1
|
Xu X, Bai J, Liu K, Xiao L, Qin Y, Gao M, Liu Y. Association of Metabolic and Endocrine Disorders with Bovine Ovarian Follicular Cysts. Animals (Basel) 2023; 13:3301. [PMID: 37958056 PMCID: PMC10650672 DOI: 10.3390/ani13213301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
After estrus, when mature follicles fail to ovulate, they may further develop to form follicular cysts, affecting the normal function of ovaries, reducing the reproductive efficiency of dairy cows and causing economic losses to cattle farms. However, the key points of ovarian follicular cysts pathogenesis remain largely unclear. The purpose of the current research was to analyze the formation mechanism of ovarian follicular cysts from hormone and gene expression profiles. The concentrations of progesterone (P4), estradiol (E2), insulin, insulin-like growth factor 1 (IGF1), leptin, adrenocorticotropic hormone (ACTH) and ghrelin in follicle fluid from bovine follicular cysts and normal follicles were examined using enzyme-linked immunosorbent assay (ELISA) or 125I-labeled radioimmunoassay (RIA); the corresponding receptors' expression of theca interna cells was tested via quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the mRNA expression profiling was analyzed via RNA sequencing (RNA-seq). The results showed that the follicular cysts were characterized by significant lower E2, insulin, IGF1 and leptin levels but elevated ACTH and ghrelin levels compared with normal follicles (p < 0.05). The mRNA expressions of corresponding receptors, PGR, ESR1, ESR2, IGF1R, LEPR, IGFBP6 and GHSR, were similarly altered significantly (p < 0.05). RNA-seq identified 2514 differential expressed genes between normal follicles and follicular cysts. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis linked the ovarian steroidogenesis pathway, especially the STAR, 3β-HSD, CYP11A1 and CYP17A1 genes, to the formation of follicular cysts (p < 0.01). These results indicated that hormone metabolic disorders and abnormal expression levels of hormone synthesis pathway genes are associated with the formation of bovine ovarian follicular cysts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.X.); (J.B.); (K.L.); (L.X.); (Y.Q.); (M.G.)
| |
Collapse
|
2
|
Madsen JF, Amoushahi M, Choi CP, Bundgaard S, Heuck A, Lykke-Hartmann K. Inhibition of phosphodiesterase PDE8B reduces activation of primordial follicles in mouse ovaries. Mol Reprod Dev 2023; 90:378-388. [PMID: 37499226 DOI: 10.1002/mrd.23699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
In the ovaries, cyclic adenosine 3',5'-monophosphate (cAMP) is a second messenger supporting the generation of steroids. Phosphodiesterases (PDEs) are regulators of intracellular cAMP, and therefore, potential regulators of ovarian function. Interestingly, the family of PDE genes are differentially expressed in human oocytes and granulosa cells from primordial and primary follicles, suggesting diverse roles. In this study, we addressed the functions of PDE3B and PDE8B in primordial follicle regulation using inhibitors of PDE3B and PDE8B in murine ovary primary in vitro cultures. Inhibition of PDE8B in ovarian cultures prevented primordial follicle activation, while inhibition of PDE3B had no effect on follicle distribution in the ovary, under the tested conditions. As cAMP levels may increase steroid levels, we assessed the protein levels of the steroidogenic acute regulatory protein (StAR) and aromatase enzymes, and found that inhibition of PDE3B reduced StAR protein levels, whereas inhibition of PDE8 did not alter StAR expression in our murine ovary culture system conditions. Our results showed that ketotifen-induced inhibition of PDE8B can decrease primordial follicle activation, whereas we observed no effect of follicle distribution, when PDE3B was inhibited. Expression of the StaR enzyme was not altered when PDE8B was inhibited, which might reflect not sufficient inhibition by ketotifen to induce StAR alterations, or redundant mechanisms.
Collapse
Affiliation(s)
| | | | | | - Stine Bundgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anders Heuck
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Li SJ, Chang HM, Wang JH, Yang J, Leung PCK. The Interleukin-6 trans-signaling promotes progesterone production in human granulosa-lutein cells. Biol Reprod 2022; 106:953-967. [PMID: 35098302 DOI: 10.1093/biolre/ioac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
As a critical paracrine regulator of multiple reproductive functions, the cytokine interleukin-6 (IL-6) is expressed in human granulosa cells and can be detected in follicular fluid. At present, the functional role of IL-6 in the regulation of ovarian steroidogenesis is controversial. Moreover, the detailed molecular mechanisms by which IL-6 regulates the production of progesterone in human granulosa cells remain to be elucidated. In the present study, we used primary and immortalized human granulosa-lutein (hGL) cells to investigate the effects of IL-6 on progesterone synthesis and the underlying molecular mechanisms. We found that IL-6 trans-signaling by the combined addition of IL-6 and soluble IL-6 receptor (sIL-6Rα) induced StAR expression and progesterone production in hGL cells. Additionally, IL-6/sIL-6Rα activated the phosphorylation of Janus activated kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), and the cellular effects were abolished by AG490 (JAK2 inhibitor), C188–9 (STAT3 inhibitor), or siRNA-mediated knockdown of STAT3. IL-6 trans-signaling-induced activation of JAK2/STAT3 also upregulated the expression of suppressor of cytokine signaling 3 (SOCS3), which, in turn, negatively regulated the JAK2/STAT3 pathway by suppressing STAT3 activation and its downstream effects. Our findings provide insight into the molecular mechanisms by which IL-6 trans-signaling modulates steroidogenesis in hGL cells.
