1
|
Pressley KR, Schwegman L, De Oca Arena MM, Huizar CC, Zamvil SS, Forsthuber TG. HLA-transgenic mouse models to study autoimmune central nervous system diseases. Autoimmunity 2024; 57:2387414. [PMID: 39167553 PMCID: PMC11470778 DOI: 10.1080/08916934.2024.2387414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Lance Schwegman
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Scott S. Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Vinay K, Kamat D, Narayan R V, Minz RW, Singh J, Bishnoi A, Chatterjee D, Parsad D, Kumaran MS. Major histocompatibility complex (MHC) gene frequency in acquired dermal macular hyperpigmentation: a case control study. Int J Dermatol 2024; 63:773-779. [PMID: 38263574 DOI: 10.1111/ijd.17017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Human leukocyte antigen (HLA) allele frequencies have a known association with the pathogenesis of various autoimmune diseases. METHODS We recruited 31 Indian patients of acquired dermal macular hyperpigmentation (ADMH) and 60 unrelated, age-and-gender-matched healthy controls. After history and clinical examination, 5 ml of blood in EDTA vials was collected. These samples were subjected to DNA extraction and the expression of HLA A, B, C, DR, DQ-A, and DQ-B was studied. RESULTS There was a predominance of females with a gender ratio of 23 : 8 and the most common phototype was Fitzpatrick type IV (83.9%). There was a significant association of HLA A*03:01 (OR: 5.8, CI: 1.7-17.0, P = 0.005), HLA B*07:02 (OR: 5.3, CI: 1.9-14.6, P = 0.003), HLA C*07:02 (OR: 4.3, CI: 1.8-9.6, P = 0.001), HLA DRB1*10:01 (OR: 7.6, CI: 1.7-38.00, P = 0.022), and HLA DRB1*15:02 (OR: 31.0, CI: 4.4-341.8, P < 0.001) with patients compared to controls, whereas HLA DQB*03:01 was less associated with patients compared to controls (OR: 0.2, CI: 0.0-0.6, P = 0.009). CONCLUSION Patients with ADMH are more likely to have the HLA A*03:01, HLA B 07*02, HLA C*07:02, HLA DRB1*10:01, HLA DRB1*15:02 and less likely to have the HLA DQB*03:01 allele. Larger cohort studies may thus be conducted studying these specific alleles.
Collapse
Affiliation(s)
- Keshavamurthy Vinay
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Kamat
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vignesh Narayan R
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jagdeep Singh
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anuradha Bishnoi
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Debajyoti Chatterjee
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Muthu S Kumaran
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Thomas OG, Olsson T. Mimicking the brain: Epstein-Barr virus and foreign agents as drivers of neuroimmune attack in multiple sclerosis. Front Immunol 2023; 14:1304281. [PMID: 38022632 PMCID: PMC10655090 DOI: 10.3389/fimmu.2023.1304281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
T cells have an essential role in adaptive immunity against pathogens and cancer, but failure of thymic tolerance mechanisms can instead lead to escape of T cells with the ability to attack host tissues. Multiple sclerosis (MS) occurs when structures such as myelin and neurons in the central nervous system (CNS) are the target of autoreactive immune responses, resulting in lesions in the brain and spinal cord which cause varied and episodic neurological deficits. A role for autoreactive T cell and antibody responses in MS is likely, and mounting evidence implicates Epstein-Barr virus (EBV) in disease mechanisms. In this review we discuss antigen specificity of T cells involved in development and progression of MS. We examine the current evidence that these T cells can target multiple antigens such as those from pathogens including EBV and briefly describe other mechanisms through which viruses could affect disease. Unravelling the complexity of the autoantigen T cell repertoire is essential for understanding key events in the development and progression of MS, with wider implications for development of future therapies.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
4
|
Ambigapathy G, Mukundan S, Nagamoto-Combs K, Combs CK, Nookala S. HLA-II-Dependent Neuroimmune Changes in Group A Streptococcal Necrotizing Fasciitis. Pathogens 2023; 12:1000. [PMID: 37623960 PMCID: PMC10459635 DOI: 10.3390/pathogens12081000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) bacteria cause a spectrum of human diseases ranging from self-limiting pharyngitis and mild, uncomplicated skin infections (impetigo, erysipelas, and cellulitis) to highly morbid and rapidly invasive, life-threatening infections such as streptococcal toxic shock syndrome and necrotizing fasciitis (NF). HLA class II allelic polymorphisms are linked with differential outcomes and severity of GAS infections. The dysregulated immune response and peripheral cytokine storm elicited due to invasive GAS infections increase the risk for toxic shock and multiple organ failure in genetically susceptible individuals. We hypothesized that, while the host immune mediators regulate the immune responses against peripheral GAS infections, these interactions may simultaneously trigger neuropathology and, in some cases, induce persistent alterations in the glial phenotypes. Here, we studied the consequences of peripheral GAS skin infection on the brain in an HLA-II transgenic mouse model of GAS NF with and without treatment with an antibiotic, clindamycin (CLN). Mice expressing the human HLA-II DR3 (DR3) or the HLA-II DR4 (DR4) allele were divided into three groups: (i) uninfected controls, (ii) subcutaneously infected with a clinical GAS strain isolated from a patient with GAS NF, and (iii) GAS-infected with CLN treatment (10 mg/kg/5 days, intraperitoneal). The groups were monitored for 15 days post-infection. Skin GAS burden and lesion area, splenic and hippocampal mRNA levels of inflammatory markers, and immunohistochemical changes in hippocampal GFAP and Iba-1 immunoreactivity were assessed. Skin GAS burden and hippocampal mRNA levels of the inflammatory markers S100A8/A9, IL-1β, IL-33, inflammasome-related caspase-1 (Casp1), and NLRP6 were elevated in infected DR3 but not DR4 mice. The levels of these markers were significantly reduced following CLN treatment in DR3 mice. Although GAS was not detectable in the brain, astrocyte (GFAP) and microglia (Iba-1) activation were evident from increased GFAP and Iba-1 mRNA levels in DR3 and DR4 mice. However, CLN treatment significantly reduced GFAP mRNA levels in DR3 mice, not DR4 mice. Our data suggest a skin-brain axis during GAS NF, demonstrating that peripherally induced pathological conditions regulate neuroimmune changes and gliotic events in the brain.
Collapse
Affiliation(s)
| | | | | | | | - Suba Nookala
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (G.A.); (S.M.); (K.N.-C.); (C.K.C.)
| |
Collapse
|
5
|
Segal Y, Nisnboym M, Regev K, Arnon K, Kolb H, Fahoum F, Aizenstein O, Paran Y, Louzoun Y, Israeli S, Loewenthal R, Svetlitzky N, Alcalay Y, Raphael I, Gadoth A. New Insights on DR and DQ Human Leukocyte Antigens in Anti-LGI1 Encephalitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/3/e200103. [PMID: 36973076 PMCID: PMC10042442 DOI: 10.1212/nxi.0000000000200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/26/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND AND OBJECTIVES To explore the clinical characteristics and HLA associations of patients with anti-leucine-rich glioma-inactivated 1 encephalitis (LGI1E) from a large single center in Israel. Anti-LGI1E is the most commonly diagnosed antibody-associated encephalitic syndrome in adults. Recent studies of various populations reveal significant associations with specific HLA genes. We examined the clinical characteristics and HLA associations of a cohort of Israeli patients. METHODS Seventeen consecutive patients with anti-LGI1E diagnosed at Tel Aviv Medical Center between the years 2011 and 2018 were included. HLA typing was performed using next-generation sequencing at the tissue typing laboratory of Sheba Medical Center and compared with data from the Ezer Mizion Bone Marrow Donor Registry, containing over 1,000,000 samples. RESULTS Our cohort displayed a male predominance and median age at onset in the 7th decade, as previously reported. The most common presenting symptom was seizures. Notably, paroxysmal dizziness spells were significantly more common than previously reported (35%), whereas faciobrachial dystonic seizures were found only in 23%. HLA analysis revealed overrepresentation of DRB1*07:01 (OR: 3.18, CI: 20.9 p < 1.e-5) and DRB1*04:02 (OR: 3.8, CI: 20.1 p < 1.e-5), as well as of the DQ allele DQB1*02:02 (OR: 2.8, CI: 14.2 p < 0.0001) as previously reported. A novel overrepresentation observed among our patients was of the DQB1*03:02 allele (OR: 2.3, CI: 6.9 p < 0.008). In addition, we found DR-DQ associations, among patients with anti-LGI1E, that showed complete or near-complete linkage disequilibrium (LD). By applying LD analysis to an unprecedentedly large control cohort, we were able to show that although in the general population, DQB*03:02 is not fully associated with DRB1*04:02, in the patient population, both alleles are always coupled, suggesting the DRB1*04:02 association to be primary to disease predisposition. In silico predictions performed for the overrepresented DQ alleles reveal them to be strong binders of LGI1-derived peptides, similarly to overrepresented DR alleles. These predictions suggest a possible correlation between peptide binding sites of paired DR-DQ alleles. DISCUSSION Our cohort presents distinct immune characteristics with substantially higher overrepresentation of DRB1*04:02 and slightly lower overrepresentation of DQB1*07:01 compared with previous reports implying differences between different populations. DQ-DR interactions found in our cohort may shed additional light on the complex role of immunogenetics in the pathogenesis of anti-LGI1E, implying a possible relevance of certain DQ alleles and DR-DQ interactions.
