivity of the latter reaction. The piperidinyl amidrazones 7a-g possessed a significant antiviral activity against herpes simplex viruses (HSV-1). Compound 7d reduced the number of viral plaques of herpes simplex type-1 (HSV-1) by 67%, with respect to the effect of reference drug Aphidicolin.
Collapse
Affiliation(s)
- Hatem A Abdel-Aziza
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
22
|
Kelly BA, Harrison I, McKnight A, Dobson CB. Anti-infective activity of apolipoprotein domain derived peptides in vitro: identification of novel antimicrobial peptides related to apolipoprotein B with anti-HIV activity. BMC Immunol 2010; 11:13. [PMID: 20298574 PMCID: PMC2855520 DOI: 10.1186/1471-2172-11-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 03/18/2010] [Indexed: 11/10/2022] Open
Abstract
Background Previous reports have shown that peptides derived from the apolipoprotein E receptor binding region and the amphipathic α-helical domains of apolipoprotein AI have broad anti-infective activity and antiviral activity respectively. Lipoproteins and viruses share a similar cell biological niche, being of overlapping size and displaying similar interactions with mammalian cells and receptors, which may have led to other antiviral sequences arising within apolipoproteins, in addition to those previously reported. We therefore designed a series of peptides based around either apolipoprotein receptor binding regions, or amphipathic α-helical domains, and tested these for antiviral and antibacterial activity. Results Of the nineteen new peptides tested, seven showed some anti-infective activity, with two of these being derived from two apolipoproteins not previously used to derive anti-infective sequences. Apolipoprotein J (151-170) - based on a predicted amphipathic alpha-helical domain from apolipoprotein J - had measurable anti-HSV1 activity, as did apolipoprotein B (3359-3367) dp (apoBdp), the latter being derived from the LDL receptor binding domain B of apolipoprotein B. The more active peptide - apoBdp - showed similarity to the previously reported apoE derived anti-infective peptide, and further modification of the apoBdp sequence to align the charge distribution more closely to that of apoEdp or to introduce aromatic residues resulted in increased breadth and potency of activity. The most active peptide of this type showed similar potent anti-HIV activity, comparable to that we previously reported for the apoE derived peptide apoEdpL-W. Conclusions These data suggest that further antimicrobial peptides may be obtained using human apolipoprotein sequences, selecting regions with either amphipathic α-helical structure, or those linked to receptor-binding regions. The finding that an amphipathic α-helical region of apolipoprotein J has antiviral activity comparable with that for the previously reported apolipoprotein AI derived peptide 18A, suggests that full-length apolipoprotein J may also have such activity, as has been reported for full-length apolipoprotein AI. Although the strength of the anti-infective activity of the sequences identified was limited, this could be increased substantially by developing related mutant peptides. Indeed the apolipoprotein B-derived peptide mutants uncovered by the present study may have utility as HIV therapeutics or microbicides.
Collapse
Affiliation(s)
- Bridie A Kelly
- Faculty of Life Sciences, Stopford Building, The University of Manchester, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
23
|
Conrady CD, Drevets DA, Carr DJJ. Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J Neuroimmunol 2009; 220:1-9. [PMID: 19819030 DOI: 10.1016/j.jneuroim.2009.09.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 02/06/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) can induce a robust immune response initially thru the activation of pattern recognition receptors and subsequent type I interferon production that then shapes, along with other innate immune components, the adaptive immune response to the insult. While this response is necessary to quell virus replication, drive the pathogen into a "latent" state, and likely hinder viral reactivation, collateral damage can ensue with demonstrable cell death and foci of tissue pathology in the central nervous system (CNS) as a result of the release of inflammatory mediators including reactive oxygen species. Although rare, HSV-1 is the leading cause of frank sporadic encephalitis that, if left untreated, can result in death. A greater understanding of the contribution of resident glial cells and infiltrating leukocytes within the CNS in response to HSV-1 invasion is necessary to identify candidate molecules as targets for therapeutic intervention to reduce unwarranted inflammation coinciding with the maintenance of the anti-viral state.
