1
|
Bentes GA, Guimarães JR, Volotão EDM, Lanzarini NM, da Silva ADS, Gardinali NR, Marchevsky RS, Leite JPG, de Oliveira JM, Pinto MA. Passive Immunotherapy of Cynomolgus Monkeys with Anti-Rotavirus IgY. Pharmaceutics 2024; 16:1149. [PMID: 39339185 PMCID: PMC11435195 DOI: 10.3390/pharmaceutics16091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Immunoglobulins Y (IgY) purified from egg yolks of hens represents an attractive, cost-effective alternative for the development of new diagnostic and therapeutic platforms. In this study, we evaluated the therapeutic efficacy of rotavirus-specific IgY in a cynomolgus monkey (Macaca fascicularis) model. Animals were experimentally infected with human rotavirus Group A (RVA), the most common cause of severe acute diarrhoea among young children worldwide. Animals were administered human RVA (3.1 × 107 FFU/mL) by oral gavage, challenged with 2.5 mg of anti-RVA IgY orally, and monitored for five days according to clinical, haematological and biochemical parameters; serum electrolyte levels; viral shedding; and histopathological changes. Immunotherapy with anti-RVA IgY had a protective effect against severe rotavirus-induced enteritis in four of the ten treated monkeys, as evidenced by histopathological findings. Although only one animal had diarrhoea, all but one exhibited virus shedding regardless of the treatment.
Collapse
Affiliation(s)
- Gentil Arthur Bentes
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Juliana Rodrigues Guimarães
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Eduardo de Mello Volotão
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Natália Maria Lanzarini
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Alexandre dos Santos da Silva
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Noemi Rovaris Gardinali
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Renato Sergio Marchevsky
- Laboratório de Ensaios Pré-Clínicos, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - José Paulo Gagliardi Leite
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Jaqueline Mendes de Oliveira
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
2
|
Lee L, Samardzic K, Wallach M, Frumkin LR, Mochly-Rosen D. Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Front Immunol 2021; 12:696003. [PMID: 34177963 PMCID: PMC8220206 DOI: 10.3389/fimmu.2021.696003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
Antiviral, antibacterial, and antiparasitic drugs and vaccines are essential to maintaining the health of humans and animals. Yet, their production can be slow and expensive, and efficacy lost once pathogens mount resistance. Chicken immunoglobulin Y (IgY) is a highly conserved homolog of human immunoglobulin G (IgG) that has shown benefits and a favorable safety profile, primarily in animal models of human infectious diseases. IgY is fast-acting, easy to produce, and low cost. IgY antibodies can readily be generated in large quantities with minimal environmental harm or infrastructure investment by using egg-laying hens. We summarize a variety of IgY uses, focusing on their potential for the detection, prevention, and treatment of human and animal infections.
Collapse
Affiliation(s)
- Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kate Samardzic
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Wallach
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Meunier M, Chemaly M, Dory D. DNA vaccination of poultry: The current status in 2015. Vaccine 2015; 34:202-211. [PMID: 26620840 PMCID: PMC7115526 DOI: 10.1016/j.vaccine.2015.11.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 01/13/2023]
Abstract
Poultry DNA vaccination studies are regularly being published since 1993. These studies are mainly, but not only, concerned with vaccination against viruses. The different strategies of improving DNA vaccine efficacies are presented. The fate of the vaccine plasmid, immune properties and other applications are described. Despite the compiling preclinical reports, a poultry DNA vaccine is yet unavailable in the market.
DNA vaccination is a promising alternative strategy for developing new human and animal vaccines. The massive efforts made these past 25 years to increase the immunizing potential of this kind of vaccine are still ongoing. A relatively small number of studies concerning poultry have been published. Even though there is a need for new poultry vaccines, five parameters must nevertheless be taken into account for their development: the vaccine has to be very effective, safe, inexpensive, suitable for mass vaccination and able to induce immune responses in the presence of maternal antibodies (when appropriate). DNA vaccination should meet these requirements. This review describes studies in this field performed exclusively on birds (chickens, ducks and turkeys). No evaluations of avian DNA vaccine efficacy performed on mice as preliminary tests have been taken into consideration. The review first describes the state of the art for DNA vaccination in poultry: pathogens targeted, plasmids used and different routes of vaccine administration. Second, it presents strategies designed to improve DNA vaccine efficacy: influence of the route of administration, plasmid dose and age of birds on their first inoculation; increasing plasmid uptake by host cells; addition of immunomodulators; optimization of plasmid backbones and codon usage; association of vaccine antigens and finally, heterologous prime-boost regimens. The final part will indicate additional properties of DNA vaccines in poultry: fate of the plasmids upon inoculation, immunological considerations and the use of DNA vaccines for purposes other than preventing infectious diseases.