Collapse
Affiliation(s)
- Yahel Segal
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Michal Nisnboym
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Keren Regev
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Karni Arnon
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Hadar Kolb
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Firas Fahoum
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Orna Aizenstein
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Yael Paran
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Yoram Louzoun
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Sapir Israeli
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Ron Loewenthal
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Nina Svetlitzky
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Yifat Alcalay
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Itay Raphael
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA
| | - Avi Gadoth
- From the Department of Neurology (Y.S.Y.S.N., K.R., K.A., H.K., F.F., A.G.), Tel-Aviv Medical Center; Neuroimmunology Unit (K.R., K.A., H.K.), Tel-Aviv Medical Center; Sackler Faculty of Medicine (K.A., O.A.), Tel-Aviv University; Sagol School of Neuroscience (K.A.), Tel-Aviv University; Epilepsy and EEG Unit (F.F.), Tel Aviv Medical Center; Encephalitis Center (O.A., Y.P., Y.A., A.G.), Tel-Aviv Medical Center; Department of Radiology (O.A.), Tel-Aviv Medical Center; Infectious Diseases Department (Y.P.), Tel-Aviv Medical Center; Department of Mathematics (Y.L., S.I.), Bar Ilan University, Ramat Gan; Tissue Typing Laboratory (R.L., N.S.), Sheba Medical Center, Ramat Gan; Immunology Laboratory (Y.A.), Tel Aviv Medical Center, Israel; and Department of Neurological Surgery (I.R.), University of Pittsburgh School of Medicine, PA.
| |
Collapse
|
6
|
Shahi SK, Ali S, Jaime CM, Guseva NV, Mangalam AK. HLA Class II Polymorphisms Modulate Gut Microbiota and Experimental Autoimmune Encephalomyelitis Phenotype. Immunohorizons 2021; 5:627-646. [PMID: 34380664 PMCID: PMC8728531 DOI: 10.4049/immunohorizons.2100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the CNS in which the interaction between genetic and environmental factors plays an important role in disease pathogenesis. Although environmental factors account for 70% of disease risk, the exact environmental factors associated with MS are unknown. Recently, gut microbiota has emerged as a potential missing environmental factor linked with the pathobiology of MS. Yet, how genetic factors, such as HLA class II gene(s), interact with gut microbiota and influence MS is unclear. In the current study, we investigated whether HLA class II genes that regulate experimental autoimmune encephalomyelitis (EAE) and MS susceptibility also influence gut microbiota. Previously, we have shown that HLA-DR3 transgenic mice lacking endogenous mouse class II genes (AE-KO) were susceptible to myelin proteolipid protein (91-110)-induced EAE, an animal model of MS, whereas AE-KO.HLA-DQ8 transgenic mice were resistant. Surprisingly, HLA-DR3.DQ8 double transgenic mice showed higher disease prevalence and severity compared with HLA-DR3 mice. Gut microbiota analysis showed that HLA-DR3, HLA-DQ8, and HLA-DR3.DQ8 double transgenic mice microbiota are compositionally different from AE-KO mice. Within HLA class II transgenic mice, the microbiota of HLA-DQ8 mice were more similar to HLA-DR3.DQ8 than HLA-DR3. As the presence of DQ8 on an HLA-DR3 background increases disease severity, our data suggests that HLA-DQ8-specific microbiota may contribute to disease severity in HLA-DR3.DQ8 mice. Altogether, our study provides evidence that the HLA-DR and -DQ genes linked to specific gut microbiota contribute to EAE susceptibility or resistance in a transgenic animal model of MS.
Collapse
Affiliation(s)
| | - Soham Ali
- Department of Pathology, University of Iowa, Iowa City, IA
- Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | | | | | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA;
- Graduate Program in Immunology, University of Iowa, Iowa City, IA; and
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
7
|
Liu X, Zhao Y, Guo N, Tian D, Zhu R, Zhang J. Field synopsis and systematic meta-analyses of genetic association studies in neuromyelitis optica. Autoimmun Rev 2021; 20:102843. [PMID: 33971335 DOI: 10.1016/j.autrev.2021.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dandan Tian
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Zhang
- Department of Cell Biology, China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Shahi SK, Jensen SN, Murra AC, Tang N, Guo H, Gibson-Corley KN, Zhang J, Karandikar NJ, Murray JA, Mangalam AK. Human Commensal Prevotella histicola Ameliorates Disease as Effectively as Interferon-Beta in the Experimental Autoimmune Encephalomyelitis. Front Immunol 2020; 11:578648. [PMID: 33362764 PMCID: PMC7759500 DOI: 10.3389/fimmu.2020.578648] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota has emerged as an important environmental factor in the pathobiology of multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS). Both genetic and environmental factors have been shown to play an important role in MS. Among genetic factors, the human leukocyte antigen (HLA) class II allele such as HLA-DR2, DR3, DR4, DQ6, and DQ8 show the association with the MS. We have previously used transgenic mice expressing MS susceptible HLA class II allele such as HLA-DR2, DR3, DQ6, and DQ8 to validate significance of HLA alleles in MS. Although environmental factors contribute to 2/3 of MS risk, less is known about them. Gut microbiota is emerging as an imporatnt environmental factor in MS pathogenesis. We and others have shown that MS patients have distinct gut microbiota compared to healthy control (HC) with a lower abundance of Prevotella. Additionally, the abundance of Prevotella increased in patients receiving disease-modifying therapies (DMTs) such as Copaxone and/or Interferon-beta (IFNβ). We have previously identified a specific strain of Prevotella (Prevotella histicola), which can suppress experimental autoimmune encephalomyelitis (EAE) disease in HLA-DR3.DQ8 transgenic mice. Since Interferon-β-1b [IFNβ (Betaseron)] is a major DMTs used in MS patients, we hypothesized that treatment with the combination of P. histicola and IFNβ would have an additive effect on the disease suppression. We observed that treatment with P. histicola suppressed disease as effectively as IFNβ. Surprisingly, the combination of P. histicola and IFNβ was not more effective than either treatment alone. P. histicola alone or in combination with IFNβ increased the frequency and number of CD4+FoxP3+ regulatory T cells in the gut-associated lymphoid tissue (GALT). Treatment with P. histicola alone, IFNβ alone, and in the combination decreased frequency of pro-inflammatory IFN-γ and IL17-producing CD4+ T cells in the CNS. Additionally, P. histicola alone or IFNβ alone or the combination treatments decreased CNS pathology, characterized by reduced microglia and astrocytic activation. In conclusion, our study indicates that the human gut commensal P. histicola can suppress disease as effectively as commonly used MS drug IFNβ and may provide an alternative treatment option for MS patients.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Astrocytes/drug effects
- Astrocytes/immunology
- Astrocytes/metabolism
- Astrocytes/microbiology
- Central Nervous System/drug effects
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/microbiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Forkhead Transcription Factors/metabolism
- Gastrointestinal Microbiome
- HLA-DQ beta-Chains/genetics
- HLA-DRB1 Chains/genetics
- Humans
- Interferon-beta/pharmacology
- Interferon-gamma/metabolism
- Interleukin-17/metabolism
- Intestines/microbiology
- Lymphoid Tissue/drug effects
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/microbiology
- Male
- Mice, Transgenic
- Microglia/drug effects
- Microglia/immunology
- Microglia/metabolism
- Microglia/microbiology
- Prevotella/physiology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/microbiology
Collapse
Affiliation(s)
- Shailesh K. Shahi
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Samantha N. Jensen
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Alexandra C. Murra
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Na Tang
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Hui Guo
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | | | - Jian Zhang
