1
|
McAllister HR, Ramirez BI, Crews ME, Rey LM, Thompson AC, Capik SF, Scott MA. A Systematic Review on the Impact of Vaccination for Respiratory Disease on Antibody Titer Responses, Health, and Performance in Beef and Dairy Cattle. Vet Sci 2024; 11:599. [PMID: 39728939 DOI: 10.3390/vetsci11120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024] Open
Abstract
Bovine respiratory disease (BRD) is a multifactorial disease complex commonly affecting beef and dairy operations. Vaccination against major BRD-related pathogens is routinely performed for disease prevention; however, uniform reporting of health and performance outcomes is infrequent. Our objective was to evaluate the effect of commercially available BRD-pathogen vaccination on titer response with respect to health or performance in beef and dairy cattle. This study was conducted under Prisma 2020 guidelines for systematic reviews and PRESS guidelines utilizing five databases. Criteria for study inclusion were as follows: research conducted in the USA or Canada, between 1982 and 10 October 2022, on beef or dairy cattle, using a commercially available vaccine labeled for a respiratory pathogen of interest, which evaluated antibody titers alongside either performance or morbidity. A total of 3020 records underwent title and abstract evaluation. Full-text analysis was conducted on 466 reports; 101 studies were included in the final review. Approximately 74% of included studies were beef cattle-based versus 26% dairy cattle-based. This review aimed to assess how vaccination titer responses affect beef and dairy cattle health and performance, but varying study methods made comparisons difficult, highlighting the need for consistent reporting.
Collapse
Affiliation(s)
- Hudson R McAllister
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79016, USA
| | - Bradly I Ramirez
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79016, USA
| | - Molly E Crews
- Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Laura M Rey
- Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | | | - Sarah F Capik
- Tumbleweed Veterinary Services, PLLC, Amarillo, TX 79159, USA
| | - Matthew A Scott
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79016, USA
| |
Collapse
|
2
|
Giessler KS, Goehring LS, Jacob SI, Davis A, Esser MM, Lee Y, Zarski LM, Weber PSD, Hussey GS. Impact of the host immune response on the development of equine herpesvirus myeloencephalopathy in horses. J Gen Virol 2024; 105:001987. [PMID: 38767608 PMCID: PMC11170125 DOI: 10.1099/jgv.0.001987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Herpesviruses establish a well-adapted balance with their host's immune system. Despite this co-evolutionary balance, infections can lead to severe disease including neurological disorders in their natural host. In horses, equine herpesvirus 1 (EHV-1) causes respiratory disease, abortions, neonatal foal death and myeloencephalopathy (EHM) in ~10 % of acute infections worldwide. Many aspects of EHM pathogenesis and protection from EHM are still poorly understood. However, it has been shown that the incidence of EHM increases to >70 % in female horses >20 years of age. In this study we used old mares as an experimental equine EHV-1 model of EHM to identify host-specific factors contributing to EHM. Following experimental infection with the neuropathogenic strain EHV-1 Ab4, old mares and yearling horses were studied for 21 days post-infection. Nasal viral shedding and cell-associated viremia were assessed by quantitative PCR. Cytokine/chemokine responses were evaluated in nasal secretions and cerebrospinal fluid (CSF) by Luminex assay and in whole blood by quantitative real-time PCR. EHV-1-specific IgG sub-isotype responses were measured by ELISA. All young horses developed respiratory disease and a bi-phasic fever post-infection, but only 1/9 horses exhibited ataxia. In contrast, respiratory disease was absent in old mares, but all old mares developed EHM that resulted in euthanasia in 6/9 old mares. Old mares also presented significantly decreased nasal viral shedding but higher viremia coinciding with a single fever peak at the onset of viremia. According to clinical disease manifestation, horses were sorted into an EHM group (nine old horses and one young horse) and a non-EHM group (eight young horses) for assessment of host immune responses. Non-EHM horses showed an early upregulation of IFN-α (nasal secretions), IRF7/IRF9, IL-1β, CXCL10 and TBET (blood) in addition to an IFN-γ upregulation during viremia (blood). In contrast, IFN-α levels in nasal secretions of EHM horses were low and peak levels of IRF7, IRF9, CXCL10 and TGF-β (blood) coincided with viremia. Moreover, EHM horses showed significantly higher IL-10 levels in nasal secretions, peripheral blood mononuclear cells and CSF and higher serum IgG3/5 antibody titres compared to non-EHM horses. These results suggest that protection from EHM depends on timely induction of type 1 IFN and upregulation cytokines and chemokines that are representative of cellular immunity. In contrast, induction of regulatory or TH-2 type immunity appeared to correlate with an increased risk for EHM. It is likely that future vaccine development for protection from EHM must target shifting this 'at-risk' immunophenotype.