Collapse
Affiliation(s)
- Christopher D Conrady
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | | | | |
Collapse
|
24
|
McMichael GL, Gibson CS, Goldwater PN, Haan EA, Priest K, Dekker GA, MacLennan AH. Association between Apolipoprotein E genotype and cerebral palsy is not confirmed in a Caucasian population. Hum Genet 2008; 124:411-6. [PMID: 18810496 DOI: 10.1007/s00439-008-0564-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/18/2008] [Indexed: 01/26/2023]
Abstract
Apolipoprotein E (APOE) plays a significant role in lipid metabolism and has been implicated in the growth and repair of injured neurons. Two small studies have suggested an association between APOE genotype and cerebral palsy. We investigated if APOE genotype is associated with an increased risk for cerebral palsy, influences the type of cerebral palsy or interacts with prenatal viral infection to influence risk of cerebral palsy. The population-based case-control study comprised newborn screening cards of 443 Caucasian patients with cerebral palsy and 883 Caucasian matched controls. APOE genotyping was performed on DNA extracted from dried blood spots. Allelic and genotypic frequencies did not differ between cases and controls and combined frequencies were 0.10 (epsilon2), 0.76 (epsilon3), 0.14 (epsilon4), 0.03 (epsilon2/epsilon2), 0.10 (epsilon2/epsilon3), 0.03 (epsilon2/epsilon4), 0.02 (epsilon4/epsilon4), 0.21 (epsilon3/epsilon4), 0.61 (epsilon3/epsilon3). APOE genotype was correlated with cerebral palsy, type of cerebral palsy, gestation at birth and the presence of viral nucleic acids detected in previous work. Analysis by gestational age (all gestational ages, >/=37, 32-36 and <32 weeks) and type of cerebral palsy (all types, diplegia, hemiplegia and quadriplegia) showed no association between APOE genotype and cerebral palsy in this Caucasian population. An association between prenatal viral infection, APOE genotype and cerebral palsy was not demonstrated. These results did not confirm an association between APOE genotype, cerebral palsy, type of cerebral palsy and prenatal infection in a Caucasian population. Given the low frequency of APOE epsilon2 and some of the heterozygote and homozygote combinations in this study, a larger study is assessing this further.
Collapse
Affiliation(s)
- Gai L McMichael
- Discipline of Obstetrics and Gynaecology, Women's and Children's Hospital, The University of Adelaide, 1st Floor Queen Victoria Building, 72 King William Road, Adelaide, SA, 5006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Boelen E, Stassen FRM, van der Ven AJAM, Lemmens MAM, Steinbusch HPJ, Bruggeman CA, Schmitz C, Steinbusch HWM. Detection of amyloid beta aggregates in the brain of BALB/c mice after Chlamydia pneumoniae infection. Acta Neuropathol 2007; 114:255-61. [PMID: 17581756 PMCID: PMC2039821 DOI: 10.1007/s00401-007-0252-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/04/2007] [Accepted: 06/06/2007] [Indexed: 10/26/2022]
Abstract
Neuroinflammation, initiated by cerebral infection, is increasingly postulated as an aetiological factor in neurodegenerative diseases such as Alzheimer's disease (AD). We investigated whether Chlamydia pneumoniae (Cpn) infection results in extracellular aggregation of amyloid beta (Abeta) in BALB/c mice. At 1 week post intranasal infection (p.i.), Cpn DNA was detected predominantly in the olfactory bulbs by PCR, whereas brains at 1 and 3 months p.i. were Cpn negative. At 1 and 3 months p.i., extracellular Abeta immunoreactivity was detected in the brain of Cpn-infected mice but also in the brain of mock-infected mice and mice that were neither Cpn infected nor mock infected. However, these extracellular Abeta aggregates showed morphological differences compared to extracellular Abeta aggregates detected in the brain of transgenic APP751(SL)/PS1(M146L) mice. These data do not unequivocally support the hypothesis that Cpn infection induces the formation of AD-like Abeta plaques in the brain of BALB/c mice, as suggested before. However, future studies are required to resolve these differences and to investigate whether Cpn is indeed an etiological factor in AD pathogenesis.
Collapse
Affiliation(s)
- Ellen Boelen
- Department of Medical Microbiology, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kelly BA, Neil SJ, McKnight A, Santos JM, Sinnis P, Jack ER, Middleton DA, Dobson CB. Apolipoprotein E-derived antimicrobial peptide analogues with altered membrane affinity and increased potency and breadth of activity. FEBS J 2007; 274:4511-25. [PMID: 17681018 DOI: 10.1111/j.1742-4658.2007.05981.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Host-derived anti-infective proteins represent an important source of sequences for designing antimicrobial peptides (AMPs). However such sequences are often long and comprise diverse amino acids with uncertain contribution to biological effects. Previously, we identified a simple highly cationic peptide derivative of human apolipoprotein E (apoEdp) that inhibited a range of microorganisms. Here, we have dissected the protein chemistry underlying this activity. We report that basic residues and peptide length of around 18 residues were required for activity; however, the Leu residues can be substituted by several other residues without loss of activity and, when substituted with Phe or Trp, resulted in peptides with increased potency. These apoEdp-derived AMPs (apoE-AMPs) showed no cytotoxicity and minimal haemolytic activity, and were active against HIV and Plasmodium via an extracellular target. CXCR4 and CCR5 strains of HIV were inhibited though an early stage in viral infection upstream of fusion, and a lack of inhibition of vesicular stomatitis virus G protein pseudotyped HIV-1 suggested the anti-HIV activity was relatively selective. Inhibition of Plasmodium invasion of hepatocytes was observed without a direct action on Plasmodium integrity or attachment to cells. The Trp-substituted apoE-AMP adhered to mammalian cells irreversibly, explaining its increased potency; NMR experiments confirmed that the aromatic peptides also showed stronger perturbation of membrane lipids (relative to apoEdp). Our data highlight the contribution of specific amino acids to the activity of apoEdp (and also potentially unrelated AMPs) and suggest that apoE-AMPs may be useful as lead agents for preventing the early stages of HIV and Plasmodium cellular entry.
