1
|
Sun W, Jia C, Zhang X, Wang Z, Li Y, Fang X. Identification of Key Genes Related With Aspartic Acid Metabolism and Corresponding Protein Expression in Human Colon Cancer With Postoperative Prognosis and the Underlying Molecular Pathways Prediction. Front Cell Dev Biol 2022; 10:812271. [PMID: 35174151 PMCID: PMC8841526 DOI: 10.3389/fcell.2022.812271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 01/23/2023] Open
Abstract
Objective: Colon cancer is one of the most frequent and lethal neoplasias. Altered metabolic activity is a well-known hallmark for cancer. The present study is aiming to screen key genes associated with tumor metabolism and construct a prognostic signature of colon cancer patients. Methods: Glutamine- and UC- metabolism related genes were downloaded from GSEA MsigDB. Three key genes were screened by Cox regression analysis with data samples downloaded from TCGA and GSE29623 database. Consistent clustering based on the prognostic genes identified was employed to divide the colon cancer samples into two clusters with significant OS differences. The mRNA and protein expression of the key genes in colon tissues and matched adjacent noncancerous tissues of 16 patients were detected by IHC, qPCR, and Western blot to validate the constructed clustering model. GO, GSVA, and IPA were used to predict the relevant metabolic pathways. Results: According to the three key genes identified, i.e., ASNS, CEBPA, and CAD, the cohort can be divided into two clusters with prognosis differences. Clinical specimen results confirmed that the risk model established was effective, and the different expression pattern of ASNS and CEBPA was correlated with TNM stage and lymph node metastasis, whilst that of CAD was correlated with post-operative tumor metastasis and recurrence. Molecular mechanism prediction indicated that CREB, insulin, and RNA Pol II were the key nodes affecting CEBPA and ASNS expression. Moreover, TIDE algorithm reflected the better immune response of the cluster with shorter OS. Further immune infiltration and checkpoints analyses provided important reference for clinicians to perform individualized immunotherapy. Conclusion: Differential expression profile of three aspartic acid metabolic-associated genes, ASNS, CEBPA, and CAD, can be considered as a risk model with a good evaluation effect on the prognosis of colon cancer patients.
Collapse
Affiliation(s)
- Weixuan Sun
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chaoran Jia
- Northeast Normal University, Changchun, China
| | | | - Zhaoyi Wang
- China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Zhaoyi Wang, ; Yaping Li, ; Xuedong Fang,
| | - Yaping Li
- The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Zhaoyi Wang, ; Yaping Li, ; Xuedong Fang,
| | - Xuedong Fang
- China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Zhaoyi Wang, ; Yaping Li, ; Xuedong Fang,
| |
Collapse
|
2
|
Geng T, Sun Y, Cheng L, Cao Y, Zhang M, Hong Z, Ma L, Zhang Y. Downregulation of LHCGR Attenuates COX-2 Expression and Induces Luteinized Unruptured Follicle Syndrome in Endometriosis. Front Endocrinol (Lausanne) 2022; 13:853563. [PMID: 35600595 PMCID: PMC9114297 DOI: 10.3389/fendo.2022.853563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
An association between endometriosis and luteinized unruptured follicle syndrome (LUFs) has long been identified. Although inactivating mutation of luteinizing hormone/choriogonadotropin receptor (LHGCR) results in LUFs, whether LHCGR contributes to promoting LUFs in endometriosis remains elusive. To investigate the effect of LHCGR signaling in the development of endometriosis-associated LUFs and dissect the underlying mechanism in vivo mouse endometriosis model was established to measure the effect on ovarian folliculogenesis. In vitro cultures of primary human GCs collected from patients undergoing in vitro fertilization were performed and treated with human chorionic gonadotropin (hCG), dibutyryl cyclic-AMP (db-cAMP), LHCGR or CCAAT/enhancer binding protein-α (C/EBPα) small interfering RNA to identify the potential mechanisms. KGN cell line was used to investigate the mechanistic features of transcriptional regulation. Results showed an increased incidence of LUFs was observed in mice with endometriosis. The expression of LHCGR was decreased in the GCs of endometriosis mice. In in vitro cell models, LHCGR signaling increased the expression of C/EBPα and cyclooxygenase-2(COX-2), while inhibiting C/EBPα mitigated the induced COX-2 expression. Mechanically, C/EBPα bounded to the promoter region of COX-2 and increased the transcriptional activity under the stimulation of hCG or db-cAMP. Taken together, this study demonstrated that the LHCGR signaling was reduced in GCs of endometriosis and resulted in a decrease in gonadotropin-induced COX-2 expression. Our study might provide new insights into the dysfunction of GCs in endometriosis.
Collapse
Affiliation(s)
- Ting Geng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifan Sun
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Cheng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuming Cao
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Zhidan Hong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Ling Ma
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yuanzhen Zhang,
| |
Collapse
|
3
|
Zhang Q, Koser SL, Donkin SS. Identification of promoter response elements that mediate propionate induction of bovine cytosolic phosphoenolpyruvate carboxykinase (PCK1) gene transcription. J Dairy Sci 2021; 104:7252-7261. [PMID: 33741163 DOI: 10.3168/jds.2020-18993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a key enzyme for gluconeogenesis that is positively regulated by propionate in bovines at the transcription level. The specific elements that determine propionate responsiveness within the bovine PCK1 promoter are unknown. In silico promoter analysis of the bovine PCK1 gene revealed several clusters of transcription factor binding sites. In the present study, we determined the essentiality of the putative cyclic AMP response element (CRE) at -94 through -87 bp and the 2 putative hepatic nuclear factor 4α (HNF4α) binding elements at +68 through +72 and -1,078 through -1,074, respectively, in mediating bovine PCK1 promoter responses to propionate and other regulators, including butyrate, cyclic AMP (cAMP), and glucocorticoids. The wild-type bovine PCK1 promoter [PCK1(WT)] was ligated to a luciferase reporter gene and transfected into rat hepatoma (H4IIE) cells. Activities of PCK1(WT) were induced by approximately 2-, 2-, 4-, 8-, 9-, 18-, and 16-fold respectively when exposed to cAMP (as 1.0 mM 8-Br-cAMP), 5.0 μM dexamethasone, cAMP + dexamethasone, 2.5 mM propionate, cAMP + propionate, cAMP + dexamethasone + propionate, and 2.5 mM butyrate. Seven mutants lacking either one single site, 2 of the 3 sites, or all 3 sites, generated by site-directed mutagenesis, were tested. Responses to propionate and all other treatments were completely abolished when CRE at -94 through -87 bp and HNF4α at +68 through +72 bp were both deleted. Our data indicate that these 2 regulatory elements act synergistically to mediate the bovine PCK1 promoter responses to propionate as well as butyrate, cAMP, and dexamethasone. The activation of PCK1 through these regulatory elements serves to activate the metabolic potential of bovine toward gluconeogenesis when the primary substrate for gluconeogenesis, propionate, is also present.
Collapse
Affiliation(s)
- Q Zhang
- Adisseo Life Science Co. Ltd., Shanghai 201204, PR China
| | - S L Koser
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - S S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
4
|
Ge Z, Zhou B, Zheng X, Yang M, Lü J, Deng H, Tang K, Chen W. [Circular RNA expression pattern and competing endogenous RNA network involved in rotator cuff tendinopathy]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:608-614. [PMID: 32410429 DOI: 10.7507/1002-1892.201911094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective To detect the differentially expressed circular RNA (circRNA) in rotator cuff tendinopathy and analyze the potential molecular mechanism of these parental genes. Methods Ten supraspinatus tendons donated from patients who underwent tendon repair surgery between June 2018 and June 2019 were used for RNA-sequence. All rotator cuff tendinopathy and normal tendon samples were confirmed by MRI, histological staining, and observation by arthroscopy. All pathological tendons were matched with tendon samples for patients' age, gender, body mass index, and Bonar score. The bioinformatic analysis was performed based on the differentially expressed circRNA and their parental genes, including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and competing endogenous RNA (ceRNA) network construction. Results There were 94 differentially expressed circRNAs, including 31 up-regulated and 63 down-regulated, detected between the rotator cuff tendinopathy and normal tendon samples with |log2 fold change (FC)| >2, P<0.05. GO analysis showed that the genes were mostly enriched in response to cyclic adenosine monophosphate (cAMP). KEGG pathway analysis showed that the most genes were enriched in extracellular matrix-receptor interaction, protein digestion and absorption, cell cycle, and nuclear factor κB signaling pathway. ceRNA networks showed the interactions among circRNAs, mRNAs, and miRNAs. And circRNA.8951-has-miR-6089-DNMT3B was the most sum max energy. Conclusion This bioinformatic study reveals several potential therapeutic targets for rotator cuff tendinopathy, which paves the way to better treatment and prevention of this disorder.
Collapse
Affiliation(s)
- Zilu Ge
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Binghua Zhou
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Xiaolong Zheng
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Mingyu Yang
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Jingtong Lü
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Honghao Deng
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Kanglai Tang
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Wan Chen
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| |
Collapse
|
5
|
Wang YB, Zhou BX, Ling YB, Xiong ZY, Li RX, Zhong YS, Xu MX, Lu Y, Liang H, Chen GH, Yao ZC, Deng MH. Decreased expression of ApoF associates with poor prognosis in human hepatocellular carcinoma. Gastroenterol Rep (Oxf) 2019; 7:354-360. [PMID: 31687155 PMCID: PMC6821331 DOI: 10.1093/gastro/goz011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 12/02/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is frequently associated with metabolism dysfunction. Increasing evidence has demonstrated the crucial role of lipid metabolism in HCC progression. The function of apolipoprotein F (ApoF), a lipid transfer inhibitor protein, in HCC is incompletely understood. We aimed to evaluate the functional role of ApoF in HCC in this study. Methods We used quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to detect ApoF mRNA expression in HCC tissues and hepatoma cell lines (SMMC-7721, HepG2, and Huh7). Immunohistochemistry was performed to detect the expression of ApoF in HCC tissues. The associations between ApoF expression and clinicopathological features as well as HCC prognosis were analyzed. The effect of ApoF on cellular proliferation and growth of SMMC-7721 and Huh7 cells was examined in vitro and in vivo. Results ApoF expression was significantly down-regulated at both mRNA and protein levels in HCC tissues as compared with adjacent tissues. In SMMC-7721 and Huh7 HCC cells, ApoF overexpression inhibited cell proliferation and migration. In a xenograft nude mouse model, ApoF overexpression effectively controlled HCC growth. Kaplan–Meier analysis results showed that the recurrence-free survival rate of HCC patients with low ApoF expression was significantly lower than that of other HCC patients. Low ApoF expression was associated with several clinicopathological features such as liver cirrhosis, Barcelona Clinic Liver Cancer stage and tumor-node-metastasis stage. Conclusions ApoF expression was down-regulated in HCC, which was associated with low recurrence-free survival rate. ApoF may serve as a tumor suppressor in HCC and be a potential application for the treatment of this disease.