Collapse
Affiliation(s)
- Sai-Jiao Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jeremy H Wang
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
4
|
Dhole B, Gupta S, Kumar A. Triiodothyronine stimulates steroid and VEGF production in murine Leydig cells via cAMP-PKA pathway. Andrologia 2021; 53:e13972. [PMID: 33440041 DOI: 10.1111/and.13972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/28/2022] Open
Abstract
Thyroid hormones affect testicular development as well as functions like spermatogenesis and steroidogenesis, thereby influencing male fertility. Our group earlier showed that the stimulatory role of the thyroid hormone, T3 , on the production of vascular endothelial growth factor (VEGF) by murine Leydig cells is mediated by steroids and hypoxia-inducible factor-1 (HIF-1α). The current study further defines the signalling pathway(s) utilised by T3 to stimulate the production of steroids, VEGF and HIF-1α in mouse Leydig tumour cell line (MLTC-1). Specific inhibitors for different signalling molecules were used to study the role of cyclic AMP (cAMP), and its downstream mediators. Expression of VEGF and HIF-1α mRNA were measured by quantitative RT-PCR; VEGF secretion by ELISA; steroid secretion by radioimmunoassay and HIF-1α protein levels by western blotting. Inhibitors of adenylate cyclase (AC), protein kinase A (PKA), sarcoma kinase (SrcK), phosphoinositide 3-kinase (PI3K) and MAP kinase kinase (MEK1/2) abolished the T3 -induced increase in VEGF mRNA and protein levels. The same signalling molecules also mediated the increased production of steroids and HIF-1α protein in response to T3 . Therefore, it was concluded that T3 stimulates steroid secretion and HIF-1α protein in MLTC-1 cells through the AC-cAMP-PKA-PI3K-MEK pathway, which in turn stimulate VEGF production.
Collapse
Affiliation(s)
- Bodhana Dhole
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Anand Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Chemerin Impairs In Vitro Testosterone Production, Sperm Motility, and Fertility in Chicken: Possible Involvement of Its Receptor CMKLR1. Cells 2020; 9:cells9071599. [PMID: 32630345 PMCID: PMC7408590 DOI: 10.3390/cells9071599] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
The chemokine chemerin is a novel adipokine involved in the regulation of energy metabolism but also female reproductive functions in mammals. Its effects on male fertility are less studied. Here, we investigated the involvement of chemerin in chicken male reproduction. Indeed, the improvement of the sperm of roosters is a challenge for the breeders since the sperm quantity and quality have largely decreased for several years. By using specific chicken antibodies, here we show that chemerin and its main receptor CMKLR1 (chemokine-like receptor 1) are expressed within the chicken testis with the lowest expression in adults as compared to the embryo or postnatal stages. Chemerin and CMKLR1 are present in all testicular cells, including Leydig, Sertoli, and germinal cells. Using in vitro testis explants, we observed that recombinant chicken chemerin through CMKLR1 inhibits hCG (human chorionic gonadotropin) stimulated testosterone production and this was associated to lower 3βHSD (3beta-hydroxysteroid dehydrogenase) and StAR (steroidogenic acute regulatory protein) expression and MAPK ERK2 (Mitogen-Activated Protein Kinase Extracellular signal-regulated kinase 2) phosphorylation. Furthermore, we demonstrate that chemerin in seminal plasma is lower than in blood plasma, but it is negatively correlated with the percentage of motility and the spermatozoa concentration in vivo in roosters. In vitro, we show that recombinant chicken chemerin reduces sperm mass and individual motility in roosters, and this effect is abolished when sperm is pre-incubated with an anti-CMKLR1 antibody. Moreover, we demonstrate that fresh chicken sperm treated with chemerin and used for artificial insemination (AI) in hen presented a lower efficiency in terms of eggs fertility for the four first days after AI. Taken together, seminal chemerin levels are negatively associated with the rooster fertility, and chemerin produced locally by the testis or male tract could negatively affect in vivo sperm quality and testosterone production through CMKLR1.
