1
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Graham LV, Fisher JG, Doyle ADP, Sale B, Del Rio L, French AJE, Mayor NP, Turner TR, Marsh SGE, Cragg MS, Forconi F, Khakoo SI, Blunt MD. KIR2DS2+ NK cells in cancer patients demonstrate high activation in response to tumour-targeting antibodies. Front Oncol 2024; 14:1404051. [PMID: 39286025 PMCID: PMC11402612 DOI: 10.3389/fonc.2024.1404051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Strategies to mobilise natural killer (NK) cells against cancer include tumour-targeting antibodies, NK cell engagers (NKCEs) and the adoptive transfer of ex vivo expanded healthy donor-derived NK cells. Genetic and functional studies have revealed that expression of the activating killer immunoglobulin-like receptor KIR2DS2 is associated with enhanced function in NK cells from healthy donors and improved outcome in several different malignancies. The optimal strategy to leverage KIR2DS2+ NK cells therapeutically is however currently unclear. In this study, we therefore evaluated the response of KIR2DS2-expressing NK cells to activation against cancer with clinically relevant tumour-targeting antibodies and following ex vivo expansion. We identified that KIR2DS2high NK cells from patients with chronic lymphocytic leukaemia and hepatocellular carcinoma had enhanced activation in response to tumour-targeting antibodies compared to KIR2DS2- NK cells. However, the superior function of healthy donor derived KIR2DS2high NK cells was lost following ex vivo expansion which is required for adoptive transfer-based therapeutic strategies. These data provide evidence that targeting KIR2DS2 directly in cancer patients may allow for the utilisation of their enhanced effector function, however such activity may be lost following their ex vivo expansion.
Collapse
Affiliation(s)
- Lara V Graham
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Jack G Fisher
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Amber D P Doyle
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Ben Sale
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Luis Del Rio
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | - Albert J E French
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
| | - Neema P Mayor
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- Department of Academic Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Thomas R Turner
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- Department of Academic Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- Department of Academic Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Mark S Cragg
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Haematology Department, Cancer Care Directorate, University Hospital Southampton National Health Service (NHS) Trust, Southampton, United Kingdom
| | - Salim I Khakoo
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Matthew D Blunt
- School of Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Graham LV, Fisher JG, Khakoo SI, Blunt MD. Targeting KIR as a novel approach to improve CAR-NK cell function. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2023; 7:230-235. [PMID: 38229912 PMCID: PMC7615527 DOI: 10.20517/jtgg.2023.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Chimeric antigen receptor (CAR) NK cells are demonstrating promising activity in clinical trials and possess a favorable safety profile compared to CAR-T cells. The Killer cell Immunoglobulin-like Receptors (KIR) have a critical role in the control of NK cell function, and recently, this family of activating and inhibitory receptors have been targeted to improve CAR-NK function. These strategies include the utilisation of inhibitory KIR to reduce trogocytosis-associated NK cell fratricide, the downregulation of inhibitory KIR on CAR-NK cells to alleviate HLA mediated suppression, the selection of CAR-NK cell donors enriched for activating KIR, and the use of activating KIR intracellular domains within novel CAR constructs. These pre-clinical studies demonstrate the potential utility of targeting the KIR to improve CAR-NK cell efficacy and patient outcomes.
Collapse
Affiliation(s)
- Lara V Graham
- School of Clinical and Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Jack G Fisher
- School of Clinical and Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Salim I Khakoo
- School of Clinical and Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew D Blunt
- School of Clinical and Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Horwath M, Tvrdik T, Saxe D, Deeb KK, Roback JD, Gebel HM, Bray RA, Sullivan HC. Loss of heterozygosity leading to incorrect HLA typing for platelet-transfusion refractory patient. Transfusion 2023; 63:263-268. [PMID: 36426572 DOI: 10.1111/trf.17189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Management of platelet-transfusion refractory (PR) patients due to anti-HLA antibodies includes the provision of HLA-matched (HLAm) platelets (PLT) or PLTs that are negative for HLA antigens corresponding to the recipient antibodies. Obtaining HLAm PLTs is predicated on accurate HLA antigen typing of the recipient and donor. Here, we present the clinical implications of a case involving loss of heterozygosity (LOH) in a patient presented for PR workup. STUDY DESIGN AND METHODS HLA typing was performed by three methods: (1) Real-time PCR; (2) Sequence-specific oligonucleotide (SSO) typing test; and (3) Next-Generation Sequencing (NGS). Cytogenomic SNP microarray was utilized to assess LOH. RESULTS A 30-year-old female with newly diagnosed acute myelogenous leukemia was found to be PR secondary to HLA sensitization. A peripheral blood (PB) sample, containing 93% myeloid blast cells, was sent for HLA typing for the provision of HLAm PLTs. HLA typing revealed homozygosity at the HLA-A locus but was heterozygous at the -B and -C loci. After chemotherapy, HLA typing on a new PB sample, devoid of blast cells, identified HLA-A locus heterozygosity, which was subsequently confirmed by real-time PCR and NGS. Cytogenomic SNP microarray analysis demonstrated LOH of the HLA-A locus on chromosome 6p in the pretreatment sample but not in the posttreatment sample. CONCLUSION In hematologic patients with high tumor burden, HLA homozygosity should be viewed with suspicion for potential LOH. Therefore, HLA testing should be repeated, preferably with a non-hematological source (e.g., buccal swab) or following successful reduction of the tumor burden.
Collapse
Affiliation(s)
- Michael Horwath
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tatiana Tvrdik
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Debra Saxe
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kristin K Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Howard M Gebel
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert A Bray
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Harold Clifford Sullivan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Lanuza PM, Alonso MH, Hidalgo S, Uranga-Murillo I, García-Mulero S, Arnau R, Santos C, Sanjuan X, Santiago L, Comas L, Redrado S, Pazo-Cid R, Agustin-Ferrández MJ, Jaime-Sánchez P, Pesini C, Gálvez EM, Ramírez-Labrada A, Arias M, Sanz-Pamplona R, Pardo J. Adoptive NK Cell Transfer as a Treatment in Colorectal Cancer Patients: Analyses of Tumour Cell Determinants Correlating With Efficacy In Vitro and In Vivo. Front Immunol 2022; 13:890836. [PMID: 35747143 PMCID: PMC9210952 DOI: 10.3389/fimmu.2022.890836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Colorectal cancer (CRC) is a heterogeneous disease with variable mutational profile and tumour microenvironment composition that influence tumour progression and response to treatment. While chemoresistant and poorly immunogenic CRC remains a challenge, the development of new strategies guided by biomarkers could help stratify and treat patients. Allogeneic NK cell transfer emerges as an alternative against chemoresistant and poorly immunogenic CRC. Methods NK cell-related immunological markers were analysed by transcriptomics and immunohistochemistry in human CRC samples and correlated with tumour progression and overall survival. The anti-tumour ability of expanded allogeneic NK cells using a protocol combining cytokines and feeder cells was analysed in vitro and in vivo and correlated with CRC mutational status and the expression of ligands for immune checkpoint (IC) receptors regulating NK cell activity. Results HLA-I downmodulation and NK cell infiltration correlated with better overall survival in patients with a low-stage (II) microsatellite instability-high (MSI-H) CRC, suggesting a role of HLA-I as a prognosis biomarker and a potential benefit of NK cell immunotherapy. Activated allogeneic NK cells were able to eliminate CRC cultures without PD-1 and TIM-3 restriction but were affected by HLA-I expression. In vivo experiments confirmed the efficacy of the therapy against both HLA+ and HLA− CRC cell lines. Concomitant administration of pembrolizumab failed to improve tumour control. Conclusions Our results reveal an immunological profile of CRC tumours in which immunogenicity (MSI-H) and immune evasion mechanisms (HLA downmodulation) favour NK cell immunosurveillance at early disease stages. Accordingly, we have shown that allogeneic NK cell therapy can target tumours expressing mutations conferring poor prognosis regardless of the expression of T cell-related inhibitory IC ligands. Overall, this study provides a rationale for a new potential basis for CRC stratification and NK cell-based therapy.