Collapse
Affiliation(s)
- Ya-Bin Wang
- Department of Liver Transplantation, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Bo-Xuan Zhou
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yun-Biao Ling
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhi-Yong Xiong
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Rui-Xi Li
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yue-Si Zhong
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Ming-Xing Xu
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yi Lu
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Hao Liang
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Gui-Hua Chen
- Department of Liver Transplantation, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhi-Cheng Yao
- Department of General Surgery, The Lingnan Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Mei-Hai Deng
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
6
|
Greco SJ, Yehia G, Potian JA, Molina CA, Rameshwar P. Constitutive Expression of Inducible Cyclic Adenosine Monophosphate Early Repressor (ICER) in Cycling Quiescent Hematopoietic Cells: Implications for Aging Hematopoietic Stem Cells. Stem Cell Rev Rep 2016; 13:116-126. [PMID: 27822872 DOI: 10.1007/s12015-016-9701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Despite extensive insights on the interaction between hematopoietic stem cells (HSCs) and the supporting bone marrow (BM) stroma in hematopoietic homeostasis there remains unanswered questions on HSC regulation. We report on the mechanism by which HSCs attain cycling quiescence by addressing a role for inducible cyclic AMP early repressor (ICER). ICER negatively transcriptional regulators of cAMP activators such as CREM and CREB. These activators can be induced by hematopoietic stimulators such as cytokines. We isolated subsets of hematopoietic cells from ten healthy donors: CD34+CD38-/c-kit + (primitive progenitor), CD34+CD38+/c-kitlow (mature progenitor) and CD34-CD38+/-/c-kitlow/- (differentiated lineage-). The relative maturity of the progenitors were verified in long-term culture initiating assay. Immunoprecipitation indicated the highest level of ICER in the nuclear extracts of CD34+/CD38- cells. Phospho (p)-CREM was also present suggesting a balance between ICER and p-CREM in HSC. ICER seems to be responsible for decrease in G1 transition, based on reduced Cdk4 protein, decreased proliferation and functional studies with propidium iodide. There were no marked changes in the cycling inhibitors, p15 and p-Rb, suggesting that ICER may act independently of other cycling inhibitors. The major effects of ICER were validated with BM mononuclear cells (BMNCs) in which ICER was ectopically expressed, and with BMNCs resistant to 5-fluorouracil- or cyclophosphamide. In total, this study ascribes a novel role for ICER in G1 checkpoint regulation in HSCs. These findings are relevant to gene therapy that require engineering of HSCs, age-related disorders that are associated with hematopoietic dysfunction and other hematological disorders.
Collapse
Affiliation(s)
- Steven J Greco
- Department of Medicine, Division of Hematology-Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, 07103, USA
| | - Ghassan Yehia
- Office of Research Advancement, Rutgers University, New Brunswick, USA
| | - Julius A Potian
- Department of Medicine, Division of Hematology-Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, 07103, USA
| | - Carlos A Molina
- Department of Biology and Molecular Biology, Montclair University, Montclair, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology-Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, 07103, USA.
| |
Collapse
|
7
|
Zhang Q, Koser SL, Donkin SS. Propionate induces the bovine cytosolic phosphoenolpyruvate carboxykinase promoter activity. J Dairy Sci 2016; 99:6654-6664. [DOI: 10.3168/jds.2016-11103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/30/2016] [Indexed: 01/26/2023]
|
8
|
Hill MJ, Suzuki S, Segars JH, Kino T. CRTC2 Is a Coactivator of GR and Couples GR and CREB in the Regulation of Hepatic Gluconeogenesis. Mol Endocrinol 2016; 30:104-17. [PMID: 26652733 PMCID: PMC4695631 DOI: 10.1210/me.2015-1237] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoid hormones play essential roles in the regulation of gluconeogenesis in the liver, an adaptive response that is required for the maintenance of circulating glucose levels during fasting. Glucocorticoids do this by cooperating with glucagon, which is secreted from pancreatic islets to activate the cAMP-signaling pathway in hepatocytes. The cAMP-response element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) is a coactivator known to be specific to CREB and plays a central role in the glucagon-mediated activation of gluconeogenesis in the early phase of fasting. We show here that CRTC2 also functions as a coactivator for the glucocorticoid receptor (GR). CRTC2 strongly enhances GR-induced transcriptional activity of glucocorticoid-responsive genes. CRTC2 physically interacts with the ligand-binding domain of the GR through a region spanning amino acids 561-693. Further, CRTC2 is required for the glucocorticoid-associated cooperative mRNA expression of the glucose-6-phosphatase, a rate-limiting enzyme for hepatic gluconeogenesis, by facilitating the attraction of GR and itself to its promoter region already occupied by CREB. CRTC2 is required for the maintenance of blood glucose levels during fasting in mice by enhancing the GR transcriptional activity on both the G6p and phosphoenolpyruvate carboxykinase (Pepck) genes. Finally, CRTC2 modulates the transcriptional activity of the progesterone receptor, indicating that it may influence the transcriptional activity of other steroid/nuclear receptors. Taken together, these results reveal that CRTC2 plays an essential role in the regulation of hepatic gluconeogenesis through coordinated regulation of the glucocorticoid/GR- and glucagon/CREB-signaling pathways on the key genes G6P and PEPCK.
Collapse
Affiliation(s)
- Micah J Hill
- Program in Reproductive and Adult Endocrinology (M.J.H., S.S., J.H.S., T.K.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; Division of Reproductive Endocrinology and Infertility (M.J.H.), Walter Reed National Military Medical Center, Bethesda, Maryland 20889; Department of Pediatrics (S.S.), Asahikawa Medical University, Asahikawa 078-8510, Japan; Division of Reproductive Sciences and Women's Health Research (J.H.S.), Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205; and Department of Experimental Therapeutics (T.K.), Division of Experimental Biology, Sidra Medical and Research Center, Doha 26999, Qatar
| | - Shigeru Suzuki
- Program in Reproductive and Adult Endocrinology (M.J.H., S.S., J.H.S., T.K.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; Division of Reproductive Endocrinology and Infertility (M.J.H.), Walter Reed National Military Medical Center, Bethesda, Maryland 20889; Department of Pediatrics (S.S.), Asahikawa Medical University, Asahikawa 078-8510, Japan; Division of Reproductive Sciences and Women's Health Research (J.H.S.), Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205; and Department of Experimental Therapeutics (T.K.), Division of Experimental Biology, Sidra Medical and Research Center, Doha 26999, Qatar
| | - James H Segars
- Program in Reproductive and Adult Endocrinology (M.J.H., S.S., J.H.S., T.K.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; Division of Reproductive Endocrinology and Infertility (M.J.H.), Walter Reed National Military Medical Center, Bethesda, Maryland 20889; Department of Pediatrics (S.S.), Asahikawa Medical University, Asahikawa 078-8510, Japan; Division of Reproductive Sciences and Women's Health Research (J.H.S.), Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205; and Department of Experimental Therapeutics (T.K.), Division of Experimental Biology, Sidra Medical and Research Center, Doha 26999, Qatar
| | - Tomoshige Kino
- Program in Reproductive and Adult Endocrinology (M.J.H., S.S., J.H.S., T.K.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; Division of Reproductive Endocrinology and Infertility (M.J.H.), Walter Reed National Military Medical Center, Bethesda, Maryland 20889; Department of Pediatrics (S.S.), Asahikawa Medical University, Asahikawa 078-8510, Japan; Division of Reproductive Sciences and Women's Health Research (J.H.S.), Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205; and Department of Experimental Therapeutics (T.K.), Division of Experimental Biology, Sidra Medical and Research Center, Doha 26999, Qatar
| |
Collapse
|
9
|
Matsuoka H, Shima A, Kuramoto D, Kikumoto D, Matsui T, Michihara A. Phosphoenolpyruvate Carboxykinase, a Key Enzyme That Controls Blood Glucose, Is a Target of Retinoic Acid Receptor-Related Orphan Receptor α. PLoS One 2015; 10:e0137955. [PMID: 26383638 PMCID: PMC4575163 DOI: 10.1371/journal.pone.0137955] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/25/2015] [Indexed: 12/02/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes a committed and rate-limiting step in hepatic gluconeogenesis, and its activity is tightly regulated to maintain blood glucose levels within normal limits. PEPCK activity is primarily regulated through hormonal control of gene transcription. Transcription is additionally regulated via a cAMP response unit, which includes a cAMP response element and four binding sites for CCAAT/enhancer-binding protein (C/EBP). Notably, the cAMP response unit also contains a putative response element for retinoic acid receptor-related orphan receptor α (RORα). In this paper, we characterize the effect of the RORα response element on cAMP-induced transcription. Electrophoresis mobility shift assay indicates that RORα binds this response element in a sequence-specific manner. Furthermore, luciferase reporter assays indicate that RORα interacts with C/EBP at the PEPCK promoter to synergistically enhance transcription. We also found that cAMP-induced transcription depends in part on RORα and its response element. In addition, we show that suppression of RORα by siRNA significantly decreased PEPCK transcription. Finally, we found that a RORα antagonist inhibits hepatic gluconeogenesis in an in vitro glucose production assay. Taken together, the data strongly suggest that PEPCK is a direct RORα target. These results define possible new roles for RORα in hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Hiroshi Matsuoka
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
- * E-mail:
| | - Akiho Shima
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Daisuke Kuramoto
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Daisuke Kikumoto
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Takashi Matsui
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Akihiro Michihara
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| |
Collapse
|
10
|
Winiarska K, Jarzyna R, Dzik JM, Jagielski AK, Grabowski M, Nowosielska A, Focht D, Sierakowski B. ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity. Free Radic Biol Med 2015; 81:13-21. [PMID: 25601753 DOI: 10.1016/j.freeradbiomed.2014.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/27/2014] [Accepted: 12/26/2014] [Indexed: 01/11/2023]
Abstract
The aim of this study was to elucidate the mechanisms involved in the inhibition of renal gluconeogenesis occurring under conditions of lowered activity of NADPH oxidase (Nox), the enzyme considered to be one of the main sources of reactive oxygen species in kidneys. The in vitro experiments were performed on primary cultures of rat renal proximal tubules, with the use of apocynin, a selective Nox inhibitor, and TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a potent superoxide radical scavenger. In the in vivo experiments, Zucker diabetic fatty (ZDF) rats, a well established model of diabetes type 2, were treated with apocynin solution in drinking water. The main in vitro findings are the following: (1) both apocynin and TEMPOL attenuate the rate of gluconeogenesis, inhibiting the step catalyzed by phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the process; (2) in the presence of the above-noted compounds the expression of PEPCK and the phosphorylation of transcription factor CREB and ERK1/2 kinases are lowered; (3) both U0126 (MEK inhibitor) and 3-(2-aminoethyl)-5-((4-ethoxyphenyl)methylene)-2,4-thiazolidinedione (ERK inhibitor) diminish the rate of glucose synthesis via mechanisms similar to those of apocynin and TEMPOL. The observed apocynin in vivo effects include: (1) slight attenuation of hyperglycemia; (2) inhibition of renal gluconeogenesis; (3) a decrease in renal PEPCK activity and content. In view of the results summarized above, it can be concluded that: (1) the lowered activity of the ERK1/2 pathway is of importance for the inhibition of renal gluconeogenesis found under conditions of lowered superoxide radical production by Nox; (2) the mechanism of this phenomenon includes decreased PEPCK expression, resulting from diminished activity of transcription factor CREB; (3) apocynin-evoked inhibition of renal gluconeogenesis contributes to the hypoglycemic action of this compound observed in diabetic animals. Thus, the study has delivered some new insights into the recently discussed issue of the usefulness of Nox inhibition as a potential antidiabetic strategy.
