1
|
Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev 2024; 206:115199. [PMID: 38325561 DOI: 10.1016/j.addr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.
Collapse
Affiliation(s)
- Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | | |
Collapse
|
2
|
Bismuth M, Eck M, Ilovitsh T. Nanobubble-mediated cancer cell sonoporation using low-frequency ultrasound. NANOSCALE 2023; 15:17899-17909. [PMID: 37899700 DOI: 10.1039/d3nr03226d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Ultrasound insonation of microbubbles can form transient pores in cell membranes that enable the delivery of non-permeable extracellular molecules to the cells. Reducing the size of microbubble contrast agents to the nanometer range could facilitate cancer sonoporation. This size reduction can enhance the extravasation of nanobubbles into tumors after an intravenous injection, thus providing a noninvasive sonoporation platform. However, drug delivery efficacy depends on the oscillations of the bubbles, the ultrasound parameters and the size of the target compared to the membrane pores. The formation of large pores is advantageous for the delivery of large molecules, however the small size of the nanobubbles limit the bioeffects when operating near the nanobubble resonance frequency at the MHz range. Here, we show that by coupling nanobubbles with 250 kHz low frequency ultrasound, high amplitude oscillations can be achieved, which facilitate low energy sonoporation of cancer cells. This is beneficial both for increasing the uptake of a specific molecule and to improve large molecule delivery. The method was optimized for the delivery of four fluorescent molecules ranging in size from 1.2 to 70 kDa to breast cancer cells, while comparing the results to targeted microbubbles. Depending on the fluorescent molecule size, the optimal ultrasound peak negative pressure was found to range between 300 and 500 kPa. Increasing the pressure to 800 kPa reduced the fraction of fluorescent cells for all molecules sizes. The optimal uptake for the smaller molecule size of 4 kDa resulted in a fraction of 19.9 ± 1.8% of fluorescent cells, whereas delivery of 20 kDa and 70 kDa molecules yielded 14 ± 0.8% and 4.1 ± 1.1%, respectively. These values were similar to targeted microbubble-mediated sonoporation, suggesting that nanobubbles can serve as noninvasive sonoporation agents with a similar potency, and at a reduced bubble size. The nanobubbles effectively reduced cell viability and may thus potentially reduce the tumor burden, which is crucial for the success of cancer treatment. This method provides a non-invasive and low-energy tumor sonoporation theranostic platform, which can be combined with other therapies to maximize the therapeutic benefits of cancer treatment or be harnessed in gene therapy applications.
Collapse
Affiliation(s)
- Mike Bismuth
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Michal Eck
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Isenmann M, Stoddart MJ, Schmelzeisen R, Gross C, Della Bella E, Rothweiler RM. Basic Principles of RNA Interference: Nucleic Acid Types and In Vitro Intracellular Delivery Methods. MICROMACHINES 2023; 14:1321. [PMID: 37512632 PMCID: PMC10383872 DOI: 10.3390/mi14071321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Since its discovery in 1989, RNA interference (RNAi) has become a widely used tool for the in vitro downregulation of specific gene expression in molecular biological research. This basically involves a complementary RNA that binds a target sequence to affect its transcription or translation process. Currently, various small RNAs, such as small interfering RNA (siRNA), micro RNA (miRNA), small hairpin RNA (shRNA), and PIWI interacting RNA (piRNA), are available for application on in vitro cell culture, to regulate the cells' gene expression by mimicking the endogenous RNAi-machinery. In addition, several biochemical, physical, and viral methods have been established to deliver these RNAs into the cell or nucleus. Since each RNA and each delivery method entail different off-target effects, limitations, and compatibilities, it is crucial to understand their basic mode of action. This review is intended to provide an overview of different nucleic acids and delivery methods for planning, interpreting, and troubleshooting of RNAi experiments.
Collapse
Affiliation(s)
- Marie Isenmann
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Martin James Stoddart
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Rainer Schmelzeisen
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Christian Gross
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Elena Della Bella
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - René Marcel Rothweiler
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
4
|
Centner CS, Moore JT, Baxter ME, Yaddanapudi K, Bates PJ, Kopechek JA. Comparison of Acoustofluidic and Static Systems for Ultrasound-Mediated Molecular Delivery to T Lymphocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:90-105. [PMID: 36241589 DOI: 10.1016/j.ultrasmedbio.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Continuous-flow acoustofluidic technologies can potentially improve processing of T lymphocytes for cell therapies by addressing the limitations with viral and non-viral delivery methods. The objective of this study was to assess the intracellular delivery efficiency with acoustofluidic treatment compared with that of static ultrasound treatment. Optimization of parameters in acoustofluidic and static configurations was performed by assessing intracellular delivery of a fluorescent compound (calcein) in viable human Jurkat T lymphocytes. Ultrasound pressure and the concentration of cationic phospholipid-coated microbubbles influenced calcein delivery in both systems. In the static system, a treatment time of 45 s increased molecular delivery compared with 0-30 s (p < 0.01). Refined parameters were used to assess molecular delivery of small and large compounds (0.6-kDa calcein and 150-kDa fluorescein isothiocyanate-dextran, respectively) after ultrasound treatment with the acoustofluidic or static systems. Molecular delivery was similar with refined parameters for acoustofluidic treatment and static treatment (p > 0.05), even though acoustofluidic treatment had lower microbubble concentration (24 μg/mL vs. 94 μg/mL) and shorter treatment time (∼2-3 s vs. 45 s). This study indicates that the acoustofluidic system can significantly enhance intracellular molecular delivery, which could potentially enable acoustofluidic cell transfection during continuous flow processing for manufacture of cell therapies or other applications.
Collapse
Affiliation(s)
- Connor S Centner
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - John T Moore
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Mary E Baxter
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | | | - Paula J Bates
- School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
5
|
Eck M, Aronovich R, Ilovitsh T. Efficacy optimization of low frequency microbubble-mediated sonoporation as a drug delivery platform to cancer cells. Int J Pharm X 2022; 4:100132. [PMID: 36189459 PMCID: PMC9520274 DOI: 10.1016/j.ijpx.2022.100132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Ultrasound insonation of microbubbles can be used to form pores in cell membranes and facilitate the local trans-membrane transport of drugs and genes. An important factor in efficient delivery is the size of the delivered target compared to the generated membrane pores. Large molecule delivery remains a challenge, and can affect the resulting therapeutic outcomes. To facilitate large molecule delivery, large pores need to be formed. While ultrasound typically uses megahertz frequencies, it was recently shown that when microbubbles are excited at a frequency of 250 kHz (an order of magnitude below the resonance frequency of these agents), their oscillations are significantly enhanced as compared to the megahertz range. Here, to promote the delivery of large molecules, we suggest using this low frequency and inducing large pore formation through the high-amplitude oscillations of microbubbles. We assessed the impact of low frequency microbubble-mediated sonoporation on breast cancer cell uptake by optimizing the delivery of 4 fluorescent molecules ranging from 1.2 to 70 kDa in size. The optimal ultrasound peak negative pressure was found to be 500 kPa. Increasing the pressure did not enhance the fraction of fluorescent cells, and in fact reduced cell viability. For the smaller molecule sizes, 1.2 kDa and 4 kDa, the groups treated with an ultrasound pressure of 500 kPa and MB resulted in a fraction of 58% and 29% of fluorescent cells respectively, whereas delivery of 20 kDa and 70 kDa molecules yielded 10% and 5%, respectively. These findings suggest that low-frequency (e.g., 250 kHz) insonation of microbubbles results in high amplitude oscillation in vitro that increase the uptake of large molecules. Successful ultrasound-mediated molecule delivery requires the careful selection of insonation parameters to maximize the therapeutic effect by increasing cell uptake.
Collapse
Affiliation(s)
- Michal Eck
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ramona Aronovich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
7
|
Centner CS, Moore JT, Baxter ME, Long ZT, Miller JM, Kovatsenko ES, Xie B, Menze MA, Berson RE, Bates PJ, Yaddanapudi K, Kopechek JA. Acoustofluidic-mediated molecular delivery to human T cells with a three-dimensional-printed flow chamber. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4534. [PMID: 34972278 DOI: 10.1121/10.0009054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Cell-based therapies have garnered significant interest to treat cancer and other diseases. Acoustofluidic technologies are in development to improve cell therapy manufacturing by facilitating rapid molecular delivery across the plasma membrane via ultrasound and microbubbles (MBs). In this study, a three-dimensional (3D) printed acoustofluidic device was used to deliver a fluorescent molecule, calcein, to human T cells. Intracellular delivery of calcein was assessed after varying parameters such as MB face charge, MB concentration, flow channel geometry, ultrasound pressure, and delivery time point after ultrasound treatment. MBs with a cationic surface charge caused statistically significant increases in calcein delivery during acoustofluidic treatment compared to MBs with a neutral surface charge (p < 0.001). Calcein delivery was significantly higher with a concentric spiral channel geometry compared to a rectilinear channel geometry (p < 0.001). Additionally, calcein delivery was significantly enhanced at increased ultrasound pressures of 5.1 MPa compared to lower ultrasound pressures between 0-3.8 MPa (p < 0.001). These results demonstrate that a 3D-printed acoustofluidic device can significantly enhance intracellular delivery of biomolecules to T cells, which may be a viable approach to advance cell-based therapies.