Collapse
Affiliation(s)
- Pilar M. Lanuza
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- *Correspondence: Pilar M. Lanuza,
| | - M. Henar Alonso
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra Hidalgo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Raquel Arnau
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Sanjuan
- Department of Pathology, University Hospital Bellvitge (HUB-IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Llipsy Santiago
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Oncology and Pharmacology Units, HUMSICB-CSIC, Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Laura Comas
- Oncology and Pharmacology Units, HUMSICB-CSIC, Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Sergio Redrado
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Oncology and Pharmacology Units, HUMSICB-CSIC, Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | | | | | - Paula Jaime-Sánchez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Eva M. Gálvez
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Oncology and Pharmacology Units, HUMSICB-CSIC, Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Maykel Arias
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain
- ARAID Foundation, Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- ARAID Foundation, Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
6
|
Rahnama R, Christodoulou I, Bonifant CL. Gene-Based Natural Killer Cell Therapies for the Treatment of Pediatric Hematologic Malignancies. Hematol Oncol Clin North Am 2022; 36:745-768. [PMID: 35773048 PMCID: PMC10158845 DOI: 10.1016/j.hoc.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pediatric blood cancers are among the most common malignancies that afflict children. Intensive chemotherapy is not curative in many cases, and novel therapies are urgently needed. NK cells hold promise for use as immunotherapeutic effectors due to their favorable safety profile, intrinsic cytotoxic properties, and potential for genetic modification that can enhance specificity and killing potential. NK cells can be engineered to express CARs targeting tumor-specific antigens, to downregulate inhibitory and regulatory signals, to secrete cytokine, and to optimize interaction with small molecule engagers. Understanding NK cell biology is key to designing immunotherapy for clinical translation.
Collapse
|
7
|
Knoche SM, Larson AC, Brumfield GL, Cate S, Hildebrand WH, Solheim JC. Major histocompatibility complex class I molecule expression by pancreatic cancer cells is regulated by activation and inhibition of the epidermal growth factor receptor. Immunol Res 2022; 70:371-391. [PMID: 35303241 PMCID: PMC9203924 DOI: 10.1007/s12026-022-09262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is one of the deadliest neoplasms, with a dismal 5-year survival rate of only 10%. The ability of pancreatic cancer cells to evade the immune system hinders an anti-tumor response and contributes to the poor survival rate. Downregulation of major histocompatibility complex (MHC) class I cell-surface expression can aid in immune evasion by preventing endogenous tumor antigens from being presented to cytotoxic T cells. Earlier studies suggested that epidermal growth factor receptor (EGFR) signaling can decrease MHC class I expression on certain cancer cell types. However, even though erlotinib (a tyrosine kinase inhibitor that targets EGFR) is an approved drug for advanced pancreatic cancer treatment, the impact of EGFR inhibition or stimulation on pancreatic cancer cell MHC class I surface expression has not previously been analyzed. In this current study, we discovered that EGFR affects MHC class I mRNA and protein expression by human pancreatic cancer cell lines. We demonstrated that cell-surface MHC class I expression is downregulated upon EGFR activation, and the MHC class I level at the surface is elevated following EGFR inhibition. Furthermore, we found that EGFR associates with MHC class I molecules. By defining a role in pancreatic cancer cells for activated EGFR in reducing MHC class I expression and by revealing that EGFR inhibitors can boost MHC class I expression, our work supports further investigation of combined usage of EGFR inhibitors with immunotherapies against pancreatic cancer.
Collapse
Affiliation(s)
- Shelby M Knoche
- Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alaina C Larson
- Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gabrielle L Brumfield
- Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Steven Cate
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Joyce C Solheim
- Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
Venglar O, Bago JR, Motais B, Hajek R, Jelinek T. Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Front Immunol 2022; 12:816499. [PMID: 35087536 PMCID: PMC8787055 DOI: 10.3389/fimmu.2021.816499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.
Collapse
Affiliation(s)
- Ondrej Venglar
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Julio Rodriguez Bago
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Benjamin Motais
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Roman Hajek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Jelinek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| |
Collapse
|
9
|
Abstract
Despite the ability of immune-based interventions to dramatically increase the survival of patients with melanoma, a significant subset fail to benefit from this treatment, underscoring the need for accurate means to identify the patient population likely to respond to immunotherapy. Understanding how melanoma evades natural or manipulated immune responses could provide the information needed to identify such resistant individuals. Efforts to address this challenge are hampered by the vast immune diversity characterizing tumor microenvironments that remain largely understudied. It is thus important to more clearly elucidate the complex interactions that take place between the tumor microenvironment and host immune system.
Collapse
|
10
|
Lin S, Cheng L, Ye W, Li S, Zheng D, Qin L, Wu Q, Long Y, Lin S, Wang S, Huang G, Li P, Yao Y, Sun X. Chimeric CTLA4-CD28-CD3z T Cells Potentiate Antitumor Activity Against CD80/CD86-Positive B Cell Malignancies. Front Immunol 2021; 12:642528. [PMID: 33868277 PMCID: PMC8050336 DOI: 10.3389/fimmu.2021.642528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
The adoptive transfer of chimeric antigen receptor T (CAR T) cells have been recognized as a promising therapeutic strategy for the treatment of hematological malignancies; however, clinical success using CAR T cells for the treatment of solid tumors are still limited since the T-cell function is inhibited by negative signals in the microenvironment of solid tumors. CTLA4 is a well-known immune checkpoint molecule, thus we developed a novel CAR by converting this negative signal to positive signal. The CAR developed consists of the extracellular and transmembrane domains of CTLA4 and the cytoplasmic domains of CD28 and CD3z (CTLA4-CAR T). CTLA4-CAR T cells exhibited superior cytokine secreting activities and cytotoxic to tumor cells in vitro and in xenograft models. CTLA4-CAR T cells were found to accumulate in tumors and are toxic to myeloid-derived suppressor cells (MDSCs) without signs of severe GVHD and CRS in preclinical models. Thus, this chimeric CTLA4-CAR can enhance the antitumor activity of CAR T cells and shed light on the strategy of using armed CAR T cells to target the immunomodulatory tumor microenvironment.
Collapse
Affiliation(s)
- Shouheng Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Cheng
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Wei Ye
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shanglin Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Diwei Zheng
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Le Qin
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qiting Wu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Youguo Long
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Simiao Lin
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Suna Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Guohua Huang
- Department of Respiratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yao Yao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
11
|
Quantitative Multiplex Real-Time Reverse Transcriptase-Polymerase Chain Reaction with Fluorescent Probe Detection of Killer Immunoglobulin-Like Receptors, KIR2DL4/3DL3. Diagnostics (Basel) 2020; 10:diagnostics10080588. [PMID: 32823754 PMCID: PMC7460478 DOI: 10.3390/diagnostics10080588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
(1) Background: KIR2DL4/KIR3DL3 are the framework genes present in all KIR haplotypes, with unique expression patterns being present only in women and CD56bright NK cells. KIR genes have a high degree of DNA sequence identity. Consequently, they are one of the most challenging genes for molecular detection—especially regarding expressions; (2) Methods: We developed an effective method to determine KIR3DL3/KIR2DL4 expressions based on a multiplex quantitative real-time Reverse transcription polymerase chain reaction (qRT-PCR )with fluorescent probes using NK92; (3) Results: Standardizations of the singleplex KIR2DL4 and KIR3DL3 were performed to evaluate the sensitivity and specificity for further development of the multiplex assay. The limit of detection was at 500 copies each. There was cross-amplification with the presence of related KIR genes at a level of 5 × 107 copies. This is not biologically significant because this high level of KIR expression has not been found in clinical samples. The multiplex assay was reproducible equivalent to its singleplex (KIR2DL4; R2 = 0.995, KIR3DL3; R2 = 0.996, but lower sensitivity of 103 copies). Furthermore, the validation of the developed method on samples of blood donors showed high sensitivity (100%) and specificity (99.9%); (4) Conclusions: The developed method is reliable and highly specific suitable for evaluation of the KIR2DL4/3DL3 mRNA expressions in further applications.
Collapse
|
12
|
Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR J 2019; 59:247-262. [PMID: 30476148 DOI: 10.1093/ilar/ily014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
Collapse
Affiliation(s)
- Nana H Overgaard
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | | | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois
| | - Lawrence B Schook
- Department of Radiology, University of Illinois, Chicago, Illinois.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Canning M, Guo G, Yu M, Myint C, Groves MW, Byrd JK, Cui Y. Heterogeneity of the Head and Neck Squamous Cell Carcinoma Immune Landscape and Its Impact on Immunotherapy. Front Cell Dev Biol 2019; 7:52. [PMID: 31024913 PMCID: PMC6465325 DOI: 10.3389/fcell.2019.00052] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/20/2019] [Indexed: 01/06/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are highly aggressive, multi-factorial tumors in the upper aerodigestive tract affecting more than half a million patients worldwide each year. Alcohol, tobacco, and human papillomavirus (HPV) infection are well known causative factors for HNSCCs. Current treatment options for HNSCCs are surgery, radiotherapy, chemotherapy, or combinatorial remedies. Over the past decade, despite the marked improvement in clinical outcome of many tumor types, the overall 5-year survival rate of HNSCCs remained ∼40–50% largely due to poor availability of effective therapeutic options for HNSCC patients with recurrent disease. Therefore, there is an urgent and unmet need for the identification of specific molecular signatures that better predict the clinical outcomes and markers that serve as better therapeutic targets. With recent technological advances in genomic and epigenetic analyses, our knowledge of HNSCC molecular characteristics and classification has been greatly enriched. Clinical and genomic meta-analysis of multicohort HNSCC gene expression profile has clearly demonstrated that HPV+ and HPV- HNSCCs are not only derived from tissues of different anatomical regions, but also present with different mutation profiles, molecular characteristics, immune landscapes, and clinical prognosis. Here, we briefly review our current understanding of the biology, molecular profile, and immunological landscape of the HPV+ and HPV- HNSCCs with an emphasis on the diversity and heterogeneity of HNSCC clinicopathology and therapeutic responses. After a review of recent advances and specific challenges for effective immunotherapy of HNSCCs, we then conclude with a discussion on the need to further enhance our understanding of the unique characteristics of HNSCC heterogeneity and the plasticity of immune landscape. Increased knowledge regarding the immunological characteristics of HPV+ and HPV- HNSCCs would improve therapeutic targeting and immunotherapy strategies for different subtypes of HNSCCs.