Collapse
Affiliation(s)
- Bridie A Kelly
- Faculty of Life Sciences, The Mill, The University of Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Boelen E, Steinbusch HWM, van der Ven AJAM, Grauls G, Bruggeman CA, Stassen FRM. Chlamydia pneumoniae infection of brain cells: An in vitro study. Neurobiol Aging 2007; 28:524-32. [PMID: 16621171 DOI: 10.1016/j.neurobiolaging.2006.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 02/14/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
Inspired by the suggested associations between neurological diseases and infections, we determined the susceptibility of brain cells to Chlamydia pneumoniae (Cpn). Murine astrocyte (C8D1A), neuronal (NB41A3) and microglial (BV-2) cell lines were inoculated with Cpn. Infection was established by immunofluorescence and real-time PCR at various time points. Productive infection was assessed by transferring medium of infected cells to a detection layer. Finally, apoptosis and necrosis post-infection was determined. Our data demonstrate that the neuronal cell line is highly sensitive to Cpn, produces viable progeny and is prone to die after infection by necrosis. Cpn tropism was similar in an astrocyte cell line, apart from the higher production of extracellular Cpn and less pronounced necrosis. In contrast, the microglial cell line is highly resistant to Cpn as the immunohistochemical signs almost completely disappeared after 24 h. Nevertheless, significant Cpn DNA amounts could be detected, suggesting Cpn persistence. Low viable progeny and hardly any necrotic microglial cells were observed. Further research is warranted to determine whether these cell types show the same sensitivity to Cpn in an in vivo setting.
Collapse
Affiliation(s)
- Ellen Boelen
- Department of Medical Microbiology, CARIM (Cardiovascular Research Institute Maastricht), Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Boelen E, Steinbusch HWM, Pronk I, Grauls G, Rennert P, Bailly V, Bruggeman CA, Stassen FRM. Inflammatory responses following Chlamydia pneumoniae infection of glial cells. Eur J Neurosci 2007; 25:753-60. [PMID: 17313571 DOI: 10.1111/j.1460-9568.2007.05339.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, infections have been implicated in the pathogenesis of Alzheimer's disease. Apart from the direct effects of pathogens, it can be hypothesized that inflammatory mechanisms, such as the production of pro-inflammatory mediators by resident glia, may result in neurotoxicity. Here, we examined the inflammatory responses in murine microglial cell (MMC) and murine astrocyte cell (MAC) lines following infection with Chlamydia pneumoniae (Cpn), a pathogen that has recently been associated with Alzheimer's disease. Furthermore, we determined whether these inflammatory responses are sufficient to cause neuronal cell death in vitro. MMCs and MACs were infected with Cpn. Subsequently, various chemo- and cytokines were determined in the culture supernatant fluid of infected/control cells at different time points post-infection. Significantly higher levels of monocyte chemoattractant protein 1, interleukin (IL)-6, tumour necrosis factor (TNF)-alpha and IL-1beta were found in supernatant fluids of infected MMCs compared with controls. In contrast, in the supernatant fluid of infected MACs, only monocyte chemoattractant protein 1 and IL-6 displayed significantly higher levels compared with controls. Moreover, neurotoxicity was examined up to 72 h after transferring the conditioned supernatant fluid to a neuronal cell layer. No neuronal cell death was observed when supernatant fluids from infected/mock-treated MACs were transferred. However, when neurones were exposed to conditioned supernatant fluid from infected MMCs, a significant increase in cell death was observed compared with mock. Furthermore, adding neutralizing antibodies against IL-6 and TNF-alpha to that conditioned supernatant fluid prevented neuronal cell death by approximately 50%. In conclusion, these data suggest that Cpn infection results in a pro-inflammatory milieu, particularly by activating MMCs, that ultimately results in neurodegeneration with prominent roles for both IL-6 and TNF-alpha.
Collapse
Affiliation(s)
- E Boelen
- Department of Medical Microbiology, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Weeraratna AT, Kalehua A, DeLeon I, Bertak D, Maher G, Wade MS, Lustig A, Becker KG, Wood W, Walker DG, Beach TG, Taub DD. Alterations in immunological and neurological gene expression patterns in Alzheimer's disease tissues. Exp Cell Res 2006; 313:450-61. [PMID: 17188679 PMCID: PMC2565515 DOI: 10.1016/j.yexcr.2006.10.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/28/2006] [Accepted: 10/02/2006] [Indexed: 11/18/2022]
Abstract
Microarray technology was utilized to isolate disease-specific changes in gene expression by sampling across inferior parietal lobes of patients suffering from late onset AD or non-AD-associated dementia and non-demented controls. Primary focus was placed on understanding how inflammation plays a role in AD pathogenesis. Gene ontology analysis revealed that the most differentially expressed genes related to nervous system development and function and neurological disease followed by genes involved in inflammation and immunological signaling. Pathway analysis also implicated a role for chemokines and their receptors, specifically CXCR4 and CCR3, in AD. Immunohistological analysis revealed that these chemokine receptors are upregulated in AD patients. Western analysis demonstrated an increased activation of PKC, a downstream mediator of chemokine receptor signaling, in the majority of AD patients. A very specific cohort of genes related to amyloid beta accumulation and clearance were found to be significantly altered in AD. The most significantly downregulated gene in this data set was the endothelin converting enzyme 2 (ECE2), implicated in amyloid beta clearance. These data were subsequently confirmed by real-time PCR and Western blot analysis. Together, these findings open up new avenues of investigation and possible therapeutic strategies targeting inflammation and amyloid clearance in AD patients.