Collapse
Affiliation(s)
- K. S. Giessler
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - L. S. Goehring
- MH Gluck Equine Research Center, College of Agriculture, Food & Environment, University of Kentucky, Lexington, KY, USA
| | - S. I. Jacob
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Allison Davis
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - M. M. Esser
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Y. Lee
- Pathology Core, Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - L. M. Zarski
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - P. S. D. Weber
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - G. S. Hussey
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Righi C, Franzoni G, Feliziani F, Jones C, Petrini S. The Cell-Mediated Immune Response against Bovine alphaherpesvirus 1 (BoHV-1) Infection and Vaccination. Vaccines (Basel) 2023; 11:vaccines11040785. [PMID: 37112697 PMCID: PMC10144493 DOI: 10.3390/vaccines11040785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Bovine Alphaherpesvirus 1 (BoHV-1) is one of the major respiratory pathogens in cattle worldwide. Infection often leads to a compromised host immune response that contributes to the development of the polymicrobial disease known as “bovine respiratory disease”. After an initial transient phase of immunosuppression, cattle recover from the disease. This is due to the development of both innate and adaptive immune responses. With respect to adaptive immunity, both humoral and cell-mediated immunity are required to control infection. Thus, several BoHV-1 vaccines are designed to trigger both branches of the adaptive immune system. In this review, we summarize the current knowledge on cell-mediated immune responses directed against BoHV-1 infection and vaccination.
Collapse
Affiliation(s)
- Cecilia Righi
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Giulia Franzoni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Francesco Feliziani
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Stefano Petrini
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy
| |
Collapse
|
4
|
Smith P, Carstens G, Runyan C, Ridpath J, Sawyer J, Herring A. Effects of Multivalent BRD Vaccine Treatment and Temperament on Performance and Feeding Behavior Responses to a BVDV1b Challenge in Beef Steers. Animals (Basel) 2021; 11:ani11072133. [PMID: 34359261 PMCID: PMC8300223 DOI: 10.3390/ani11072133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study examined the effects of multivalent respiratory vaccine treatment (VT) and animal temperament classification on feeding behavior traits, feed intake and animal performance in response to a bovine viral diarrhea virus (BVDV) challenge. Nellore-Angus crossbred steers (n = 360; initial body weight (BW) 330 ± 48 kg) were assigned to one of three vaccine treatments: non-vaccinated (NON), modified live (MLV) and killed (KV) regarding respiratory viral pathogens, and inoculated intranasally with the same BVDV1b strain. Cattle temperament categories were based on exit velocity. Overt clinical signs of respiratory disease were not observed, yet the frequency and duration of bunk visit events as well as traditional performance traits decreased (p < 0.01) following BVDV challenge and then rebounded in compensatory fashion. The reduction in dry matter intake (DMI) was less (p < 0.05) for MLV-vaccinated steers, and MLV-vaccinated steers had longer (p < 0.01) durations of bunk visit and meal events and slower (p < 0.01) eating rates compared with KV- and non-vaccinated steers following BVDV challenge. Greater differences in most feeding behavior traits due to VT existed within calm vs. excitable steers. Respiratory vaccination can reduce the sub-clinical feeding behavior and performance effects of BVDV in cattle, and the same impacts may not occur across all temperament categories.