Collapse
Affiliation(s)
- Madison Canning
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Gang Guo
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| | - Miao Yu
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| | - Calvin Myint
- Department of Otolaryngology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| | - Michael W Groves
- Department of Otolaryngology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| | - James Kenneth Byrd
- Department of Otolaryngology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| | - Yan Cui
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| |
Collapse
|
14
|
Tumor mechanisms of resistance to immune attack. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:61-100. [PMID: 31383409 DOI: 10.1016/bs.pmbts.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system plays a key role in the interactions between host and tumor. Immune selection pressure is a driving force behind the sculpting and evolution of malignant cancer cells to escape this immune attack. Several common tumor cell-based mechanisms of resistance to immune attack have been identified and can be broadly categorized into three main classes: loss of antigenicity, loss of immunogenicity, and creation of an immunosuppressive microenvironment. In this review, we will discuss in detail the relevant literature associated with each class of resistance and will describe the relevance of these mechanisms to human cancer patients. To conclude, we will outline the implications these mechanisms have for the treatment of cancer using currently available therapeutic approaches. Immunotherapy has been a successful addition to current treatment approaches, but many patients either do not respond or quickly become resistant. This reflects the ability of tumors to continue to adapt to immune selection pressure at all stages of development. Additional study of immune escape mechanisms and immunotherapy resistance mechanisms will be needed to inform future treatment approaches.
Collapse
|
15
|
Hsu YC, Chang YH, Chang GC, Ho BC, Yuan SS, Li YC, Zeng JW, Yu SL, Li KC, Yang PC, Chen HY. Tumor mutation burden and recurrent tumors in hereditary lung cancer. Cancer Med 2019; 8:2179-2187. [PMID: 30941903 PMCID: PMC6536970 DOI: 10.1002/cam4.2120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/24/2019] [Accepted: 03/11/2019] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide and cancer relapse accounts for the majority of cancer mortality. The mechanism is still unknown, especially in hereditary lung cancer without known actionable mutations. To identify genetic alternations involved in hereditary lung cancer and relapse is urgently needed. We collected genetic materials from a unique hereditary lung cancer patient's blood, first cancer tissue (T1), adjacent normal tissue (N1), relapse cancer tissue (T2), and adjacent normal tissue (N2) for whole genome sequencing. We identified specific mutations in T1 and T2, and attributed them to tumorigenesis and recurrence. These tumor specific variants were enriched in antigen presentation pathway. In addition, a lung adenocarcinoma cohort from the TCGA dataset was used to confirm our findings. Patients with high mutation burdens in tumor specific genes had decreased relapse‐free survival (P = 0.017, n = 186). Our study may provide important insight for designing immunotherapeutic treatment for hereditary lung cancer.
Collapse
Affiliation(s)
- Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Ya-Hsuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Cheng Li
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Jhih-Wun Zeng
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Department of Statistics, University of California Los Angeles, Los Angeles, California
| | - Pan-Chyr Yang
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Abstract
In this chapter I describe Tumour Immune Escape mechanisms associated with MHC/HLA class I loss in human and experimental tumours. Different altered HLA class-I phenotypes can be observed that are produced by different molecular mechanisms. Experimental and histological evidences are summarized indicating that at the early stages of tumour development there is an enormous variety of tumour clones with different MHC class I expression patterns. This phase is followed by a strong T cell mediated immune-selection of MHC/HLA class-I negative tumour cells in the primary tumour lesion. This transition period results in a formation of a tumour composed only of HLA-class I negative cells. An updated description of this process observed in a large variety of human tumors is included. In the second section I focus on MHC/HLA class I alterations observed in mouse and human metastases, and describe the generation of different tumor cell clones with altered MHC class I phenotypes, which could be similar or different from the original tumor clone. The biological and immunological relevance of these observations is discussed. Finally, the interesting phenomenon of metastatic dormancy is analyzed in association with a particular MHC class I negative tumor phenotype.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Analisis Clinicos e Inmunologia, Hospital Universitario Virgen de las Nieves, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
17
|
Cook PJ, Ventura A. Cancer diagnosis and immunotherapy in the age of CRISPR. Genes Chromosomes Cancer 2018; 58:233-243. [PMID: 30382614 DOI: 10.1002/gcc.22702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/26/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
The explosion in genome editing technologies that has occurred in the past decade has revolutionized cancer research and promises to improve cancer diagnosis and therapy. Ongoing efforts include engineering of chimeric antigen receptor-T cells using clustered regularly interspaced short palindromic repeats (CRISPR) to generate a safer, more effective therapy with improved performance in immunologically "cold" tumors, as well as clever adaptations of CRISPR enzymes to allow fast, simple, and sensitive detection of specific nucleotide sequences. While still in their infancy, CRISPR-based cancer therapeutics and diagnostics are developing at an impressive speed and it is likely they will soon impact clinical practice. Here, we summarize their history and the most recent developments.
Collapse
Affiliation(s)
- Peter J Cook
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
18
|
Want MY, Lugade AA, Battaglia S, Odunsi K. Nature of tumour rejection antigens in ovarian cancer. Immunology 2018; 155:202-210. [PMID: 29772069 PMCID: PMC6142289 DOI: 10.1111/imm.12951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/12/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022] Open
Abstract
Major progress in the analysis of human immune responses to cancer has been made through the molecular characterization of human tumour antigens. The development of therapeutic strategies for eliciting immune-mediated rejection of tumours has accelerated due to the elucidation of the molecular basis for tumour cell recognition and destruction by immune cells. Of the various human tumour antigens defined to date in ovarian cancer, the cancer-testis (CT) family of antigens have been studied extensively preclinically and clinically because of their testis-restricted expression in normal tissues and ability to elicit robust immune responses. Recent developments in cancer sequencing technologies offer a unique opportunity to identify tumour mutations with the highest likelihood of being expressed and recognized by the immune system. Such mutations, or neoantigens, could potentially serve as specific immune targets for T-cell-mediated destruction of cancer cells. This review will highlight current work in selecting tumour rejection antigens in ovarian cancer for improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Muzamil Y. Want
- Center For ImmunotherapyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Amit A. Lugade
- Center For ImmunotherapyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | | | - Kunle Odunsi
- Center For ImmunotherapyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| |
Collapse
|
19
|
Si W, Li C, Wei P. Synthetic immunology: T-cell engineering and adoptive immunotherapy. Synth Syst Biotechnol 2018; 3:179-185. [PMID: 30345403 PMCID: PMC6190530 DOI: 10.1016/j.synbio.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/28/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022] Open
Abstract
During the past decades, the rapidly-evolving cancer is hard to be thoroughly eliminated even though the radiotherapy and chemotherapy do exhibit efficacy in some degree. However, a breakthrough appeared when the adoptive cancer therapy [1] was developed, especially T cells armed with chimeric antigen receptors (CARs) showed great potential in tumor clinical trials recently. CAR-T cells successfully elevated the efficiency and specificity of cytotoxicity. In this review, we will talk about the design of CAR and CAR-included combinatory therapeutic applications in the principles of systems and synthetic immunology.