Collapse
Affiliation(s)
- Ashani T. Weeraratna
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | - Audrey Kalehua
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | - Isoke DeLeon
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dorothy Bertak
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | - Gregory Maher
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael S. Wade
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Kevin G. Becker
- Research Resources Branch, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - William Wood
- Research Resources Branch, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | - Dennis D. Taub
- Laboratory of Immunology, National Institutes of Health, Baltimore, MD 21224, USA
- Corresponding author. Clinical Immunology Section, Laboratory of Immunology, National Institute of Aging-Intramural Research Program, National Institutes of Health, 5600 Nathan Shock Drive, Room 4C02, Baltimore, MD 21224, USA. Fax: +1 410 558 8284. E-mail address: (D.D. Taub)
| |
Collapse
|
30
|
Zhang CX, Ofiyai H, He M, Bu X, Wen Y, Jia W. Neuronal activity regulates viral replication of herpes simplex virus type 1 in the nervous system. J Neurovirol 2005; 11:256-64. [PMID: 16036805 DOI: 10.1080/13550280590952781] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Herpes simplex virus types 1 and 2 (HSV-1, -2) infect and also establish latency in neurons. In the present study, the authors investigated the influence of neuronal activity on the replication of HSV-1. The results showed that the sodium channel blocker tetrodotoxin (TTX) and the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) could significantly increase viral replication in primary neuronal cultures, by two- to fourfold. In contrast, KCl reduced viral production by at least 80% in the same cultures. Inhibitors of GABA(A) receptors completely abolished the effects of GABA. Intravitreously injected TTX in a mouse corneal scarification model enhanced the viral titers > 10-fold in both the trigeminal ganglia and the brain. At 2 h post infection, both TTX and GABA significantly up-regulated the levels of transcription for the viral immediate early (IE) genes ICP0, ICP4, and ICP27, as revealed by real time PCR. These results indicate that the neuronal excitation status may dictate the efficiency of HSV-1 viral replication, probably by regulating the levels of viral IE gene expression. These are the first findings connecting neuronal activity to the molecular mechanisms of HSV replication in the nervous system, which may significantly influence our view of herpesvirus infection and latency.
Collapse
Affiliation(s)
- Cheryl X Zhang
- Department of Surgery and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
31
|
von Zglinicki T, Martin-Ruiz CM, Saretzki G. Telomeres, cell senescence and human ageing. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200400049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Robinson SR, Dobson C, Lyons J. Challenges and directions for the pathogen hypothesis of Alzheimer's disease. Neurobiol Aging 2004; 25:629-37. [PMID: 15172741 DOI: 10.1016/j.neurobiolaging.2003.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 11/21/2003] [Accepted: 12/02/2003] [Indexed: 10/26/2022]
Abstract
This paper critically reviews the possibility that infiltration of the brain by pathogens (e.g. Herpes simplex virus type 1 (HSV1) or Chlamydophila pneumoniae (Cp)) acts as a trigger or co-factor for Alzheimer's disease (AD). The evidence currently available is limited and in some cases inconsistent, but it does justify the need for more vigorous investigation of this hypothesis. An issue of particular concern is the paucity of experimental evidence showing that pathogens can elicit the neuropathological changes and cognitive deficits that characterise AD. Other weaknesses include a failure to obtain independent confirmation of Cp in AD brains, and a lack of evidence for HSV1 proteins or intact virions in AD brain tissue. Future avenues of investigation that might prove fruitful include epidemiological investigations of the incidence of AD in individuals who are either immunosuppressed or have received chronic antiviral or antibiotic therapy. There is also a need to consider systemic infections as potential contributors to the pathogenesis of AD.