Collapse
Affiliation(s)
- Paul Smith
- Philbro Animal Health Corporation, Teaneck, NJ 07666, USA;
| | - Gordon Carstens
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
- Correspondence: ; Tel.: +979-845-5081
| | - Chase Runyan
- Department of Agriculture, Angelo State University, San Angelo, TX 76904, USA;
| | | | - Jason Sawyer
- King Ranch Institute for Ranch Management, Texas A&M University, Kingsville, TX 78363, USA;
| | - Andy Herring
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
5
|
Hill K, Arsic N, Nordstrom S, Griebel PJ. Immune memory induced by intranasal vaccination with a modified-live viral vaccine delivered to colostrum fed neonatal calves. Vaccine 2019; 37:7455-7462. [DOI: 10.1016/j.vaccine.2019.09.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/16/2019] [Accepted: 09/26/2019] [Indexed: 12/28/2022]
|
6
|
Van Anne TR, Rinehart CL, Buterbaugh RE, Bauer MJ, Young AJ, Blaha ML, Klein AL, Chase CCL. Cell-mediated and humoral immune responses to bovine herpesvirus type 1 and bovine viral diarrhea virus in calves following administration of a killed-virus vaccine and bovine herpesvirus type 1 challenge. Am J Vet Res 2019; 79:1166-1178. [PMID: 30372148 DOI: 10.2460/ajvr.79.11.1166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate cell-mediated and humoral immune responses of calves receiving 2 doses of a dual-adjuvanted vaccine containing inactivated bovine herpesvirus type 1 (BHV1) and bovine viral diarrhea virus types 1 (BVDV1) and 2 (BVDV2) before and after exposure to BHV1. ANIMALS 24 Holstein steers negative for anti-BHV1 antibodies and proliferative cell-mediated immune responses against BHV1 and BVDV. PROCEDURES Calves were randomly assigned to 3 groups. The vaccinated group (n = 10) received 2 doses of vaccine on days 0 and 21. Control (n = 10) and seeder (4) groups remained unvaccinated. Calves were commingled during the study except for the 3-day period (days 53 to 55) when seeders were inoculated with BHV1 (1.04 × 107 TCID50, IV) to serve as a source of virus for challenge (days 56 through 84). Rectal temperature and clinical illness scores were monitored, and blood and nasal specimens were obtained for determination of clinicopathologic and immunologic variables. RESULTS After BHV1 challenge, mean rectal temperature and clinical illness scores were lower for vaccinates than controls. In vaccinates, antibody titers against BHV1 and BVDV2, but not BVDV1, increased after challenge as did extracellular and intracellular interferon-γ expression, indicating a T helper 1 memory response. Additional results of cell marker expression were variable, with no significant increase or decrease associated with treatment. CONCLUSIONS AND CLINICAL RELEVANCE Calves administered 2 doses of a killed-virus vaccine developed cell-mediated and humoral immune responses to BHV1 and BVDV, which were protective against disease when those calves were subsequently exposed to BHV1.
Collapse
|
7
|
Mahan SM, Sobecki B, Johnson J, Oien NL, Meinert TR, Verhelle S, Mattern SJ, Bowersock TL, Leyh RD. Efficacy of intranasal vaccination with a multivalent vaccine containing temperature-sensitive modified-live bovine herpesvirus type 1 for protection of seronegative and seropositive calves against respiratory disease. J Am Vet Med Assoc 2017; 248:1280-6. [PMID: 27172345 DOI: 10.2460/javma.248.11.1280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate efficacy and duration of immunity of the bovine herpesvirus type 1 (BHV-1) fraction of a trivalent vaccine also containing parainfluenza virus-3 and bovine respiratory syncytial virus fractions administered intranasally (IN) for protection of calves against infectious bovine rhinotracheitis (IBR). DESIGN Controlled challenge study. ANIMALS 120 dairy calves (3 to 8 days old) seronegative for antibody against BHV-1 (experiments 1 and 2) or seropositive for maternally derived antibody against BHV-1 (experiment 3). PROCEDURES In 3 separate experiments, calves were vaccinated IN via 2 nostrils (experiment 1) or 1 nostril (experiments 2 and 3) with a vaccine containing or not containing a BHV-1 fraction. For seronegative calves, the test vaccine contained a minimum immunizing dose of BHV-1; for seropositive calves, it contained a commercial dose of BHV-1. Calves were challenged IN with virulent BHV-1 on day 28 or 193 (seronegative calves) or day 105 (seropositive calves) after vaccination to evaluate vaccine efficacy. Frequency and duration of clinical signs, rectal temperatures, virus shedding, and serologic responses were compared between treatment groups within experiments. RESULTS In all experiments, BHV-1 vaccinated calves had lower frequencies or shorter durations of clinical signs of IBR than did control calves. Following viral challenge, peak rectal temperatures and degrees of virus shedding were lower and serologic responses were higher in vaccinated versus control calves. CONCLUSIONS AND CLINICAL RELEVANCE IN vaccination against BHV-1 protected all calves against clinical IBR disease, regardless of serologic status at the time of vaccination, and suppressed virus shedding. A single dose of this IN vaccine has the potential to protect seronegative calves for at least 193 days and override maternally derived antibody to protect seropositive calves for at least 105 days.