Collapse
Affiliation(s)
- Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Robert Jarzyna
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jolanta M Dzik
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Adam K Jagielski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michal Grabowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agata Nowosielska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Dorota Focht
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Bartosz Sierakowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
11
|
Shen XB, Huang L, Zhang SH, Wang DP, Wu YL, Chen WN, Xu SH, Lin X. Transcriptional regulation of the apolipoprotein F (ApoF) gene by ETS and C/EBPα in hepatoma cells. Biochimie 2015; 112:1-9. [PMID: 25726912 DOI: 10.1016/j.biochi.2015.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Apolipoprotein F (ApoF) inhibits cholesteryl ester transfer protein (CETP) activity and plays an important role in lipid metabolism. In the present study, the full-length human ApoF promoter was cloned, and the molecular mechanism of the regulation of ApoF was investigated. The ApoF promoter displayed higher activities in hepatoma cell lines, and the -198 nt to +79 nt promoter region contained the maximum promoter activity. In the promoter region of -198 nt to -2 nt there were four putative binding sites for transcription factors ETS-1/ETS-2 (named EBS-1 to EBS-4) and one for C/EBP. Mutation of EBS-2, EBS4 and the C/EBP binding site abolished the promoter activity, and ETS-1/ETS-2 and C/EBPα could interact with corresponding binding sites. In addition, overexpression of ETS-1/2 or C/EBPα enhanced, while dominant-negative mutants of ETS-1/2 and knockdown of C/EBPα decreased, ApoF promoter activities. ETS-1 and C/EBPα associated physically, and acted synergistically to activate ApoF transcription. These results demonstrated combined activation of the ApoF promoter by liver-enriched and ubiquitous transcription factors. Direct interactions between C/EBPα and ETS-1 were important for high liver-specific expression of ApoF.
Collapse
Affiliation(s)
- Xue-Bin Shen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China
| | - Ling Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China
| | - Shao-Hong Zhang
- Department of Medical Laboratory, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China
| | - De-Ping Wang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Endocrinology and Metabolism, Hongqi Hospital of MuDanJiang Medical College, Mudanjiang, China
| | - Yun-Li Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wan-Nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shang-Hua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China.
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
12
|
Pan D, Mao C, Wang YX. Suppression of gluconeogenic gene expression by LSD1-mediated histone demethylation. PLoS One 2013; 8:e66294. [PMID: 23755305 PMCID: PMC3673910 DOI: 10.1371/journal.pone.0066294] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
Aberrant gluconeogenic gene expression is associated with diabetes, glycogen storage disease, and liver cancer. However, little is known how these genes are regulated at the chromatin level. In this study, we investigated in HepG2 cells whether histone demethylation is a potential mechanism. We found that knockdown or pharmacological inhibition of histone demethylase LSD1 causes remarkable transcription activation of two gluconeogenic genes, FBP1 and G6Pase, and consequently leads to increased de novo glucose synthesis and decreased intracellular glycogen content. Mechanistically, LSD1 occupies the promoters of FBP1 and G6Pase, and modulates their H3K4 dimethylation levels. Thus, our work identifies an epigenetic pathway directly governing gluconeogenic gene expression, which might have important implications in metabolic physiology and diseases.
Collapse
Affiliation(s)
- Dongning Pan
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Chunxiao Mao
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yong-Xu Wang
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yun YS, Noda S, Shigemori G, Kuriyama R, Takahashi S, Umemura M, Takahashi Y, Inoue H. Phenolic diterpenes from rosemary suppress cAMP responsiveness of gluconeogenic gene promoters. Phytother Res 2012; 27:906-10. [PMID: 22927089 DOI: 10.1002/ptr.4794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/22/2012] [Accepted: 07/15/2012] [Indexed: 11/10/2022]
Abstract
The cAMP/protein kinase A/cAMP response element (CRE)-binding protein pathway is important for various physiological aspects including regulation of gluconeogenic gene expression. Rosemary, a well-known herb, has been reported to decrease blood glucose levels. We found that methanol extracts of rosemary suppressed forskolin (FSK)-stimulated luciferase expression under the control of CRE, as well as the promoters for cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) and glucose-6-phosphatase (G6Pase) catalytic subunit genes in human hepatoma HepG2 cells. Three abietane-type diterpenes and two flavonoids were isolated from the rosemary extracts. Among these, 7-O-methylrosmanol (1) and royleanonic acid (3) effectively suppressed FSK-induced luciferase expression under the control of the CRE, PEPCK-C and G6Pase gene promoters. PEPCK-C and G6Pase, which play a key role in the homeostatic regulation of blood glucose levels, are important for managing type II diabetes mellitus. Therefore, the ability of rosemary and its components to suppress cAMP responsiveness of the PEPCK-C or G6Pase gene may contribute to its antihyperglycemic activity.
Collapse
Affiliation(s)
- Young Sook Yun
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The histone demethylase Jhdm1a regulates hepatic gluconeogenesis. PLoS Genet 2012; 8:e1002761. [PMID: 22719268 PMCID: PMC3375226 DOI: 10.1371/journal.pgen.1002761] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/30/2012] [Indexed: 11/19/2022] Open
Abstract
Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes. Histones are small proteins that are essential for packaging and ordering genetic information (DNA) into high-order chromatin structures. Methylation of specific lysine residues of histones alters chromatin structure, serving as an important epigenetic mechanism for regulation of gene expression. The dynamic nature of histone methylation is controlled by a balance of methyltransferases and demethylases. We have discovered here that the demethylase Jhdm1a negatively regulates gluconeogenesis (de novo glucose synthesis) through suppressing the expression of two rate-limiting gluconeogenic enzymes. Gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to hyperglycemia. Indeed, we have found that manipulation of Jhdm1a level in liver affects glucose production in normal mice and hyperglycemia in diabetic mice. Mechanistically, Jhdm1a actively removes dimethyl groups from histone H3K36 along the locus of a key gluconeogenic regulator, C/EBPα, which in turn results in decreased C/EBPα expression. Our findings thus identify histone demethylation as a novel regulatory mechanism for gluconeogenesis and have important implications for the treatment of diabetes.
Collapse
|
15
|
Schang AL, Quérat B, Simon V, Garrel G, Bleux C, Counis R, Cohen-Tannoudji J, Laverrière JN. Mechanisms underlying the tissue-specific and regulated activity of the Gnrhr promoter in mammals. Front Endocrinol (Lausanne) 2012; 3:162. [PMID: 23248618 PMCID: PMC3521148 DOI: 10.3389/fendo.2012.00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/28/2012] [Indexed: 01/27/2023] Open
Abstract
The GnRH receptor (GnRHR) plays a central role in the development and maintenance of reproductive function in mammals. Following stimulation by GnRH originating from the hypothalamus, GnRHR triggers multiple signaling events that ultimately stimulate the synthesis and the periodic release of the gonadotropins, luteinizing-stimulating hormone (LH) and follicle-stimulating hormones (FSH) which, in turn, regulate gonadal functions including steroidogenesis and gametogenesis. The concentration of GnRHR at the cell surface is essential for the amplitude and the specificity of gonadotrope responsiveness. The number of GnRHR is submitted to strong regulatory control during pituitary development, estrous cycle, pregnancy, lactation, or after gonadectomy. These modulations take place, at least in part, at the transcriptional level. To analyze this facet of the reproductive function, the 5' regulatory sequences of the gene encoding the GnRHR have been isolated and characterized through in vitro and in vivo approaches. This review summarizes results obtained with the mouse, rat, human, and ovine promoters either by transient transfection assays or by means of transgenic mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean-Noël Laverrière
- *Correspondence: Jean-Noël Laverrière, Physiologie de l’Axe Gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Sorbonne Paris Cité, Université Paris Diderot-Paris 7, Bâtiment Buffon, case courrier 7007, 4 rue MA Lagroua Weill-Hallé, 75205 Paris Cedex 13, France. e-mail:
| |
Collapse
|
16
|
Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol 2012; 44:33-45. [DOI: 10.1016/j.biocel.2011.10.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 12/17/2022]
|
17
|
Haque R, Chong NW, Ali F, Chaurasia SS, Sengupta T, Chun E, Howell JC, Klein DC, Iuvone PM. Melatonin synthesis in retina: cAMP-dependent transcriptional regulation of chicken arylalkylamine N-acetyltransferase by a CRE-like sequence and a TTATT repeat motif in the proximal promoter. J Neurochem 2011; 119:6-17. [PMID: 21790603 DOI: 10.1111/j.1471-4159.2011.07397.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arylalkylamine N-acetyltransferase (AANAT) is the key regulatory enzyme controlling the daily rhythm of melatonin biosynthesis. In chicken retinal photoreceptor cells, Aanat transcription and AANAT activity are regulated in part by cAMP-dependent mechanisms. The purpose of this study was to identify regulatory elements within the chicken Aanat promoter responsible for cAMP-dependent induction. Photoreceptor-enriched retinal cell cultures were transfected with a luciferase reporter construct containing up to 4 kb of 5'-flanking region and the first exon of Aanat. Forskolin treatment stimulated luciferase activity driven by the ∼4 kb promoter construct and by all 5'-deletion constructs except the smallest, Aanat (-217 to +120)luc. Maximal basal and forskolin-stimulated expression levels were generated by the Aanat (-484 to +120)luc construct. This construct lacks a canonical cyclic AMP-response element (CRE), but contains two other potentially important elements in its sequence: an eight times TTATT repeat (TTATT₈) and a CRE-like sequence. Electrophoretic mobility shift assays, luciferase reporter assays, chromatin immunoprecipitation, and siRNA experiments provide evidence that these elements bind c-Fos, JunD, and CREB to enhance basal and forskolin-stimulated Aanat transcription. We propose that the CRE-like sequence and TTATT₈ elements in the 484 bp proximal promoter interact to mediate cAMP-dependent transcriptional regulation of Aanat.