Collapse
Affiliation(s)
- Stephen R Robinson
- Department of Psychology, School of Psychology, Psychiatry and Psychological Medicine, Monash University, Clayton, Vic. 3800, Australia.
| | | | | |
Collapse
|
33
|
|
34
|
Finch CE, Stanford CB. Meat‐Adaptive Genes and the Evolution of Slower Aging in Humans. QUARTERLY REVIEW OF BIOLOGY 2004; 79:3-50. [PMID: 15101252 DOI: 10.1086/381662] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chimpanzee life span is shorter than that of humans, which is consistent with a faster schedule of aging. We consider aspects of diet that may have selected for genes that allowed the evolution of longer human life spans with slower aging. Diet has changed remarkably during human evolution. All direct human ancestors are believed to have been largely herbivorous. Chimpanzees eat more meat than other great apes, but in captivity are sensitive to hypercholesterolemia and vascular disease. We argue that this dietary shift to increased regular consumption of fatty animal tissues in the course of hominid evolution was mediated by selection for "meat-adaptive" genes. This selection conferred resistance to disease risks associated with meat eating also increased life expectancy. One candidate gene is apolipoprotein E (apoE), with the E3 allele evolved in the genus Homo that reduces the risks for Alzheimer's and vascular disease, as well as influencing inflammation, infection, and neuronal growth. Other evolved genes mediate lipid metabolism and host defense. The timing of the evolution of apoE and other candidates for meat-adaptive genes is discussed in relation to key events in human evolution.
Collapse
Affiliation(s)
- Caleb E Finch
- Andrus Gerontology Center, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA.
| | | |
Collapse
|
35
|
Mattson MP. Infectious agents and age-related neurodegenerative disorders. Ageing Res Rev 2004; 3:105-20. [PMID: 15163105 PMCID: PMC7172323 DOI: 10.1016/j.arr.2003.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 08/06/2003] [Indexed: 01/08/2023]
Abstract
chlamdAs with other organ systems, the vulnerability of the nervous system to infectious agents increases with aging. Several different infectious agents can cause neurodegenerative conditions, with prominent examples being human immunodeficiency virus (HIV-1) dementia and prion disorders. Such infections of the central nervous system (CNS) typically have a relatively long incubation period and a chronic progressive course, and are therefore increasing in frequency as more people live longer. Infectious agents may enter the central nervous system in infected migratory macrophages, by transcytosis across blood-brain barrier cells or by intraneuronal transfer from peripheral nerves. Synapses and lipid rafts are important sites at which infectious agents may enter neurons and/or exert their cytotoxic effects. Recent findings suggest the possibility that infectious agents may increase the risk of common age-related neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and stroke. While scenarios can be envisioned whereby viruses such as Chlamydia pneumoniae, herpes simplex and influenza promote damage to neurons during aging, there is no conclusive evidence for a major role of these pathogens in neurodegenerative disorders. In the case of stroke, blood vessels may be adversely affected by bacteria or viruses resulting in atherosclerosis.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
36
|
Satpute-Krishnan P, DeGiorgis JA, Bearer EL. Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of alzheimer's disease. Aging Cell 2003; 2:305-18. [PMID: 14677633 PMCID: PMC3622731 DOI: 10.1046/j.1474-9728.2003.00069.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anterograde transport of herpes simplex virus (HSV) from its site of synthesis in the neuronal cell body out the neuronal process to the mucosal membrane is crucial for transmission of the virus from one person to another, yet the molecular mechanism is not known. By injecting GFP-labeled HSV into the giant axon of the squid, we reconstitute fast anterograde transport of human HSV and use this as an assay to uncover the underlying molecular mechanism. HSV travels by fast axonal transport at velocities four-fold faster (0.9 microm/sec average, 1.2 microm/sec maximal) than that of mitochondria moving in the same axon (0.2 microm/sec) and ten-fold faster than negatively charged beads (0.08 microm/sec). Transport of HSV utilizes cellular transport mechanisms because it appears to be driven from inside cellular membranes as revealed by negative stain electron microscopy and by the association of TGN46, a component of the cellular secretory pathway, with GFP-labeled viral particles. Finally, we show that amyloid precursor protein (APP), a putative receptor for the microtubule motor, kinesin, is a major component of viral particles, at least as abundant as any viral encoded protein, while another putative motor receptor, JIP 1/2, is not detected. Conventional kinesin is also associated with viral particles. This work links fast anterograde transport of the common pathogen, HSV, with the neurodegenerative Alzheimer's disease. This novel connection should prompt new ideas for treatment and prevention strategies.
Collapse
Affiliation(s)
- Prasanna Satpute-Krishnan
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
- Marine Biology Laboratory, Woods Hole, MA 02543, USA
| | - Joseph A. DeGiorgis
- Marine Biology Laboratory, Woods Hole, MA 02543, USA
- National Institute of Health, NINDS, Bethesda, MD 20892, USA
| | - Elaine L. Bearer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
- Marine Biology Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
37
|
|
38
|
Abstract
OBJECTIVE/HYPOTHESIS This study was designed to investigate the hypothesis that Meniere's disease is associated with herpes simplex virus (HSV) reactivation in the vestibular ganglion. STUDY DESIGN Case control study. METHODS Vestibular ganglia were obtained from archival surgical pathology specimens from patients undergoing vestibular neurectomy for vertigo caused by Meniere's disease. All patients met criteria for classification as definite Meniere's disease according to American Academy of Otolaryngology/Head and Neck Surgery (AAO-HNS) criteria. Control specimens were obtained from willed body donors. Sections from each ganglion were studied for prevalence of viral DNA using a nested polymerase chain reaction designed to amplify the HSV DNA polymerase gene. Quantitative analysis determined the number of viral copies per standard unit of ganglionic DNA. RESULTS HSV DNA was more prevalent in paraffin embedded ganglia from patients with Meniere's disease (100%) than in fresh-frozen control ganglia (81%) (P =.02). Fixation and paraffin embedding substantially reduced recovery of HSV virus in selected control specimens. Quantitative analysis found no correlation between viral copy number in control ganglia processed frozen versus formalin fixed and paraffin embedded. CONCLUSIONS HSV is more commonly isolated from vestibular ganglia of patients with Meniere's disease than the general population. The routine histologic preparation of formalin fixation and paraffin embedding significantly altered the quantity of virus detected though not in a predictable manner. The study provides supportive evidence for a viral etiology in Meniere's disease.