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Nitin J. Karandikar
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA, United States
| | - Joseph A. Murray
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
- Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
9
|
Susukida T, Aoki S, Shirayanagi T, Yamada Y, Kuwahara S, Ito K. HLA transgenic mice: application in reproducing idiosyncratic drug toxicity. Drug Metab Rev 2020; 52:540-567. [PMID: 32847422 DOI: 10.1080/03602532.2020.1800725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various types of transgenic mice carrying either class I or II human leukocyte antigen (HLA) molecules are readily available, and reports describing their use in a variety of studies have been published for more than 30 years. Examples of their use include the discovery of HLA-specific antigens against viral infection as well as the reproduction of HLA-mediated autoimmune diseases for the development of therapeutic strategies. Recently, HLA transgenic mice have been used to reproduce HLA-mediated idiosyncratic drug toxicity (IDT), a rare and unpredictable adverse drug reaction that can result in death. For example, abacavir-induced IDT has successfully been reproduced in HLA-B*57:01 transgenic mice. Several reports using HLA transgenic mice for IDT have proven the utility of this concept for the evaluation of IDT using various HLA allele combinations and drugs. It has become apparent that such models may be a valuable tool to investigate the mechanisms underlying HLA-mediated IDT. This review summarizes the latest findings in the area of HLA transgenic mouse models and discusses the current challenges that must be overcome to maximize the potential of this unique animal model.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Laboratory of Cancer Biology and Immunology, Section of Host Defenses, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yushiro Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
10
|
Scoring disease in an animal model of multiple sclerosis using a novel infrared-based automated activity-monitoring system. Sci Rep 2019; 9:19194. [PMID: 31844134 PMCID: PMC6915774 DOI: 10.1038/s41598-019-55713-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/20/2019] [Indexed: 01/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disorder of the central nervous system (CNS). Its corresponding animal model, experimental autoimmune encephalomyelitis (EAE), is widely used to understand disease pathogenesis and test novel therapeutic agents. However, existing methods to score EAE disease severity are subjective and often vary between individual researchers, making it difficult to translate findings across different studies. An enhanced automated method of disease scoring would eliminate subjectivity and reduce operator-dependent errors. Here, we used an Infra-Red Activity Monitoring System (IRAMS) to measure murine locomotor activity as a surrogate measure of disease severity and compared it to standard EAE scoring methods. In mice immunized with CNS-specific myelin antigens, we observed an inverse correlation between disease severity and mouse activity, with the IRAMS showing enhanced disease scoring compared to standard EAE scoring methods. Relative to standard EAE scoring methods, IRAMS showed comparable measurement of disease relapses and remissions in the SJL/J-relapsing-remitting model of EAE, and could comparably assess the therapeutic efficiency of the MS drug, Copaxone (Glatiramer acetate-GA). Thus, the IRAMS is a method to measure disease severity in EAE without subjective bias and is a tool to consistently assess the efficacy of novel therapeutic agents for MS.
Collapse
|
11
|
Shahi SK, Zarei K, Guseva NV, Mangalam AK. Microbiota Analysis Using Two-step PCR and Next-generation 16S rRNA Gene Sequencing. J Vis Exp 2019. [PMID: 31680682 DOI: 10.3791/59980] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The human gut is colonized by trillions of bacteria that support physiologic functions such as food metabolism, energy harvesting, and regulation of the immune system. Perturbation of the healthy gut microbiome has been suggested to play a role in the development of inflammatory diseases, including multiple sclerosis (MS). Environmental and genetic factors can influence the composition of the microbiome; therefore, identification of microbial communities linked with a disease phenotype has become the first step towards defining the microbiome's role in health and disease. Use of 16S rRNA metagenomic sequencing for profiling bacterial community has helped in advancing microbiome research. Despite its wide use, there is no uniform protocol for 16S rRNA-based taxonomic profiling analysis. Another limitation is the low resolution of taxonomic assignment due to technical difficulties such as smaller sequencing reads, as well as use of only forward (R1) reads in the final analysis due to low quality of reverse (R2) reads. There is need for a simplified method with high resolution to characterize bacterial diversity in a given biospecimen. Advancements in sequencing technology with the ability to sequence longer reads at high resolution have helped to overcome some of these challenges. Present sequencing technology combined with a publicly available metagenomic analysis pipeline such as R-based Divisive Amplicon Denoising Algorithm-2 (DADA2) has helped advance microbial profiling at high resolution, as DADA2 can assign sequence at the genus and species levels. Described here is a guide for performing bacterial profiling using two-step amplification of the V3-V4 region of the 16S rRNA gene, followed by analysis using freely available analysis tools (i.e., DADA2, Phyloseq, and METAGENassist). It is believed that this simple and complete workflow will serve as an excellent tool for researchers interested in performing microbiome profiling studies.
Collapse
Affiliation(s)
| | - Kasra Zarei
- Medical Scientist Training Program, University of Iowa
| | | | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa; Medical Scientist Training Program, University of Iowa; Graduate Program in Immunology, University of Iowa; Graduate Program in Molecular Medicine, University of Iowa;
| |
Collapse
|
12
|
Shahi SK, Freedman SN, Murra AC, Zarei K, Sompallae R, Gibson-Corley KN, Karandikar NJ, Murray JA, Mangalam AK. Prevotella histicola, A Human Gut Commensal, Is as Potent as COPAXONE® in an Animal Model of Multiple Sclerosis. Front Immunol 2019; 10:462. [PMID: 30984162 PMCID: PMC6448018 DOI: 10.3389/fimmu.2019.00462] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system. We and others have shown that there is enrichment or depletion of some gut bacteria in MS patients compared to healthy controls (HC), suggesting an important role of the gut bacteria in disease pathogenesis. Thus, specific gut bacteria that are lower in abundance in MS patients could be used as a potential treatment option for this disease. In particular, we and others have shown that MS patients have a lower abundance of Prevotella compared to HC, whereas the abundance of Prevotella is increased in patients that receive disease-modifying therapies such as Copaxone® (Glatiramer acetate-GA). This inverse correlation between the severity of MS disease and the abundance of Prevotella suggests its potential for use as a therapeutic option to treat MS. Notably we have previously identified a specific strain, Prevotella histicola (P. histicola), that suppresses disease in the animal model of MS, experimental autoimmune encephalomyelitis (EAE) compared with sham treatment. In the present study we analyzed whether the disease suppressing effects of P. histicola synergize with those of the disease-modifying drug Copaxone® to more effectively suppress disease compared to either treatment alone. Treatment with P. histicola was as effective in suppressing disease as treatment with Copaxone®, whereas the combination of P. histicola plus Copaxone® was not more effective than either individual treatment. P. histicola-treated mice had an increased frequency and number of CD4+FoxP3+ regulatory T cells in periphery as well as gut and a decreased frequency of pro-inflammatory IFN-γ and IL17-producing CD4 T cells in the CNS, suggesting P. histicola suppresses disease by boosting anti-inflammatory immune responses and inhibiting pro-inflammatory immune responses. In conclusion, our study indicates that the human gut commensal P. histicola can suppress disease as efficiently as Copaxone® and may provide an alternative treatment option for MS patients.