Collapse
|
8
|
Bucafusco D, Di Giacomo S, Pega J, Schammas JM, Cardoso N, Capozzo AV, Perez-Filgueira M. Foot-and-mouth disease vaccination induces cross-reactive IFN-γ responses in cattle that are dependent on the integrity of the 140S particles. Virology 2015; 476:11-18. [DOI: 10.1016/j.virol.2014.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022]
|
9
|
Inclusion of the bovine neutrophil beta-defensin 3 with glycoprotein D of bovine herpesvirus 1 in a DNA vaccine modulates immune responses of mice and cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:463-77. [PMID: 24451331 DOI: 10.1128/cvi.00696-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) causes recurrent respiratory and genital infections in cattle and predisposes them to lethal secondary infections. While modified live and killed BoHV-1 vaccines exist, these are not without problems. Development of an effective DNA vaccine for BoHV-1 has the potential to address these issues. As a strategy to enhance DNA vaccine immunity, a plasmid encoding the bovine neutrophil beta-defensin 3 (BNBD3) as a fusion with truncated glycoprotein D (tgD) and a mix of two plasmids encoding BNBD3 and tgD were tested in mice and cattle. In mice, coadministration of BNBD3 on the separate plasmid enhanced the tgD-induced gamma interferon (IFN-γ) response but not the antibody response. BNBD3 fused to tgD did not affect the antibody levels or the number of IFN-γ-secreting cells but increased the induction of tgD-specific cytotoxic T lymphocytes (CTLs). In cattle, the addition of BNBD3 as a fusion construct also modified the immune response. While the IgG and virus-neutralizing antibody levels were not affected, the number of IFN-γ-secreting cells was increased after BoHV-1 challenge, specifically the CD8(+) IFN-γ(+) T cells, including CD8(+) IFN-γ(+) CD25(+) CTLs. While reduced virus shedding, rectal temperature, and weight loss were observed, the level of protection was comparable to that observed in pMASIA-tgD-vaccinated animals. These data show that coadministration of BNBD3 with a protective antigen as a fusion in a DNA vaccine strengthened the Th1 bias and increased cell-mediated immune responses but did not enhance protection from BoHV-1 infection.
Collapse
|
10
|
van Drunen Littel-van den Hurk S. Cell-mediated immune responses induced by BHV-1: rational vaccine design. Expert Rev Vaccines 2014; 6:369-80. [PMID: 17542752 DOI: 10.1586/14760584.6.3.369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bovine herpesvirus-1 (BHV-1) is one of the major respiratory pathogens in cattle worldwide. Although antibodies have been correlated with protection and recovery from BHV-1 infection, the cell-mediated immune response is also a critical defense mechanism because cell-to-cell spread occurs before hematogenous spread. Furthermore, induction of robust T-cell memory is critical for the long-term duration of immunity. Among current commercial vaccines, the attenuated conventional vaccines induce a balanced immune response and long-term memory but may result in viral shedding. By contrast, inactivated vaccines primarily elicit a humoral immune response and relative short-term memory. These vaccines do not allow differentiation of vaccinated from infected cattle. Recent efforts are focusing on the development of vaccines that induce a balanced immune response and long-term memory, as well as having differentiation markers. This includes well-defined genetically engineered gene-deleted, subunit and vectored vaccines.