Collapse
Affiliation(s)
- Rashidul Haque
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim HJ, Jee HJ, Yun J. DNA damage induces down-regulation of PEPCK and G6P gene expression through degradation of PGC-1alpha. Acta Biochim Biophys Sin (Shanghai) 2011; 43:589-94. [PMID: 21733854 DOI: 10.1093/abbs/gmr053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hepatic gluconeogenesis plays a crucial role in glucose homeostasis. Although it is well established that various cellular processes are modulated by DNA damage, whether the DNA damage signaling pathway regulates gluconeogenesis has not yet been studied. In this study, we found that mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6P), key enzymes for gluconeogenesis, were dramatically decreased upon IR- and UV-irradiation. PEPCK and G6P promoter activities were also suppressed by IR- and UV-irradiation, suggesting that PEPCK and G6P gene transcription are down-regulated upon DNA damage. We also found that the protein level of PGC-1α, which is a critical transcription factor for PEPCK gene expression, is decreased upon UV-irradiation. The decreased PGC-1α protein level was abolished by MG132, a potent proteasome inhibitor, suggesting that PGC-1α is degraded through the ubiquitin-proteasome pathway upon UV-irradiation. These results reveal a novel link between glucose metabolism and the DNA damage signaling pathway and suggest a possible role for PEPCK and G6P in the DNA damage response.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714, South Korea
| | | | | |
Collapse
|
19
|
Abstract
Glucose homeostasis in mammals is achieved by the actions of counterregulatory hormones, namely insulin, glucagon and glucocorticoids. Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose when it is scarce in the blood. This process is catalysed by two rate-limiting enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) whose gene expression is regulated by hormones. Hormone response units (HRUs) present in the two genes integrate signals from various signalling pathways triggered by hormones. How such domains are arranged in the regulatory region of these two genes, how this complex regulation is accomplished and the latest advancements in the field are discussed in this review.
Collapse
|
20
|
Huang YF, Harrison JR, Kream BE. The Role of Proximal cAMP Responsive Element (CRE) in Parathyroid Hormone and cAMP Induction of Human Interleukin-6 Promoter Activity. J HARD TISSUE BIOL 2010. [DOI: 10.2485/jhtb.19.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Liu NC, Lin WJ, Yu IC, Lin HY, Liu S, Lee YF, Chang C. Activation of TR4 orphan nuclear receptor gene promoter by cAMP/PKA and C/EBP signaling. Endocrine 2009; 36:211-7. [PMID: 19618297 DOI: 10.1007/s12020-009-9220-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 04/30/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
In earlier studies, we had suggested that the fasting signal induces TR4 orphan nuclear receptor expression in vivo. The detailed mechanism(s), however, remain unclear. In this study, we found that cAMP/PKA, the mediator of fasting and glucagon signals, could induce TR4 gene expression that in turn modulates gluconeogenesis. Mechanistic dissection by in vitro studies in hepatocytes demonstrated that cAMP/PKA might trigger C/EBP alpha and beta binding to the selective cAMP response element, which is located at the TR4 promoter, thus inducing TR4 transcription. We also demonstrated that the binding activity of C/EBPs to the TR4 promoter is increased in response to cAMP treatment. Together, our data identified a new signaling pathway from the fasting signal --> cAMP/PKA --> C/EBP alpha and beta --> TR4 --> gluconeogenesis in hepatocytes; and suggested that TR4 could be an important regulator to control glucose homeostasis. The identification of activator(s)/inhibitor(s) or ligand(s) of TR4 may provide us an alternative way to control gluconeogenesis.
Collapse
Affiliation(s)
- Ning-Chun Liu
- George Whipple Laboratory for Cancer Research, Department of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Yang J, Reshef L, Cassuto H, Aleman G, Hanson RW. Aspects of the control of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem 2009; 284:27031-5. [PMID: 19636079 DOI: 10.1074/jbc.r109.040535] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jianqi Yang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4936, USA
| | | | | | | | | |
Collapse
|
23
|
Karamitri A, Shore AM, Docherty K, Speakman JR, Lomax MA. Combinatorial transcription factor regulation of the cyclic AMP-response element on the Pgc-1alpha promoter in white 3T3-L1 and brown HIB-1B preadipocytes. J Biol Chem 2009; 284:20738-52. [PMID: 19491401 DOI: 10.1074/jbc.m109.021766] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cold stress in rodents increases the expression of UCP1 and PGC-1alpha in brown and white adipose tissue. We have previously reported that C/EBPbeta specifically binds to the CRE on the proximal Pgc-1alpha promoter and increases forskolin-sensitive Pgc-1alpha and Ucp1 expression in white 3T3-L1 preadipocytes. Here we show that in mice exposed to a cold environment for 24 h, Pgc-1alpha, Ucp1, and C/ebpbeta but not C/ebpalpha or C/ebpdelta expression were increased in BAT. Conversely, expression of the C/EBP dominant negative Chop10 was increased in WAT but not BAT during cold exposure. Reacclimatization of cold-exposed mice to a warm environment for 24 h completely reversed these changes in gene expression. In HIB-1B, brown preadipocytes, forskolin increased expression of Pgc-1alpha, Ucp1, and C/ebpbeta early in differentiation and inhibited Chop10 expression. Employing chromatin immunoprecipitation, we demonstrate that C/EBPbeta, CREB, ATF-2, and CHOP10 are bound to the Pgc-1alpha proximal CRE, but CHOP10 does not bind in HIB-1B cell lysates. Forskolin stimulation and C/EBPbeta overexpression in 3T3-L1 cells increased C/EBPbeta and CREB but displaced ATF-2 and CHOP10 binding to the Pgc-1alpha proximal CRE. Overexpression of ATF-2 and CHOP10 in 3T3-L1 cells decreased Pgc-1alpha transcription. Knockdown of Chop10 in 3T3-L1 cells using siRNA increased Pgc-1alpha transcription, whereas siRNA against C/ebpbeta in HIB-1B cells decreased Pgc-1alpha and Ucp1 expression. We conclude that the increased cAMP stimulation of Pgc-1alpha expression is regulated by the combinatorial effect of transcription factors acting at the CRE on the proximal Pgc-1alpha promoter.
Collapse
Affiliation(s)
- Angeliki Karamitri
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD
| | | | | | | | | |
Collapse
|
24
|
Manna PR, Dyson MT, Stocco DM. Role of basic leucine zipper proteins in transcriptional regulation of the steroidogenic acute regulatory protein gene. Mol Cell Endocrinol 2009; 302:1-11. [PMID: 19150388 PMCID: PMC5006949 DOI: 10.1016/j.mce.2008.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 01/23/2023]
Abstract
The regulation of steroidogenic acute regulatory protein (StAR) gene transcription by cAMP-dependent mechanisms occurs in the absence of a consensus cAMP response element (CRE, TGACGTGA). This regulation is coordinated by multiple transcription factors that bind to sequence-specific elements located approximately 150 bp upstream of the transcription start site. Among the proteins that bind within this region, the basic leucine zipper (bZIP) family of transcription factors, i.e. CRE binding protein (CREB)/CRE modulator (CREM)/activating transcription factor (ATF), activator protein 1 (AP-1; Fos/Jun), and CCAAT enhancer binding protein beta (C/EBPbeta), interact with an overlapping region (-81/-72 bp) in the StAR promoter, mediate stimulus-transcription coupling of cAMP signaling and play integral roles in regulating StAR gene expression. These bZIP proteins are structurally similar and bind to DNA sequences as dimers; however, they exhibit discrete transcriptional activities, interact with several transcription factors and other properties that contribute in their regulatory functions. The 5'-flanking -81/-72 bp region of the StAR gene appears to function as a key element within a complex cAMP response unit by binding to different bZIP members, and the StAR promoter displays variable states of cAMP responsivity contingent upon the occupancy of these cis-elements with these transcription factors. The expression and activities of CREB/CREM/ATF, Fos/Jun and C/EBPbeta have been demonstrated to be mediated by a plethora of extracellular signals, and the phosphorylation of these proteins at several Ser and Thr residues allows recruitment of the transcriptional coactivator CREB binding protein (CBP) or its functional homolog p300 to the StAR promoter. This review will focus on the current level of understanding of the roles of selective bZIP family proteins within the complex series of processes involved in regulating StAR gene transcription.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
25
|
van Deursen D, Botma GJ, Jansen H, Verhoeven AJM. Down-regulation of hepatic lipase expression by elevation of cAMP in human hepatoma but not adrenocortical cells. Mol Cell Endocrinol 2008; 294:37-44. [PMID: 18675312 DOI: 10.1016/j.mce.2008.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 06/12/2008] [Accepted: 07/06/2008] [Indexed: 10/21/2022]
Abstract
Expression of hepatic lipase (HL) in the liver is reduced during prolonged fasting. This effect is mainly mediated via catecholamines, which signal through elevation of Ca(i)(2+) as well as cAMP. We have studied the effect of cAMP on HL expression in cell culture. Overnight incubation of HepG2 cells with 10-300microM 8-bromo-cyclic AMP resulted in a dose-dependent, up to 50% reduction in secretion of HL, but had no effect on secretion of alpha(1)-antitrypsin or overall protein synthesis. HL mRNA levels were decreased 1.5 fold, as determined by semi-quantitative and real-time RT-PCR. In HepG2 cells transiently transfected with human HL (-685/+13) or rat HL (-446/+9) promoter-reporter constructs, cAMP induced a similar dose-dependent suppression of HL promoter activity. cAMP responsiveness in HepG2 cells was mediated by a conserved 10-bp response element at -45/-36, that represents a potential binding site for CCAAT/enhancer-binding protein beta (C/EBPbeta). cAMP reduced expression of the 45kDa C/EBPbeta protein and binding of C/EBPbeta to the proximal promoter region of the human HL gene by 50%, as determined by immunoblotting and chromatin immunoprecipitation assay, respectively. In human H295R adrenocortical cells, cAMP failed to suppress HL promoter activity, and only slightly reduced C/EBPbeta expression. We conclude that the fall in HL expression during prolonged fasting may be mediated through elevation of cAMP and lowering of C/EBPbeta expression.
Collapse
Affiliation(s)
- Diederik van Deursen
- Department of Biochemistry, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | | | | | | |
Collapse
|
26
|
Chakravarty K, Cassuto H, Reshef L, Hanson RW. Factors That Control the Tissue-Specific Transcription of the Gene for Phosphoenolpyruvate Carboxykinase-C. Crit Rev Biochem Mol Biol 2008; 40:129-54. [PMID: 15917397 DOI: 10.1080/10409230590935479] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcription of the gene for PEPCK-C occurs in a number of mammalian tissues, with highest expression occurring in the liver, kidney cortex, and white and brown adipose tissue. Several hormones and other factors, including glucagon, epinephrine, insulin, glucocorticoids and metabolic acidosis, control this process in three responsive tissues, liver, adipose tissue, and kidney cortex. Expression of the gene in these three tissues in regulated in a different manner, responding to the specific physiological role of the tissue. The PEPCK-C gene promoter has been extensively studied and a number of regulatory regions identified that bind key transcription factors and render the gene responsive to hormonal and dietary stimuli. This review will focus on the control of transcription for the gene, with special emphasis on our current understanding of the transcription factors that are involved in the response of PEPCK-C gene in specific tissues. We have also reviewed the biological function of PEPCK-C in each of the tissues discussed in this review, in order to place the control of PEPCK-C gene transcription in the appropriate physiological context. Because of its extraordinary importance in mammalian metabolism and its broad pattern of tissue-specific expression, the PEPCK-C gene has become a model for studying the biological basis of the control of gene transcription.