Collapse
Affiliation(s)
- Wen Si
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Cheng Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol 2018; 9:1869. [PMID: 30150991 PMCID: PMC6099181 DOI: 10.3389/fimmu.2018.01869] [Citation(s) in RCA: 737] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are the predominant innate lymphocyte subsets that mediate anti-tumor and anti-viral responses, and therefore possess promising clinical utilization. NK cells do not express polymorphic clonotypic receptors and utilize inhibitory receptors (killer immunoglobulin-like receptor and Ly49) to develop, mature, and recognize “self” from “non-self.” The essential roles of common gamma cytokines such as interleukin (IL)-2, IL-7, and IL-15 in the commitment and development of NK cells are well established. However, the critical functions of pro-inflammatory cytokines IL-12, IL-18, IL-27, and IL-35 in the transcriptional-priming of NK cells are only starting to emerge. Recent studies have highlighted multiple shared characteristics between NK cells the adaptive immune lymphocytes. NK cells utilize unique signaling pathways that offer exclusive ways to genetically manipulate to improve their effector functions. Here, we summarize the recent advances made in the understanding of how NK cells develop, mature, and their potential translational use in the clinic.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Excellence in Prostate Cancer, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
21
|
Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial Watch: Adoptively transferred cells for anticancer immunotherapy. Oncoimmunology 2017; 6:e1363139. [PMID: 29147628 DOI: 10.1080/2162402x.2017.1363139] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/29/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Immunotherapies aimed at strengthening immune effector responses against malignant cells are growing at exponential rates. Alongside, the impressive benefits obtained by patients with advanced melanoma who received adoptively transferred tumor-infiltrating lymphocytes (TILs) have encouraged the scientific community to pursue adoptive cell transfer (ACT)-based immunotherapy. ACT involves autologous or allogenic effector lymphocytes that are generally obtained from the peripheral blood or resected tumors, expanded and activated ex vivo, and administered to lymphodepleted patients. ACT may be optionally associated with chemo- and/or immunotherapeutics, with the overall aim of enhancing the proliferation, persistence and functionality of infused cells, as well as to ensure their evolution in an immunological permissive local and systemic microenvironment. In addition, isolated lymphocytes can be genetically engineered to endow them with the ability to target a specific tumor-associated antigen (TAA), to increase their lifespan, and/or to reduce their potential toxicity. The infusion of chimeric antigen receptor (CAR)-expressing cytotoxic T lymphocytes redirected against CD19 has shown promising clinical efficacy in patients with B-cell malignancies. Accordingly, the US Food and Drug Administration (FDA) has recently granted 'breakthrough therapy' designation to a CAR-based T-cell therapy (CTL019) for patients with B-cell malignancies. Considerable efforts are now being devoted to the development of efficient ACT-based immunotherapies for non-hematological neoplasms. In this Trial Watch, we summarize recent clinical advances on the use of ACT for oncological indications.
Collapse
Affiliation(s)
- Carole Fournier
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - François Martin
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France.,Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
22
|
Audia A, Conroy S, Glass R, Bhat KPL. The Impact of the Tumor Microenvironment on the Properties of Glioma Stem-Like Cells. Front Oncol 2017; 7:143. [PMID: 28740831 PMCID: PMC5502267 DOI: 10.3389/fonc.2017.00143] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma is the most common and highly malignant primary brain tumor, and patients affected with this disease exhibit a uniformly dismal prognosis. Glioma stem-like cells (GSCs) are a subset of cells within the bulk tumor that possess self-renewal and multi-lineage differentiation properties similar to somatic stem cells. These cells also are at the apex of the cellular hierarchy and cause tumor initiation and expansion after chemo-radiation. These traits make them an attractive target for therapeutic development. Because GSCs are dependent on the brain microenvironment for their growth, and because non-tumorigenic cell types in the microenvironment can influence GSC phenotypes and treatment response, a better understanding of these cell types is needed. In this review, we provide a focused overview of the contributions from the microenvironment to GSC homing, maintenance, phenotypic plasticity, and tumor initiation. The interaction of GSCs with the vascular compartment, mesenchymal stem cells, immune system, and normal brain cell types are discussed. Studies that provide mechanistic insight into each of these GSC–microenvironment interactions are warranted in the future.
Collapse
Affiliation(s)
- Alessandra Audia
- Department of Translational Molecular Pathology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Siobhan Conroy
- Department of Translational Molecular Pathology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Pathology and Medical Biology, University Medical Center, Groningen, Netherlands
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK) partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Neurosurgery, University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
23
|
Abstract
The immune system evolved to distinguish non-self from self to protect the organism. As cancer is derived from our own cells, immune responses to dysregulated cell growth present a unique challenge. This is compounded by mechanisms of immune evasion and immunosuppression that develop in the tumour microenvironment. The modern genetic toolbox enables the adoptive transfer of engineered T cells to create enhanced anticancer immune functions where natural cancer-specific immune responses have failed. Genetically engineered T cells, so-called 'living drugs', represent a new paradigm in anticancer therapy. Recent clinical trials using T cells engineered to express chimeric antigen receptors (CARs) or engineered T cell receptors (TCRs) have produced stunning results in patients with relapsed or refractory haematological malignancies. In this Review we describe some of the most recent and promising advances in engineered T cell therapy with a particular emphasis on what the next generation of T cell therapy is likely to entail.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Clinical Trials as Topic
- Costimulatory and Inhibitory T-Cell Receptors/genetics
- Costimulatory and Inhibitory T-Cell Receptors/immunology
- Cytokines/metabolism
- Forecasting
- Gene Editing
- Gene Transfer Techniques
- Genetic Engineering
- HLA Antigens/immunology
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Models, Immunological
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Syndrome
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/transplantation
- Tumor Escape
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Andrew D Fesnak
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| |
Collapse
|
24
|
Murphy KA, James BR, Guan Y, Torry DS, Wilber A, Griffith TS. Exploiting natural anti-tumor immunity for metastatic renal cell carcinoma. Hum Vaccin Immunother 2016; 11:1612-20. [PMID: 25996049 DOI: 10.1080/21645515.2015.1035849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical observations of spontaneous disease regression in some renal cell carcinoma (RCC) patients implicate a role for tumor immunity in controlling this disease. Puzzling, however, are findings that high levels of tumor infiltrating lymphocytes (TIL) are common to RCC. Despite expression of activation markers by TILs, functional impairment of innate and adaptive immune cells has been consistently demonstrated contributing to the failure of the immune system to control RCC. Immunotherapy can overcome the immunosuppressive effects of the tumor and provide an opportunity for long-term disease free survival. Unfortunately, complete response rates remain sub-optimal indicating the effectiveness of immunotherapy remains limited by tumor-specific factors and/or cell types that inhibit antitumor immune responses. Here we discuss immunotherapies and the function of multiple immune system components to achieve an effective response. Understanding these complex interactions is essential to rationally develop novel therapies capable of renewing the immune system's ability to respond to these tumors.
Collapse
Affiliation(s)
- Katherine A Murphy
- a Department of Urology; University of Minnesota ; Minneapolis , MN , USA
| | | | | | | | | | | |
Collapse
|
25
|
Zhang X, Rao A, Sette P, Deibert C, Pomerantz A, Kim WJ, Kohanbash G, Chang Y, Park Y, Engh J, Choi J, Chan T, Okada H, Lotze M, Grandi P, Amankulor N. IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro Oncol 2016; 18:1402-12. [PMID: 27116977 DOI: 10.1093/neuonc/now061] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/20/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Diffuse gliomas are poorly immunogenic, fatal brain tumors. The basis for insufficient antitumor immunity in diffuse gliomas is unknown. Gain-of-function mutations in isocitrate dehydrogenases (IDH1 and IDH2) promote diffuse glioma formation through epigenetic reprogramming of a number of genes, including immune-related genes. Here, we identify epigenetic dysregulation of natural killer (NK) cell ligand genes as significant contributors to immune escape in glioma. METHODS We analyzed the database of The Cancer Genome Atlas for immune gene expression patterns in IDH mutant or wild-type gliomas and identified differentially expressed immune genes. NKG2D ligand expression levels and NK cell-mediated lysis were measured in IDH mutant and wild-type patient-derived glioma stem cells and genetically engineered astrocytes. Finally, we assessed the impact of hypomethylating agent 5-aza-2'deoxycytodine (decitabine) as a potential NK cell sensitizing agent in IDH mutant cells. RESULTS IDH mutant glioma stemlike cell lines exhibited significantly lower expression of NKG2D ligands compared with IDH wild-type cells. Consistent with these findings, IDH mutant glioma cells and astrocytes are resistant to NK cell-mediated lysis. Decitabine increases NKG2D ligand expression and restores NK-mediated lysis of IDH mutant cells in an NKG2D-dependent manner. CONCLUSIONS IDH mutant glioma cells acquire resistance to NK cells through epigenetic silencing of NKG2D ligands ULBP1 and ULBP3. Decitabine-mediated hypomethylation restores ULBP1 and ULBP3 expression in IDH mutant glioma cells and may provide a clinically useful method to sensitize IDH mutant gliomas to NK cell-mediated immune surveillance in patients with IDH mutated diffuse gliomas.