Collapse
Affiliation(s)
- Connor S Centner
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - John T Moore
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Mary E Baxter
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Zachary T Long
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Jacob M Miller
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA
| | | | - Benjamin Xie
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - R Eric Berson
- Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, USA
| | - Paula J Bates
- School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Kavitha Yaddanapudi
- Department of Surgery, University of Louisville, Louisville, Kentucky 40202, USA
| | - Jonathan A Kopechek
- Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
8
|
Applications of Ultrasound-Mediated Drug Delivery and Gene Therapy. Int J Mol Sci 2021; 22:ijms222111491. [PMID: 34768922 PMCID: PMC8583720 DOI: 10.3390/ijms222111491] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Gene therapy has continuously evolved throughout the years since its first proposal to develop more specific and effective transfection, capable of treating a myriad of health conditions. Viral vectors are some of the most common and most efficient vehicles for gene transfer. However, the safe and effective delivery of gene therapy remains a major obstacle. Ultrasound contrast agents in the form of microbubbles have provided a unique solution to fulfill the need to shield the vectors from the host immune system and the need for site specific targeted therapy. Since the discovery of the biophysical and biological effects of microbubble sonification, multiple developments have been made to enhance its applicability in targeted drug delivery. The concurrent development of viral vectors and recent research on dual vector strategies have shown promising results. This review will explore the mechanisms and recent advancements in the knowledge of ultrasound-mediated microbubbles in targeting gene and drug therapy.
Collapse
|
9
|
Visy A, Jónás G, Szakos D, Horváth-Mezőfi Z, Hidas KI, Barkó A, Friedrich L. Evaluation of ultrasound and microbubbles effect on pork meat during brining process. ULTRASONICS SONOCHEMISTRY 2021; 75:105589. [PMID: 34015685 PMCID: PMC8141938 DOI: 10.1016/j.ultsonch.2021.105589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/01/2021] [Accepted: 05/09/2021] [Indexed: 05/22/2023]
Abstract
In this study combined effect of ultrasound-induced acoustic cavitation and microbubbles during meat brining on pork loin (Longissimus dorsi) was evaluated. Cylindrical shape (diameter 15 mm, height 80 mm) pork loin samples were cut and immersed in 200 g L-1 NaCl brine and treated with the following brining methods for 180 min: static brining (SB), ultrasound assisted brining (US) and ultrasound combined with microbubbles in brine (USMB). Ultrasound was generated with 20 kHz frequency, 5,09 W/cm2 maximum intensity and 100 W maximum power. Microbubbles in brine were produced by a gas-liquid mixing pump. Effect of ultrasound and microbbubles on NaCl content and diffusion in pork loin, mass balance, water binding capacity (WBC), protein denaturation and meat tissue microstructure were evaluated. The US and USMB brinings enhanced the NaCl diffusion into meat compared to meat brined under static conditions. The constant diffusion coefficient (D) model precisely described the NaCl diffusion kinetics during brinings. The ultrasound and microbbubles resulted in microscopic pores on the surface of myofibers. Decreasing WBC was observed for all brining methods. Myosin was not detectable in any of the brining methods. Denaturation temperature of actin showed a decreasing tendency with increasing brining time independently the brining methods.
Collapse
Affiliation(s)
- Anna Visy
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary
| | - Gábor Jónás
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary.
| | - Dávid Szakos
- University of Veterinary Medicine Budapest, István u. 2, 1078 Budapest, Hungary
| | - Zsuzsanna Horváth-Mezőfi
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary
| | - Karina Ilona Hidas
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary
| | - Annamária Barkó
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary
| | - László Friedrich
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary
| |
Collapse
|
10
|
Xiang X, Pang H, Ma T, Du F, Li L, Huang J, Ma L, Qiu L. Ultrasound targeted microbubble destruction combined with Fe-MOF based bio-/enzyme-mimics nanoparticles for treating of cancer. J Nanobiotechnology 2021; 19:92. [PMID: 33789692 PMCID: PMC8011114 DOI: 10.1186/s12951-021-00835-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Xi Xiang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Houqing Pang
- Department of Ultrasound, West China Second University Hospital, Sichuan University/West China Women's and Children's Hospital, Chengdu, 610041, China
| | - Tian Ma
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Fangxue Du
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ling Li
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jianbo Huang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lang Ma
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Li Qiu
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Shi L, Jiang Y, Zhang Y, Lan L, Huang Y, Cheng JX, Yang C. A fiber optoacoustic emitter with controlled ultrasound frequency for cell membrane sonoporation at submillimeter spatial resolution. PHOTOACOUSTICS 2020; 20:100208. [PMID: 33101926 PMCID: PMC7569214 DOI: 10.1016/j.pacs.2020.100208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 05/13/2023]
Abstract
Focused ultrasound has attracted great attention in minimally invasive therapeutic and mechanism studies. Frequency below 1 MHz is identified preferable for high-efficiency bio-modulation. However, the poor spatial confinement of several millimeters and large device diameter of ∼25 mm of typical sub-MHz ultrasound technology suffered from the diffraction limit, severely hindering its further applications. To address it, a fiber-based optoacoustic emitter (FOE) is developed, serving as a miniaturized ultrasound point source, with sub-millimeter confinement, composed of an optical diffusion layer and an expansion layer on an optical fiber. By modifying acoustic damping and light absorption performance, controllable frequencies in the range of 0.083 MHz-5.500 MHz are achieved and further induce cell membrane sonoporation with frequency dependent efficiency. By solving the problem of compromise between sub-MHz frequency and sub-millimeter precision via breaking the diffraction limit, the FOE shows a great potential in region-specific drug delivery, gene transfection and neurostimulation.
Collapse
Affiliation(s)
- Linli Shi
- Department of Chemistry, Boston University, 580 Commonwealth Avenue, Boston, MA 02215, USA
| | - Ying Jiang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Yi Zhang
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Lu Lan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Yimin Huang
- Department of Chemistry, Boston University, 580 Commonwealth Avenue, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, 8 St. Mary’s Street, Boston, MA 02215, USA
- Corresponding authors at: Department of Electrical and Computer Engineering, 8 St. Mary’s Street, Boston, MA 02215, USA.
| | - Chen Yang
- Department of Chemistry, Boston University, 580 Commonwealth Avenue, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, 8 St. Mary’s Street, Boston, MA 02215, USA
- Corresponding authors at: Department of Electrical and Computer Engineering, 8 St. Mary’s Street, Boston, MA 02215, USA.
| |
Collapse
|
12
|
Beekers I, Mastik F, Beurskens R, Tang PY, Vegter M, van der Steen AFW, de Jong N, Verweij MD, Kooiman K. High-Resolution Imaging of Intracellular Calcium Fluctuations Caused by Oscillating Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2017-2029. [PMID: 32402676 DOI: 10.1016/j.ultrasmedbio.2020.03.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Ultrasound insonification of microbubbles can locally enhance drug delivery, but the microbubble-cell interaction remains poorly understood. Because intracellular calcium (Cai2+) is a key cellular regulator, unraveling the Cai2+ fluctuations caused by an oscillating microbubble provides crucial insight into the underlying bio-effects. Therefore, we developed an optical imaging system at nanometer and nanosecond resolution that can resolve Cai2+ fluctuations and microbubble oscillations. Using this system, we clearly distinguished three Cai2+ uptake profiles upon sonoporation of endothelial cells, which strongly correlated with the microbubble oscillation amplitude, severity of sonoporation and opening of cell-cell contacts. We found a narrow operating range for viable drug delivery without lethal cell damage. Moreover, adjacent cells were affected by a calcium wave propagating at 15 μm/s. With the unique optical system, we unraveled the microbubble oscillation behavior required for drug delivery and Cai2+ fluctuations, providing new insight into the microbubble-cell interaction to aid clinical translation.