Collapse
Affiliation(s)
- Jeffrey T Vrabec
- Bobby R Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
39
|
Strandberg TE, Pitkala KH, Linnavuori KH, Tilvis RS. Impact of viral and bacterial burden on cognitive impairment in elderly persons with cardiovascular diseases. Stroke 2003; 34:2126-31. [PMID: 12920256 DOI: 10.1161/01.str.0000086754.32238.da] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Inflammation and infectious etiology have been implicated in the pathogenesis of dementia. We sought to investigate whether the seropositivity of common infections was associated with cognitive function. METHODS Viral burden (seropositivity for herpes simplex virus type 1 [HSV-1], herpes simplex virus type 2 [HSV-2], or cytomegalovirus [CMV]) and bacterial burden (Chlamydia pneumoniae and Mycoplasma pneumoniae) were related to cognitive status and its impairment among 383 home-dwelling elderly with cardiovascular diseases (mean age, 80 years). The Mini-Mental State Examination (MMSE) and its changes and the Clinical Dementia Rating (CDR) were used to define cognitive impairment. RESULTS At baseline, 0 to 1, 2, and 3 positive titers toward viruses were found in 48 (12.5%), 229 (59.8%), and 106 individuals (27.7%), respectively. MMSE points decreased with increasing viral burden (P=0.03). At baseline, 58 individuals (15.1%) had cognitive impairment, which after adjustments was significantly associated with seropositivity for 3 viruses (hazard ratio, 2.5; 95% CI, 1.3 to 4.7). MMSE score decreased in 150 (43% of 348) during 12-month follow-up. After adjustment for MMSE score at baseline and with 0 to 1 seropositivities as reference (1.0), the hazard ratios were 1.8 (95% CI, 0.9 to 3.6) and 2.3 (95% CI, 1.1 to 5.0) for 2 and 3 seropositivities, respectively. The prevalence of possible or definite dementia according to CDR also increased with viral burden. No significant associations were observed between bacterial burden and cognition. CONCLUSIONS Viral pathogen burden of HSV and CMV was associated with cognitive impairment in home-dwelling elderly persons with cardiovascular diseases. The results need to be tested in larger databases, but they may offer a preventable cause of cognitive decline.
Collapse
Affiliation(s)
- Timo E Strandberg
- Department of Medicine, Geriatric Clinic, University of Helsinki, PO Box 340, FIN-00029 HUS Helsinki, Finland.
| | | | | | | |
Collapse
|
40
|
Fernandez CR, Fields A, Richards T, Kaye AD. Anesthetic considerations in patients with Alzheimer's disease. J Clin Anesth 2003; 15:52-8. [PMID: 12657410 DOI: 10.1016/s0952-8180(02)00483-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease is a form of dementia that is estimated to affect approximately 3 to 4 million Americans. Given the substantial number of people affected with this disease, it is likely that anesthesiologists will encounter many patients with Alzheimer's disease. Questions as to potential problems including informed consent, drug interactions, and preoperative progression of the disease may arise. This review describes anesthetic considerations, including pharmacologic and physiologic issues, in this growing population.
Collapse
|
41
|
Burgos JS, Ramirez C, Sastre I, Bullido MJ, Valdivieso F. Involvement of apolipoprotein E in the hematogenous route of herpes simplex virus type 1 to the central nervous system. J Virol 2002; 76:12394-8. [PMID: 12414984 PMCID: PMC136918 DOI: 10.1128/jvi.76.23.12394-12398.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein E (ApoE), a constituent of the lipoproteins, may be relevant in herpes simplex virus type 1 (HSV-1) infection of the central nervous system (CNS), since HSV-1 binds to human serum ApoE lipoproteins. This study demonstrates the involvement of ApoE in the hematogenous route of HSV-1 to the CNS.