Collapse
|
11
|
Step DL, Krehbiel CR, Burciaga-Robles LO, Holland BP, Fulton RW, Confer AW, Bechtol DT, Brister DL, Hutcheson JP, Newcomb HL. Comparison of single vaccination versus revaccination with a modified-live virus vaccine containing bovine herpesvirus-1, bovine viral diarrhea virus (types 1a and 2a), parainfluenza type 3 virus, and bovine respiratory syncytial virus in the prevention of bovine respiratory disease in cattle. J Am Vet Med Assoc 2009; 235:580-7. [PMID: 19719452 DOI: 10.2460/javma.235.5.580] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Objective-To compare effects of administration of a modified-live respiratory virus vaccine once with administration of the same vaccine twice on the health and performance of cattle. Design-Randomized, controlled trial. Animals-612 mixed-breed male cattle with unknown health histories. Procedures-Cattle were randomly assigned to 1 of 2 treatment groups (single vaccination treatment group [SVAC group] vs revaccination treatment group [REVAC group]) during the preconditioning phase of production. All cattle were given a modified-live respiratory virus vaccine. Eleven days later, REVAC group cattle received a second injection of the same vaccine. During the finishing phase of production, cattle from each treatment group were either vaccinated a third time with the modified-live respiratory virus vaccine or given no vaccine. Health observations were performed daily. Blood and performance variables were measured throughout the experiment. Results-During preconditioning, no significant differences were observed in performance or antibody production between groups. Morbidity rate from bovine respiratory disease was lower for SVAC group cattle; however, days to first treatment for bovine respiratory disease were not different between groups. No significant differences in body weights, daily gains, or dry-matter intake between groups were observed during the finishing phase. Revaccination treatment group cattle had improved feed efficiency regardless of vaccination protocol in the finishing phase. Conclusions and Clinical Relevance-Vaccination once with a modified-live respiratory virus vaccine was as efficacious as vaccination twice in the prevention of bovine respiratory disease of high-risk cattle, although feed efficiency was improved in REVAC group cattle during the finishing period.
Collapse
Affiliation(s)
- Douglas L Step
- Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dory D, Torché AM, Béven V, Cariolet R, Jestin A. Limited protection conferred by a DNA vaccine against a lethal pseudorabies virus infection at day 5 postvaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:470-3. [PMID: 17301217 PMCID: PMC1865607 DOI: 10.1128/cvi.00428-06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
No pseudorabies virus (PRV)-specific neutralizing or immunoglobulin G1-type antibodies were detected in sera 5 days after injection of a DNA vaccine against PRV infection in pigs. PRV-stimulated peripheral blood mononuclear cells produced gamma interferon mRNA in vitro. Two out of five pigs recovered from lethal PRV infection without attenuation of nasal viral excretion.
Collapse
Affiliation(s)
- Daniel Dory
- Viral Genetics and Biosafety Unit, French Food Safety Agency (Afssa), Fr-22440 Ploufragan, France.
| | | | | | | | | |
Collapse
|
13
|
Ellis J, Waldner C, Rhodes C, Ricketts V. Longevity of protective immunity to experimental bovine herpesvirus-1 infection following inoculation with a combination modified-live virus vaccine in beef calves. J Am Vet Med Assoc 2005; 227:123-8. [PMID: 16013547 DOI: 10.2460/javma.2005.227.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether a combination viral vaccine containing modified-live bovine herpesvirus-1 (BHV-1) would protect calves from infection with a recent field isolate of BHV-1. DESIGN Randomized controlled trial. ANIMALS Sixty 4- to 6-month-old beef calves. PROCEDURE Calves were inoculated with a placebo 42 and 20 days prior to challenge (group 1; n = 10) or with the combination vaccine 42 and 20 days prior to challenge (group 2; 10), 146 and 126 days prior to challenge (group 3; 10), 117 and 96 days prior to challenge (group 4; 10), 86 and 65 days prior to challenge (group 5; 10), or 126 days prior to challenge (group 6; 10). All calves were challenged with BHV-1 via aerosol. Clinical signs, immune responses, and nasal shedding of virus were monitored for 14 days after challenge. RESULTS Vaccination elicited increases in BHV-1-specific IgG antibody titers. Challenge with BHV-1 resulted in mild respiratory tract disease in all groups, but vaccinated calves had less severe signs of clinical disease. Extent and duration of nasal BHV-1 shedding following challenge was significantly lower in vaccinated calves than in control calves. In calves that received 2 doses of the vaccine, the degree of protection varied with the interval between the last vaccination and challenge, as evidenced by increases in risk of clinical signs and extent and duration of viral shedding. CONCLUSIONS AND CLINICAL RELEVANCE Results suggest that this combination vaccine provided protection from infection with virulent BHV-1 and significantly reduced nasal shedding of the virus for at least 126 days after vaccination.