Collapse
Affiliation(s)
- Marine Meunier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Viral Genetics and Biosafety Unit, Ploufragan, France; French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France
| | - Daniel Dory
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Viral Genetics and Biosafety Unit, Ploufragan, France.
| |
Collapse
|
4
|
Haese N, Brocato RL, Henderson T, Nilles ML, Kwilas SA, Josleyn MD, Hammerbeck CD, Schiltz J, Royals M, Ballantyne J, Hooper JW, Bradley DS. Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure. PLoS Negl Trop Dis 2015; 9:e0003803. [PMID: 26046641 PMCID: PMC4457835 DOI: 10.1371/journal.pntd.0003803] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/30/2015] [Indexed: 01/06/2023] Open
Abstract
Andes virus (ANDV) and ANDV-like viruses are responsible for most hantavirus pulmonary syndrome (HPS) cases in South America. Recent studies in Chile indicate that passive transfer of convalescent human plasma shows promise as a possible treatment for HPS. Unfortunately, availability of convalescent plasma from survivors of this lethal disease is very limited. We are interested in exploring the concept of using DNA vaccine technology to produce antiviral biologics, including polyclonal neutralizing antibodies for use in humans. Geese produce IgY and an alternatively spliced form, IgYΔFc, that can be purified at high concentrations from egg yolks. IgY lacks the properties of mammalian Fc that make antibodies produced in horses, sheep, and rabbits reactogenic in humans. Geese were vaccinated with an ANDV DNA vaccine encoding the virus envelope glycoproteins. All geese developed high-titer neutralizing antibodies after the second vaccination, and maintained high-levels of neutralizing antibodies as measured by a pseudovirion neutralization assay (PsVNA) for over 1 year. A booster vaccination resulted in extraordinarily high levels of neutralizing antibodies (i.e., PsVNA80 titers >100,000). Analysis of IgY and IgYΔFc by epitope mapping show these antibodies to be highly reactive to specific amino acid sequences of ANDV envelope glycoproteins. We examined the protective efficacy of the goose-derived antibody in the hamster model of lethal HPS. α-ANDV immune sera, or IgY/IgYΔFc purified from eggs, were passively transferred to hamsters subcutaneously starting 5 days after an IM challenge with ANDV (25 LD50). Both immune sera, and egg-derived purified IgY/IgYΔFc, protected 8 of 8 and 7 of 8 hamsters, respectively. In contrast, all hamsters receiving IgY/IgYΔFc purified from normal geese (n=8), or no-treatment (n=8), developed lethal HPS. These findings demonstrate that the DNA vaccine/goose platform can be used to produce a candidate antiviral biological product capable of preventing a lethal disease when administered post-exposure.