Collapse
Affiliation(s)
- Inés Beekers
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Frits Mastik
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert Beurskens
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Phoei Ying Tang
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Merel Vegter
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Enhanced effect of recombinant human soluble thrombomodulin by ultrasound irradiation in acute liver failure. Sci Rep 2020; 10:1742. [PMID: 32015385 PMCID: PMC6997189 DOI: 10.1038/s41598-020-58624-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
The administration of recombinant human soluble thrombomodulin (rhsTM) significantly improves liver inflammation and increases the survival rate of patients with acute liver failure (ALF). However, rhsTM is dose-dependently correlated to the risk of bleeding. Recently, ultrasound (US) was found to enhance the effect of various drugs. Thus, the present study aimed to determine the enhancement effect of US irradiation on rhsTM in ALF. rhsTM (1 mg/kg) and US (1 MHz, 0.3 W/cm2) were irradiated to the liver of lipopolysaccharide/D-galactosamine-induced ALF mice model. The post-treatment aspartate aminotransferase, alanine aminotransferase, and high-mobility group box 1 levels were significantly lower in the rhsTM + US group than in the rhsTM alone group. Histopathological findings revealed significantly reduced liver injury and apoptosis in the rhsTM + US group. By contrast, US irradiation had no effect on rhsTM and TNF-α concentration in the liver tissue. In conclusion, US irradiation enhanced the effect of rhsTM in the ALF mice model. However, further studies must be conducted to determine the exact mechanism of such enhancement effect.
Collapse
|
14
|
Cai X, Jiang Y, Lin M, Zhang J, Guo H, Yang F, Leung W, Xu C. Ultrasound-Responsive Materials for Drug/Gene Delivery. Front Pharmacol 2020; 10:1650. [PMID: 32082157 PMCID: PMC7005489 DOI: 10.3389/fphar.2019.01650] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Ultrasound is one of the most commonly used methods in the diagnosis and therapy of diseases due to its safety, deep penetration into tissue, and non-invasive nature. In the drug/gene delivery systems, ultrasound shows many advantages in terms of site-specific delivery and spatial release control of drugs/genes and attracts increasing attention. Microbubbles are the most well-known ultrasound-responsive delivery materials. Recently, nanobubbles, droplets, micelles, and nanoliposomes have been developed as novel carriers in this field. Herein, we review advances of novel ultrasound-responsive materials (nanobubbles, droplets, micelles and nanoliposomes) and discuss the challenges of ultrasound-responsive materials in delivery systems to boost the development of ultrasound-responsive materials as delivery carriers.
Collapse
Affiliation(s)
- Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiyong Zhang
- Department of Pediatrics, Shenzhen Maternity and Child Health Care Hospital, Shenzhen, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fanwen Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Tuen Mun, Hong Kong, Hong Kong
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Juang EK, De Cock I, Keravnou C, Gallagher MK, Keller SB, Zheng Y, Averkiou M. Engineered 3D Microvascular Networks for the Study of Ultrasound-Microbubble-Mediated Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10128-10138. [PMID: 30540481 DOI: 10.1021/acs.langmuir.8b03288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Localized and targeted drug delivery can be achieved by the combined action of ultrasound and microbubbles on the tumor microenvironment, likely through sonoporation and other therapeutic mechanisms that are not well understood. Here, we present a perfusable in vitro model with a realistic 3D geometry to study the interactions between microbubbles and the vascular endothelium in the presence of ultrasound. Specifically, a three-dimensional, endothelial-cell-seeded in vitro microvascular model was perfused with cell culture medium and microbubbles while being sonicated by a single-element 1 MHz focused transducer. This setup mimics the in vivo scenario in which ultrasound induces a therapeutic effect in the tumor vasculature in the presence of flow. Fluorescence and bright-field microscopy were employed to assess the microbubble-vessel interactions and the extent of drug delivery and cell death both in real time during treatment as well as after treatment. Propidium iodide was used as the model drug while calcein AM was used to evaluate cell viability. There were two acoustic parameter sets chosen for this work: (1) acoustic pressure: 1.4 MPa, pulse length: 500 cycles, duty cycle: 5% and (2) acoustic pressure: 0.4 MPa, pulse length: 1000 cycles, duty cycle: 20%. Enhanced drug delivery and cell death were observed in both cases while the higher pressure setting had a more pronounced effect. By introducing physiological flow to the in vitro microvascular model and examining the PECAM-1 expression of the endothelial cells within it, we demonstrated that our model is a good mimic of the in vivo vasculature and is therefore a viable platform to provide mechanistic insights into ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Eric K Juang
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ine De Cock
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Christina Keravnou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Madison K Gallagher
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Sara B Keller
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ying Zheng
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Michalakis Averkiou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
16
|
Wang Y, Bi K, Shu J, Liu X, Xu J, Deng G. Ultrasound-controlled DOX-SiO 2 nanocomposites enhance the antitumour efficacy and attenuate the toxicity of doxorubicin. NANOSCALE 2019; 11:4210-4218. [PMID: 30806406 DOI: 10.1039/c8nr08497a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The toxicity of doxorubicin (DOX), especially in terms of cardiotoxicity, has been a common problem in its clinical use. In our studies, we synthesized and characterized DOX-SiO2 nanocomposites. In the in vitro experiments, DOX-SiO2 nanocomposites could more effectively induce apoptosis, inhibit colony formation, and inhibit the proliferation of the cancer cell line HeLa compared with free DOX. Furthermore, ultrasound could dramatically enhance these abilities of DOX-SiO2 nanocomposites. The in vivo studies showed that DOX-SiO2 nanocomposites increased the concentration of DOX in the tumour region and decreased the concentration of DOX in normal tissues. Additionally, DOX-SiO2 nanocomposites under ultrasound could inhibit growth and increase the apoptosis of xenograft tumour cells more effectively than DOX-SiO2 nanocomposites alone. Meanwhile, the cardiotoxicity of DOX was significantly reduced by DOX-SiO2 nanocomposites. The difference was more obvious in DOX-SiO2 nanocomposites under ultrasound. Moreover, prolonging the ultrasound time augments the antitumour efficacy and attenuates the toxicity of DOX-SiO2 nanocomposites. In summary, we concluded that DOX-SiO2 nanocomposites under ultrasound decrease DOX-induced toxicity in normal tissues and increase the antitumour effect of DOX by targeted delivery and controllable release, which shows the great potential of DOX-SiO2 nanocomposites for the delivery of DOX in the clinic.
Collapse
Affiliation(s)
- Yin Wang
- Department of Ultrasound, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, P.R. China
| | | | | | | | | | | |
Collapse
|
17
|
Song KH, Harvey BK, Borden MA. State-of-the-art of microbubble-assisted blood-brain barrier disruption. Theranostics 2018; 8:4393-4408. [PMID: 30214628 PMCID: PMC6134932 DOI: 10.7150/thno.26869] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022] Open
Abstract
Focused ultrasound with microbubbles promises unprecedented advantages for blood-brain barrier disruption over existing intracranial drug delivery methods, as well as a significant number of tunable parameters that affect its safety and efficacy. This review provides an engineering perspective on the state-of-the-art of the technology, considering the mechanism of action, effects of microbubble properties, ultrasound parameters and physiological variables, as well as safety and potential therapeutic applications. Emphasis is placed on the use of unified parameters, such as microbubble volume dose (MVD) and ultrasound mechanical index, to optimize the procedure and establish safety limits. It is concluded that, while efficacy has been demonstrated in several animal models with a wide range of payloads, acceptable measures of safety should be adopted to accelerate collaboration and improve understanding and clinical relevance.
Collapse
Affiliation(s)
- Kang-Ho Song
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309
| | - Brandon K. Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224
| | - Mark A. Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309
| |
Collapse
|
18
|
Peruzzi G, Sinibaldi G, Silvani G, Ruocco G, Casciola CM. Perspectives on cavitation enhanced endothelial layer permeability. Colloids Surf B Biointerfaces 2018; 168:83-93. [PMID: 29486912 DOI: 10.1016/j.colsurfb.2018.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 12/20/2022]
Abstract
Traditional drug delivery systems, where pharmaceutical agents are conveyed to the target tissue through the blood circulation, suffer of poor therapeutic efficiency and limited selectivity largely due to the low permeability of the highly specialised biological interface represented by the endothelial layer. Examples concern cancer therapeutics or degenerative disorders where drug delivery is inhibited by the blood-brain barrier (BBB). Microbubbles injected into the bloodstream undergo volume oscillations under localised ultrasound irradiation and possibly collapse near the site of interest, with no effect on the rest of the endothelium. The resulting mechanical action induces a transient increase of the inter-cellular spaces and facilitates drug extravasation. This approach, already pursed in in vivo animal models, is extremely expensive and time-consuming. On the other hand in vitro studies using different kinds of microfluidic networks are firmly established in the pharmaceutical industry for drug delivery testing. The combination of the in vitro approach with ultrasound used to control microbubbles oscillations is expected to provide crucial information for developing cavitation enhanced drug delivery protocols and for screening the properties of the biological interface in presence of healthy or diseased tissues. Purpose of the present review is providing the state of the art in this rapidly growing field where cavitation is exploited as a viable technology to transiently modify the permeability of the biological interface. After describing current in vivo studies, particular emphasis will be placed on illustrating characteristics of micro-devices, biological functionalisation, properties of the artificial endothelium and ultrasound irradiation techniques.