Collapse
Affiliation(s)
- Shailesh K Shahi
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Samantha N Freedman
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Alexandra C Murra
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Kasra Zarei
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
| | | | | | - Nitin J Karandikar
- Department of Pathology, University of Iowa, Iowa City, IA, United States.,Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Graduate Program in Molecular Cell Biology, University of Iowa, Iowa City, IA, United States
| | - Joseph A Murray
- Department of Immunology, Mayo Clinic, Rochester, MN, United States.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States.,Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States.,Graduate Program in Molecular Cell Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
13
|
Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease. Cell Rep 2018; 20:1269-1277. [PMID: 28793252 DOI: 10.1016/j.celrep.2017.07.031] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/05/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022] Open
Abstract
The human gut is colonized by a large number of microorganisms (∼1013 bacteria) that support various physiologic functions. A perturbation in the healthy gut microbiome might lead to the development of inflammatory diseases, such as multiple sclerosis (MS). Therefore, gut commensals might provide promising therapeutic options for treating MS and other diseases. We report the identification of human gut-derived commensal bacteria, Prevotella histicola, which can suppress experimental autoimmune encephalomyelitis (EAE) in a human leukocyte antigen (HLA) class II transgenic mouse model. P. histicola suppresses disease through the modulation of systemic immune responses. P. histicola challenge led to a decrease in pro-inflammatory Th1 and Th17 cells and an increase in the frequencies of CD4+FoxP3+ regulatory T cells, tolerogenic dendritic cells, and suppressive macrophages. Our study provides evidence that the administration of gut commensals may regulate a systemic immune response and may, therefore, have a possible role in treatment strategies for MS.
Collapse
|
14
|
Mangalam AK, Luo N, Luckey D, Papke L, Hubbard A, Wussow A, Smart M, Giri S, Rodriguez M, David C. Absence of IFN-γ increases brain pathology in experimental autoimmune encephalomyelitis-susceptible DRB1*0301.DQ8 HLA transgenic mice through secretion of proinflammatory cytokine IL-17 and induction of pathogenic monocytes/microglia into the central nervous system. THE JOURNAL OF IMMUNOLOGY 2014; 193:4859-70. [PMID: 25339670 DOI: 10.4049/jimmunol.1302008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis is an inflammatory, demyelinating disease of the CNS of presumed autoimmune origin. Of all the genetic factors linked with multiple sclerosis, MHC class II molecules have the strongest association. Generation of HLA class II transgenic (Tg) mice has helped to elucidate the role of HLA class II genes in chronic inflammatory and demyelinating diseases. We have shown that the human HLA-DRB1*0301 gene predisposes to proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE), whereas HLA-DQβ1*0601 (DQ6) was resistant. We also showed that the DQ6 molecule protects from EAE in DRB1*0301.DQ6 double-Tg mice by producing anti-inflammatory IFN-γ. HLA-DQβ1*0302 (DQ8) Tg mice were also resistant to PLP(91-110)-induced EAE, but production of proinflammatory IL-17 exacerbated disease in DRB1*0301.DQ8 mice. To further confirm the role of IFN-γ in protection, we generated DRB1*0301.DQ8 mice lacking IFN-γ (DRB1*0301.DQ8.IFN-γ(-/-)). Immunization with PLP(91-110) peptide caused atypical EAE in DRB1*0301.DQ8.IFN-γ(-/-) mice characterized by ataxia, spasticity, and dystonia, hallmarks of brain-specific disease. Severe brain-specific inflammation and demyelination in DRB1*0301.DQ8.IFN-γ(-/-) mice with minimal spinal cord pathology further confirmed brain-specific pathology. Atypical EAE in DRB1*0301.DQ8.IFN-γ(-/-) mice was associated with increased encephalitogenicity of CD4 T cells and their ability to produce greater levels of IL-17 and GM-CSF compared with DRB1*0301.DQ8 mice. Further, areas with demyelination showed increased presence of CD68(+) inflammatory cells, suggesting an important role for monocytes/microglia in causing brain pathology. Thus, our study supports a protective role for IFN-γ in the demyelination of brain through downregulation of IL-17/GM-CSF and induction of neuroprotective factors in the brain by monocytes/microglial cells.
Collapse
Affiliation(s)
- Ashutosh K Mangalam
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; Department of Neurology, Mayo Clinic, Rochester, MN 55905; and
| | - Ningling Luo
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - David Luckey
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Louisa Papke
- Department of Neurology, Mayo Clinic, Rochester, MN 55905; and
| | - Alyssa Hubbard
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Arika Wussow
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Michele Smart
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202
| | - Moses Rodriguez
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; Department of Neurology, Mayo Clinic, Rochester, MN 55905; and
| | - Chella David
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
15
|
Kaushansky N, Ben-Nun A. DQB1*06:02-Associated Pathogenic Anti-Myelin Autoimmunity in Multiple Sclerosis-Like Disease: Potential Function of DQB1*06:02 as a Disease-Predisposing Allele. Front Oncol 2014; 4:280. [PMID: 25360418 PMCID: PMC4199271 DOI: 10.3389/fonc.2014.00280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022] Open
Abstract
Susceptibility to multiple sclerosis (MS) has been linked mainly to the HLA-DRB1 locus, with the HLA-DR15 haplotype (DRB1*1501-DQA1*0102-DQB1*0602-DRB5*0101) dominating MS risk in Caucasians. Although genes in the HLA-II region, particularly DRB1*1501, DQA1*0102-DQB1*0602, are in tight linkage disequilibrium, genome-wide-association, and gene candidate studies identified the DRB1*15:01 allele as the primary risk factor in MS. Many genetic and immune-functional studies have indicated DRB1*15:01 as a primary risk factor in MS, while only some functional studies suggested a disease-modifying role for the DRB5*01 or DQB1*06 alleles. In this respect, the susceptibility of DRB1*15:01-transgenic (Tg) mice to myelin basic protein- or myelin oligodendrocyte glycoprotein-induced MS-like disease is consistent with primary contribution of DRB1*15:01 to HLA-DR15+ MS. The studies summarized here show that susceptibility to MS-like disease, induced in HLA-“humanized” mice by myelin oligodendrocytic basic protein or by the proteolipid protein, one of the most prominent encephalitogenic target antigens implicated in human MS, is determined by DQB1*06:02, rather than by the DRB1*15:01 allele. These findings not only offer a rationale for a potential role for DQB1*06:02 in predisposing susceptibility to MS, but also suggest a more complex and differential functional role for HLA-DR15 alleles, depending on the primary target myelin antigen. However, the conflict between these findings in HLA-Tg mice and the extensive genome-wide-association studies, which could not detect any significant effect from the DQB1*06:02 allele on MS risk, is rather puzzling. Functional analysis of MS PBLs for DQB1*06:02-associated anti-myelin autoimmunity may indicate whether or not DQB1*06:02 is associated with MS pathogenesis.
Collapse
Affiliation(s)
- Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science , Rehovot , Israel
| | - Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
16
|
Naegele M, Martin R. The good and the bad of neuroinflammation in multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:59-87. [PMID: 24507513 DOI: 10.1016/b978-0-444-52001-2.00003-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is the most common inflammatory, demyelinating, neurodegenerative disorder of the central nervous system (CNS). It is widely considered a T-cell mediated autoimmune disease that develops in genetically susceptible individuals, possibly under the influence of certain environmental trigger factors. The invasion of autoreactive CD4+ T-cells into the CNS is thought to be a central step that initiates the disease. Several other cell types, including CD8+ T-cells, B-cells and phagocytes appear to be involved in causing inflammation and eventually neurodegeneration. But inflammation is not entirely deleterious in MS. Evidence has accumulated in the recent years that show the importance of regulatory immune mechanisms which restrain tissue damage and initiate regeneration. More insight into the beneficial aspects of neuroinflammation might allow us to develop new treatment strategies for this enigmatic disease.