Collapse
Affiliation(s)
- Nicole Haese
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences (UND SMHS), Grand Forks, North Dakota, United States of America
| | - Rebecca L. Brocato
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Thomas Henderson
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences (UND SMHS), Grand Forks, North Dakota, United States of America
| | - Matthew L. Nilles
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences (UND SMHS), Grand Forks, North Dakota, United States of America
| | - Steve A. Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Matthew D. Josleyn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Christopher D. Hammerbeck
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - James Schiltz
- Avianax, LLC, Grand Forks, North Dakota, United States of America
| | - Michael Royals
- Cedar Industries, Pierce, Colorado, United States of America
| | | | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - David S. Bradley
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences (UND SMHS), Grand Forks, North Dakota, United States of America
| |
Collapse
|
5
|
Khawaja G, Buronfosse T, Jamard C, Abdul F, Guerret S, Zoulim F, Luxembourg A, Hannaman D, Evans CF, Hartmann D, Cova L. In vivo electroporation improves therapeutic potency of a DNA vaccine targeting hepadnaviral proteins. Virology 2012; 433:192-202. [PMID: 22921316 DOI: 10.1016/j.virol.2012.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022]
Abstract
This preclinical study investigated the therapeutic efficacy of electroporation (EP)-based delivery of plasmid DNA (pDNA) encoding viral proteins (envelope, core) and IFN-γ in the duck model of chronic hepatitis B virus (DHBV) infection. Importantly, only DNA EP-therapy resulted in a significant decrease in mean viremia titers and in intrahepatic covalently closed circular DNA (cccDNA) levels in chronic DHBV-carrier animals, compared with standard needle pDNA injection (SI). In addition, DNA EP-therapy stimulated in all virus-carriers a humoral response to DHBV preS protein, recognizing a broader range of major antigenic regions, including neutralizing epitopes, compared with SI. DNA EP-therapy led also to significant higher intrahepatic IFN-γ RNA levels in DHBV-carriers compared to other groups, in the absence of adverse effects. We provide the first evidence on DNA EP-therapy benefit in terms of hepadnaviral infection clearance and break of immune tolerance in virus-carriers, supporting its clinical application for chronic hepatitis B.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Chronic Disease
- DNA, Circular/genetics
- DNA, Circular/immunology
- Disease Models, Animal
- Ducks
- Electroporation
- Epitopes
- Hepadnaviridae Infections/immunology
- Hepadnaviridae Infections/prevention & control
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Duck/immunology
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Animal/virology
- Immune Tolerance
- Immunity, Humoral
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Plasmids
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viremia/immunology
- Viremia/prevention & control
- Viremia/veterinary
- Viremia/virology
Collapse
|
6
|
Brocato R, Josleyn M, Ballantyne J, Vial P, Hooper JW. DNA vaccine-generated duck polyclonal antibodies as a postexposure prophylactic to prevent hantavirus pulmonary syndrome (HPS). PLoS One 2012; 7:e35996. [PMID: 22558299 PMCID: PMC3338771 DOI: 10.1371/journal.pone.0035996] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/26/2012] [Indexed: 12/27/2022] Open
Abstract
Andes virus (ANDV) is the predominant cause of hantavirus pulmonary syndrome (HPS) in South America and the only hantavirus known to be transmitted person-to-person. There are no vaccines, prophylactics, or therapeutics to prevent or treat this highly pathogenic disease (case-fatality 35–40%). Infection of Syrian hamsters with ANDV results in a disease that closely mimics human HPS in incubation time, symptoms of respiratory distress, and disease pathology. Here, we evaluated the feasibility of two postexposure prophylaxis strategies in the ANDV/hamster lethal disease model. First, we evaluated a natural product, human polyclonal antibody, obtained as fresh frozen plasma (FFP) from a HPS survivor. Second, we used DNA vaccine technology to manufacture a polyclonal immunoglobulin-based product that could be purified from the eggs of vaccinated ducks (Anas platyrhynchos). The natural “despeciation" of the duck IgY (i.e., Fc removed) results in an immunoglobulin predicted to be minimally reactogenic in humans. Administration of ≥5,000 neutralizing antibody units (NAU)/kg of FFP-protected hamsters from lethal disease when given up to 8 days after intranasal ANDV challenge. IgY/IgYΔFc antibodies purified from the eggs of DNA-vaccinated ducks effectively neutralized ANDV in vitro as measured by plaque reduction neutralization tests (PRNT). Administration of 12,000 NAU/kg of duck egg-derived IgY/IgYΔFc protected hamsters when administered up to 8 days after intranasal challenge and 5 days after intramuscular challenge. These experiments demonstrate that convalescent FFP shows promise as a postexposure HPS prophylactic. Moreover, these data demonstrate the feasibility of using DNA vaccine technology coupled with the duck/egg system to manufacture a product that could supplement or replace FFP. The DNA vaccine-duck/egg system can be scaled as needed and obviates the necessity of using limited blood products obtained from a small number of HPS survivors. This is the first report demonstrating the in vivo efficacy of any antiviral product produced using DNA vaccine-duck/egg system.