Collapse
Affiliation(s)
- Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giorgia Sinibaldi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy
| | - Giulia Silvani
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy; Department of Physics, Sapienza University of Rome, Italy.
| | - Carlo Massimo Casciola
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy
| |
Collapse
|
19
|
Xi XP, Zong YJ, Ji YH, Wang B, Liu HS. Experiment research of focused ultrasound combined with drug and microbubble for treatment of central nervous system leukemia. Oncotarget 2017; 9:5424-5434. [PMID: 29435190 PMCID: PMC5797061 DOI: 10.18632/oncotarget.23521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023] Open
Abstract
It has been shown that low frequency ultrasound in the presence of microbubble can effectively open the blood brain barrier (BBB) to allow the drugs to be delivered into the brain with an increased concentration. We aim to apply this method to increase the efficacy of Cytarabine (Ara-c) to treat central nervous system leukemia (CNSL). In the present study, we validated this ultrasound contrast agent Sonovue® targeting treatment via in vivo and in vitro experiments. The results showed that Sonovue® combined with Cytarabine could significantly inhibit K562 cell (chronic myeloid leukemia cell line) proliferation. In the animal experiments, it has been shown that high dose Ara-c chemotherapy could prevent and cure CNSL effectively and the drug concentration in the brain was much higher compared with low dose Ara-c chemotherapy group. We certified that under ultrasound exposure Sonovue® combined with low dose Cytarabine achieved an effective drug concentration in the rat brain, and brain tissue had no significant damage. Further animal experiments will be conducted to confirm these results in a leukemia animal model, considering the blood brain barrier is destroyed at different levels by leukemia cells. We hope this method will reduce the side effects of high-dose Cytarabine and improve the clinically high recurrence and poor prognosis of the central nervous system leukemia.
Collapse
Affiliation(s)
- Xiao-Ping Xi
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yu-Jin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yan-Hong Ji
- Department of Immunology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bing Wang
- Department of Pathology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hua-Sheng Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
20
|
Wang P, Yin T, Li J, Zheng B, Wang X, Wang Y, Zheng J, Zheng R, Shuai X. Ultrasound-responsive microbubbles for sonography-guided siRNA delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1139-1149. [DOI: 10.1016/j.nano.2015.12.361] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/07/2015] [Accepted: 12/05/2015] [Indexed: 11/30/2022]
|
21
|
Song KH, Fan AC, Brlansky JT, Trudeau T, Gutierrez-Hartmann A, Calvisi ML, Borden MA. High Efficiency Molecular Delivery with Sequential Low-Energy Sonoporation Bursts. Theranostics 2015; 5:1419-27. [PMID: 26681986 PMCID: PMC4672022 DOI: 10.7150/thno.13033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 11/05/2022] Open
Abstract
Microbubbles interact with ultrasound to induce transient microscopic pores in the cellular plasma membrane in a highly localized thermo-mechanical process called sonoporation. Theranostic applications of in vitro sonoporation include molecular delivery (e.g., transfection, drug loading and cell labeling), as well as molecular extraction for measuring intracellular biomarkers, such as proteins and mRNA. Prior research focusing mainly on the effects of acoustic forcing with polydisperse microbubbles has identified a "soft limit" of sonoporation efficiency at 50% when including dead and lysed cells. We show here that this limit can be exceeded with the judicious use of monodisperse microbubbles driven by a physiotherapy device (1.0 MHz, 2.0 W/cm(2), 10% duty cycle). We first examined the effects of microbubble size and found that small-diameter microbubbles (2 µm) deliver more instantaneous power than larger microbubbles (4 & 6 µm). However, owing to rapid fragmentation and a short half-life (0.7 s for 2 µm; 13.3 s for 6 µm), they also deliver less energy over the sonoporation time. This translates to a higher ratio of FITC-dextran (70 kDa) uptake to cell death/lysis (4:1 for 2 µm; 1:2 for 6 µm) in suspended HeLa cells after a single sonoporation. Sequential sonoporations (up to four) were consequently employed to increase molecular delivery. Peak uptake was found to be 66.1 ± 1.2% (n=3) after two sonoporations when properly accounting for cell lysis (7.0 ± 5.6%) and death (17.9 ± 2.0%), thus overcoming the previously reported soft limit. Substitution of TRITC-dextran (70 kDa) on the second sonoporation confirmed the effects were multiplicative. Overall, this study demonstrates the possibility of utilizing monodisperse small-diameter microbubbles as a means to achieve multiple low-energy sonoporation bursts for efficient in vitro cellular uptake and sequential molecular delivery.
Collapse
|
22
|
Jia Y, Yuan W, Zhang K, Wang J, Wang P, Liu Q, Wang X. Comparison of cell membrane damage induced by the therapeutic ultrasound on human breast cancer MCF-7 and MCF-7/ADR cells. ULTRASONICS SONOCHEMISTRY 2015; 26:128-135. [PMID: 25771334 DOI: 10.1016/j.ultsonch.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 05/28/2023]
Abstract
OBJECTIVES The aim of this study was to compare the cell membrane damage induced by ultrasound at different intensities between MCF-7/ADR cells and MCF-7 cells. METHODS Tumor cells in the culture dishes (35 mm diameter) were exposed to planner ultrasound at intensities range from 0.25 W/cm(2) to 0.75 W/cm(2) for 60s. The viability of cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and Guava Viacount assay. The cell membrane integrity was estimated by flow cytometry using propidium iodide (PI) staining and cellular uptake of fluorescein isothiocyanate-dextran (FD500). The membrane lipid peroxidation and membrane fluidity were also specially compared between two cell lines in this paper using spectrophotometry. Ultrastructural alterations on membrane surface were observed by scanning electron microscopy. RESULTS The ultrasound produced cytotoxicity in both cell lines increased with the irradiation intensity increased from 0.25 W/cm(2) to 0.75 W/cm(2). Cell membrane permeability and the level of lipid peroxidation were remarkably enhanced after ultrasound application. In addition, relatively severe cell damage was observed under scanning electron microscopy after 0.75 W/cm(2) ultrasound treatment. CONCLUSIONS Ultrasound exposure decreased MCF-7 and MCF-7/ADR cell viability in an intensity-dependent manner and MCF-7/ADR cells were more sensitive to ultrasound exposure than MCF-7 cells at the same experimental conditions. The declined membrane fluidity in MCF-7/ADR cell may be one of the reasons for its increased membrane damage.
Collapse
Affiliation(s)
- Yali Jia
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenjuan Yuan
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Juan Wang
- Laboratory of Biophysics and Biomedicine, College of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
23
|
Novel mechanism of gene transfection by low-energy shock wave. Sci Rep 2015; 5:12843. [PMID: 26243452 PMCID: PMC4525295 DOI: 10.1038/srep12843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/10/2015] [Indexed: 01/01/2023] Open
Abstract
Extracorporeal shock wave (SW) therapy has been studied in the transfection of naked nucleic acids into various cell lines through the process of sonoporation, a process that affects the permeation of cell membranes, which can be an effect of cavitation. In this study, siRNAs were efficiently transfected into primary cultured cells and mouse tumor tissue via SW treatment. Furthermore SW-induced siRNA transfection was not mediated by SW-induced sonoporation, but by microparticles (MPs) secreted from the cells. Interestingly, the transfection effect of the siRNAs was transferable through the secreted MPs from human umbilical vein endothelial cell (HUVEC) culture medium after treatment with SW, into HUVECs in another culture plate without SW treatment. In this study, we suggest for the first time a mechanism of gene transfection induced by low-energy SW through secreted MPs, and show that it is an efficient physical gene transfection method in vitro and represents a safe therapeutic strategy for site-specific gene delivery in vivo.