Collapse
Affiliation(s)
- Matthias Naegele
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital, Zurich, Switzerland.
| |
Collapse
|
17
|
HLA class II (DR0401) molecules induce Foxp3+ regulatory T cell suppression of B cells in Plasmodium yoelii strain 17XNL malaria. Infect Immun 2013; 82:286-97. [PMID: 24166949 DOI: 10.1128/iai.00272-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unlike human malaria parasites that induce persistent infection, some rodent malaria parasites, like Plasmodium yoelii strain 17XNL (Py17XNL), induce a transient (self-curing) malaria infection. Cooperation between CD4 T cells and B cells to produce antibodies is thought to be critical for clearance of Py17XNL parasites from the blood, with major histocompatibility complex (MHC) class II molecules being required for activation of CD4 T cells. In order to better understand the correspondence between murine malaria models and human malaria, and in particular the role of MHC (HLA) class II molecules, we studied the ability of humanized mice expressing human HLA class II molecules to clear Py17XNL infection. We showed that humanized mice expressing HLA-DR4 (DR0401) molecules and lacking mouse MHC class II molecules (EA(0)) have impaired production of specific antibodies to Py17XNL and cannot cure the infection. In contrast, mice expressing HLA-DR4 (DR0402), HLA-DQ6 (DQ0601), HLA-DQ8 (DQ0302), or HLA-DR3 (DR0301) molecules in an EA(0) background were able to elicit specific antibodies and self-cure the infection. In a series of experiments, we determined that the inability of humanized DR0401.EA(0) mice to elicit specific antibodies was due to expansion and activation of regulatory CD4(+) Foxp3(+) T cells (Tregs) that suppressed B cells to secrete antibodies through cell-cell interactions. Treg depletion allowed the DR0401.EA(0) mice to elicit specific antibodies and self-cure the infection. Our results demonstrated a differential role of MHC (HLA) class II molecules in supporting antibody responses to Py17XNL malaria and revealed a new mechanism by which malaria parasites stimulate B cell-suppressogenic Tregs that prevent clearance of infection.
Collapse
|
18
|
Aspord C, Yu CI, Banchereau J, Palucka AK. Humanized mice for the development and testing of human vaccines. Expert Opin Drug Discov 2013; 2:949-60. [PMID: 23484815 DOI: 10.1517/17460441.2.7.949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mouse models of human disease form a link between genetics and biology. However, mice and humans differ in many aspects of immune system biology. These differences might explain, in part, why many successful preclinical immunotherapy studies in mice turn out to be unsuccessful when used in clinical trials in humans. Pioneering studies in the late 1980s demonstrated the reconstitution of human lympho-hematopoietic cells in immunodeficient mice. Since this time, immunodeficient mice are being tested as hosts for human hematopoietic organs or cells in an effort to create an in vivo model of the complete human immune system. Such Humouse models could permit us to generate and test novel human vaccines.
Collapse
Affiliation(s)
- Caroline Aspord
- Baylor Institute for Immunology Research and Baylor NIAID Cooperative Center for Translational Research on Human Immunology and Biodefense, Dallas, TX75204, USA +1 214 820 7450 ; +1 214 820 4813 ;
| | | | | | | |
Collapse
|
19
|
Two discreet subsets of CD8 T cells modulate PLP(91-110) induced experimental autoimmune encephalomyelitis in HLA-DR3 transgenic mice. J Autoimmun 2012; 38:344-53. [PMID: 22459490 DOI: 10.1016/j.jaut.2012.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/23/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
Previously we showed that transgenic mice expressing human HLA-DR3 gene are susceptible to PLP(91-110) induced experimental autoimmune encephalomyelitis (EAE) and can serve as an animal model of multiple sclerosis (MS). HLA-DR3 mice with EAE showed increased number of CD8 T cells indicating their important role in disease pathogenesis. The role of CD8 T cells in MS, an inflammatory demyelinating disease of CNS, has been enigmatic as it has been assigned both regulatory and pathogenic roles. Therefore, to evaluate the role of CD8 T cells, we generated CD8 deficient HLA-DR3 transgenic mice (DR3.CD8(-/-)). Immunization with PLP(91-110) led to more severe EAE in DR3.CD8(-/-) mice compared to HLA-DR3 mice indicating a regulatory role for CD8 T cells. Interestingly, DR3.CD8(-/-) mice with EAE showed decreased CNS pathology compared to DR3 mice thus suggesting a pathogenic role for CD8 T cells. We show that these two subsets of CD8 T cells can be differentiated based on the surface expression of CD122 (IL-2 Rβ chain). CD8 T cells expressing CD122 (CD8+CD122+) play a regulatory role while CD8+CD122- T cells act as a pathogenic subset. CD122 expressing CD8 T cells are the regulatory subset of CD8 T cells and regulate the encephalitogenic CD4 T cells through direct modulation of antigen presenting cells and/or through the release of immunoregulatory cytokines such as IL-10, IFNγ and TGFβ. We also showed that adoptive transfer of CD8CD122- T cells caused increased spinal cord demyelination indicating that these are pathogenic subset of CD8 T cells. Our study suggests that CD8+ T cells play both regulatory as well as pathogenic role in disease pathogenesis of EAE. A better understanding of these subsets could aid in designing novel therapy for MS patients.
Collapse
|
20
|
Role of HLA class II genes in susceptibility and resistance to multiple sclerosis: studies using HLA transgenic mice. J Autoimmun 2011; 37:122-8. [PMID: 21632210 DOI: 10.1016/j.jaut.2011.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 01/01/2023]
Abstract
Multiple sclerosis (MS), an inflammatory and demyelinating autoimmune disease of CNS has both, a genetic and an environmental predisposition. Among all the genetic factors associated with MS susceptibility, HLA class II haplotypes such as DR2/DQ6, DR3/DQ2, and DR4/DQ8 show the strongest association. Although a direct role of HLA-DR alleles in MS have been confirmed, it has been difficult to understand the contribution of HLA-DQ alleles in disease pathogenesis, due to strong linkage disequilibrium. Population studies have indicated that DQ alleles may play a modulatory role in the progression of MS. To better understand the mechanism by which HLA-DR and -DQ genes contribute to susceptibility and resistance to MS, we utilized single and double transgenic mice expressing HLA class II gene(s) lacking endogenous mouse class II genes. HLA class II transgenic mice have helped us in identifying immunodominant epitopes of PLP in context of various HLA-DR and -DQ molecules. We have shown that HLA-DR3 transgenic mice were susceptible to PLP(91-110) induced experimental autoimmune encephalomyelitis (EAE), while DQ6 (DQB1*0601) and DQ8 (DQB1*0302) transgenic mice were resistant. Surprisingly DQ6/DR3 double transgenic mice were resistant while DQ8/DR3 mice showed higher disease incidence and severity than DR3 mice. The protective effect of DQ6 in DQ6/DR3 mice was mediated by IFNγ, while the disease exacerbating effect of DQ8 molecule was mediated by IL-17. Further, we have observed that myelin-specific antibodies play an important role in PLP(91-110) induced EAE in HLA-DR3DQ8 transgenic mice. Based on these observations, we hypothesize that epistatic interaction between HLA-DR and -DQ genes play an important role in predisposition to MS and our HLA transgenic mouse model provides a novel tool to study the effect of linkage disequilibrium in MS.