Collapse
Affiliation(s)
- Rebecca Brocato
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Matthew Josleyn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - John Ballantyne
- Aldevron, LLC, Fargo, North Dakota, United States of America
| | - Pablo Vial
- Institute of Science, Medical School, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Enhanced magnitude and breadth of neutralizing humoral response to a DNA vaccine targeting the DHBV envelope protein delivered by in vivo electroporation. Virology 2012; 425:61-9. [DOI: 10.1016/j.virol.2012.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/23/2011] [Accepted: 01/03/2012] [Indexed: 02/08/2023]
|
8
|
Saade F, Buronfosse T, Pradat P, Abdul F, Cova L. Enhancement of neutralizing humoral response of DNA vaccine against duck hepatitis B virus envelope protein by co-delivery of cytokine genes. Vaccine 2008; 26:5159-64. [DOI: 10.1016/j.vaccine.2008.03.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Thermet A, Buronfosse T, Werle-Lapostolle B, Chevallier M, Pradat P, Trepo C, Zoulim F, Cova L. DNA vaccination in combination or not with lamivudine treatment breaks humoral immune tolerance and enhances cccDNA clearance in the duck model of chronic hepatitis B virus infection. J Gen Virol 2008; 89:1192-1201. [PMID: 18420797 DOI: 10.1099/vir.0.83583-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study used a duck hepatitis B virus (DHBV) model to evaluate whether a novel DNA vaccination protocol alone or associated with antiviral (lamivudine) treatment was able to clear the intrahepatic covalently closed, circular viral DNA (cccDNA) pool responsible for persistence of infection. DHBV carriers received DNA vaccine (on weeks 6, 10, 13, 14, 28 and 35) targeting the large envelope and/or core proteins alone or combined with lamivudine treatment (on weeks 1-8) or lamivudine monotherapy. After 10 months of follow-up, a dramatic decrease in viraemia and liver DHBV cccDNA (below 0.08 cccDNA copies per cell) was observed in 9/30 ducks (30 %) receiving DNA mono- or combination therapy, compared with 0/12 (0 %) from lamivudine monotherapy or the control groups, suggesting a significant antiviral effect of DNA immunization. However, association with the drug did not significantly improve DHBV DNA vaccine efficacy (33 % cccDNA clearance for the combination vs 27 % for DNA monotherapy), probably due to the low antiviral potency of lamivudine in the duck model. Seroconversion to anti-preS was observed in 6/9 (67 %) ducks showing cccDNA clearance, compared with 1/28 (3.6 %) without clearance, suggesting a significant correlation (P<0.001) between humoral response restoration and cccDNA elimination. Importantly, an early (weeks 10-12) drop in viraemia was observed in seroconverted animals, and virus replication did not rebound following the cessation of immunotherapy, indicating a sustained effect. This study provides the first evidence that therapeutic DNA vaccination is able to enhance hepadnaviral cccDNA clearance, which is tightly associated with a break in humoral immune tolerance. These results also highlight the importance of antiviral drug potency and an effective DNA immunization protocol for the design of therapeutic vaccines against chronic hepatitis B.