Collapse
|
24
|
Delalande A, Leduc C, Midoux P, Postema M, Pichon C. Efficient Gene Delivery by Sonoporation Is Associated with Microbubble Entry into Cells and the Clathrin-Dependent Endocytosis Pathway. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1913-1926. [PMID: 25929996 DOI: 10.1016/j.ultrasmedbio.2015.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Microbubble oscillation at specific ultrasound settings leads to permeabilization of surrounding cells. This phenomenon, referred to as sonoporation, allows for the in vitro and in vivo delivery of extracellular molecules, including plasmid DNA. To date, the biological and physical mechanisms underlying this phenomenon are not fully understood. The aim of this study was to investigate the interactions between microbubbles and cells, as well as the intracellular routing of plasmid DNA and microbubbles, during and after sonoporation. High-speed imaging and fluorescence confocal microscopy of HeLa cells stably expressing enhanced green fluorescent protein fused with markers of cellular compartments were used for this investigation. Soft-shelled microbubbles were observed to enter cells during sonoporation using experimental parameters that led to optimal gene transfer. They interacted with the plasma membrane in a specific area stained with fluorescent cholera subunit B, a marker of lipid rafts. This process was not observed with hard-shelled microbubbles, which were not efficient in gene delivery under our conditions. The plasmid DNA was delivered to late endosomes after 3 h post-sonoporation, and a few were found in the nucleus after 6 h. Gene transfer efficacy was greatly inhibited when cells were treated with chlorpromazine, an inhibitor of the clathrin-dependent endocytosis pathway. In contrast, no significant alteration was observed when cells were treated with filipin III or genistein, both inhibitors of the caveolin-dependent pathway. This study emphasizes that microbubble-cell interactions do not occur randomly during sonoporation; microbubble penetration inside cells affects the efficacy of gene transfer at specific ultrasound settings; and plasmid DNA uptake is an active mechanism that involves the clathrin-dependent pathway.
Collapse
Affiliation(s)
| | - Chloé Leduc
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - Michiel Postema
- Department of Physics and Technology, University of Bergen, Bergen, Norway; Department of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| |
Collapse
|
25
|
Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CTW. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 2014; 72:49-64. [PMID: 24270006 DOI: 10.1016/j.addr.2013.11.008] [Citation(s) in RCA: 511] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/13/2013] [Indexed: 01/01/2023]
Abstract
In the past two decades, research has underlined the potential of ultrasound and microbubbles to enhance drug delivery. However, there is less consensus on the biophysical and biological mechanisms leading to this enhanced delivery. Sonoporation, i.e. the formation of temporary pores in the cell membrane, as well as enhanced endocytosis is reported. Because of the variety of ultrasound settings used and corresponding microbubble behavior, a clear overview is missing. Therefore, in this review, the mechanisms contributing to sonoporation are categorized according to three ultrasound settings: i) low intensity ultrasound leading to stable cavitation of microbubbles, ii) high intensity ultrasound leading to inertial cavitation with microbubble collapse, and iii) ultrasound application in the absence of microbubbles. Using low intensity ultrasound, the endocytotic uptake of several drugs could be stimulated, while short but intense ultrasound pulses can be applied to induce pore formation and the direct cytoplasmic uptake of drugs. Ultrasound intensities may be adapted to create pore sizes correlating with drug size. Small molecules are able to diffuse passively through small pores created by low intensity ultrasound treatment. However, delivery of larger drugs such as nanoparticles and gene complexes, will require higher ultrasound intensities in order to allow direct cytoplasmic entry.
Collapse
Affiliation(s)
- I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - I De Cock
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - R Deckers
- Imaging Division, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| | - C T W Moonen
- Imaging Division, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
26
|
Inserra C, Labelle P, Der Loughian C, Lee JL, Fouqueray M, Ngo J, Poizat A, Desjouy C, Munteanu B, Lo CW, Vanbelle C, Rieu JP, Chen WS, Béra JC. Monitoring and control of inertial cavitation activity for enhancing ultrasound transfection: The SonInCaRe project. Ing Rech Biomed 2014. [DOI: 10.1016/j.irbm.2014.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Kudo N, Kinoshita Y. Effects of cell culture scaffold stiffness on cell membrane damage induced by sonoporation. J Med Ultrason (2001) 2014; 41:411-20. [PMID: 27278021 DOI: 10.1007/s10396-014-0531-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/06/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE As basic studies to realize in vivo sonoporation, rates of cell membrane damage during sonoporation were evaluated using monolayer cells cultured on scaffolds with different degrees of stiffness. METHODS Four types of scaffolds, constructed using collagen gel, 10 and 30 % acrylamide gels, and a coverslip, were used for cultivation of monolayer cells. Young's moduli measured using an atomic force microscope were in the range 0.09-8.6 kPa for the gel scaffolds, whereas Young's modulus for living cells was 4.5 kPa. Cells with attached microbubbles were exposed to one-shot pulsed ultrasound of 8.0/-1.3 MPa in peak positive/negative pressures with durations of 3, 100, and 10,000 cycles. RESULTS Cell membrane damage was visualized by fluorescence microscopy using propidium iodide. The 3-cycle ultrasound pulse had no significant effect; however, the rates of damage caused by 100-cycle and 10,000-cycle pulses showed a strong tendency for higher rates of damage with a higher Young's modulus. CONCLUSION The experimental results indicate that the stiffness of the underlying layer of adherent cells should be considered as an essential parameter of the sonoporation condition and that the optimum exposure conditions for in vivo sonoporation should be determined with consideration of the physical properties of underlying tissues.
Collapse
Affiliation(s)
- Nobuki Kudo
- Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita-ku, Sapporo, 060-0814, Japan.
| | - Yuto Kinoshita
- Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita-ku, Sapporo, 060-0814, Japan
| |
Collapse
|
28
|
Lo CW, Desjouy C, Chen SR, Lee JL, Inserra C, Béra JC, Chen WS. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation. ULTRASONICS SONOCHEMISTRY 2014; 21:833-839. [PMID: 24216067 DOI: 10.1016/j.ultsonch.2013.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection.
Collapse
Affiliation(s)
- Chia-Wen Lo
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, No. 7, Zhongshan S. Rd., Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Cavalli R, Bisazza A, Lembo D. Micro- and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm 2013; 456:437-45. [PMID: 24008081 DOI: 10.1016/j.ijpharm.2013.08.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
Abstract
Micro- and nanobubbles provide a promising non-viral strategy for ultrasound mediated gene delivery. Microbubbles are spherical gas-filled structures with a mean diameter of 1-8 μm, characterised by their core-shell composition and their ability to circulate in the bloodstream following intravenous injection. They undergo volumetric oscillations or acoustic cavitation when insonified by ultrasound and, most importantly, they are able to resonate at diagnostic frequencies. It is due to this behaviour that microbubbles are currently being used as ultrasound contrast agents, but their use in therapeutics is still under investigation. For example, microbubbles could play a role in enhancing gene delivery to cells: when combined with clinical ultrasound exposure, microbubbles are able to favour gene entry into cells by cavitation. Two different delivery strategies have been used to date: DNA can be co-administered with the microbubbles (i.e. the contrast agent) or 'loaded' in purposed-built bubble systems - indeed a number of different technological approaches have been proposed to associate genes within microbubble structures. Nanobubbles, bubbles with sizes in the nanometre order of magnitude, have also been developed with the aim of obtaining more efficient gene delivery systems. Their small sizes allow the possibility of extravasation from blood vessels into the surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. In contrast, microbubbles, due to their larger sizes, are unable to extravasate, thus and their targeting capacity is limited to specific antigens present within the vascular lumen. This review provides an overview of the use of microbubbles as gene delivery systems, with a specific focus on recent research into the development of nanosystems. In particular, ultrasound delivery mechanisms, formulation parameters, gene-loading approaches and the advantages of nanometric systems will be described.
Collapse
Affiliation(s)
- Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy.
| | | | | |
Collapse
|
30
|
Cochran M, Wheatley MA. In vitro gene delivery with ultrasound-triggered polymer microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1102-19. [PMID: 23562023 PMCID: PMC3683598 DOI: 10.1016/j.ultrasmedbio.2013.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/16/2012] [Accepted: 01/22/2013] [Indexed: 05/05/2023]
Abstract
In the work described here, gene delivery using polymer microbubbles triggered by ultrasound in vitro was investigated. The effects of pressure amplitude (0-2 MPa), center frequency (1-5 MHz), pulse length (3-12,000 μs), pulse repetition frequency (5-20,000 Hz) and exposure time (0-30 s) on transfection efficiency and cell viability were examined. The effects of radiation force, calcium ion concentration and timing of treatments were also examined. Cells were successfully transfected with pressure amplitudes as low as 250 kPa. Transfection was most efficient at lower frequencies and longer pulse lengths, with a transfection efficiency of 24.2 ± 2.0% achieved using a center frequency of 1 MHz, pressure amplitude of 1 MPa, pulse length of 12,000 μs and pulse repetition frequency of 5 Hz. Gene delivery was also affected by the extracellular calcium ion concentration and the timing of treatments.