Collapse
Affiliation(s)
- Kaushik Chakravarty
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | | | | | |
Collapse
|
27
|
Rozance PJ, Limesand SW, Barry JS, Brown LD, Thorn SR, LoTurco D, Regnault TRH, Friedman JE, Hay WW. Chronic late-gestation hypoglycemia upregulates hepatic PEPCK associated with increased PGC1alpha mRNA and phosphorylated CREB in fetal sheep. Am J Physiol Endocrinol Metab 2008; 294:E365-70. [PMID: 18056789 PMCID: PMC3857025 DOI: 10.1152/ajpendo.00639.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic glucose production is normally activated at birth but has been observed in response to experimental hypoglycemia in fetal sheep. The cellular basis for this process remains unknown. We determined the impact of 2 wk of fetal hypoglycemia during late gestation on enzymes responsible for hepatic gluconeogenesis, focusing on the insulin-signaling pathway, transcription factors, and coactivators that regulate gluconeogenesis. Hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNA increased 12-fold and 7-fold, respectively, following chronic hypoglycemia with no change in hepatic glycogen. Chronic hypoglycemia decreased fetal plasma insulin with no change in glucagon but increased plasma cortisol 3.5-fold. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha mRNA and phosphorylation of cAMP response element binding protein at Ser(133) were both increased, with no change in Akt, forkhead transcription factor FoxO1, hepatocyte nuclear factor-4alpha, or CCAAT enhancer binding protein-beta. These results demonstrate that chronic fetal hypoglycemia triggers signals that can activate gluconeogenesis in the fetal liver.
Collapse
Affiliation(s)
- Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Karamanlidis G, Karamitri A, Docherty K, Hazlerigg DG, Lomax MA. C/EBPβ Reprograms White 3T3-L1 Preadipocytes to a Brown Adipocyte Pattern of Gene Expression. J Biol Chem 2007; 282:24660-9. [PMID: 17584738 DOI: 10.1074/jbc.m703101200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
cAMP-dependent protein kinase induction of PPARgamma coactivator-1alpha (PGC-1alpha) and uncoupling protein 1 (UCP1) expression is an essential step in the commitment of preadipocytes to the brown adipose tissue (BAT) lineage. We studied the molecular mechanisms responsible for differential expression of PGC-1alpha in HIB1B (BAT) and 3T3-L1 white adipose tissue (WAT) precursor cell lines. In HIB1B cells PGC-1alpha and UCP1 expression is cAMP-inducible, but in 3T3-L1 cells, expression is reduced and is cAMP-insensitive. A proximal 264-bp PGC-1alpha reporter construct was cAMP-inducible only in HIB1B cells and was suppressed by site-directed mutagenesis of the proximal cAMP response element (CRE). In electrophoretic mobility shift assays, the transcription factors CREB and C/EBPbeta, but not C/EBPalpha and C/EBPdelta, bound to the CRE on the PGC-1alpha promoter region in HIB1B and 3T3-L1 cells. Chromatin immunoprecipitation studies demonstrated that C/EBPbeta and CREB bound to the CRE region in HIB1B and 3T3-L1 cell lysates. C/EBPbeta expression was induced by cAMP only in HIB1B cells, and overexpression of C/EBPbeta rescued cAMP-inducible PGC-1alpha and UCP1 expression in 3T3-L1 cells. These data demonstrate that differentiation of preadipocytes toward the BAT rather than the WAT phenotype is controlled in part by the action of C/EBPbeta on the CRE in PGC-1alpha proximal promoter.
Collapse
Affiliation(s)
- Georgios Karamanlidis
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 5UH, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Mortensen OH, Dichmann DS, Abrahamsen N, Grunnet N, Nishimura E. Identification of a novel human glucagon receptor promoter: regulation by cAMP and PGC-1alpha. Gene 2007; 393:127-36. [PMID: 17374560 DOI: 10.1016/j.gene.2007.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 01/26/2007] [Accepted: 01/30/2007] [Indexed: 11/25/2022]
Abstract
Previously we have demonstrated that glucagon receptor mRNA expression in cultured rat hepatocytes and pancreatic islets can be regulated by various factors, including cAMP; however, the regulation of the human glucagon receptor gene has not been well-defined. Here we have characterized the promoter regions of the human glucagon receptor gene. Primer extension studies yielded multiple products in both liver and pancreas, corresponding to transcription start sites situated at -166 and -477 relative to the start of translation, indicating two putative promoters. Both transcription start sites were found to be active, when sequence immediately upstream of the start sites were cloned into luciferase reporter constructs. The transcriptional activity of the proximal promoter, but not the distal promoter, could be inhibited approximately 50% by cAMP, indicating that the previously observed inhibitory effects of cAMP on glucagon receptor mRNA expression is mediated at the level of gene transcription. The cAMP-mediated downregulation of the proximal promoter was examined by deletion analysis in the human hepatoma cell line HepG2 and the cAMP responsiveness was found to be located in a region between 1051 and 1016 base pairs upstream of the transcription start site, which contains several putative cAMP responsive elements. Expression of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha), known to be upregulated in the liver by fasting, was found to abolish the cAMP-dependent downregulation of glucagon receptor mRNA expression in vitro, whereas overexpression of PGC-1beta had no effect.
Collapse
Affiliation(s)
- Ole Hartvig Mortensen
- Department of Medical Biochemistry and Genetics, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
30
|
Comer JE, Galindo CL, Zhang F, Wenglikowski AM, Bush KL, Garner HR, Peterson JW, Chopra AK. Murine macrophage transcriptional and functional responses to Bacillus anthracis edema toxin. Microb Pathog 2006; 41:96-110. [PMID: 16846716 DOI: 10.1016/j.micpath.2006.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/02/2006] [Accepted: 05/02/2006] [Indexed: 01/29/2023]
Abstract
Edema toxin (EdTx), which is a combination of edema factor and a binding moiety (protective antigen), is produced by Bacillus anthracis, the etiological agent of anthrax. EdTx is an adenylyl cyclase enzyme that converts adenosine triphosphate to adenosine-3',5'-monophosphate, resulting in interstitial edema seen in anthrax patients. We used GeneChip analysis to examine global transcriptional profiles of EdTx-treated RAW 264.7 murine macrophage-like cells and identified 71 and 259 genes whose expression was significantly altered by the toxin at 3 and 6h, respectively. Alteration in the expression levels of selected genes was confirmed by real time-reverse transcriptase polymerase chain reaction. The genes with up-regulated expression in macrophages in response to EdTx-treatment were known to be involved in inflammatory responses, regulation of apoptosis, adhesion, immune cell activation, and transcription regulation. Additionally, GeneChip analysis results implied that EdTx-induced activation of activator protein-1 (AP-1) and CAAAT/enhancer-binding protein-beta (C/EBP-beta). Gel shift assays were therefore performed, and an increase in the activities of both of these transcription factors was observed within 30 min. EdTx also inhibited tumor necrosis factor alpha production and crippled the phagocytic ability of the macrophages. This is the first report detailing the host cell global transcriptional responses to EdTx.
Collapse
Affiliation(s)
- Jason E Comer
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hoogenkamp M, Stallen JMP, Lamers WH, Gaemers IC. In vivo footprinting of the carbamoylphosphate synthetase I cAMP-response unit indicates important roles for FoxA and PKA in formation of the enhanceosome. Biochimie 2006; 88:1357-66. [PMID: 16824661 DOI: 10.1016/j.biochi.2006.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
The expression of carbamoylphosphate synthetase-I (CPS), the first and rate-determining enzyme of the urea cycle, is regulated at the transcriptional level by glucocorticoids and glucagon, the latter acting via cyclic AMP (cAMP). The hormonal response is mediated by a distal enhancer located 6.3 kb upstream of the transcription-start site. Within this enhancer, a cAMP-response unit (CRU) is responsible for mediating cAMP-dependent transcriptional activity. The CPS CRU contains binding sites for cAMP-response element (CRE)-binding protein (CRE-BP), forkhead box A (FoxA), CCAAT/enhancer-binding protein (C/EBP), and an unidentified protein P1. To gain insight in the protein-DNA interactions that activate the CPS CRU in living cells, we have employed in vivo footprinting assays. Comparison of the fibroblast cell line Rat-1 and the hepatoma cell lines FTO-2B and WT-8 showed that FoxA binds the CPS CRU constitutively in CPS-expressing cells only. Comparison of FTO-2B and WT-8 hepatoma cells, which only differ in cAMP responsiveness, demonstrated that the binding of the other transcription factors is dependent on cAMP-dependent protein kinase (PKA) activity. Finally, we observed a footprint between the CRE and the P1-binding site in the in vivo footprint assay that was not detectable by in vitro footprint assays, implying a major change in CRU-associated chromatin conformation upon CRU activation. These findings indicate that activation of the CRU is initiated in a tissue-specific manner by the binding of FoxA. When cellular cAMP and glucocorticoid levels increase, CRE-BP becomes activated, allowing the binding of the remaining transcription factors and the transactivation of the CPS promoter.
Collapse
Affiliation(s)
- M Hoogenkamp
- AMC Liver Centre, Academic Medical Centre, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Liu H, Tang JR, Choi YH, Napolitano M, Hockman S, Taira M, Degerman E, Manganiello VC. Importance of cAMP-response element-binding protein in regulation of expression of the murine cyclic nucleotide phosphodiesterase 3B (Pde3b) gene in differentiating 3T3-L1 preadipocytes. J Biol Chem 2006; 281:21096-21113. [PMID: 16702214 DOI: 10.1074/jbc.m601307200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Incubation of 3T3-L1 preadipocytes with isobutylmethylxanthine (IBMX), dexamethasone, and insulin, alone or in combination, demonstrated that IBMX, which increased cAMP-response element-binding protein (CREB) phosphorylation, was the predominant regulator of Pde3b expression. Real time PCR and immunoblotting indicated that in 3T3-L1 preadipocytes, IBMX-stimulated induction of Pde3b mRNA and protein was markedly inhibited by dominant-negative CREB proteins. By transfecting preadipocytes, differentiating preadipocytes, and HEK293A cells with luciferase reporter vectors containing different fragments of the 5'-flanking region of the Pde3b gene, we identified a distal promoter that contained canonical cis-acting cAMP-response elements (CRE) and a proximal, GC-rich promoter region, which contained atypical CRE. Mutation of the CRE sequences dramatically reduced distal promoter activity; H89 inhibited IBMX-stimulated CREB phosphorylation and proximal and distal promoter activities. Distal promoter activity was stimulated by IBMX and phorbol ester (PMA) in Raw264.7 monocytes, but only by IBMX in 3T3-L1 preadipocytes. Chromatin immunoprecipitation analyses with specific antibodies against CREB, phospho-CREB, and CBP/p300 (CREB-binding protein) showed that these proteins associated with both distal and proximal promoters and that interaction of phospho-CREB, the active form of CREB, with both Pde3b promoter regions was increased in IBMX-treated preadipocytes. These results indicate that CRE in distal and proximal promoter regions and activation of CREB proteins play a crucial role in transcriptional regulation of Pde3b expression during preadipocyte differentiation.