Collapse
Affiliation(s)
- Alexandre Thermet
- Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Thierry Buronfosse
- Ecole Nationale Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | | | | | - Pierre Pradat
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France
| | - Christian Trepo
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Fabien Zoulim
- Hospices Civiles de Lyon, Department of Hepatology, Hotel-Dieu, F-69002 Lyon, France.,Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| | - Lucyna Cova
- Université Lyon 1, IFR62, F-69008 Lyon, France.,INSERM, Unit 871, F-69424 Lyon, France
| |
Collapse
|
10
|
Gonzalez-Aseguinolaza G, Crettaz J, Ochoa L, Otano I, Aldabe R, Paneda A. Gene therapy for viral hepatitis. Expert Opin Biol Ther 2006; 6:1263-78. [PMID: 17223736 DOI: 10.1517/14712598.6.12.1263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B and C infections are two of the most prevalent viral diseases in the world. Existing therapies against chronic viral hepatitis are far from satisfactory due to low response rates, undesirable side effects and selection of resistant viral strains. Therefore, new therapeutic approaches are urgently needed. This review, after briefly summarising the in vitro and in vivo systems for the study of both diseases and the genetic vehicles commonly used for liver gene transfer, examines the existing status of gene therapy-based antiviral strategies that have been employed to prevent, eliminate or reduce viral infection. In particular, the authors focus on the results obtained in clinical trials and experimental clinically relevant animal models.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Genetic Therapy/methods
- Genetic Therapy/trends
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/prevention & control
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/prevention & control
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Human/genetics
- Hepatitis, Viral, Human/prevention & control
- Humans
Collapse
Affiliation(s)
- Gloria Gonzalez-Aseguinolaza
- University of Navarra, Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Haygreen L, Davison F, Kaiser P. DNA vaccines for poultry: the jump from theory to practice. Expert Rev Vaccines 2006; 4:51-62. [PMID: 15757473 DOI: 10.1586/14760584.4.1.51] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA vaccines could offer a solution to a number of problems faced by the poultry industry; they are relatively easy to manufacture, stable, potentially easy to administer, can overcome neonatal tolerance and the deleterious effects of maternal antibody, and do not cause disease pathology. Combined with this, in ovo vaccination offers the advantage of reduced labor costs, mass administration and the induction of an earlier immune response. Together, this list of advantages is impressive. However, this combined technology is still in its infancy and requires many improvements. The potential of CpG motifs, DNA vaccines and in ovo vaccination, however, can be observed by the increasing number of recent reports investigating their application in challenge experiments. CpG motifs have been demonstrated to be stimulatory both in vitro and in vivo. In addition, DNA vaccines have been successfully delivered via the in ovo route, albeit not yet through the amniotic fluid. Lastly, a recent report has demonstrated that a DNA vaccine against infectious bronchitis virus administered via in ovo vaccination, followed by live virus boost, can slightly improve on the protective effect induced by the live virus alone. Therefore, DNA vaccination via the in ovo route is promising and offers potential as a poultry vaccine, however, efficacy needs to be improved and the costs of production reduced before it is likely to be beneficial to the poultry industry in the long term.
Collapse
Affiliation(s)
- Liz Haygreen
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | | | | |
Collapse
|
12
|
Narayan R, Buronfosse T, Schultz U, Chevallier-Gueyron P, Guerret S, Chevallier M, Saade F, Ndeboko B, Trepo C, Zoulim F, Cova L. Rise in gamma interferon expression during resolution of duck hepatitis B virus infection. J Gen Virol 2006; 87:3225-3232. [PMID: 17030856 DOI: 10.1099/vir.0.82170-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gamma interferon (IFN-γ) expression plays a crucial role in the control of mammalian hepatitis B virus (HBV) infection. However, the role of duck INF-γ (DuIFN-γ) in the outcome of duck HBV (DHBV) infection, a reference model for hepadnavirus replication studies, has not yet been investigated. This work explored the dynamics of DuIFN-γ expression in liver and peripheral blood mononuclear cells (PBMCs) during resolution of DHBV infection in adolescent ducks in relation to serum and liver markers of virus replication, histological changes and humoral response induction. DHBV infection of 3-week-old ducks resulted in transient expression of intrahepatic preS protein (days 3–14) and mild histological changes. Low-level viraemia was detected only during the first 10 days of infection and was accompanied by early anti-preS antibody response induction. Importantly, a strong increase in intrahepatic DuIFN-γ RNA was detected by real-time RT-PCR at days 6–14, which coincided with a sharp decrease in both viral DNA and preS protein in the liver. Interestingly, liver DuIFN-γ expression remained augmented to the end of the follow-up period (day 66) and correlated with portal lymphocyte infiltration and persistence of trace quantities of intrahepatic DHBV DNA in animals that had apparently completely resolved the infection. Moreover, in infected ducks, a moderate increase was detected in the levels of DuIFN-γ in PBMCs (days 12–14), which coincided with the peak in liver DuIFN-γ RNA levels. These data reveal that increased DuIFN-γ expression in liver and PBMCs is concomitant with viral clearance, characterizing the resolution of infection, and provide new insights into the host–virus interactions that control DHBV infection.