Collapse
Affiliation(s)
| | - Margaret A. Wheatley
- Corresponding author: Margaret A. Wheatley, Ph.D., School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, Tel: (215) 895 2232, Fax: (215) 895 4983,
| |
Collapse
|
31
|
Delalande A, Kotopoulis S, Postema M, Midoux P, Pichon C. Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene 2013; 525:191-9. [PMID: 23566843 DOI: 10.1016/j.gene.2013.03.095] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/27/2013] [Accepted: 03/07/2013] [Indexed: 11/29/2022]
Abstract
Microbubbles first developed as ultrasound contrast agents have been used to assist ultrasound for cellular drug and gene delivery. Their oscillation behavior during ultrasound exposure leads to transient membrane permeability of surrounding cells, facilitating targeted local delivery. The increased cell uptake of extracellular compounds by ultrasound in the presence of microbubbles is attributed to a phenomenon called sonoporation. In this review, we summarize current state of the art concerning microbubble-cell interactions and cellular effects leading to sonoporation and its application for gene delivery. Optimization of sonoporation protocol and composition of microbubbles for gene delivery are discussed.
Collapse
|
32
|
Lamanauskas N, Novell A, Escoffre JM, Venslauskas M, Šatkauskas S, Bouakaz A. Bleomycin delivery into cancer cellsin vitrowith ultrasound and SonoVue® or BR14® microbubbles. J Drug Target 2013; 21:407-14. [DOI: 10.3109/1061186x.2012.761223] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Wiklund M, Green R, Ohlin M. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. LAB ON A CHIP 2012; 12:2438-51. [PMID: 22688253 DOI: 10.1039/c2lc40203c] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In part 14 of the tutorial series "Acoustofluidics--exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation", we provide a qualitative description of acoustic streaming and review its applications in lab-on-a-chip devices. The paper covers boundary layer driven streaming, including Schlichting and Rayleigh streaming, Eckart streaming in the bulk fluid, cavitation microstreaming and surface-acoustic-wave-driven streaming.
Collapse
Affiliation(s)
- Martin Wiklund
- Department of Applied Physics, Royal Institute of Technology, KTH-Albanova, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
34
|
Liu Y, Yan J, Prausnitz MR. Can ultrasound enable efficient intracellular uptake of molecules? A retrospective literature review and analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:876-88. [PMID: 22425381 PMCID: PMC3428263 DOI: 10.1016/j.ultrasmedbio.2012.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 05/09/2023]
Abstract
Most applications of therapeutic ultrasound (US) for intracellular delivery of drugs, proteins, DNA/RNA and other compounds would benefit from efficient uptake of these molecules into large numbers of cells without killing cells in the process. In this study we tested the hypothesis that efficient intracellular uptake of molecules can be achieved with high cell viability after US exposure in vitro. A search of the literature for studies with quantitative data on uptake and viability yielded 26 published papers containing 898 experimental data points. Analysis of these studies showed that just 7.7% of the data points corresponded to relatively efficient uptake (>50% of cells exhibiting uptake). Closer examination of the data showed that use of Definity US contrast agent (as opposed to Optison) and elevated sonication temperature at 37°C (as opposed to room temperature) were associated with high uptake, which we further validated through independent experiments carried out in this study. Although these factors contributed to high uptake, almost all data with efficient uptake were from studies that had not accounted for lysed cells when determining cell viability. Based on retrospective analysis of the data, we showed that not accounting for lysed cells can dramatically increase the calculated uptake efficiency. We further argue that if all the data considered in this study were re-analyzed to account for lysed cells, there would be essentially no data with efficient uptake. We therefore conclude that the literature does not support the hypothesis that efficient intracellular uptake of molecules can be achieved with high cell viability after US exposure in vitro, which poses a challenge to future applications of US that require efficient intracellular delivery.
Collapse
Affiliation(s)
- Ying Liu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | | | | |
Collapse
|
35
|
Huang YC, Yang SK. A MECHANISM OF ULTRASONIC IRRADIATION TO ASSIST OR INHIBIT THE PARAMECIUM CELLS. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237208001021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper investigates the biological reactions of unicellular creature irradiated to a low intensity of ultrasonic field. The current study attempts to anticipate the value of the ultrasonic driving frequency which will induce the most significant biological reactions by using the theoretical model. The theoretical model of the cells in response to the ultrasonic irradiation is simulated using Rayleigh–Plesset's bubble activation theory. The simulation results indicate that the resonant frequency of the Paramecium vacuoles considered in the present study lies in the range 0.54–1.24 MHz. Ultrasonic irradiation experiments are performed at various power level intensities at driving frequencies corresponding to resonant (0.5 and 1 MHz) and nonresonant (0.25 and 5 MHz) frequencies. It is found that samples irradiated under different ultrasonic conditions exhibit clear differences in their cell proliferation tendencies. For example, in samples irradiated with lower power intensities and driving frequencies of 0.5 and 1 MHz, the number of cells in the treated samples is found to be approximately 30% higher than that in the original unexposed samples. However, when resonant frequencies and higher intensities are applied, the ultrasonic irradiation causes a shape change of the cell organelles and a corresponding reduction in the total number of cells in the treated sample. For the samples exposed to nonresonant frequency ultrasonic irradiation, it is found that the cell proliferation is limited and appears to vary independently of the applied irradiation intensity.
Collapse
Affiliation(s)
- Yi-Cheng Huang
- Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung, 833, Taiwan
| | - Shiuh-Kuang Yang
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, R. O. C
| |
Collapse
|
36
|
Tamosiūnas M, Jurkonis R, Mir LM, Lukosevicius A, Venslauskas MS, Satkauskas S. Adjustment of ultrasound exposure duration to microbubble sonodestruction kinetics for optimal cell sonoporation in vitro. Technol Cancer Res Treat 2012; 11:375-87. [PMID: 22376133 DOI: 10.7785/tcrt.2012.500285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell sonoporation enables the delivery of various exogenous molecules into the cells. To maximize the percentage of reversibly sonoporated cells and to increase cell viability we propose a model for implicit dosimetry for adjustment of ultrasound (US) exposure duration. The Chinese hamster ovary cell suspension was supplemented with microbubbles (MB) and exposed to US, operating at the frequency of 880kHz, with a 100% duty cycle and with an output peak negative pressure (PNP) of 500kPa for durations ranging from 0.5 to 30s. Using diagnostic B-scan imaging we showed that the majority of the MB at 500kPa US peak negative pressure undergo sonodestruction in less than a second. During this time maximal number of reversibly sonoporated cells was achieved. Increase of US exposure duration did not increase sonoporated cell number, however it induced additional cell viability decrease. Therefore aiming to achieve the highest level of reversibly sonoporated cells and also to preserve the highest level of cell viability, the duration of US exposure should not exceed the duration needed for complete MB sonodestruction.
Collapse
Affiliation(s)
- M Tamosiūnas
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, Kaunas LT-44404, Lithuania
| | | | | | | | | | | |
Collapse
|
37
|
Delalande A, Bouakaz A, Renault G, Tabareau F, Kotopoulis S, Midoux P, Arbeille B, Uzbekov R, Chakravarti S, Postema M, Pichon C. Ultrasound and microbubble-assisted gene delivery in Achilles tendons: Long lasting gene expression and restoration of fibromodulin KO phenotype. J Control Release 2011; 156:223-30. [DOI: 10.1016/j.jconrel.2011.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/13/2011] [Accepted: 08/14/2011] [Indexed: 11/16/2022]
|
38
|
Wang XH. Role of constituents of Optison in Optison-mediated gene transfection enhancement in skeletal muscle in vivo. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2011; 30:325-332. [PMID: 21357554 DOI: 10.7863/jum.2011.30.3.325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
OBJECTIVES The mechanism by which Optison (an albumin-shelled, octafluoropropane gas-filled microbubble contrast agent; Amersham Health, Amersham, England) enhances gene transfection in skeletal muscle in vivo with or without ultrasound (US) is unclear. The possible mechanisms were investigated by experimenting with different constituents, both with and without US. METHODS Plasmid DNA (10 μg) encoding green fluorescent protein was mixed with Optison or its constituents dissolved in saline (in an equivalent concentration as in Optison) and injected into the tibialis anterior muscle of mice with or without adjunct US (1 MHz, 2 W/cm², 30 seconds, and 20% duty cycle). The efficiencies of green fluorescent protein transgene expression were determined under different experimental conditions: (1) plasmid plus saline as a negative control; (2) plasmid plus Optison as a positive control; (3) plasmid plus heat-treated Optison (without microbubbles); (4) plasmid plus human serum albumin; (5) plasmid plus N-acetyltryptophan; and (6) plasmid plus caprylic acid. Transfection efficiency was assessed by counting the maximum number of green fluorescent protein-positive fibers. Tissue damage was assessed by measuring the damaged area on serial sections. RESULTS Heat-treated Optison with or without US and albumin with US showed similarly high levels of transgene expression as Optison in mouse muscle without substantially increased tissue damage. N-Acetyltryptophan and caprylic acid had no effect on the delivery of plasmid green fluorescent protein into mouse muscle but instead showed the potential to increase tissue damage. CONCLUSIONS These data suggest that US and albumin separately potentiate transfection in this model. The combination of albumin and perfluoropropane is highly effective, which probably explains why Optison is so effective.