Collapse
Affiliation(s)
- Hanguan Liu
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jing Rong Tang
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Young Hun Choi
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria Napolitano
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Steven Hockman
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Masato Taira
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Eva Degerman
- Section for Molecular Signaling, Department of Cell and Molecular Biology, University of Lund, S-22100 Lund, Sweden
| | - Vincent C Manganiello
- Pulmonary/Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
33
|
Jones JO, Sommer M, Stamatis S, Arvin AM. Mutational analysis of the varicella-zoster virus ORF62/63 intergenic region. J Virol 2006; 80:3116-21. [PMID: 16501125 PMCID: PMC1395429 DOI: 10.1128/jvi.80.6.3116-3121.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The varicella-zoster virus (VZV) ORF62/63 intergenic region was cloned between the Renilla and firefly luciferase genes, which acted as reporters of ORF62 and ORF63 transcription, and recombinant viruses were generated that carried these reporter cassettes along with the intact native sequences in the repeat regions of the VZV genome. In order to investigate the potential contributions of cellular transregulatory proteins to ORF62 and ORF63 transcription, recombinant reporter viruses with mutations of consensus binding sites for six proteins within the intergenic region were also created. The reporter viruses were used to evaluate ORF62 and ORF63 transcription during VZV replication in cultured fibroblasts and in skin xenografts in SCIDhu mice in vivo. Mutations in putative binding sites for heat shock factor 1 (HSF-1), nuclear factor 1 (NF-1), and one of two cyclic AMP-responsive elements (CRE) reduced ORF62 reporter transcription in fibroblasts, while mutations in binding sites for HSF-1, NF-1, and octamer binding proteins (Oct-1) increased ORF62 reporter transcription in skin. Mutations in one CRE and the NF-1 site altered ORF63 transcription in fibroblasts, while mutation of the Oct-1 binding site increased ORF63 reporter transcription in skin. The effect of each of these mutations implies that the intact binding site sequence regulates native ORF62 and ORF63 transcription. Mutation of the only NF-kappaB/Rel binding site had no effect on ORF62 or ORF63 transcription in vitro or in vivo. The segment of the ORF62/63 intergenic region proximal to ORF63 was most important for ORF63 transcription, but mutagenesis also altered ORF62 transcription, indicating that this region functions as a bidirectional promoter. This first analysis of the ORF62/63 intergenic region in the context of VZV replication indicates that it is a dual promoter and that cellular transregulatory factors affect the transcription of these key VZV regulatory genes.
Collapse
Affiliation(s)
- Jeremy O Jones
- Department of Pediatrics, Stanford University, Stanford, California, USA.
| | | | | | | |
Collapse
|
34
|
Krones-Herzig A, Mesaros A, Metzger D, Ziegler A, Lemke U, Brüning JC, Herzig S. Signal-dependent control of gluconeogenic key enzyme genes through coactivator-associated arginine methyltransferase 1. J Biol Chem 2005; 281:3025-9. [PMID: 16330542 DOI: 10.1074/jbc.m509770200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Together with impaired glucose uptake in skeletal muscle, elevated hepatic gluconeogenesis is largely responsible for the hyperglycemic phenotype in type II diabetic patients. Intracellular glucocorticoid and cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent signaling pathways contribute to aberrant hepatic glucose production through the induction of gluconeogenic enzyme gene expression. Here we show that the coactivator-associated arginine methyltransferase 1 (CARM1) is required for cAMP-mediated activation of rate-limiting gluconeogenic phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) and glucose-6-phosphatase genes. Mutational analysis showed that CARM1 mediates its effect via the cAMP-responsive element within the PEPCK promoter, which is identified here as a CARM1 target in vivo. In hepatocytes, endogenous CARM1 physically interacts with cAMP-responsive element binding factor CREB and is recruited to the PEPCK and glucose-6-phosphatase promoters in a cAMP-dependent manner associated with increased promoter methylation. CARM1 might, therefore, represent a critical component of cAMP-dependent glucose metabolism in the liver.
Collapse
Affiliation(s)
- Anja Krones-Herzig
- Department of Molecular Metabolic Control, German Cancer Research Center Heidelberg, Heidelberg 69120, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Chin KT, Zhou HJ, Wong CM, Lee JMF, Chan CP, Qiang BQ, Yuan JG, Ng IOL, Jin DY. The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucleic Acids Res 2005; 33:1859-73. [PMID: 15800215 PMCID: PMC1072803 DOI: 10.1093/nar/gki332] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously characterized transcription factor LZIP to be a growth suppressor targeted by hepatitis C virus oncoprotein. In search of proteins closely related to LZIP, we have identified a liver-enriched transcription factor CREB-H. LZIP and CREB-H represent a new subfamily of bZIP factors. CREB-H activates transcription by binding to cAMP responsive element, box B, and ATF6-binding element. Interestingly, CREB-H has a putative transmembrane (TM) domain and it localizes ambiently to the endoplasmic reticulum. Proteolytic cleavage that removes the TM domain leads to nuclear translocation and activation of CREB-H. CREB-H activates the promoter of hepatic gluconeogenic enzyme phosphoenolpyruvate carboxykinase. This activation can be further stimulated by cAMP and protein kinase A. CREB-H transcript is exclusively abundant in adult liver. In contrast, the expression of CREB-H mRNA is aberrantly reduced in hepatoma tissues and cells. The enforced expression of CREB-H suppresses the proliferation of cultured hepatoma cells. Taken together, our findings suggest that the liver-enriched bZIP transcription factor CREB-H is a growth suppressor that plays a role in hepatic physiology and pathology.
Collapse
Affiliation(s)
- King-Tung Chin
- Department of Biochemistry, University of Hong KongHong Kong, China
| | - Hai-Jun Zhou
- Department of Biochemistry, University of Hong KongHong Kong, China
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100005, China
| | - Chun-Ming Wong
- Department of Pathology, Faculty of Medicine, University of Hong KongHong Kong, China
| | - Joyce Man-Fong Lee
- Department of Pathology, Faculty of Medicine, University of Hong KongHong Kong, China
| | - Ching-Ping Chan
- Department of Biochemistry, University of Hong KongHong Kong, China
| | - Bo-Qin Qiang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100005, China
| | - Jian-Gang Yuan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100005, China
| | - Irene Oi-lin Ng
- Department of Pathology, Faculty of Medicine, University of Hong KongHong Kong, China
| | - Dong-Yan Jin
- Department of Biochemistry, University of Hong KongHong Kong, China
- To whom correspondence should be addressed at Department of Biochemistry, The University of Hong Kong, 3rd Floor, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong. Tel: +852 2819 9491; Fax: +852 2855 1254;
| |
Collapse
|
36
|
Jagielski AK, Podszywałow-Bartnicka P, Derlacz RA, Bryła J. The role of intracellular cAMP in renal gluconeogenesis in view of differential action of various cAMP analogues. Arch Biochem Biophys 2005; 434:282-8. [PMID: 15639228 DOI: 10.1016/j.abb.2004.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/15/2004] [Indexed: 10/26/2022]
Abstract
Effects of various cAMP analogues on gluconeogenesis in isolated rabbit kidney tubules have been investigated. In contrast to N(6),2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (db-cAMP) and cAMP, which accelerate renal gluconeogenesis, 8-bromoadenosine-3',5'-cyclic monophosphate (Br-cAMP) and 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP) inhibit glucose production. Stimulatory action of cAMP and db-cAMP may be evoked by butyrate and purinergic agonists generated during their extracellular and intracellular metabolism resulting in an increase in flux through fructose-1,6-bisphosphatase and in consequence acceleration of the rate of glucose formation. On the contrary, Br-cAMP is poorly metabolized in renal tubules and induces a fall of flux through glyceraldehyde-3-phosphate dehydrogenase. The contribution of putative extracellular cAMP receptors to the inhibitory Br-cAMP action is doubtful in view of a decline of glucose formation in renal tubules grown in the primary culture supplemented with forskolin. The presented data indicate that in contrast to hepatocytes, in kidney-cortex tubules an increased intracellular cAMP level results in an inhibition of glucose production.
Collapse
Affiliation(s)
- Adam K Jagielski
- Department of Metabolic Regulation, Institute of Biochemistry, Warsaw University, Warsaw 02-096, Poland
| | | | | | | |
Collapse
|
37
|
Albina JE, Mahoney EJ, Daley JM, Wesche DE, Morris SM, Reichner JS. MACROPHAGE ARGINASE REGULATION BY CCAAT/ENHANCER-BINDING PROTEIN ?? Shock 2005; 23:168-72. [PMID: 15665733 DOI: 10.1097/01.shk.0000148054.74268.e2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Arginase activity is expressed by macrophages in healing wounds and other sites of inflammation and has been shown to modulate the synthesis of nitric oxide, polyamines, and collagen. The role of CCAAT/enhancer-binding protein beta (C/EBPbeta) in the regulation of macrophage arginase by different agonists was investigated using C/EBPbeta-/- and +/+ macrophage cell lines. 8-Bromo-cyclic adenosine monophosphate (8-Br-cAMP, 0.5 mM), recombinant murine interleukin 4 (rmIL-4, 20 U/mL), Escherichia coli lipopolysaccharide (100 ng/mL), and hypoxia (1% O2) induced arginase activity in C/EBPbeta+/+ macrophages, where enzyme activity correlated with arginase I protein. Only rmIL-4 increased arginase activity in C/EBPbeta-/- cells. Arginase II protein was expressed constitutively in wild-type and C/EBPbeta-/- cell lines and was unaltered by 8-Br-cAMP or rmIL-4. rmIL-4-stimulated immortalized C/EBPbeta-/- macrophages demonstrated higher nuclear signal transducer and activator of transcription-6 (STAT6) and phospho-STAT6 content than their +/+ counterparts. Validating the biological relevance of findings with the cell lines, additional experiments examined wound fluids and peritoneal macrophages from C/EBPbeta-/- mice and demonstrated that both contained less arginase activity than those from wild-type controls. Wounds in C/EBPbeta-/- animals showed signs of delayed maturation, as manifested by the persistence of neutrophils in the inflammatory infiltrate. Peritoneal macrophages from C/EBPbeta+/+ animals responded to 8-Br-cAMP and rmIL-4 with increased arginase activity, whereas those from C/EBPbeta-/- mice did not respond to cAMP. Results demonstrate a key mechanistic role for C/EBPbeta in the modulation of macrophage arginase I expression in vivo and in vitro.