Collapse
Affiliation(s)
- Javier S Burgos
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Abstract
Average life expectancy throughout developed countries has rapidly increased during the latter half of the 20th century and geriatric infectious diseases have become an increasingly important issue. Infections in the elderly are not only more frequent and more severe, but they also have distinct features with respect to clinical presentation, laboratory results, microbial epidemiology, treatment, and infection control. Reasons for increased susceptibility include epidemiological elements, immunosenescence, and malnutrition, as well as a large number of age-associated physiological and anatomical alterations. Moreover, ageing may be the cause of infection but infection can also be the cause of ageing. Mechanisms may include enhanced inflammation, pathogen-dependent tissue destruction, or accelerated cellular ageing through increased turnover. In most instances, treatment of infection leads to a satisfactory outcome in the elderly. However, in palliative care situations and in patients with terminal dementia, the decision whether or not to treat an infectious disease is becoming a difficult ethical issue.
Collapse
Affiliation(s)
- Gaëtan Gavazzi
- Department of Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | | |
Collapse
|
43
|
Wojtowicz WM, Farzan M, Joyal JL, Carter K, Babcock GJ, Israel DI, Sodroski J, Mirzabekov T. Stimulation of enveloped virus infection by beta-amyloid fibrils. J Biol Chem 2002; 277:35019-24. [PMID: 12119288 DOI: 10.1074/jbc.m203518200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease is characterized by deposition of beta-amyloid peptide (Abeta) into plaques in the brain, leading to neuronal toxicity and dementia. Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system can also cause a dementia, and amyloid deposition in the central nervous system is significantly higher in HIV-1-infected individuals compared with uninfected controls. Here we report that Abeta fibrils stimulated, by 5-20-fold, infection of target cells expressing CD4 and an appropriate coreceptor by multiple HIV-1 isolates but did not permit infection of cells lacking these receptors. Abeta enhanced infection at the stage of virus attachment or entry into the cell. Abeta fibrils also stimulated infection by amphotrophic Moloney leukemia virus, herpes simplex virus, and viruses pseudotyped with the envelope glycoprotein of vesicular stomatitis virus. Other synthetic fibril-forming peptides similarly enhanced viral infection and may be useful in gene delivery applications utilizing retroviral vectors. These data suggest that Abeta deposition may increase the vulnerability of the central nervous system to enveloped viral infection and that amyloidogenic peptides could be useful in enhancing gene transfer by enveloped viral vectors.
Collapse
Affiliation(s)
- Woj M Wojtowicz
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wozniak MA, Itzhaki RF, Faragher EB, James MW, Ryder SD, Irving WL. Apolipoprotein E-epsilon 4 protects against severe liver disease caused by hepatitis C virus. Hepatology 2002; 36:456-63. [PMID: 12143056 DOI: 10.1053/jhep.2002.34745] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The outcome of infection with hepatitis C virus (HCV) varies greatly. The virus associates with serum lipoproteins, including those containing apolipoprotein E (apoE) and apolipoprotein B (apoB), and may enter cells via the low-density lipoprotein receptor (LDLR). ApoE genotypes can affect the extent of damage in diseases caused by 2 other viruses--herpes simplex virus type 1 (HSV1; in Alzheimer's disease and herpes labialis) and human immunodeficiency virus (HIV). We therefore investigated whether specific apoE and apoB alleles were associated with different outcomes of HCV infection. A total of 156 anti-HCV-positive patients and 104 non-HCV-infected patients were studied. Liver biopsy specimens from patients with chronic HCV infection (n = 111) were assessed for disease severity by the Knodell system. ApoE and apoB genotypes were determined by standard polymerase chain reaction (PCR) methods. There was no significant difference among the apoE genotypes of HCV-infected subjects compared with previously published population data, or between HCV-RNA positive or negative patients. However, chronically HCV-infected subjects with mild liver disease (n = 65) had a significantly higher apoE-epsilon 4 allele frequency (20.0%) than those (n = 46) with severe disease (6.5%). ApoB alleles alone or in combination with apoE were not associated with mild or severe disease. The overall apoE allele frequencies of patients with liver disease not caused by HCV were similar to those of the total HCV group and in contrast to the HCV patients, the apoE allele frequencies were similar in those patients with no or mild fibrosis as compared with those with bridging fibrosis or cirrhosis. In conclusion, carriage of an apoE-epsilon 4 allele may be protective against liver damage caused by HCV, but not against damage due to various nonviral causes. This is yet another case in which apoE may determine the severity of a viral disease.