Collapse
Affiliation(s)
- Xing-Hua Wang
- Department of Ultrasound, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
39
|
Postema M, Gilja OH. Contrast-enhanced and targeted ultrasound. World J Gastroenterol 2011; 17:28-41. [PMID: 21218081 PMCID: PMC3016677 DOI: 10.3748/wjg.v17.i1.28] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/03/2010] [Accepted: 09/10/2010] [Indexed: 02/06/2023] Open
Abstract
Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested.
Collapse
|
40
|
Tlaxca JL, Anderson CR, Klibanov AL, Lowrey B, Hossack JA, Alexander JS, Lawrence MB, Rychak JJ. Analysis of in vitro transfection by sonoporation using cationic and neutral microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1907-1918. [PMID: 20800945 PMCID: PMC2996233 DOI: 10.1016/j.ultrasmedbio.2010.05.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 05/26/2023]
Abstract
The objective of the study was to examine the role of acoustic power intensity and microbubble and plasmid concentrations on transfection efficiency in HEK-293 cells using a sonoporator with a 1-MHz transducer. A green fluorescent protein (GFP) reporter plasmid was delivered in as much as 80% of treated cells, and expression of the GFP protein was observed in as much as 75% of cells, using a power intensity of 2 W/cm(2) with a 25% duty cycle. In addition, the relative transfection abilities of a lipid noncationic and cationic microbubble platform were investigated. As a positive control, cells were transfected using Lipofectamine reagent. Cell survival and transfection efficiency were inversely proportional to acoustic power and microbubble concentration. Our results further demonstrated that high-efficiency transfection could be achieved, but at the expense of cell loss. Moreover, direct conjugation of plasmid to the microbubble did not appear to significantly enhance transfection efficiency under the examined conditions, although this strategy may be important for targeted transfection in vivo.
Collapse
Affiliation(s)
- Jose L. Tlaxca
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | | | - Alexander L. Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA
- Cardiovascular Division, Department of Internal medicine, University of Virginia, Charlottesville, VA
| | - Bryce Lowrey
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - John A. Hossack
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - J. Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science center, Shreveport, LA
| | - Michael B. Lawrence
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
41
|
Kaddur K, Lebegue L, Tranquart F, Midoux P, Pichon C, Bouakaz A. Transient transmembrane release of green fluorescent proteins with sonoporation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2010; 57:1558-1567. [PMID: 20639150 DOI: 10.1109/tuffc.2010.1586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Microbubbles under ultrasound (US) activation are assumed to induce pore formation in the plasma membrane, causing its permeabilization and hence molecule incorporation from the extracellular environment. In this study, we investigated whether this permeabilization also engenders a transient release of small molecules from the cytosol of mammalian eukaryotic cells under the combined action of US and microbubbles. Using Hela cells stably expressing the enhanced green fluorescent protein (EGFP) gene, the release of EGFP was evaluated by flow cytometry in terms of the percentage of EGFP-positive cells (EGFP + cells) and the mean cell fluorescence intensity (MFI). Sonoporation was performed at 1 MHz, with peak negative pressures ranging from 0.2 to 0.6 MPa, duty cycles of 40% and 75% and a repetition rate of 10 kHz. The results showed that the insonation of Hela-EGFP cells at the peak negative pressure 400 kPa and the 75% duty cycle for 2 min in the presence of microbubbles induced a 60% decrease in both EGFP+ cells percentage and MFI. Our results demonstrate that the reduction of cell fluorescence is attributed to the EGFP release. Most importantly, this EGFP release was not due to lethal effects of sonoporation because the EGFP expression was significantly recovered by 48-h post-insonation. In conclusion, this study demonstrates for the first time a transient release of intracellular molecules produced by the sonoporation process. This controlled release showed the possibility of extracting molecules from the cell cytoplasm through the membrane while preserving cell viability. Taken together, the results obtained in this study reinforce the hypothesis of the transient pore formation mechanism induced by sonoporation.
Collapse
Affiliation(s)
- Kadija Kaddur
- Institut Nationalde la Sante et de la Recherche Medicale U930-Centre Nationalde la Recherche Scientifique (CNRS) ERL 3106, Tours, France.
| | | | | | | | | | | |
Collapse
|
42
|
Lin CR, Chen KH, Yang CH, Cheng JT, Sheen-Chen SM, Wu CH, Sy WD, Chen YS. Sonoporation-mediated gene transfer into adult rat dorsal root ganglion cells. J Biomed Sci 2010; 17:44. [PMID: 20525259 PMCID: PMC2890659 DOI: 10.1186/1423-0127-17-44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/03/2010] [Indexed: 11/10/2022] Open
Abstract
Background Gene transfer into many cell types has been successfully used to develop alternative and adjunct approaches to conventional medical treatment. However, effective transfection of postmitotic neurons remains a challenge. The aim of this study was to develop a method for gene transfer into rat primary dorsal root ganglion neurons using sonoporation. Methods Dissociated cells from adult rat dorsal root ganglion (DRG) cells were sonicated for 1-8 s at 2.5-10 W to determine the optimal ultrasound duration and power for gene transfection and cell survival. Transfection efficiency was compared between sonoporation, liposome and lentiviral vector gene transfer techniques. Results The optimum ultrasound intensity was 5 W for 2 s and yielded an efficiency of gene transfection of 31% and a survival rate of 35%. Conclusions Sonoporation can be optimized to minimize cell death and yield a high percentage of transfected neurons and that this technique can be easily applied to primary cultures of rat dorsal root ganglion neurons.
Collapse
Affiliation(s)
- Chung-Ren Lin
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Karshafian R, Samac S, Bevan PD, Burns PN. Microbubble mediated sonoporation of cells in suspension: clonogenic viability and influence of molecular size on uptake. ULTRASONICS 2010; 50:691-7. [PMID: 20153497 DOI: 10.1016/j.ultras.2010.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 01/08/2010] [Accepted: 01/14/2010] [Indexed: 05/19/2023]
Abstract
This work investigates whether the application of sonoporation is limited by the size of a macromolecule being delivered and by the ability of cells to proliferate following uptake. KHT-C cells in suspension were exposed to variations in ultrasound pressure (0-570 kPa) and microbubble shell-type (lipid and protein) at fixed settings of 500 kHz centre frequency, 32 micros pulse duration, 3 kHz pulse repetition frequency and 2 min insonation. Reversible permeability (P(R)), defined as the number of cells stained with FITC-dextran and unstained with propidium iodide (i.e., PI-viable), was measured with flow cytometry for marker molecules ranging from 10 kDa to 2 MDa in size. Viable permeability (P(V)) defined as the number of permeabilised cells that maintained their ability to proliferate, was measured by clonogenic assay. Comparable intracellular delivery of all sizes of molecules was achieved, indicating that intracellular delivery of common therapeutic drugs may not be limited by molecular size. Maximum P(R)'s of 80% (at 10 kDa) and 55% (at 10 kDa) were achieved with lipid coated bubbles at 3.3% v/v and protein coated bubbles at 6.7% v/v concentrations. The PI-viability was approximately 80% at 570 kPa in both cases. The maximum P(V) achieved with both agents was 22%, while inducing a lower overall clonogenic viability with the lipid (39%) compared to the protein (56%) shelled bubbles. This study demonstrates that large macromolecules, up to 2 MDa in size, can be delivered with high efficiency to cells which undergo reversible permeabilisation, maintaining long-term viability in approximately half of the cells.