Collapse
Affiliation(s)
- John Ellis
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | | | | | | |
Collapse
|
14
|
Breathnach CC, Soboll G, Suresh M, Lunn DP. Equine herpesvirus-1 infection induces IFN-γ production by equine T lymphocyte subsets. Vet Immunol Immunopathol 2005; 103:207-15. [PMID: 15621307 DOI: 10.1016/j.vetimm.2004.09.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 08/03/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
A commercial bovine IFN-gamma-specific monoclonal antibody was used to measure antigen-specific IFN-gamma production by equine lymphocytes. Paired PBMC samples were collected from six ponies prior to and 10 days after challenge infection with equine herpesvirus-1 (EHV-1). Each sample was stimulated in vitro with EHV-1, virus-free medium, or PMA and ionomycin, and labelled with monoclonal antibodies specific for various equine lymphocyte subset markers. Following fixation, intracellular IFN-gamma was detected using a FITC-conjugated bovine IFN-gamma-specific monoclonal antibody. In vitro restimulation of PBMC with EHV-1 induced IFN-gamma production by a significantly higher percentage of total (CD5(+)) T lymphocytes, and CD4(+) and CD8(+) T lymphocyte subsets among post-EHV-1 infection PBMC samples compared to pre-infection samples. This response was associated with an increase in virus-specific CTL activity, a critical immune effector for the control of EHV-1 infection and disease. No significant increase in IFN-gamma production by B lymphocytes was observed. These data demonstrate that EHV-1 challenge infection of ponies results in increased production of IFN-gamma by virus-specific T lymphocytes, and that this response can be quantitated using flow cytometry.
Collapse
Affiliation(s)
- C C Breathnach
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
15
|
Woolums AR, Brown CC, Brown JC, Cole DJ, Scott MA, Williams SM, Miao C. Effects of a single intranasal dose of modified-live bovine respiratory syncytial virus vaccine on resistance to subsequent viral challenge in calves. Am J Vet Res 2004; 65:363-72. [PMID: 15027687 DOI: 10.2460/ajvr.2004.65.363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether a single intranasal dose of modified-live bovine respiratory syncytial virus (BRSV) vaccine protects calves from BRSV challenge and characterize cell-mediated immune response in calves following BRSV challenge. ANIMALS 13 conventionally reared 4- to 6-week-old Holstein calves. PROCEDURES Calves received intranasal vaccination with modified live BRSV vaccine (VC-group calves; n = 4) or mock vaccine (MC-group calves; 6) 1 month before BRSV challenge; unvaccinated control-group calves (n = 3) underwent mock challenge. Serum virus neutralizing (VN) antibodies were measured on days -30, -14, 0, and 7 relative to BRSV challenge nasal swab specimens were collected for virus isolation on days 0 to 7. At necropsy examination on day 7, tissue specimens were collected for measurement of BRSV-specific interferon gamma (IFN-gamma) production. Tissue distribution of CD3+ T and BLA.36+ B cells was evaluated by use of immunohistochemistry. RESULTS The MC-group calves had significantly higher rectal temperatures, respiratory rates, and clinical scores on days 5 to 7 after BRSV challenge than VC-group calves. No difference was seen between distributions of BRSV in lung tissue of VC- and MC-group calves. Production of BRSV-specific IFN-gamma was increased in tissue specimens from VC-group calves, compared with MC- and control-group calves. Virus-specific IFN-gamma production was highest in the mediastinal lymph node of VC-group calves. Increased numbers of T cells were found in expanded bronchial-associated lymphoid tissue and airway epithelium of VC-group calves. CONCLUSIONS AND CLINICAL RELEVANCE An intranasal dose of modified-live BRSV vaccine can protect calves against virulent BRSV challenge 1 month later.
Collapse
Affiliation(s)
- Amelia R Woolums
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|