Collapse
MESH Headings
- Animals
- DNA, Viral/analysis
- DNA, Viral/genetics
- Ducks
- Hepadnaviridae Infections/blood
- Hepadnaviridae Infections/metabolism
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Antibodies/blood
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B Virus, Duck/isolation & purification
- Hepatitis, Viral, Animal/blood
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/virology
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/metabolism
- Liver/metabolism
- Liver/virology
- Polymerase Chain Reaction
- RNA, Viral/analysis
- RNA, Viral/genetics
- Time Factors
- Viremia
Collapse
Affiliation(s)
| | - Thierry Buronfosse
- Ecole Nationale Vétérinaire, Marcy l'Etoile, France
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | - Ursula Schultz
- Department of Internal Medicine II/Molecular Biology, University Hospital, Freiburg, Germany
| | | | | | | | - Fadi Saade
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | | | - Christian Trepo
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | - Fabien Zoulim
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | - Lucyna Cova
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| |
Collapse
|
13
|
Abstract
We have recently demonstrated, using the duck Hepatitis B virus (DHBV) model, closely related to human HBV, that following DNA immunization of breeding ducks with a plasmid encoding the targeted protein, specific and biologically active IgY (egg yolk immunoglobulines) are vertically transmitted from their serum into the egg yolk from which they can be extracted and purified. Thus an egg can be considered as a small "factory" for antibody production, since about 60-100 mg of purified IgY can be obtained from each egg yolk of a DNA-immunized duck. One of the major advantages of this new method of "DNA-designed" IgY antibodies is their production via immunization with a gene vector that expresses a corresponding antibody in situ in the cells of an avian host. Therefore this approach allows direct generation of antibodies from plasmid DNA and avoids the costly and tedious preparation of purified antigens required for conventional antibody production. In addition, duck IgY are of remarkable high affinity, avidity and are highly neutralizing. Moreover, the epitope pattern of IgY generated by DNA immunization of ducks is closely related to that observed in viral infection. Such duck IgY are also of particular value as immunodiagnostic tools, since they do not cross-react serologically with mammalian immunoglobulins and complement. Because IgY are resistant to the gastric barrier, the recently described DNA-designed IgY specific to H. pylori Urease B can be of particular interest for passive immunotherapy of gastrointestinal tract infections. Another interesting application is the recent generation in our laboratory of DNA-designed IgY antibodies specific to HBsAg mutants. These antibodies are currently being used to design new diagnostic assay for detection of HBV mutants that are undetectable by actual tests. Moreover, this approach allowing a quick and inexpensive production of a new generation of antibodies will provide pertinent tools to link the fields of genomics and protcomics.
Collapse
Affiliation(s)
- Lucyna Cova
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France.
| |
Collapse
|
14
|
Miller DS, Kotlarski I, Jilbert AR. DNA vaccines expressing the duck hepatitis B virus surface proteins lead to reduced numbers of infected hepatocytes and protect ducks against the development of chronic infection in a virus dose-dependent manner. Virology 2006; 351:159-69. [PMID: 16624364 DOI: 10.1016/j.virol.2006.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 12/01/2022]
Abstract
We tested the efficacy of DNA vaccines expressing the duck hepatitis B virus (DHBV) pre-surface (pre-S/S) and surface (S) proteins in modifying the outcome of infection in 14-day-old ducks. In two experiments, Pekin Aylesbury ducks were vaccinated on days 4 and 14 of age with plasmid DNA vaccines expressing either the DHBV pre-S/S or S proteins, or the control plasmid vector, pcDNA1.1Amp. All ducks were then challenged intravenously on day 14 of age with 5 x 10(7) or 5 x 10(8) DHBV genomes. Levels of initial DHBV infection were assessed using liver biopsy tissue collected at day 4 post-challenge (p.c.) followed and immunostained for DHBV surface antigen to determine the percentage of infected hepatocytes. All vector vaccinated ducks challenged with 5 x 10(7) and 5 x 10(8) DHBV genomes had an average of 3.21% and 20.1% of DHBV-positive hepatocytes respectively at day 4 p.c. and 16 