Collapse
|
21
|
Mangalam A, Luckey D, Basal E, Jackson M, Smart M, Rodriguez M, David C. HLA-DQ8 (DQB1*0302)-restricted Th17 cells exacerbate experimental autoimmune encephalomyelitis in HLA-DR3-transgenic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5131-9. [PMID: 19342694 PMCID: PMC2665933 DOI: 10.4049/jimmunol.0803918] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Among all of the genetic factors associated with multiple sclerosis (MS) susceptibility, MHC class II molecules have the strongest association. Although a direct role of DR alleles in MS have been confirmed, it has been difficult to understand the role of DQ alleles in disease pathogenesis due to strong linkage disequilibrium with certain DR alleles. Population studies have indicated that DQ alleles may play a modulatory role in progression of MS. Using HLA class II transgenic (Tg) mice, we investigated gene complementation between DR and DQ genes in the disease process. Previously, using single Tg mice (expressing HLA-DR or DQ gene), we showed that PLP(91-110) peptide induced experimental autoimmune encephalomyelitis (EAE) only in DR3.Abeta degrees mice, suggesting that DR3 (DRB1*0301) is a disease susceptibility gene in the context of PLP. We also showed that DQ6 protects development of EAE in DQ6/DR3 double Tg mice by production of anti-inflammatory IFN-gamma. In this study, we investigated the ability of DQ8 to modulate disease in DR3/DQ8 double Tg mice. Introduction of DQ8 onto DR3 Tg mice led to higher disease incidence and increased disease severity on immunization with PLP(91-110), indicating that DQ8 had an exacerbating effect on the development of EAE. Increased susceptibility in DR3/DQ8 Tg mice was due to increased production of proinflammatory cytokine IL-17 by DQ8-restricted T cells. HLA-DR3/DQ8 mice with EAE also demonstrated increased inflammation and demyelination in CNS as compared with single DR3 Tg mice. Thus double Tg mouse provides a novel model to study epistatic interactions between HLA class II molecules in inflammatory and demyelinating disease.
Collapse
MESH Headings
- Animals
- Cell Movement/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- HLA-DQ Antigens/immunology
- HLA-DR3 Antigen/genetics
- HLA-DR3 Antigen/immunology
- HLA-DR3 Antigen/metabolism
- Histocompatibility Antigens Class II/immunology
- Interferon-gamma/immunology
- Interleukin-17/immunology
- Mice
- Mice, Transgenic
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Ashutosh Mangalam
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
| | - David Luckey
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
| | - Eati Basal
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
| | - Megan Jackson
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
- Summer student from Berea College, Berea, Kentucky
| | - Michelle Smart
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
| | - Moses Rodriguez
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
| | - Chella David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA 55905
| |
Collapse
|
22
|
Jung C, Stoeckle C, Wiesmüller KH, Laub R, Emmrich F, Jung G, Melms A. Complementary strategies to elucidate T helper cell epitopes in myasthenia gravis. J Neuroimmunol 2008; 201-202:41-9. [DOI: 10.1016/j.jneuroim.2008.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 02/04/2023]
|
23
|
Mangalam A, Luckey D, Basal E, Behrens M, Rodriguez M, David C. HLA-DQ6 (DQB1*0601)-restricted T cells protect against experimental autoimmune encephalomyelitis in HLA-DR3.DQ6 double-transgenic mice by generating anti-inflammatory IFN-gamma. THE JOURNAL OF IMMUNOLOGY 2008; 180:7747-56. [PMID: 18490779 DOI: 10.4049/jimmunol.180.11.7747] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human MHC class II genes are associated with genetic susceptibility to multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the CNS of presumed autoimmune origin. These genes encode for proteins responsible for shaping immune response. The exact role of HLA-DQ and -DR genes in disease pathogenesis is not well-understood due to the high polymorphism, linkage disequilibrium, and heterogeneity of human populations. The advent of HLA class II-transgenic (Tg) mice has helped in answering some of these questions. Previously, using single-Tg mice (expressing the HLA-DR or -DQ gene), we showed that proteolipid protein (PLP)(91-110) peptide induced classical experimental autoimmune encephalomyelitis only in DR3.Abeta degrees mice, suggesting that DR3 (DRB1*0301) is a disease susceptible gene in the context of PLP. Human population studies have suggested that HLA-DQ6 (DQB1*0601) may be a protective gene in MS. To test this disease protection in an experimental model, we generated double-Tg mice expressing both HLA-DR3 and -DQ6. Introduction of DQ6 onto DR3-Tg mice led to a decrease in disease incidence on immunization with PLP(91-110) peptide indicating a dominant protective role of DQ6. This protective effect is due to high levels of IFN-gamma produced by DQ6-restricted T cells, which suppressed proliferation of encephalitogenic DR3-restricted T cells by inducing apoptosis. Our study indicates that DQ6 modifies the PLP(91-110)-specific T cell response in DR3 through anti-inflammatory effects of IFN-gamma, which is protective for experimental autoimmune encephalomyelitis. Thus, our double-Tg mouse provides a novel model in which to study epistatic interactions between HLA class II molecules in MS.
Collapse
Affiliation(s)
- Ashutosh Mangalam
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Population studies have shown that among all the genetic factors linked with autoimmune disease development, MHC class II genes on chromosome 6 accounts for majority of familial clustering in the common autoimmune diseases. Despite the highly polymorphic nature of HLA class II genes, majority of autoimmune diseases are linked to a limited set of class II-DR or -DQ alleles. Thus a more detailed study of these HLA-DR and -DQ alleles were needed to understand their role in genetic predisposition and pathogenesis of autoimmune diseases. Although in vitro studies using class-II restricted CD4 T cells and purified class II molecules have helped us in understanding some aspects of HLA class-II association with disease, it is difficult to study the role of class II genes in vivo because of heterogeneity of human population, complexity of MHC, and strong linkage disequilibrium among different class II genes. To overcome this problem, we pioneered the generation of HLA-class II transgenic mice to study role of these molecule in inflammatory disease. These HLA class II transgenic mice were used to develop novel in vivo disease model for common autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, insulin-dependent diabetes mellitus, myasthenia gravis, celiac disease, autoimmune relapsing polychondritis, autoimmune myocarditis, thyroiditis, uveitis, as well as other inflammatory disease such as allergy, tuberculosis and toxic shock syndrome. As the T-cell repertoire in these humanized HLA transgenic mice are shaped by human class II molecules, they show the same HLA restriction as humans, implicate potential triggering mechanism and autoantigens, and identify similar antigenic epitopes seen in human. This review describes the value of these humanized transgenic mice in deciphering role of HLA class II molecules in immunopathogenesis of inflammatory diseases.
Collapse
|
25
|
Mangalam A, Rodriguez M, David C. Role of MHC class II expressing CD4+ T cells in proteolipid protein(91-110)-induced EAE in HLA-DR3 transgenic mice. Eur J Immunol 2007; 36:3356-70. [PMID: 17125142 DOI: 10.1002/eji.200636217] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MHC class II molecules play a central role in the control of adaptive immune responses through selection of the CD4(+) T cell repertoire in the thymus and antigen presentation in the periphery. Inherited susceptibility to autoimmune disorders such as multiple sclerosis, rheumatoid arthritis and IDDM are associated with particular MHC class II alleles. Advent of HLA transgenic mice has helped us in deciphering the role of particular HLA DR and DQ class II molecules in human autoimmune diseases. In mice, the expression of class II is restricted to professional antigen-presenting cells (APC). However, in humans, class II is also expressed on T cells, unlike murine T cells. We have developed new humanized HLA class II transgenic mice expressing class II molecules not only on APC but also on a subset of CD4(+) T cells. The expression of class II on CD4(+) T cells is inducible, and class II(+) CD4(+) T cells can present antigen in the absence of APC. Further, using EAE, a well-established animal model of MS, we tested the functional significance of these class II(+) CD4(+) T cells. DR3.AEo transgenic mice were susceptible to proteolipid protein(91-110)-induced EAE and showed CNS pathology accompanied by widespread inflammation and demyelination seen in human MS patients, suggesting a role for class II(+) CD4(+) T cells in the pathogenesis.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- HLA-DR3 Antigen/biosynthesis
- HLA-DR3 Antigen/genetics
- HLA-DR3 Antigen/physiology
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Myelin Proteolipid Protein/administration & dosage
- Myelin Proteolipid Protein/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
Collapse
Affiliation(s)
- Ashutosh Mangalam
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
26
|
Greenstein JI. Current concepts of the cellular and molecular pathophysiology of multiple sclerosis. Dev Neurobiol 2007; 67:1248-65. [PMID: 17514718 DOI: 10.1002/dneu.20387] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease. It poses many challenges both clinically and scientifically. Progress made in understanding the genetics, immunology, and neurobiology of MS to date has positioned the field for further breakthroughs both in understanding the etiology and pathogenesis as well as the development of rationally based therapeutics. This review will cover fundamental aspects of the clinical and pathologic features of MS. Identified genetic markers will be considered as well as the evolving understanding of immunologic and neurobiological aspects of the disease. The development of immune therapy based on this knowledge is already apparent and it is likely that neuroprotective therapies will evolve to complement immune modulation in treating the disease.