Collapse
Affiliation(s)
- Xiaoran Zhang
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Aparana Rao
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Paola Sette
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Christopher Deibert
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Alexander Pomerantz
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Wi Jin Kim
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Gary Kohanbash
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Yigang Chang
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Yongseok Park
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Johnathan Engh
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Jaehyuk Choi
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Timothy Chan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Hideho Okada
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Michael Lotze
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Paola Grandi
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| | - Nduka Amankulor
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (X.Z., W.J.K.); Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (A.P., A.R., C.D., P.S., Y.C., J.E., P.G., N.A.); Department of Neurological Surgery, University of California San Francisco, San Francisco, California (G.K., H.O.); Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (Y.P.); Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (J.C); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (T.C); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (M.L.); Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.P.)
| |
Collapse
|
26
|
Thor Straten P, Garrido F. Targetless T cells in cancer immunotherapy. J Immunother Cancer 2016; 4:23. [PMID: 27096099 PMCID: PMC4835921 DOI: 10.1186/s40425-016-0127-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022] Open
Abstract
Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell transfer (ACT) using expanded tumor infiltrating lymphocytes (TIL) or genetically modified cytotoxic T cells. However, despite clear clinical responses, only a fraction of patients respond to treatment and there is an urgent call for characterization of predictive biomarkers. CD8 positive T cells can infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells. It is therefore mandatory to explore if these important molecules for T cell cytotoxicity are expressed by cancer target cells. We have indications that different types of immunotherapy can modify the tumor microenvironment and up-regulate reduced HLA class I expression in cancer cells but only if the associated molecular mechanisms is reversible (soft). However, in case of structural (hard) aberrations causing HLA class I loss, tumor cells will not be able to recover HLA class I expression and as a consequence will escape T-cell lysis and continue to growth. Characterization of the molecular mechanism underlying the lack or downregulation of HLA class I expression, seems to be a crucial step predicting clinical responses to T cell mediated immunotherapy, and possibly aid the selection of strategies that could condition patients for response. Thus, characterization of HLA expression by cancer cells could therefore represent an important predictive marker for immunotherapy of cancer.
Collapse
Affiliation(s)
- Per Thor Straten
- Department of Hematology, Centre for Cancer Immune Therapy (CCIT), Copenhagen University Hospital, Herlev, Denmark ; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Federico Garrido
- Servicio de Analisis Clinicos e Inmunologia, UGC Laboratorio Clinico, Hospital Universitario Virgen de las Nieves, Granada, Spain ; Instituto de Investigacion Biosanitaria IBS, Granada, Spain ; Departamento de Bioquimica, Biologia Molecular e Inmunologia III, Universidad de Granada, Granada, Spain
| |
Collapse
|
27
|
de Aquino MTP, Malhotra A, Mishra MK, Shanker A. Challenges and future perspectives of T cell immunotherapy in cancer. Immunol Lett 2015; 166:117-33. [PMID: 26096822 PMCID: PMC4499494 DOI: 10.1016/j.imlet.2015.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/10/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Abstract
Since the formulation of the tumour immunosurveillance theory, considerable focus has been on enhancing the effectiveness of host antitumour immunity, particularly with respect to T cells. A cancer evades or alters the host immune response by various ways to ensure its development and survival. These include modifications of the immune cell metabolism and T cell signalling. An inhibitory cytokine milieu in the tumour microenvironment also leads to immune suppression and tumour progression within a host. This review traces the development in the field and attempts to summarize the hurdles that the approach of adoptive T cell immunotherapy against cancer faces, and discusses the conditions that must be improved to allow effective eradication of cancer.
Collapse
Affiliation(s)
- Maria Teresa P de Aquino
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anshu Malhotra
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Manoj K Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; Tumor-Host Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
28
|
Harnessing the PD-1 pathway in renal cell carcinoma: current evidence and future directions. BioDrugs 2015; 28:513-26. [PMID: 25445176 DOI: 10.1007/s40259-014-0111-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Programmed cell death-1 (PD-1) is a recognized immune checkpoint. It is frequently upregulated on the T cells that infiltrate tumors, providing an inhibitory signal, which may facilitate immune escape. Blocking antibodies have been developed to interrupt the interaction of PD-1 with its ligands PD-L1/PD-L2, with the goal of increasing the host antitumor immune response. Initial results have been encouraging, with durable responses in both treatment-naive and pretreated patients, along with an acceptable toxicity profile. This tolerability makes PD-1 blockade an excellent potential partner for combination strategies with the approved targeted agents, such as tyrosine kinase inhibitors (TKIs) and anti-vascular endothelial growth factor (anti-VEGF) antibodies, as well as other investigational immune checkpoint inhibitors or agonist antibodies that may costimulate an immune response. PD-L1 expression on tumor cells and tumor-infiltrating immune cells is also being evaluated as a predictive biomarker of response to treatment. This review summarizes the biological basis, preclinical studies, ongoing trials, and future challenges associated with targeting the PD-1 pathway in renal cell carcinoma.
Collapse
|
29
|
Straetemans T, Berrevoets C, Coccoris M, Treffers-Westerlaken E, Wijers R, Cole DK, Dardalhon V, Sewell AK, Taylor N, Verweij J, Debets R. Recurrence of melanoma following T cell treatment: continued antigen expression in a tumor that evades T cell recruitment. Mol Ther 2014; 23:396-406. [PMID: 25363716 DOI: 10.1038/mt.2014.215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 10/25/2014] [Indexed: 12/14/2022] Open
Abstract
Clinical therapy with T cells shows promise for cancer patients, but is currently challenged by incomplete responses and tumor relapse. The exact mechanisms that contribute to tumor relapse remain largely unclear. Here, we treated mouse melanomas with T cell receptor-engineered T cells directed against a human peptide-major histocompatibility complex antigen in immune-competent mice. T cells resulted in significant tumor regression, which was followed by relapse in about 80-90% of mice. Molecular analysis revealed that relapsed tumors harbored nonmutated antigen genes, not silenced by promoter methylation, and functionally expressed surface antigen at levels equal to nontreated tumors. Relapsed tumors resisted a second in vivo T cell treatment, but regained sensitivity to T cell treatment upon retransplantation in mice. Notably, relapsed tumors demonstrated decreased levels of CD8 T cells and monocytes, which were substantiated by downregulated expression of chemoattractants and adhesion molecules. These observations were confirmed when using T cells specific for a less immunogenic, endogenous mouse melanoma antigen. We conclude that tumors, when exposed to T cell treatment, can relapse without loss of antigen and develop a milieu that evades recruitment of effector CD8 T cells. Our findings support the concept to target the tumor milieu to aid T cell therapy in limiting tumor relapse.
Collapse
Affiliation(s)
- Trudy Straetemans
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Cor Berrevoets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Miriam Coccoris
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Elike Treffers-Westerlaken
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rebecca Wijers
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - David K Cole
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff, UK
| | - Valerie Dardalhon
- Institute de Génétique Moléculaire de Montpellier, Université Montpellier, Montpellier, France
| | - Andrew K Sewell
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff, UK
| | - Naomi Taylor
- Institute de Génétique Moléculaire de Montpellier, Université Montpellier, Montpellier, France
| | - Jaap Verweij
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Tabbekh M, Mokrani-Hammani M, Bismuth G, Mami-Chouaib F. T-cell modulatory properties of CD5 and its role in antitumor immune responses. Oncoimmunology 2014; 2:e22841. [PMID: 23483035 PMCID: PMC3583937 DOI: 10.4161/onci.22841] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The destruction of tumor cells by the immune system is under the control of positive and negative receptors that tightly regulate T-cell effector functions. The T-cell receptor (TCR) inhibitory molecule CD5 critically contributes to the regulation of antitumor immune responses. Indeed, the modulation of CD5 within the tumor microenvironment corresponds to a strategy adopted by tumor-specific cytotoxic T lymphocytes (CTLs) to optimize their cytotoxic and cytokine secretion functions. In this review, we provide insights into the immunobiology of CD5 and its role in regulating antitumor CD8 T-cell responses, and suggest the possibility of targeting CD5 to improve the efficacy of current immunotherapeutic approaches against cancer.