Collapse
Affiliation(s)
- Matthew A Wozniak
- Molecular Neurobiology Laboratory, Department of Optometry & Neuroscience, University of Manchester Institute of Science and Technology, Manchester, UK
| | | | | | | | | | | |
Collapse
|
45
|
Milatovic D, Zhang Y, Olson SJ, Montine KS, Roberts LJ, Morrow JD, Montine TJ, Dermody TS, Valyi-Nagy T. Herpes simplex virus type 1 encephalitis is associated with elevated levels of F2-isoprostanes and F4-neuroprostanes. J Neurovirol 2002; 8:295-305. [PMID: 12161814 DOI: 10.1080/13550280290100743] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To better understand the pathogenesis of herpes simplex virus type 1 (HSV-1) infections of the nervous system, concentrations of F(4)-neuroprostanes (F(4)-NP) and F(2)-isoprostanes (F(2)-IP) in the murine brain were determined following intracerebral inoculation of HSV-1 or normal saline. F(4)-NP are highly selective, quantitative markers of neuronal oxidative damage, while F(2)-IP are markers of oxidative damage to brain tissue not limited to a certain cell type. In contrast to saline-treated control animals, HSV-1-infected animals developed encephalitic symptoms associated with severe inflammation, widespread HSV-1 protein expression, and significantly elevated F(4)-NP and F(2)-IP levels in the brain. Survivors of acute HSV-1 infection showed no encephalitic symptoms 2 to 3 weeks following virus inoculation. Brain tissue derived from mice euthanized 2 month after virus inoculation demonstrated expression of HSV-1 latency-associated transcripts without detectable HSV-1 protein expression. However, brain tissue from these animals showed focal chronic inflammation, moderately elevated F(2)-IP levels, and normal levels of F(4)-NP. These observations provide novel biochemical evidence that oxidant tissue injury is a mechanism underlying neuronal damage during acute HSV-1 encephalitis and suggest that oxidative damage to tissue may continue in the mammalian brain until at least several weeks after recovery from the symptomatic phase of HSV-1 infection.
Collapse
Affiliation(s)
- Dejan Milatovic
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Herpes Simplex Viruses type 1 (HSV-1) and 2 (HSV-2) cause central nervous system (CNS) disease ranging from benign aseptic meningitis to fatal encephalitis. In adults, CNS infection with HSV-2 is most often associated with aseptic meningitis while HSV-1 frequently produces severe, focal encephalitis associated with high mortality and morbidity. Recent studies suggested that the distinct neurological outcome of CNS infection with the two viruses may be due to their distinct modulation of apoptotic cell death: HSV-1 triggers neuronal apoptosis, while HSV-2 is neuroprotective. Apoptosis also occurs in the etiology of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Down's syndrome, and determines the loss of specific neuronal populations and the decline in cognitive functions. Notwithstanding, the therapy of these disorders may rely on the use of replication-defective HSV-1 vectors to deliver anti-apoptotic transgenes to the CNS. However, the recent discovery of a neuroprotective activity innate to the HSV-2 genome (the ICP10 PK gene) suggests that: i) ICP10 PK may constitute a novel therapeutic approach by targeting both the apoptotic cell death and the cognitive decline, and ii) HSV-2 may be more suitable than HSV-1 as a vector for targeting neuronal disease.
Collapse
|
47
|
Abstract
Geriatric patients develop infections, but many have a different appearance from what usually is expected. The difference depends on the age and immune status of the patient and the virulence of the organism. Differences may make recognition more difficult. Therapy may require different doses. Examples of the more common infections are detailed in this article.
Collapse
Affiliation(s)
- Mervyn L Elgart
- Department of Dermatology, The George Washington University Medical Center, Washington, DC, USA.
| |
Collapse
|
48
|
Lin WR, Jennings R, Smith TL, Wozniak MA, Itzhaki RF. Vaccination prevents latent HSV1 infection of mouse brain. Neurobiol Aging 2001; 22:699-703. [PMID: 11705626 DOI: 10.1016/s0197-4580(01)00239-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Herpes simplex encephalitis (HSE) is a rare but very serious disorder caused by herpes simplex type 1 virus (HSV-1). Treatment with acyclovir decreases mortality but many patients still suffer cognitive impairment subsequently. A vaccine against HSV1 would therefore be of great value. HSV-1 has been implicated also in Alzheimer's disease (AD): we established that HSV1 resides in the brain of about two thirds of AD patients and aged normal people, and that in carriers of the type 4 allele of the apolipoprotein E gene, it is a strong risk factor for AD. Thus a vaccine against HSV-1 might prevent development of AD in some cases. To find whether a vaccine of mixed HSV-1 glycoproteins (ISCOMs), which protects mice from latent HSV-1 infection of sensory ganglia, prevents HSV1 latency in the CNS, ISCOM-vaccinated or unvaccinated animals were infected with HSV-1. Using polymerase chain reaction (PCR) we detected HSV-1 in brain from 16 of 39 unvaccinated mice (41%), but only 3 of 41 vaccinated mice (7%) (P < 0.001). Thus, ISCOMs protect the CNS also, suggesting their possible future usage in humans.
Collapse
Affiliation(s)
- W R Lin
- University of Manchester Institute of Science & Technology, Molecular Neurobiology Laboratory, Department of Optometry & Neuroscience, M60 1QD, Manchester, UK
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Ball MJ, Mathews R, Steiner I, Hill JM, Wisner TW, Murdoch GH, Kohama S, Sexton G, Nagalla S. Latent HSV 1 virus in trigeminal ganglia: the optimal site for linking prevention of Alzheimer's disease to vaccination. Neurobiol Aging 2001; 22:705-9; discussion 717-9. [PMID: 11705627 DOI: 10.1016/s0197-4580(01)00253-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M J Ball
- Section of Neuropathology, Oregon Health Sciences University, Portland, OR, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|