Collapse
|
27
|
Chen Z, de Kauwe AL, Keech C, Wijburg O, Simpfendorfer K, Alexander WS, McCluskey J. Humanized transgenic mice expressing HLA DR4-DQ3 haplotype: reconstitution of phenotype and HLA-restricted T-cell responses. ACTA ACUST UNITED AC 2006; 68:210-9. [PMID: 16948641 DOI: 10.1111/j.1399-0039.2006.00656.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many autoimmune conditions have close genetic linkages to particular human histocompatibility leukocyte antigen (HLA) class II genes. With the aim of establishing a murine model of autoimmune disease, we have generated an HLA DR4-DQ3 haplotype transgenic (Tg) mouse that expresses a 440-kb yeast artificial chromosome harbouring DRA, DRB1*040101, DRB4*010301, DQA1*030101, DQB1*0302 and all the internal regulatory segments. This Tg mouse line was crossed to human CD4 (hCD4) Tg mice and endogenous class II knockout mice (I-A(o/o) and I-E(o/o)) lines to generate a DR4-DQ3.hCD4.IAE(o/o) Tg line. The Tg DR and DQ molecules are expressed on the physiological cell types in these animals, i.e. on most B cells (>85%), dendritic cells (DCs) and macrophages but not on T cells, with levels of expression comparable with those of human B cells (where DR > DQ expression). The DR4/DQ3 transgenes fully reconstituted the CD4 T-cell compartment, in both the thymus and the periphery, and the analysis of the T-cell receptor repertoire in the Tg mice confirmed that these class II molecules were able to mediate thymic selection of a broad range of Vbeta families. HLA DR4- and DQ3-restricted T-cell responses were elicited following immunization with known T-cell determinants presented by these molecules. Furthermore, the DR4-DQ3-restricted CD4(+) T cells conferred protective antibody-mediated immunity against an otherwise lethal infection with Salmonella enterica var. typhimurium. These new DR4-DQ3 Tg mice should prove to be valuable tools for dissecting the importance of this class II haplotype in autoimmune disorders like rheumatoid arthritis.
Collapse
Affiliation(s)
- Z Chen
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Khare M, Mangalam A, Rodriguez M, David CS. HLA DR and DQ interaction in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in HLA class II transgenic mice. J Neuroimmunol 2005; 169:1-12. [PMID: 16194572 DOI: 10.1016/j.jneuroim.2005.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 07/20/2005] [Indexed: 11/24/2022]
Abstract
Multiple sclerosis (MS) is shown to be associated with the HLA class II genes. The presence of strong linkage disequilibrium between HLA DR and DQ molecules in humans makes it difficult to identify the individual roles of HLA DR and HLA DQ molecule in MS pathogenesis. To address this problem, we used HLA class II transgenic mice and the experimental autoimmune encephalitis (EAE) model. Administration of recombinant MOG (rMOG) induced severe inflammation and demyelination in the central nervous system (CNS) of HLA DRB1*1502 mice (60%), whereas no disease was observed in HLA DQB1*0601(0%) and mild disease was observed in DQB1*0302 mice (13%). Lymphocyte proliferation was blocked by anti HLA antibodies, confirming that the rMOG was functionally presented by the HLA molecules. Introduction of DQB1*0302 into DRB1*1502 mice resulted in the development of chronic progressive clinical disease characterized by severe inflammation and demyelination (90%) in response to immunization with rMOG, whereas mild disease was observed when DQB1*0601 was introduced in DRB1*1502 mice (30%). This would suggest that the presence of more than one susceptible allele, namely HLA DRB1*1502 and DQB1*0302 resulted in enhanced severity of disease in the DRB1*1502/DQB1*0302 mice, possibly due to the additional selection and expansion of potential autoreactive T cells. The use of defined single and double HLA transgenic mice may reveal the intricate interactions between class II molecules in human disease.
Collapse
Affiliation(s)
- Meenakshi Khare
- Department of Immunology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Multiple sclerosis (MS) develops in young adults with a complex predisposing genetic trait and probably requires an inciting environmental insult such as a viral infection to trigger the disease. The activation of CD4+ autoreactive T cells and their differentiation into a Th1 phenotype are a crucial events in the initial steps, and these cells are probably also important players in the long-term evolution of the disease. Damage of the target tissue, the central nervous system, is, however, most likely mediated by other components of the immune system, such as antibodies, complement, CD8+ T cells, and factors produced by innate immune cells. Perturbations in immunomodulatory networks that include Th2 cells, regulatory CD4+ T cells, NK cells, and others may in part be responsible for the relapsing-remitting or chronic progressive nature of the disease. However, an important paradigmatic shift in the study of MS has occurred in the past decade. It is now clear that MS is not just a disease of the immune system, but that factors contributed by the central nervous system are equally important and must be considered in the future.
Collapse
Affiliation(s)
- Mireia Sospedra
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1400, USA.
| | | |
Collapse
|
30
|
Mangalam AK, Khare M, Krco CJ, Rodriguez M, David CS. Delineation of the minimal encephalitogenic epitope of proteolipid protein peptide(91-110) and critical residues required for induction of EAE in HLA-DR3 transgenic mice. J Neuroimmunol 2005; 161:40-8. [PMID: 15748942 DOI: 10.1016/j.jneuroim.2004.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 12/07/2004] [Accepted: 12/07/2004] [Indexed: 11/16/2022]
Abstract
Previously, we have reported that proteolipid protein (PLP) peptide 91-110 can induce experimental autoimmune encephalomyelitis (EAE) in HLA-DR3 transgenic (tg) mice. Here we, report that residues spanning 97-108 are the minimal epitope required for induction of EAE in DR3 mice. Utilizing a series of alanine-substituted peptides, positions 99, 101, 102, 103, 104, and 106 are identified as residues necessary for an immune response. Further analysis indicated that amino acid isoleucine (99), aspartate (102) and lysine (104) are anchor residues facilitating binding to HLA-DR3 molecules. These results may have applications in the future design of peptide based immunotherapy.
Collapse
MESH Headings
- Alanine/immunology
- Animals
- Apoproteins/chemistry
- Apoproteins/toxicity
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Cell Proliferation/drug effects
- Cytokines/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- HLA-DR3 Antigen/genetics
- HLA-DR3 Antigen/immunology
- Humans
- Immunization, Passive
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/toxicity
- Major Histocompatibility Complex/physiology
- Mice
- Mice, Transgenic
- Models, Immunological
- Myelin Proteolipid Protein/chemistry
- Myelin Proteolipid Protein/toxicity
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- Receptors, Antigen, T-Cell/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/pathology
- T-Lymphocytes/immunology
- Time Factors
Collapse
Affiliation(s)
- Ashutosh K Mangalam
- Department of Immunology, Mayo Clinic College of Medicine, 200, 1st Street SW Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
31
|
Das P, Chapoval S, Howard V, David CS, Golde TE. Immune responses against Abeta1-42 in HLA class II transgenic mice: implications for Abeta1-42 immune-mediated therapies. Neurobiol Aging 2003; 24:969-76. [PMID: 12928057 DOI: 10.1016/s0197-4580(03)00036-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have investigated whether polymorphic differences in the major histocompatibility complex (MHC) class II molecules influence humoral and cellular immune responses against Abeta1-42. To analyze the effects of mouse MHC class II and tolerance effects of overexpression of human APP in mice, we immunized Tg2576 and non-transgenic littermates bred into two different MHC backgrounds with Abeta1-42 and compared both B and T cell responses. We found that in the presence of the mouse C57BL/6 background, both B and T cell responses against Abeta1-42 were significantly suppressed. To directly test the contribution of human MHC class II, we immunized various human HLA class II transgenic (TG) mice with Abeta1-42 and analyzed anti-Abeta immune responses. HLA-DR3 and HLA-DQ8 TG mice generated modest B and T cell responses against Abeta1-42. The presence of HLA-DR3/DQ8 in double TG mice enhanced the overall immune response against Abeta1-42. In contrast, HLA-DR4 TG mice mounted strong T cell responses but failed to generate high titer antibody responses against Abeta1-42, whereas, the HLA-DQ6 TG mice were not able to mount significant B or T cell responses against Abeta1-42. These studies in mice suggest that the presence of certain MHC class II molecules or combinations of class II molecules can potentially influence the overall immune response against Abeta1-42.