Collapse
Affiliation(s)
- Mouna Tabbekh
- Institut National de la Santé et de la Recherche Médicale (INSERM) U753; Team 1: Tumor Antigens and T-Cell Reactivity; Integrated Research Cancer Institute in Villejuif (IRCIV); Institut de Cancérologie Gustave Roussy (IGR); Villejuif, France
| | | | | | | |
Collapse
|
31
|
Bai Y, Ni M, Cooper B, Wei Y, Fury W. Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads. BMC Genomics 2014; 15:325. [PMID: 24884790 PMCID: PMC4035057 DOI: 10.1186/1471-2164-15-325] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/04/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Accurate HLA typing at amino acid level (four-digit resolution) is critical in hematopoietic and organ transplantations, pathogenesis studies of autoimmune and infectious diseases, as well as the development of immunoncology therapies. With the rapid adoption of genome-wide sequencing in biomedical research, HLA typing based on transcriptome and whole exome/genome sequencing data becomes increasingly attractive due to its high throughput and convenience. However, unlike targeted amplicon sequencing, genome-wide sequencing often employs a reduced read length and coverage that impose great challenges in resolving the highly homologous HLA alleles. Though several algorithms exist and have been applied to four-digit typing, some deliver low to moderate accuracies, some output ambiguous predictions. Moreover, few methods suit diverse read lengths and depths, and both RNA and DNA sequencing inputs. New algorithms are therefore needed to leverage the accuracy and flexibility of HLA typing at high resolution using genome-wide sequencing data. RESULTS We have developed a new algorithm named PHLAT to discover the most probable pair of HLA alleles at four-digit resolution or higher, via a unique integration of a candidate allele selection and a likelihood scoring. Over a comprehensive set of benchmarking data (a total of 768 HLA alleles) from both RNA and DNA sequencing and with a broad range of read lengths and coverage, PHLAT consistently achieves a high accuracy at four-digit (92%-95%) and two-digit resolutions (96%-99%), outcompeting most of the existing methods. It also supports targeted amplicon sequencing data from Illumina Miseq. CONCLUSIONS PHLAT significantly leverages the accuracy and flexibility of high resolution HLA typing based on genome-wide sequencing data. It may benefit both basic and applied research in immunology and related fields as well as numerous clinical applications.
Collapse
Affiliation(s)
- Yu Bai
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York USA
| | - Min Ni
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York USA
| | - Blerta Cooper
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York USA
| | - Wen Fury
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York USA
| |
Collapse
|
32
|
Aoki R, Iijima H, Kato M, Uchida M, Wada T, Murata M, Ogawa K, Naritaka Y, Yoshimatsu K. Protein-bound polysaccharide-K reduces the proportion of regulatory T cells in vitro and in vivo. Oncol Rep 2014; 31:50-56. [PMID: 24190620 DOI: 10.3892/or.2013.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/30/2013] [Indexed: 11/06/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in maintaining immunological tolerance. However, this mechanism is one of the major obstacles to overcome when attempting to improve antitumor immunity. Protein-bound polysaccharide‑K (PSK) has been used clinically as an antitumor drug, and one of its antitumor mechanisms involves improvement of the tumor-induced immunosuppressive state. Therefore, we investigated whether PSK affects Tregs in vitro and in vivo. In the in vitro study, CD4⁺CD25⁻ cells were separated from normal mouse spleen and cultured with or without PSK in the presence of TGF-β. Although TGF-β induced CD4⁺CD25⁺Foxp3⁺ Tregs, PSK reduced the proportion of TGF-β-induced Tregs. In the in vivo study, BALB/c mice were injected subcutaneously with methylcholanthrene-induced fibrosarcoma (Meth A) cells on day 0, and were administered PSK (50 mg/kg) intraperitoneally from day 1, three times per week. After 4 weeks, the tumor volume, the proportion of Tregs and the CD8+/Treg ratio in the spleen, plasma TGF-β concentration, and IFN-γ production by spleen cells were measured. PSK significantly reduced tumor growth, the proportion of Tregs in the spleen and the plasma TGF-β concentration, and significantly increased the CD8+/Treg ratio in the spleen and IFN-γ production by spleen cells. The reduction of the TGF-β concentration in blood by PSK appears to decrease the proportion of Tregs in lymphoid organs and to augment antitumor immunity.
Collapse
Affiliation(s)
- Rieko Aoki
- Pharmaceuticals Division, Kureha Corporation, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kunert A, Straetemans T, Govers C, Lamers C, Mathijssen R, Sleijfer S, Debets R. TCR-Engineered T Cells Meet New Challenges to Treat Solid Tumors: Choice of Antigen, T Cell Fitness, and Sensitization of Tumor Milieu. Front Immunol 2013; 4:363. [PMID: 24265631 PMCID: PMC3821161 DOI: 10.3389/fimmu.2013.00363] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/24/2013] [Indexed: 01/18/2023] Open
Abstract
Adoptive transfer of T cells gene-engineered with antigen-specific T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to target immunogenic epitopes that are related to oncogenesis and selectively expressed by tumor tissue, and implement strategies that result in optimal T cell fitness. In addition, in particular for the treatment of solid tumors, it is equally necessary to include strategies that counteract the immune-suppressive nature of the tumor micro-environment. Here, we will provide an overview of the current status of TCR gene therapy, and redefine the following three challenges of improvement: “choice of target antigen”; “fitness of T cells”; and “sensitization of tumor milieu.” We will categorize and discuss potential strategies to address each of these challenges, and argue that advancement of clinical TCR gene therapy critically depends on developments toward each of the three challenges.
Collapse
Affiliation(s)
- Andre Kunert
- Laboratory of Experimental Tumor Immunology, Erasmus MC Cancer Institute , Rotterdam , Netherlands ; Department of Medical Oncology, Erasmus MC Cancer Institute , Rotterdam , Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Engel JB, Honig A, Kapp M, Hahne JC, Meyer SR, Dietl J, Segerer SE. Mechanisms of tumor immune escape in triple-negative breast cancers (TNBC) with and without mutated BRCA 1. Arch Gynecol Obstet 2013; 289:141-7. [DOI: 10.1007/s00404-013-2922-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 06/09/2013] [Indexed: 01/09/2023]
|
35
|
Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011; 2011:732413. [PMID: 22190972 PMCID: PMC3235820 DOI: 10.1155/2011/732413] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite intensive treatment, the prognosis for patients with GBM remains grim with a median survival of only 14.6 months. Immunotherapy has emerged as a promising approach for treating many cancers and affords the advantages of cellular-level specificity and the potential to generate durable immune surveillance. The complexity of the tumor microenvironment poses a significant challenge to the development of immunotherapy for GBM, as multiple signaling pathways, cytokines, and cell types are intricately coordinated to generate an immunosuppressive milieu. The development of new immunotherapy approaches frequently uncovers new mechanisms of tumor-mediated immunosuppression. In this review, we discuss many of the current approaches to immunotherapy and focus on the challenges presented by the tumor microenvironment.
Collapse
|
36
|
Activation of the human immune system by chemotherapeutic or targeted agents combined with the oncolytic parvovirus H-1. BMC Cancer 2011; 11:464. [PMID: 22029859 PMCID: PMC3234202 DOI: 10.1186/1471-2407-11-464] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/26/2011] [Indexed: 01/08/2023] Open
Abstract
Background Parvovirus H-1 (H-1PV) infects and lyses human tumor cells including melanoma, hepatoma, gastric, colorectal, cervix and pancreatic cancers. We assessed whether the beneficial effects of chemotherapeutic agents or targeted agents could be combined with the oncolytic and immunostimmulatory properties of H-1PV. Methods Using human ex vivo models we evaluated the biological and immunological effects of H-1PV-induced tumor cell lysis alone or in combination with chemotherapeutic or targeted agents in human melanoma cells +/- characterized human cytotoxic T-cells (CTL) and HLA-A2-restricted dendritic cells (DC). Results H-1PV-infected MZ7-Mel cells showed a clear reduction in cell viability of >50%, which appeared to occur primarily through apoptosis. This correlated with viral NS1 expression levels and was enhanced by combination with chemotherapeutic agents or sunitinib. Tumor cell preparations were phagocytosed by DC whose maturation was measured according to the treatment administered. Immature DC incubated with H-1PV-induced MZ7-Mel lysates significantly increased DC maturation compared with non-infected or necrotic MZ7-Mel cells. Tumor necrosis factor-α and interleukin-6 release was clearly increased by DC incubated with H-1PV-induced SK29-Mel tumor cell lysates (TCL) and was also high with DC-CTL co-cultures incubated with H-1PV-induced TCL. Similarly, DC co-cultures with TCL incubated with H-1PV combined with cytotoxic agents or sunitinib enhanced DC maturation to a greater extent than cytotoxic agents or sunitinib alone. Again, these combinations increased pro-inflammatory responses in DC-CTL co-cultures compared with chemotherapy or sunitinib alone. Conclusions In our human models, chemotherapeutic or targeted agents did not only interfere with the pronounced immunomodulatory properties of H-1PV, but also reinforced drug-induced tumor cell killing. H-1PV combined with cisplatin, vincristine or sunitinib induced effective immunostimulation via a pronounced DC maturation, better cytokine release and cytotoxic T-cell activation compared with agents alone. Thus, the clinical assessment of H-1PV oncolytic tumor therapy not only alone but also in combination strategies is warranted.