Collapse
|
44
|
Abstract
Since their introduction as ultrasound contrast agents, microbubbles have demonstrated the potential to revolutionise the use of ultrasound at the bedside. Aside from clinical application, where microbubbles are used to enhance ultrasonic assessment of myocardial perfusion, they have demonstrated potential in an exciting host of pre-clinical ultrasound imaging and therapeutic applications. These include the ability to target specific cellular markers of disease, provide dynamic blood flow estimation, deliver localised chemotherapy, potentiate the mechanisms of gene therapy, enhance lesion ablation through cavitation, and spatiotemporally permeabilise the blood-brain barrier. The unique and flexible construction of microbubbles not only enables a variety of ultrasound applications, but also opens the door to detection of microbubbles with modalities other than ultrasound. In this review, non-ultrasound imaging applications utilizing microbubbles are discussed, including MRI, PET, and DEI. These various imaging approaches illustrate novel applications of microbubbles, and may provide the groundwork for future multi-modality imaging or image-guided therapeutics.
Collapse
Affiliation(s)
- Paul Kogan
- Joint Department of Biomedical Engineering, University of North Carolina - North Carolina State University
| | | | | |
Collapse
|
45
|
Delalande A, Bureau MF, Midoux P, Bouakaz A, Pichon C. Ultrasound-assisted microbubbles gene transfer in tendons for gene therapy. ULTRASONICS 2010; 50:269-272. [PMID: 19857885 DOI: 10.1016/j.ultras.2009.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 05/28/2023]
Abstract
Our study aimed at evaluating the use of ultrasound-assisted microbubbles gene transfer in mice Achilles tendons. Using a plasmid encoding luciferase gene, it was found that an efficient and stable gene expression for more than two weeks was obtained when tendons were injected with 10 microg of plasmid in the presence of 5x10(5) BR14 microbubbles with the following acoustic parameters: 1 MHz, 200 kPa, 40% duty cycle and 10 min of exposure time. The rate of gene expression was 100-fold higher than that obtained with naked plasmid injected alone without ultrasound or with ultrasound in absence of microbubbles. The long term expression of transgene makes ultrasound-assisted microbubble a suitable method for gene therapy in tendons.
Collapse
Affiliation(s)
- Anthony Delalande
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, 45071 Orléans, France
| | | | | | | | | |
Collapse
|
46
|
Reslan L, Mestas JL, Herveau S, Béra JC, Dumontet C. Transfection of cells in suspension by ultrasound cavitation. J Control Release 2009; 142:251-8. [PMID: 19896995 DOI: 10.1016/j.jconrel.2009.10.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 10/16/2009] [Accepted: 10/26/2009] [Indexed: 01/04/2023]
Abstract
Sonoporation holds many promises in developing an efficient, reproducible and permanent gene delivery vector. In this study, we evaluated sonoporation as a method to transfect nucleic acids in suspension cells, including the human follicular lymphoma cell line RL and fresh human Chronic Lymphocytic Leukemia (CLL) cells. RL and CLL cells were exposed to continuous ultrasound waves (445 kHz) in the presence of either plasmid DNA coding for green fluorescent protein (GFP) or fluorescent siRNA directed against BCL2L1. Transfection efficiency and cell viability were assessed using fluorescent microscopy and flow cytometry analysis, respectively. Knock-down of target protein by siRNA was assessed by immunoblotting. Moreover, sonoporation was used to stably transfect RL cells with a plasmid coding for luciferase (pGL3). These cells were then used for the non-invasive monitoring of tumorigenesis in immunodeficient SCID mice. Sonoporation allows a highly efficient transfection of nucleic acid in suspension cells with a low rate of mortality, both in a tumor cell line and in fresh human leukemic cells. It also allowed efficient transfection of BCL2L1 siRNA with efficient reduction of the target protein level. In conclusion, ultrasound cavitation represents an efficient method for the transfection of cells in suspension, including fresh human leukemic cells.
Collapse
|
47
|
Tsai KC, Fang SY, Yang SJ, Shieh MJ, Lin WL, Chen WS. Time dependency of ultrasound-facilitated gene transfection. J Gene Med 2009; 11:729-36. [DOI: 10.1002/jgm.1347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
48
|
Wang X, Liu Q, Wang P, Wang Z, Tong W, Zhu B, Wang Y, Li C. Comparisons among sensitivities of different tumor cells to focused ultrasound in vitro. ULTRASONICS 2009; 49:558-564. [PMID: 19278708 DOI: 10.1016/j.ultras.2009.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 11/15/2008] [Accepted: 02/03/2009] [Indexed: 05/27/2023]
Abstract
This study is to test the sensitivities of different tumor cells to ultrasound irradiation at the frequency of 2.2 MHz for 60 s duration, and investigate the potential mechanism underlying different sensitivities. Three murine tumor models with distinct aggressiveness (S180, H-22 and EAC) were exposed to ultrasound to evaluate their sonodynamic efficiencies, and several biological parameters such as cell membrane permeability, lipid peroxidation (LPO), ultra-structure observation, intracellular reactive oxygen species (ROS) and mitochondria membrane potential (MMP) were analyzed after exposures. The results showed that cellular responses of different cells were distinct, of interest to note, the aggressive S180 cells were much more sensitive than others, whereas EAC cells were relatively more resistant to ultrasound irradiation. The direct comparisons among different types of cells indicate that the sono-sensitization seems to depend on the physiological and chemical properties of tumor cells. Perhaps sections of cell membrane became destabilized following the initial radical attack and LPO reaction, which caused S180 cells more susceptible to mechanical stresses during sonolysis. This study provides important implications for cancer therapy.
Collapse
Affiliation(s)
- XiaoBing Wang
- College of Life Sciences, Shaanxi Normal University, Shaanxi, Xian 710062, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mo R, Lin S, Wang G, Wang Y, Wu EX. Preliminary in vitro study of ultrasound sonoporation cell labeling with superparamagnetic iron oxide particles for MRI cell tracking. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:367-70. [PMID: 19162669 DOI: 10.1109/iembs.2008.4649166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vibration caused by ultrasonic waves can change the structure of cell membrane and enhance its permeation. In the last decade, a new ultrasound-aided method, sonoporation, has been proposed and utilized to transmit target molecules (such as drugs and DNA) into cells for therapy. The objective of this study was to investigate the method of loading nanometer-sized superparamagnetic iron oxide particles into Sarcoma 180 cells by sonoporation without chemical agents. The SPIO nanoparticles were prepared in our laboratory by means of classical coprecipitation and the formation of Fe3O4 crystal in SPIO nanoparticles was confirmed by x-ray diffraction analysis with its other characteristics assessed by magnetic hysteresis loops and size distribution. Cell labeling with SPIOs using sonoporation was successfully demonstrated in vitro for sarcoma180 cell suspensions from ICR mice. The labeling efficiency and viability were evaluated by Prussian blue staining. Such sonoporation technique can be employed for rapid labeling of various cells for MRI visualization of their spatiotemporal activities in vivo upon transplantation.
Collapse
Affiliation(s)
- Runyang Mo
- Applied Acoustic Institute, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
| | | | | | | | | |
Collapse
|
50
|
Karshafian R, Bevan PD, Williams R, Samac S, Burns PN. Sonoporation by ultrasound-activated microbubble contrast agents: effect of acoustic exposure parameters on cell membrane permeability and cell viability. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:847-60. [PMID: 19110370 DOI: 10.1016/j.ultrasmedbio.2008.10.013] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 10/13/2008] [Accepted: 10/24/2008] [Indexed: 05/05/2023]
Abstract
This work investigates the effect of ultrasound exposure parameters on the sonoporation of KHT-C cells in suspension by perflutren microbubbles. Variations in insonating acoustic pressure (0.05 to 3.5 MPa), pulse frequency (0.5 to 5.0 MHz), pulse repetition frequency (10 to 3000 Hz), pulse duration (4 to 32 micros) and insonation time (0.1 to 900 s) were studied. The number of cells permeabilised to a fluorescent tracer molecule (70 kDa FITC-dextran) and the number of viable cells were measured using flow cytometry. The effect of exposure on the microbubble population was measured using a Coulter counter. Cell viability and membrane permeability were found to depend strongly on the acoustic exposure conditions. Cell permeability increased and viability decreased with increasing peak negative pressure, pulse repetition frequency, pulse duration and insonation time and with decreasing pulse centre frequency. The highest therapeutic ratio (defined as the ratio of permeabilised to nonviable cells) achieved was 8.8 with 32 +/- 4% permeabilization and 96 +/- 1% viability at 570 kPa peak negative pressure, 8 micros pulse duration, 3 kHz pulse repetition frequency, 500 kHz centre frequency and 12 s insonation time with microbubbles at 3.3% volume concentration. These settings correspond to an acoustic energy density (E(SPPA)) of 3.12 J/cm(2). Cell permeability and viability did not correlate with bubble disruption. The results indicate that ultrasound exposure parameters can be optimized for therapeutic sonoporation and that bubble disruption is a necessary but insufficient indicator of ultrasound-induced permeabilization.
Collapse
Affiliation(s)
- Raffi Karshafian
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|