Collapse
Affiliation(s)
- Jorge E Albina
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, 593 Eddy Streer Providence, RI 02903, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Gautier-Stein A, Mithieux G, Rajas F. A Distal Region Involving Hepatocyte Nuclear Factor 4α and CAAT/Enhancer Binding Protein Markedly Potentiates the Protein Kinase A Stimulation of the Glucose-6-Phosphatase Promoter. Mol Endocrinol 2005; 19:163-74. [PMID: 15388792 DOI: 10.1210/me.2004-0105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AbstractGlucose-6-phosphatase (Glc6Pase) is the last enzyme of gluconeogenesis and is only expressed in the liver, kidney, and small intestine. In these tissues, the mRNA and its activity are increased when cAMP levels increased (e.g. in fasting or diabetes). We first report that a proximal region (within −200 bp relative to the transcription start site) and a distal region (−694/−500 bp) are both required for a potent cAMP and a protein kinase A (PKA) responsiveness of the Glc6Pase promoter. Using different molecular approaches, we demonstrate that hepatocyte nuclear factor (HNF4α), CAAT/ enhancer-binding protein-α (C/EBPα), C/EBPβ, and cAMP response element-binding protein (CREB) are involved in the potentiated PKA responsiveness: in the distal region, via one HNF4α- and one C/EBP-binding sites, and in the proximal region, via two HNF4α and two CREB-binding sites. We also show that HNF4α, C/EBPα, and C/EBPβ are constitutively bound to the endogenous Glc6Pase gene, whereas CREB and CREB-binding protein (CBP) will be bound to the gene upon stimulation by cAMP. These data strongly suggest that the cAMP responsiveness of the Glc6Pase promoter requires a tight cooperation between a proximal and a distal region, which depends on the presence of several HNF4α-, C/EBP-, and CREB-binding sites, therefore involving an intricate association of hepatic and ubiquitous transcription factors.
Collapse
Affiliation(s)
- Amandine Gautier-Stein
- Institut National de la Santé et de la Recherche Médicale, Unité 449/Institut National de la Recherche Agronomique 1235/Université Claude Bernard Lyon 1, Insitut Fédératif de Recherche Laennec, 69372 Lyon cedex 08, France.
| | | | | |
Collapse
|
39
|
Xavier-Neto J, Pereira AC, Oliveira EM, Miyakawa AA, Junqueira ML, Krieger JE. Control of the rat angiotensin I converting enzyme gene by CRE-like sequences. Braz J Med Biol Res 2004; 37:1441-53. [PMID: 15448864 DOI: 10.1590/s0100-879x2004001000002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We characterized the role of potential cAMP-responsive elements (CRE) in basal and in induced angiotensin converting enzyme (ACE) gene promoter activity in order to shed light on the regulation of somatic ACE expression. We identified stimulators and repressors of basal expression between 122 and 288 bp and between 415 and 1303 bp upstream from the transcription start site, respectively, using a rabbit endothelial cell (REC) line. These regions also contained elements associated with the response to 8BrcAMP. When screening for CRE motifs we found pCRE, a proximal sequence between 209 and 222 bp. dCRE, a distal tandem of two CRE-like sequences conserved between rats, mice and humans, was detected between 834 and 846 bp. Gel retardation analysis of nuclear extracts of REC indicated that pCRE and dCRE bind to the same protein complexes as bound by a canonical CRE. Mutation of pCRE and dCRE in REC established the former as a positive element and the latter as a negative element. In 293 cells, a renal cell line, pCRE and dCRE are negative regulators. Co-transfection of ATF-2 or ATF-2 plus c-Jun repressed ACE promoter activity, suggesting that the ACE gene is controlled by cellular stress. Although mapping of cAMP responsiveness was consistent with roles for pCRE and dCRE, mutation analysis indicated that they were not required for cAMP responsiveness. We conclude that the basal activity of the somatic ACE promoter is controlled by proximal and distal CREs that can act as enhancers or repressors depending on the cell context.
Collapse
Affiliation(s)
- J Xavier-Neto
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas C. Aguiar 44, 05403-000 São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Poels J, Franssens V, Van Loy T, Martinez A, Suner MM, Dunbar SJ, De Loof A, Vanden Broeck J. Isoforms of cyclic AMP response element binding proteins in Drosophila S2 cells. Biochem Biophys Res Commun 2004; 320:318-24. [PMID: 15219829 DOI: 10.1016/j.bbrc.2004.05.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Indexed: 11/16/2022]
Abstract
Activation or inhibition of the cyclic AMP (cAMP)-protein kinase A (PKA) pathway can ultimately regulate the transcription of a variety of genes. In vertebrates, the best characterized nuclear targets of PKA are the 'cAMP response element' (CRE) binding proteins (CREB). Differences in the transcriptional response to this pathway between cells and tissues can be based on the presence of distinct CREB isoforms. In this context, we have now investigated the presence of different dCREB transcripts in a stable, embryonic insect cell line, i.e., Drosophila Schneider 2 (S2) cells. In addition, we have studied the possible effect of cellular cAMP- and Ca2+ increases on the expression of a luciferase reporter in cells transfected with a CRE-containing reporter gene construct. In combination with recent data from the literature, our results indicate that the regulation of CRE-dependent gene expression shows some important differences between insects and vertebrates.
Collapse
Affiliation(s)
- Jeroen Poels
- Laboratory for Developmental Physiology, Genomics and Proteomics, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Roman J, Ritzenthaler JD, Gil-Acosta A, Rivera HN, Roser-Page S. Nicotine and fibronectin expression in lung fibroblasts: implications for tobacco‐related lung tissue remodeling. FASEB J 2004; 18:1436-8. [PMID: 15247149 DOI: 10.1096/fj.03-0826fje] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tobacco-related lung diseases are associated with alterations in tissue remodeling and are characterized by increased matrix deposition. Among the matrix molecules found to be highly expressed in tobacco-related lung diseases is fibronectin, a cell adhesive glycoprotein implicated in tissue injury and repair. We hypothesize that nicotine, a component of tobacco, stimulates the expression of fibronectin in lung fibroblasts via the activation of intracellular signals that lead to increased fibronectin gene transcription. In support of this, we found that nicotine stimulated the expression of fibronectin in lung fibroblasts and that its stimulatory effect was associated with activation of protein kinase C and mitogen-activated protein kinases, increased levels of intracellular cAMP, and phosphorylation and DNA binding of the transcription factor CREB. Increased transcription of the gene was dependent on cAMP-response elements (CREs) present on the 5' end of its gene promoter. The stimulatory effect of nicotine on fibronectin expression was abolished by alpha-bungarotoxin, an inhibitor of alpha7 nicotinic acetylcholine receptors (alpha7 AChRs). Of note, nicotine increased the expression of alpha7 nAChRs on fibroblasts. Our data suggest that nicotine induces lung fibroblasts to produce fibronectin by stimulating alpha7 nAChR-dependent signals that regulate the transcription of the fibronectin gene.
Collapse
Affiliation(s)
- Jesse Roman
- Department of Medicine,Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael St., Suite 205-M, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
42
|
Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004; 56:291-330. [PMID: 15169930 DOI: 10.1124/pr.56.2.5] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the first part of our review (see Pharmacol Rev 2002;54:129-158), we discussed the basic principles of gene transcription and the complex interactions within the network of hepatocyte nuclear factors, coactivators, ligands, and corepressors in targeted liver-specific gene expression. Now we summarize the role of basic region/leucine zipper protein family members and particularly the albumin D site-binding protein (DBP) and the CAAT/enhancer-binding proteins (C/EBPs) for their importance in liver-specific gene expression and their role in liver function and development. Specifically, regulatory networks and molecular interactions were examined in detail, and the experimental findings summarized in this review point to pivotal roles of DBP and C/EBPs in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. These regulatory proteins are therefore of great importance in liver physiology, liver disease, and liver development. Furthermore, interpretation of the vast data generated by novel genomic platform technologies requires a thorough understanding of regulatory networks and particularly the hierarchies that govern transcription and translation of proteins as well as intracellular protein modifications. Thus, this review aims to stimulate discussions on directions of future research and particularly the identification of molecular targets for pharmacological intervention of liver disease.
Collapse
Affiliation(s)
- Harald Schrem
- Center for Drug Research and Medical Biotechnology, Fraunhofer Institut für Toxikologie und Experimentelle Medizin, Nicolai Fuchs Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
43
|
Hornbuckle LA, Everett CA, Martin CC, Gustavson SS, Svitek CA, Oeser JK, Neal DW, Cherrington AD, O'Brien RM. Selective stimulation of G-6-Pase catalytic subunit but not G-6-P transporter gene expression by glucagon in vivo and cAMP in situ. Am J Physiol Endocrinol Metab 2004; 286:E795-808. [PMID: 14722027 DOI: 10.1152/ajpendo.00455.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently compared the regulation of glucose-6-phosphatase (G-6-Pase) catalytic subunit and glucose 6-phosphate (G-6-P) transporter gene expression by insulin in conscious dogs in vivo (Hornbuckle LA, Edgerton DS, Ayala JE, Svitek CA, Neal DW, Cardin S, Cherrington AD, and O'Brien RM. Am J Physiol Endocrinol Metab 281: E713-E725, 2001). In pancreatic-clamped, euglycemic conscious dogs, a 5-h period of hypoinsulinemia led to a marked increase in hepatic G-6-Pase catalytic subunit mRNA; however, G-6-P transporter mRNA was unchanged. Here, we demonstrate, again using pancreatic-clamped, conscious dogs, that glucagon is a candidate for the factor responsible for this selective induction. Thus glucagon stimulated G-6-Pase catalytic subunit but not G-6-P transporter gene expression in vivo. Furthermore, cAMP stimulated endogenous G-6-Pase catalytic subunit gene expression in HepG2 cells but had no effect on G-6-P transporter gene expression. The cAMP response element (CRE) that mediates this induction was identified through transient transfection of HepG2 cells with G-6-Pase catalytic subunit-chloramphenicol acetyltransferase fusion genes. Gel retardation assays demonstrate that this CRE binds several transcription factors including CRE-binding protein and CCAAT enhancer-binding protein.
Collapse
Affiliation(s)
- Lauri A Hornbuckle
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, Fukamizu A. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem 2004; 279:23158-65. [PMID: 15047713 DOI: 10.1074/jbc.m314322200] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bile acid homeostasis is tightly controlled by the feedback mechanism in which an atypical orphan nuclear receptor (NR) small heterodimer partner (SHP) inactivates several NRs such as liver receptor homologue-1 and hepatocyte nuclear factor 4. Although NRs have been implicated in the transcriptional regulation of gluconeogenic genes, the effect of bile acids on gluconeogenic gene expression remained unknown. Here, we report that bile acids inhibit the expression of gluconeogenic genes, including glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase, and fructose 1,6-bis phosphatase in an SHP-dependent fashion. Cholic acid diet decreased the mRNA levels of these gluconeogenic enzymes, whereas those of SHP were increased. Reporter assays demonstrated that the promoter activity of phosphoenolpyruvate carboxykinase and fructose 1,6-bis phosphatase via hepatocyte nuclear factor 4, or that of G6Pase via the forkhead transcription factor Foxo1, was down-regulated by treatment with chenodeoxicholic acid and with transfected SHP. Remarkably, Foxo1 interacted with SHP in vivo and in vitro, which led to the repression of Foxo1-mediated G6Pase transcription by competition with a coactivator cAMP response element-binding protein-binding protein. These findings reveal a novel mechanism by which bile acids regulate gluconeogenic gene expression via an SHP-dependent regulatory pathway.