Collapse
|
37
|
Venigová P, Jindra P, Koza V. Detection of A B acute lymphoblastic leukaemia blast-specific mutation in HLA-B*39:01. Int J Immunogenet 2011; 38:285-6. [DOI: 10.1111/j.1744-313x.2011.01007.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
|
39
|
Yilmaz E, Çekmen A, Akkuş E, Önal B, Özalp AU, Solok V, Erdoğan E, Eren B. The relationship between human leukocyte antigens (HLA) and renal cell carcinoma. Bosn J Basic Med Sci 2010; 10:282-6. [PMID: 21108609 DOI: 10.17305/bjbms.2010.2661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Etiologies of Renal Cell Carcinoma (RCC) are not clear despite of the fact that many risk factors have been suggested. Especially in high stages RCC can affect the immune system in various ways. Human Leukocyte Antigens (HLA) may play a complementary role in the activation between the tumor and immunity. Our aim was to determine the existence of the relationship between HLA system and RCC. By using the standard microlymphocytotoxic method of Terasaki in our study, the HLA A, B, DR and DQ antigen types of 20 patients with RCC Stage T1 and T2 were compared with the control group consisting of healthy 30 people. In our RCC patient group, HLA-A23(9) and DQ7(3) antigens were significantly higher than the control group statistically (p=0.005, p=0.0028; respectively). HLA-A10, DQ1, DR10 and B44 antigens were significantly higher in the control group than the patient group (p=0.011; for all).The findings made us suggest that the people, carrying the antigens which were detected in the patient group, were at high risk for RCC and the people, carrying the protective antigens that were detected in the control group were at less risk for RCC. There may be a dramatic regression for the patients who underwent immunotherapy and HLA expression, which is known to play role in tumor biology, may direct the effects of immunotherapeutic agents. Immunologic description and destruction is avoided in case of change or disappearance of HLA expression by cancer cells. Further investigations which will be performed in our population in the future will be more illuminating to confirm those results. We have concluded that, HLA profiles may be evaluated for detection the people at risk of RCC, the prognosis of the patients and their treatments.
Collapse
|
40
|
Belov K. The role of the Major Histocompatibility Complex in the spread of contagious cancers. Mamm Genome 2010; 22:83-90. [DOI: 10.1007/s00335-010-9294-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/05/2010] [Indexed: 02/08/2023]
|
41
|
Qiu F, Maniar A, Diaz MQ, Chapoval AI, Medvedev AE. Activation of cytokine-producing and antitumor activities of natural killer cells and macrophages by engagement of Toll-like and NOD-like receptors. Innate Immun 2010; 17:375-87. [PMID: 20682587 DOI: 10.1177/1753425910372000] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Macrophages and natural killer (NK) cells are important antitumor effectors by virtue of their ability to produce cytokines, chemokines and interferons (IFNs) and to mediate tumor cytotoxicity. Little is known about the impact of Toll-like receptor (TLR) and nucleotide binding and oligomerization domain (NOD)-like receptor (NLR) pathways on NK cell functions, and the role of TLRs and NLRs in macrophage activation is incompletely understood. In this study, we examined the capacities of expressed TLRs and NLRs to elicit cytokine production in human NK cells and THP1 macrophages, and to activate NK cytotoxicity against the squamous cell carcinoma of head and neck cell line Tu167 and erythroleukemia K562 cells. We found that NK cells express high levels of NOD2, NLRP3, TLR3, TLR7, and TLR9, while NOD1 was expressed at low levels. All tested NLR and TLR agonists potentiated NK cytotoxicity against Tu167 cells, whereas only poly (I:C) increased NK cytotoxicity against K562 cells. Poly (I:C) and Escherichia coli RNA markedly up-regulated TNF-α and IFN-γ expression in the NK92 cell line and human CD56(+)CD3(-) primary NK cells. High levels of NOD2, TLR7 and TLR9 proteins were observed in human THP1 cells, followed by TLR3, NOD1, and NLRP3. Stimulation of NLRP3 with E. coli RNA led to the highest induction of TNF-α, IL-6, IL-12p40, RANTES and IFN-β, whereas TLR7, TLR3, TLR9, NOD1 and NOD2 agonists had lower effects. Our data reveal involvement of TLRs and NLRs in potentiation of antitumor cytotoxicity and cytokine-producing activities of human NK cells and macrophages.
Collapse
Affiliation(s)
- Fu Qiu
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Immune cells infiltrate tumors and make up a significant component of the multicellular cancer micro-environment, yet the immune system often fails to prevent tumor formation and progression. One explanation for this paradox is the presence of tolerance-promoting regulatory T cells (Tregs) that counteract antitumor immune cells. Tregs were known to be essential for maintaining self-tolerance. Recently, Tregs have been found to promote tolerance to tumors in mouse models. Moreover, Treg infiltration in human tumors and malignant ascites is associated with worse clinical outcomes for various types of cancers. As many reviews have discussed the development and function of Tregs, this review focuses on the cellular and molecular mechanisms by which Tregs influence antitumor immune responses, and also discusses how these mechanisms might be exploited to develop innovative immune-based approaches that can improve cancer therapy.
Collapse
Affiliation(s)
- Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
43
|
Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma. J Theor Biol 2010; 265:467-80. [PMID: 20450922 DOI: 10.1016/j.jtbi.2010.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 04/21/2010] [Accepted: 04/30/2010] [Indexed: 11/22/2022]
Abstract
Recent experiments indicate that CD4(+) Th2 cells can reject skin tumors in mice, while CD4(+) Th1 cells cannot (Mattes et al., 2003; Zhang et al., 2009). These results are surprising because CD4(+) Th1 cells are typically considered to be capable of tumor rejection. We used mathematical models to investigate this unexpected outcome. We found that neither CD4(+) Th1 nor CD4(+) Th2 cells could eliminate the cancer cells when acting alone, but that tumor elimination could be induced by recruitment of eosinophils by the Th2 cells. These recruited eosinophils had unexpected indirect effects on the decay rate of type 2 cytokines and the rate at which Th2 cells are inactivated through interactions with cancer cells. Strikingly, the presence of eosinophils impacted tumor growth more significantly than the release of tumor-suppressing cytokines such as IFN-gamma and TNF-alpha. Our simulations suggest that novel strategies to enhance eosinophil recruitment into skin tumors may improve cancer immunotherapies.
Collapse
|
44
|
Mutation or loss of Wilms' tumor gene 1 (WT1) are not major reasons for immune escape in patients with AML receiving WT1 peptide vaccination. J Transl Med 2010; 8:5. [PMID: 20092642 PMCID: PMC2844374 DOI: 10.1186/1479-5876-8-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/21/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Efficacy of cancer vaccines may be limited due to immune escape mechanisms like loss or mutation of target antigens. Here, we analyzed 10 HLA-A2 positive patients with acute myeloid leukemia (AML) for loss or mutations of the WT1 epitope or epitope flanking sequences that may abolish proper T cell recognition or epitope presentation. METHODS All patients had been enrolled in a WT1 peptide phase II vaccination trial (NCT00153582) and ultimately progressed despite induction of a WT1 specific T cell response. Blood and bone marrow samples prior to vaccination and during progression were analyzed for mRNA expression level of WT1. Base exchanges within the epitope sequence or flanking regions (10 amino acids N- and C-terminal of the epitope) were assessed with melting point analysis and sequencing. HLA class I expression and WT1 protein expression was analyzed by flow cytometry. RESULTS Only in one patient, downregulation of WT1 mRNA by 1 log and loss of WT1 detection on protein level at time of disease progression was observed. No mutation leading to a base exchange within the epitope sequence or epitope flanking sequences could be detected in any patient. Further, no loss of HLA class I expression on leukemic blasts was observed. CONCLUSION Defects in antigen presentation caused by loss or mutation of WT1 or downregulation of HLA molecules are not the major basis for escape from the immune response induced by WT1 peptide vaccination.
Collapse
|
45
|
Jiang X, Fares MA. Identifying coevolutionary patterns in human leukocyte antigen (HLA) molecules. Evolution 2009; 64:1429-45. [PMID: 19930454 DOI: 10.1111/j.1558-5646.2009.00903.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The antigenic peptide, major histocompatibility complex molecule (MHC; also called human leukocyte antigen, HLA), coreceptor CD8, or CD4 and T-cell receptor (TCR) function as a complex to initiate effectors' mechanisms of the immune system. The tight functional and physical interaction among these molecules may have involved strong coevolution links among domains within and between proteins. Despite the importance of unraveling such dependencies to understand the arms race of host-pathogen interaction, no previous studies have aimed at achieving such an objective. Here, we perform an exhaustive coevolution analysis and show that indeed such dependencies are strongly shaping the evolution and probably the function of these molecules. We identify intramolecular coevolution in HLA class I and II at domains important for their immune activity. Most of the amino acid sites identified to be coevolving in HLAI have been also detected to undergo positive Darwinian selection highlighting therefore their adaptive value. We also identify coevolution among antigen-binding pockets (P1-P9) and among these and TCR-binding sites. Conversely to HLAI, coevolution is weaker in HLAII. Our results support that such coevolutionary patterns are due to selective pressures of host-pathogen coevolution and cooperative binding of TCRs, antigenic peptides, and CD8/CD4 to HLAI and HLAII.