Collapse
Affiliation(s)
- Pritam Das
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | |
Collapse
|
32
|
Chen Z, Dudek N, Wijburg O, Strugnell R, Brown L, Deliyannis G, Jackson D, Koentgen F, Gordon T, McCluskey J. A 320-kilobase artificial chromosome encoding the human HLA DR3-DQ2 MHC haplotype confers HLA restriction in transgenic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3050-6. [PMID: 11884478 DOI: 10.4049/jimmunol.168.6.3050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II haplotypes control the specificity of Th immune responses and susceptibility to many autoimmune diseases. Understanding the role of HLA class II haplotypes in immunity is hampered by the lack of animal models expressing these genes as authentic cis-haplotypes. In this study we describe transgenic expression of the autoimmune prone HLA DR3-DQ2 haplotype from a yeast artificial chromosome (YAC) containing an intact similar320-kb region from HLA DRA to DQB2. In YAC-transgenic mice HLA DR and DQ gene products were expressed on B cells, macrophages, and dendritic cells, but not on T cells indicating cell-specific regulation. Positive selection of the CD4 compartment by human class II molecules was 67% efficient in YAC-homozygous mice lacking endogenous class II molecules (Abeta(null/null)) and expressing only murine CD4. A broad range of TCR Vbeta families was used in the peripheral T cell repertoire, which was also purged of Vbeta5-, Vbeta11-, and Vbeta12-bearing T cells by endogenous mouse mammary tumor virus-encoded superantigens. Expression of the HLA DR3-DQ2 haplotype on the Abeta(null/null) background was associated with normal CD8-dependent clearance of virus from influenza-infected mice and development of CD4-dependent protection from otherwise lethal infection with Salmonella typhimurium. HLA DR- and DQ-restricted T cell responses were also elicited following immunization with known T cell determinants presented by these molecules. These findings demonstrate the potential for human MHC class II haplotypes to function efficiently in transgenic mice and should provide valuable tools for developing humanized models of MHC-associated autoimmune diseases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Composition
- CD4-Positive T-Lymphocytes/cytology
- CHO Cells
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Line, Transformed
- Chromosomes, Artificial, Yeast/genetics
- Chromosomes, Artificial, Yeast/immunology
- Cricetinae
- Embryo, Mammalian/cytology
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Expression Regulation/immunology
- HLA-DQ Antigens/biosynthesis
- HLA-DQ Antigens/genetics
- HLA-DQ Antigens/immunology
- HLA-DR3 Antigen/biosynthesis
- HLA-DR3 Antigen/genetics
- HLA-DR3 Antigen/immunology
- Haplotypes/immunology
- Humans
- Immunity, Innate/genetics
- L Cells
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Transgenic/genetics
- Mice, Transgenic/immunology
- Molecular Sequence Data
- Salmonella Infections, Animal/genetics
- Salmonella Infections, Animal/immunology
- Stem Cells/cytology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Zhenjun Chen
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Papouchado BG, Chapoval SP, Marietta EV, Weiler CR, David CS. Cockroach allergen-induced eosinophilic airway inflammation in HLA-DQ/human CD4(+) transgenic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4627-34. [PMID: 11591792 DOI: 10.4049/jimmunol.167.8.4627] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Airway eosinophilic inflammation is a characteristic feature of allergic asthma. Exposure to allergens produced by the German cockroach (Blattella germanica) is a risk factor for allergic disease in genetically predisposed individuals, and has been linked to an increase in asthma morbidity among cockroach-sensitive inner city children. To determine the role and contribution of specific HLA class II in the pathogenesis of allergic airway inflammation in cockroach-induced asthma, we generated double-transgenic, double-knockout mice expressing human HLA-DQ8, HLA-DQ6, and CD4 molecules in the absence of mouse class II and mouse CD4. Mice were actively immunized and later challenged intranasally with cockroach allergen extract. These mice developed bronchoalveolar lavage fluid (BALF) eosinophilia and pulmonary eosinophilia. This was accompanied by an increase in total protein levels, IL-5, and IL-13 in BALF. There were also elevated levels of cockroach-specific serum IgG1 and total serum IgE. Histological analysis revealed peribronchial and perivascular eosinophilic inflammation in cockroach-treated mice. Other pathologic changes in the airways were epithelial cell hypertrophy and mucus production. Treatment with anti-DQ mAb significantly reduced pulmonary and BALF eosinophilia in cockroach allergen-sensitized mice. Abeta(0) mice and transgenic mice expressing human CD4 molecule alone (without class II) or human HLA-DQ8 molecule (without CD4) treated in the same fashion showed no eosinophilia in bronchoalveolar fluid and no pulmonary parenchymal inflammation. Our results provide direct evidence that HLA-DQ molecules and CD4 T cells mediate cockroach-induced eosinophilic inflammation in the airways.
Collapse
Affiliation(s)
- B G Papouchado
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- G Sønderstrup
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5124, USA.
| | | |
Collapse
|
35
|
Pavelko KD, Drescher KM, McGavern DB, David CS, Rodriguez M. HLA-DQ polymorphism influences progression of demyelination and neurologic deficits in a viral model of multiple sclerosis. Mol Cell Neurosci 2000; 15:495-509. [PMID: 10860577 PMCID: PMC5450945 DOI: 10.1006/mcne.2000.0843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The importance of genetic susceptibility in determining the progression of demyelination and neurologic deficits is a major focus in neuroscience. We studied the influence of human leukocyte antigen (HLA)-DQ polymorphisms on disease course and neurologic impairment in virus-induced demyelination. HLA-DQ6 or DQ8 was inserted as a transgene into mice lacking endogenous expression of MHC class I (beta(2)m) and class II (H2-A(beta)) molecules. Following Theiler's murine encephalomyelitis virus (TMEV) infection, we assessed survival, virus persistence, demyelination, and clinical disease. Mice lacking expression of endogenous class I and class II molecules (beta(2)m(o) Abeta(o) mice) died 3 to 4 weeks postinfection (p.i.) due to overwhelming virus replication in neurons. beta(2)m(o) Abeta(o) DQ6 and beta(2)m(o) Abeta(o) DQ8 mice had increased survival and decreased gray matter disease and virus replication compared to nontransgenic littermate controls. Both beta(2)m(o) Abeta(o) DQ6 and beta(2)m(o) Abeta(o) DQ8 mice developed chronic virus persistence in glial cells of the white matter of the spinal cord, with greater numbers of virus antigen-positive cells in beta(2)m(o) Abeta(o) DQ8 than in beta(2)m(o) Abeta(o) DQ6 mice. At day 45 p.i., the demyelinating lesions in the spinal cord of beta(2)m(o) Abeta(o) DQ8 were larger than those in the beta(2)m(o) Abeta(o) DQ6 mice. Earlier and more profound neurologic deficits were observed in beta(2)m(o) Abeta (o) DQ8 mice compared to beta(2)m(o) Abeta(o) DQ6 mice, although by 120 days p.i. both strains of mice showed similar extent of demyelination and neurologic deficits. Delayed-type hypersensitivity and antibody responses to TMEV demonstrated that the mice mounted class II-mediated cellular and humoral immune responses. The results are consistent with the hypothesis that rates of progression of demyelination and neurologic deficits are related to the differential ability of DQ6 and DQ8 transgenes to modulate the immune response and control virus.
Collapse
Affiliation(s)
- K D Pavelko
- Department of Immunology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota, 55905, USA
| | | | | | | | | |
Collapse
|