Collapse
Affiliation(s)
- Kazuyuki Yamagata
- Center for Tsukuba Advanced Research Alliance, Aspect of Functional Genomic Biology, Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Bachir LK, Garrel G, Lozach A, Laverrière JN, Counis R. The rat pituitary promoter of the neuronal nitric oxide synthase gene contains an Sp1-, LIM homeodomain-dependent enhancer and a distinct bipartite gonadotropin-releasing hormone-responsive region. Endocrinology 2003; 144:3995-4007. [PMID: 12933674 DOI: 10.1210/en.2002-0183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuronal nitric oxide synthase (NOS I) is expressed and hormonally regulated in rat anterior pituitary gonadotropes. In the present study, we investigated the mechanisms that underlie the constitutive and GnRH up-regulated activity of the pituitary exon 1p promoter of the NOS I gene in these cells. Through the use of 5'-deletions and transient transfections in L beta T2, a gonadotrope-derived cell line, we delineated a NOS I cell-specific (NCS) enhancer region (-73/-59) that is required for constitutive activity. Independently of the NCS enhancer, GnRH responsiveness is supported by a bipartite regulatory domain referred to as the GnRH response element I and II located between -33/-10 and -4/+4, the latter consisting of a cAMP-like response element. By combining transient transfections, gel shift, and supershift assays, we demonstrate that Sp1 and LIM-homeodomain-related protein bind the NCS enhancer, whereas cAMP response element binding protein and cAMP regulatory element modulator-like factors bind the GnRH response element II motif. We further show that factors involved in GnRH regulation are also implicated in constitutive activity, suggesting intimate links between constitutive and regulated promoter activity. We speculate that specific expression of the NOS I gene in gonadotropes together with its regulation by GnRH is suggestive of a critical participation of NOS I in gonadotrope function.
Collapse
Affiliation(s)
- Lydia K Bachir
- Signalisation Cellulaire, Régulation de Gènes et Physiologie de l'Axe Gonadotrope, Centre National de la Recherche Scientifique-Unité Mixte de Recherche 7079, Physiologie et Physiopathologie, Université Pierre et Marie Curie, 75252 Paris, France
| | | | | | | | | |
Collapse
|
46
|
Brenner S, Prösch S, Schenke-Layland K, Riese U, Gausmann U, Platzer C. cAMP-induced Interleukin-10 promoter activation depends on CCAAT/enhancer-binding protein expression and monocytic differentiation. J Biol Chem 2003; 278:5597-604. [PMID: 12493739 DOI: 10.1074/jbc.m207448200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanisms underlying the regulation of interleukin (IL)-10 transcription in monocytic cells by various stimuli during inflammation and the stress reaction are not fully understood. Recently, we provided evidence that stress-induced IL-10 promoter activation in monocytic cells is mediated by catecholamines via a cAMP-dependent signaling pathway including CREB/ATF (cAMP-responsive element binding protein/activating transcription factor) binding to two CRE motifs. However, the mutation of these sites diminished cAMP responsiveness by only 50%, suggesting a role for additional transcription factors and elements in the cAMP-dependent regulation of the human IL-10 promoter. Here, we analyze the functional role of one such factor, C/EBP, in two cell lines of myelomonocytic origin, THP-1 and HL-60, which are known to differ in their differentiation status and C/EBP protein content. We show that the level of basal as well as cAMP-stimulated IL-10 transcription depends on the expression of C/EBP alpha and beta and their binding to three motifs in the promoter/enhancer region. The C/EBP5 motif, which is located between the TATA-box and the translation start point, is essential for the C/EBP-mediated constitutive and most of the cAMP-stimulated expression as its mutation nearly abolished IL-10 promoter activity. Our results suggest a dominant role of C/EBP transcription factors relative to CREB/ATF in tissue-specific and differentiation-dependent IL-10 transcription.
Collapse
Affiliation(s)
- Susanne Brenner
- Institute of Anatomy II, Medical School, Friedrich Schiller University, D-07740 Jena, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Borger P, Black JL, Roth M. Asthma and the CCAAT-enhancer binding proteins: a holistic view on airway inflammation and remodeling. J Allergy Clin Immunol 2002; 110:841-6. [PMID: 12464948 DOI: 10.1067/mai.2002.130047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asthma is an airway disease with increasing prevalence characterized by intermittent reversible airway obstruction, airway inflammation, and airway wall remodeling. The disease is generally triggered by inhalation of allergens, but nonallergic asthma triggers are quite common. The pathogenesis of asthma is well documented, and a great deal of research has been carried out to elucidate the underlying mechanisms. A multitude of articles have focused on cells alleged to be involved in the pathogenesis, including circulating cells from the immunologic compartment (ie, eosinophils and T lymphocytes) and resident cells, such as fibroblasts, airway smooth muscle cells, and, more recently, the airway epithelium. Despite the enormous amount of research, it is still unclear what exactly causes asthma. A general feature of most studies is an enhanced activation status of asthmatic cells, suggesting a general defect with respect to regulation of cellular responses. Here we discuss the ubiquitous transcription factor family of CCAAT-enhancer binding proteins (C/EBPs) and its involvement in inflammation and proliferation. We propose that an imbalance of C/EBP isoform expression might lead to an enhanced activity of asthmatic cells and provide an overall hypothesis that both airway inflammation and remodeling can be conceived as the result of an imbalance of C/EBP isoform expression.
Collapse
Affiliation(s)
- Peter Borger
- Department of Pharmacology and the Woolcock Institute of Medical Research, Royal Prince Alfred Hospital, University of Sydney, Australia
| | | | | |
Collapse
|
48
|
Wilson HL, McFie PJ, Roesler WJ. Different transcription factor binding arrays modulate the cAMP responsivity of the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 2002; 277:43895-902. [PMID: 12237288 DOI: 10.1074/jbc.m203169200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP responsiveness of the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter is mediated by a cAMP response unit, which includes three CCAAT/enhancer-binding protein (C/EBPs) sites, and a cAMP response element (CRE). Because both the CRE-binding protein and several C/EBP isoforms can to bind to the CRE with similar affinity, a variety of transcription factor bindings arrays in the cAMP response unit are possible that may affect the protein kinase A (PKA) responsivity of the promoter. To explore this issue, we have designed PEPCK promoter variants that have the native cis-elements within the cAMP response unit replaced with one or more LexA- and/or GAL4-binding sites. We also engineered the corresponding C/EBP and CRE-binding protein chimeras, which have their basic region leucine zipper domains replaced with LexA or GAL4 DNA-binding domains. Using this approach, we have reconstituted the PKA responsiveness of permissive PEPCK promoters in hepatoma cells and have characterized the PKA responsivity of the promoter under defined transcription factor occupancy patterns. Furthermore, analysis of deletion mutants of C/EBPalpha indicated that the domains that mediate its constitutive and PKA-inducible activities vary depending on which cis-element it occupies on the PEPCK promoter. These results suggest that promoter context may influence which domains within a transcription factor are employed to mediate transactivation.
Collapse
Affiliation(s)
- Heather L Wilson
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
49
|
Zinke I, Schütz CS, Katzenberger JD, Bauer M, Pankratz MJ. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J 2002; 21:6162-73. [PMID: 12426388 PMCID: PMC137192 DOI: 10.1093/emboj/cdf600] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Revised: 08/12/2002] [Accepted: 09/20/2002] [Indexed: 11/12/2022] Open
Abstract
We have identified genes regulated by starvation and sugar signals in Drosophila larvae using whole-genome microarrays. Based on expression profiles in the two nutrient conditions, they were organized into different categories that reflect distinct physiological pathways mediating sugar and fat metabolism, and cell growth. In the category of genes regulated in sugar-fed, but not in starved, animals, there is an upregulation of genes encoding key enzymes of the fat biosynthesis pathway and a downregulation of genes encoding lipases. The highest and earliest activated gene upon sugar ingestion is sugarbabe, a zinc finger protein that is induced in the gut and the fat body. Identification of potential targets using microarrays suggests that sugarbabe functions to repress genes involved in dietary fat breakdown and absorption. The current analysis provides a basis for studying the genetic mechanisms underlying nutrient signalling.
Collapse
Affiliation(s)
| | | | | | | | - Michael J. Pankratz
- Institut für Genetik, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany
Corresponding author I.Zinke and C.Schütz contributed equally to this work
| |
Collapse
|
50
|
Berger A, Mutch DM, Bruce German J, Roberts MA. Dietary effects of arachidonate-rich fungal oil and fish oil on murine hepatic and hippocampal gene expression. Lipids Health Dis 2002; 1:2. [PMID: 12617750 PMCID: PMC139963 DOI: 10.1186/1476-511x-1-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Accepted: 10/21/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The functions, actions, and regulation of tissue metabolism affected by the consumption of long chain polyunsaturated fatty acids (LC-PUFA) from fish oil and other sources remain poorly understood; particularly how LC-PUFAs affect transcription of genes involved in regulating metabolism. In the present work, mice were fed diets containing fish oil rich in eicosapentaenoic acid and docosahexaenoic acid, fungal oil rich in arachidonic acid, or the combination of both. Liver and hippocampus tissue were then analyzed through a combined gene expression- and lipid- profiling strategy in order to annotate the molecular functions and targets of dietary LC-PUFA. RESULTS Using microarray technology, 329 and 356 dietary regulated transcripts were identified in the liver and hippocampus, respectively. All genes selected as differentially expressed were grouped by expression patterns through a combined k-means/hierarchical clustering approach, and annotated using gene ontology classifications. In the liver, groups of genes were linked to the transcription factors PPARalpha, HNFalpha, and SREBP-1; transcription factors known to control lipid metabolism. The pattern of differentially regulated genes, further supported with quantitative lipid profiling, suggested that the experimental diets increased hepatic beta-oxidation and gluconeogenesis while decreasing fatty acid synthesis. Lastly, novel hippocampal gene changes were identified. CONCLUSIONS Examining the broad transcriptional effects of LC-PUFAs confirmed previously identified PUFA-mediated gene expression changes and identified novel gene targets. Gene expression profiling displayed a complex and diverse gene pattern underlying the biological response to dietary LC-PUFAs. The results of the studied dietary changes highlighted broad-spectrum effects on the major eukaryotic lipid metabolism transcription factors. Further focused studies, stemming from such transcriptomic data, will need to dissect the transcription factor signaling pathways to fully explain how fish oils and arachidonic acid achieve their specific effects on health.
Collapse
Affiliation(s)
- Alvin Berger
- Metabolic and Genomic Regulation, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
- Current Address: Cytochroma, Inc., Manager Lipidomics™, 330 Cochrane Drive, Markham, Ontario, Canada
| | - David M Mutch
- Metabolic and Genomic Regulation, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
- Institut de Biologie Animale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - J Bruce German
- External Scientific Network, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
- Department of Food Science, University of California, Davis, CA 95616, USA
| | - Matthew A Roberts
- Metabolic and Genomic Regulation, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| |
Collapse
|