Collapse
Affiliation(s)
- Xiaowei Jiang
- Evolutionary Genetics and Bioinformatics Laboratory, Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
46
|
Abstract
The notion that the immune system might control the growth of tumors was suggested over 100 years ago by the eminent microbiologist Paul Ehrlich. This concept was refined and expanded by Burnet and Thomas 50 years later with their articulation of the "immune surveillance" hypothesis. In its simplest form, the immune surveillance hypothesis suggests that neoplasms arise spontaneously and express novel antigens that are recognized by the immune system, which either eliminates the tumors or restrains their growth. Within the eye, immune responses are controlled and sometimes profoundly inhibited - a condition known as immune privilege. Immune privilege in the eye is the result of a complex array of anatomical, physiological, and immunoregulatory mechanisms that prevent the induction and expression of many immune responses. Tumors arising in the eye would seem to have an advantage in evading immune surveillance due to ocular immune privilege. Uveal melanoma, the most common and malignant intraocular tumor in adults, not only benefits from the immune privilege of the eye but also has adopted many of the mechanisms that contribute to ocular immune privilege as a strategy for protecting uveal melanoma cells once they leave the sanctuary of the eye and are disseminated systemically in the form of metastases. Although the immune system possesses a battery of effector mechanisms designed to rid the body of neoplasms, tumors are capable of rapidly evolving and countering even the most sophisticated immunological effector mechanisms. To date, tumors seem to be winning this arms race, but an increased understanding of these mechanisms should provide insights for designing immunotherapy that was envisioned over half a century ago, but has failed to materialize to date.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA.
| |
Collapse
|
47
|
Abstract
Down-regulation of conventional human leukocyte antigen (HLA) class I and II molecules from the surface of tumor cells is an important mechanism for tumor immune evasion, survival, and progression. Whether CD1d, a nonconventional, glycolipid-presenting HLA class I-like molecule instructing the function of the immunoregulatory invariant NKT cells can affect tumor cell survival is not known. Here we show that CD1d is highly expressed in premalignant and early myeloma, but with disease progression its expression is reduced and eventually in advanced stages and myeloma cell lines is lost altogether, suggesting that CD1d impacts negatively on myeloma cell survival. Consistent with this, engagement of CD1d by anti-CD1d monoclonal antibodies (mAbs) induces cell death of myeloma cell lines with restored CD1d expression and primary myeloma cells. Cell death induced by monoclonal antibody engagement of CD1d is associated with overexpression of proapoptotic Bax and mitochondrial membrane potential loss but it is caspase-activation independent; in addition, it requires the cytoplasmic tail but not the Tyr residue critical for lysosomal sorting of CD1d. Finally, anti-CD1d cooperates with antimyeloma agents in the killing of myeloma cells. Thus, this work provides evidence linking a novel function of CD1d in the regulation of cell death with tumor survival and progression in humans.
Collapse
|
48
|
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that monitor cell surfaces of autologous cells for an aberrant expression of MHC class I molecules and cell stress markers. Since their first description more than 30 years ago, NK cells have been implicated in the immune defence against tumours. Here, we review the broadly accumulating evidence for a crucial contribution of NK cells to the immunosurveillance of tumours and the molecular mechanisms that allow NK cells to distinguish malignant from healthy cells. Particular emphasis is placed on the activating NK receptor NKG2D, which recognizes a variety of MHC class I-related molecules believed to act as 'immuno-alerters' on malignant cells, and on tumour-mediated counterstrategies promoting escape from NKG2D-mediated recognition.
Collapse
Affiliation(s)
- I Waldhauer
- Department of Immunology, Interfacultary Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
49
|
Neal ZC, Sondel PM, Bates MK, Gillies SD, Herweijer H. Flt3-L gene therapy enhances immunocytokine-mediated antitumor effects and induces long-term memory. Cancer Immunol Immunother 2007; 56:1765-74. [PMID: 17426968 PMCID: PMC11030117 DOI: 10.1007/s00262-007-0320-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 03/19/2007] [Indexed: 12/12/2022]
Abstract
Therapeutic treatment with hu14.18-IL-2 immunocytokine (IC) or Flt3-L (FL) protein is initially effective at resolving established intradermal NXS2 neuroblastoma tumors in mice. However, many treated animals develop recurrent disease. We previously found that tumors recurring following natural killer (NK) mediated IC treatment show augmented MHC class I expression, while the tumors that recurred following T cell dependent Flt3-L treatment exhibited decreased MHC class I expression. We hypothesized that this divergent MHC modulation on recurrent tumors was due to therapy-specific immunoediting. We further postulated that combining IC and Flt3-L treatments might decrease the likelihood of recurrent disease by preventing MHC modulation as a mechanism for immune escape. We now report that combinatorial treatment of FL plus hu14.18-IL-2 IC provides greater antitumor benefit than treatment with either alone, suppressing development of recurrent disease. We administered FL by gene therapy using a clinically relevant approach: hydrodynamic limb vein (HLV) delivery of DNA for transgene expression by myofibers. Delivery of FL DNA by HLV injection in mice resulted in systemic expression of >10 ng/ml of FL in blood at day 3, and promoted up to a fourfold and tenfold increase in splenic NK and dendritic cells (DCs), respectively. Furthermore, the combination of FL gene therapy plus suboptimal IC treatment induced a greater expansion in the absolute number of splenic NK and DCs than achieved by individual component treatments. Mice that received combined FL gene therapy plus IC exhibited complete and durable resolution of established NXS2 tumors, and demonstrated protection from subsequent rechallenge with NXS2 tumor.
Collapse
Affiliation(s)
- Zane C. Neal
- Mirus Bio Corporation, 505 S. Rosa Road, Madison, WI 53719 USA
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI USA
| | - Paul M. Sondel
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI USA
- Departments of Pediatrics and Human Oncology, University of Wisconsin-Madison, Madison, WI USA
| | - Mary Kay Bates
- Mirus Bio Corporation, 505 S. Rosa Road, Madison, WI 53719 USA
| | | | - Hans Herweijer
- Mirus Bio Corporation, 505 S. Rosa Road, Madison, WI 53719 USA
| |
Collapse
|
50
|
Rolland P, Deen S, Scott I, Durrant L, Spendlove I. Human leukocyte antigen class I antigen expression is an independent prognostic factor in ovarian cancer. Clin Cancer Res 2007; 13:3591-6. [PMID: 17575223 DOI: 10.1158/1078-0432.ccr-06-2087] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite improvements in cancer treatment, the prognosis of ovarian cancer remains low and imperfectly predicted by traditional pathologic criteria. Biomarkers that predict prognosis independently of such criteria shed light on important molecular variations, aiding in the development and targeting of novel therapies. Previous work has shown human leukocyte antigen (HLA) class I antigen expression to be independently predictive of prognosis in colorectal and breast cancer. We investigated the prognostic potential of HLA class I antigen expression by studying a large series of ovarian cancers. EXPERIMENTAL DESIGN A tissue microarray of 339 ovarian cancer cases linked to prospectively recorded clinicopathologic and follow-up data was constructed. This was stained following a standard immunohistochemical protocol for HLA class I heavy chain (HC-10) and beta(2)-microglobulin (beta(2)-m). HLA class I antigen expression was compared with clinicopathologic factors and overall disease-specific survival using the Pearson chi(2) test, Kaplan-Meier curves, and the log-rank test. Cox regression was used to test for the independence and magnitude of effects. RESULTS There were no univariate correlations between HLA class I antigen expression and clinicopathologic factors. Deviation from an HC-10(+)/beta(2)-m(+) phenotype correlated with reduced survival in univariate analysis (log-rank, 5.69; P = 0.017); a retained HC-10(+)/beta(2)-m(+) phenotype predicted improved prognosis independently of age, stage, level of cytoreduction, and chemotherapy usage on multivariate analysis (hazard ratio, 0.587; 95% confidence interval, 0.442-0.781; P < 0.001). CONCLUSIONS HLA class I antigen expression is an independent prognostic marker in ovarian cancer, its loss correlating with a poor prognostic outcome.
Collapse
Affiliation(s)
- Phil Rolland
- Academic and Clinical Department of Oncology, University Hospitals Nottingham, City Hospital Campus, Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|