out of 16 ducks developed chronic DHBV infection. In contrast, pre-S/S and S vaccinated ducks challenged with 5 x 10(7) DHBV genomes had reduced levels of initial infection with an average of 1.38% and 1.93% of DHBV-positive hepatocytes at day 4 p.c. respectively and 10 of 18 ducks were protected against chronic infection. The pre-S/S and the S DNA vaccinated ducks challenged with 5 x 10(8) DHBV genomes had an average of 31.5% and 9.2% of DHBV-positive hepatocytes on day 4 p.c. respectively and only 4 of the 18 vaccinated ducks were protected against chronic infection. There was no statistically significant difference in the efficacy of the DHBV pre-S/S or S DNA vaccines. In conclusion, vaccination of young ducks with DNA vaccines expressing the DHBV pre-S/S and S proteins induced rapid immune responses that reduced the extent of initial DHBV infection in the liver and prevented the development of chronic infection in a virus dose-dependent manner.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Disease Models, Animal
- Ducks/immunology
- Ducks/virology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/genetics
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/immunology
- Hepatitis B, Chronic/prevention & control
- Hepatocytes/virology
- Humans
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Darren S Miller
- Hepatitis Virus Research Laboratory, School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
15
|
Abouzid K, Ndeboko B, Durantel S, Jamard C, Zoulim F, Buronfosse T, Cova L. Genetic vaccination for production of DNA-designed antibodies specific to Hepadnavirus envelope proteins. Vaccine 2005; 24:4615-7. [PMID: 16198457 DOI: 10.1016/j.vaccine.2005.08.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We propose a method of avian antibodies production based on DNA immunization of laying ducks with a plasmid encoding specified antigen, followed by egg collection and purification of egg yolk immunoglobulins (IgY). We have validated this approach in the Duck hepatitis B virus (DHBV) model. We report here that following immunization of female ducks with plasmids encoding DHBV envelope proteins, large amounts (at least 50 mg/egg) of specific antibodies can be obtained from eggs of these ducks. Interestingly, the comparison of different plasmid constructs showed the important differences in their efficacy of specific IgY antibodies induction in the sera and eggs of immunized ducks.
Collapse
Affiliation(s)
- Karima Abouzid
- INSERM Unit 271, 151 Cours Albert Thomas, 69003 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Long JE, Huang LN, Qin ZQ, Wang WY, Qu D. IFN-γ increases efficiency of DNA vaccine in protecting ducks against infection. World J Gastroenterol 2005; 11:4967-73. [PMID: 16124047 PMCID: PMC4321911 DOI: 10.3748/wjg.v11.i32.4967] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the effects of DNA vaccines in combination with duck IFN-γ gene on the protection of ducks against duck hepatitis B virus (DHBV) infection.
METHODS: DuIFN-γ cDNA was cloned and expressed in COS-7 cells, and the antiviral activity of DuIFN-γ was detected and neutralized by specific antibodies. Ducks were vaccinated with DHBpreS/S DNA alone or co-immunized with plasmid expressing DuIFN-γ. DuIFN-γ mRNA in peripheral blood mononuclear cells (PBMCs) from immunized ducks was detected by semi-quantitative competitive RT-PCR. Anti-DHBpreS was titrated by enzyme-linked immunosorbent assay (ELISA). DHBV DNA in sera and liver was detected by Southern blot hybridization, after ducks were challenged with high doses of DHBV.
RESULTS: DuIFN-γ expressed by COS-7 was able to protect duck fibroblasts against vesicular stomatitis virus (VSV) infection in a dose-dependent fashion, and anti-DuIFN-γ antibodies neutralized the antiviral effects. DuIFN-γ in the supernatant also inhibited the release of DHBV DNA from LMH-D2 cells. When ducks were co-immunized with DNA vaccine expressing DHBpreS/S and DuIFN-γ gene as an adjuvant, the level of DuIFN-γ mRNA in PBMCs was higher than that in ducks vaccinated with DHBpreS/S DNA alone. However, the titer of anti-DHBpreS elicited by DHBpreS/S DNA alone was higher than that co-immunized with DuIFN-γ gene and DHBpreS/S DNA. After being challenged with DHBV at high doses, the load of DHBV in sera dropped faster, and the amount of total DNA and cccDNA in the liver decreased more significantly in the group of ducks co-immunized with DuIFN-γ gene and DHBpreS/S DNA than in other groups.
CONCLUSION: DHBV preS/S DNA vaccine can protect ducks against DHBV infection, DuIFN-γ gene as an immune adjuvant enhances its efficacy.
Collapse
Affiliation(s)
- Jian-Er Long
- Department of Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
17
|
Schultz U, Grgacic E, Nassal M. Duck hepatitis B virus: an invaluable model system for HBV infection. Adv Virus Res 2005; 63:1-70. [PMID: 15530560 DOI: 10.1016/s0065-3527(04)63001-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ursula Schultz
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
18
|
Abstract
Inoculation of naked DNA represents a novel approach to vaccine and immune therapeutic development. DNA vaccines or genetic immunization offers several advantages over the conventional vaccines for specific immune activation. Although a large number of vaccines have been made and are being used in the poultry industry, there have been no major advances in vaccine technology for this animal industry sector for decades. The potential advantages of DNA vaccines, such as over coming maternal immunity, in ovo delivery and absence of requirement for a cold-chain, combined with immunological efficacy make this new vaccine technology very attractive for the poultry industry. This review lists all of the published reports of experimental DNA vaccines developed for use in poultry and focuses on the trends, potentials and remaining barriers in the development of this new revolution in poultry vaccinology.
Collapse
Affiliation(s)
- G L Oshop
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742-3711, USA
| | | | | |
Collapse
|
19
|
Abstract
The vaccination of neonates is generally difficult due to immaturity of the immune system, higher susceptibility to tolerance and potential negative interference of maternal antibodies. Studies carried out in rodents and non-human primates showed that plasmid vaccines expressing microbial antigens, rather than inducing tolerance, triggered significant humoral and cellular immunity with a Th1 component. The ability of bacterial CpG motifs to activate immature antigen-presenting cells is critical for the neonatal immunogenicity of DNA vaccines. In addition, the endogenous production of antigen subsequent to transfection of antigen-presenting cells may explain the lack of inhibition by maternal antibodies of cellular responses. Together, these features make the plasmid vaccines an appealing strategy to prime immune responses against foreign pathogens, during early life. In combination with subsequent boosting using conventional vaccines, DNA vaccine-based regimens may provide a qualitatively superior immunity against microbes. Thorough understanding of immunomodulatory properties of plasmid-vectors may extend their use for early prophylaxis of inflammatory disorders.
Collapse
Affiliation(s)
- Adrian Bot
- Department of Immunology, Alliance Pharmaceutical Corp., 6175 Lusk Blvd, San Diego, CA 92121, USA.
| | | |
Collapse
|
20
|
Abstract
Immune-challenged vertebrate females transfer specific antibodies to their offspring, but this gratuitous immunity cannot operate in invertebrates. Here we show that constitutive immune defence is enhanced in sexual offspring of the bumble-bee Bombus terrestris L. when the parental colony is immune-challenged. Our findings indicate that invertebrates may use a different component of the immune system to generate a facultative trans-generational increase in the immune response.
Collapse
Affiliation(s)
- Y Moret
- Eidgenössische Technische Hochschule Zürich, Ecology and Evolution, ETH-Zentrum NW, 8092 Zürich, Switzerland.
| | | |
Collapse
|
21
|
Plachý JV, Hejnar JV, Trtková K, Trejbalová K, Svoboda J, Hála K. DNA vaccination against v-src oncogene-induced tumours in congenic chickens. Vaccine 2001; 19:4526-35. [PMID: 11483280 DOI: 10.1016/s0264-410x(01)00181-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA vaccination is particularly efficient for induction of cytotoxic T-lymphocyte (CTL) response. In our experiments, we used MHC(B) congenic chicken lines CB and CC (regressors and progressors of v-src-induced tumours, respectively) and a mutated, non-oncogenic v-src gene construct as the DNA vaccine. A high degree of vaccine protection against oncogenic v-src challenge was achieved in the CB line chickens. CTL response was demonstrated in vitro and by adoptive transfer of immune cells to the syngeneic host and to the CC line chickens rendered tolerant to CB cells. In the CC line chickens we observed tumour growth retardation after a low-dose DNA vaccination administered to immature recipients while higher amounts of DNA vaccine in immunocompetent chickens exerted an enhancing effect.
Collapse
Affiliation(s)
- J V Plachý
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16637 Prague 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|