Collapse
|
6
|
Abobaker H, Hu Y, Omer NA, Hou Z, Idriss AA, Zhao R. Maternal betaine suppresses adrenal expression of cholesterol trafficking genes and decreases plasma corticosterone concentration in offspring pullets. J Anim Sci Biotechnol 2019; 10:87. [PMID: 31827786 PMCID: PMC6862747 DOI: 10.1186/s40104-019-0396-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 11/30/2022] Open
Abstract
Background Laying hens supplemented with betaine demonstrate activated adrenal steroidogenesis and deposit higher corticosterone (CORT) in the egg yolk. Here we further investigate the effect of maternal betaine on the plasma CORT concentration and adrenal expression of steroidogenic genes in offspring pullets. Results Maternal betaine significantly reduced (P < 0.05) plasma CORT concentration and the adrenal expression of vimentin that is involved in trafficking cholesterol to the mitochondria for utilization in offspring pullets. Concurrently, voltage-dependent anion channel 1 and steroidogenic acute regulatory protein, the two mitochondrial proteins involved in cholesterol influx, were both down-regulated at mRNA and protein levels. However, enzymes responsible for steroid syntheses, such as cytochrome P450 family 11 subfamily A member 1 and cytochrome P450 family 21 subfamily A member 2, were significantly (P < 0.05) up-regulated at mRNA or protein levels in the adrenal gland of pullets derived from betaine-supplemented hens. Furthermore, expression of transcription factors, such as steroidogenic factor-1, sterol regulatory element-binding protein 1 and cAMP response element-binding protein, was significantly (P < 0.05) enhanced, together with their downstream target genes, such as 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, LDL receptor and sterol regulatory element-binding protein cleavage-activating protein. The promoter regions of most steroidogenic genes were significantly (P < 0.05) hypomethylated, although methyl transfer enzymes, such as AHCYL, GNMT1 and BHMT were up-regulated. Conclusions These results indicate that the reduced plasma CORT in betaine-supplemented offspring pullets is linked to suppressed cholesterol trafficking into the mitochondria, despite the activation of cholesterol and corticosteroid synthetic genes associated with promoter hypomethylation.
Collapse
Affiliation(s)
- Halima Abobaker
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yun Hu
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Nagmeldin A Omer
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,3College of Allied Medical Sciences, University of Nyala, 155 Nyala, Sudan
| | - Zhen Hou
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Abdulrahman A Idriss
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Ruqian Zhao
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| |
Collapse
|
7
|
Medwid S, Guan H, Yang K. Bisphenol A stimulates steroidogenic acute regulatory protein expression via an unknown mechanism in adrenal cortical cells. J Cell Biochem 2019; 120:2429-2438. [PMID: 30206973 DOI: 10.1002/jcb.27574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
Bisphenol A (BPA) is one of the most widespread endocrine disrupting chemicals in the environment. Exposure to BPA is known to be associated with disruption of steroidogenesis in reproductive tissues, but little is known about its effects on the adrenal gland. We previously showed that prenatal BPA exposure resulted in elevated plasma corticosterone levels concomitant with increased adrenal levels of steroidogenic acute regulatory protein (StAR), the rate-limiting step in steroidogenesis, in adult female mouse offspring. However, the molecular mechanisms underlying the BPA-induced StAR protein expression in the adrenal gland remain unknown. Therefore, the current study was designed to address this important question using the human cortical cell line, H295A cells, as an in vitro model system. We found that: (1) BPA increased StAR protein levels in a dose-dependent manner; (2) both estrogen receptor alpha (ERα)- and ERβ-specific agonists mimicked while the ER antagonist ICI abrogated the stimulatory effects of BPA on StAR protein levels; and (3) BPA did not alter StAR messenger RNA, 37kDa preprotein or protein half-life. Taken together, these findings demonstrate that BPA increases StAR protein levels through an unknown mechanism independent of StAR gene transcription, translation, and protein half-life. Furthermore, such effects are likely mediated by ERα and/or ERβ.
Collapse
Affiliation(s)
- Samantha Medwid
- Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Children's Health Research Institute & Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Haiyan Guan
- Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Children's Health Research Institute & Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Kaiping Yang
- Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Children's Health Research Institute & Lawson Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Gareis N, Huber E, Hein G, Rodríguez F, Salvetti N, Angeli E, Ortega H, Rey F. Impaired insulin signaling pathways affect ovarian steroidogenesis in cows with COD. Anim Reprod Sci 2018; 192:298-312. [DOI: 10.1016/j.anireprosci.2018.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023]
|
9
|
Kirk SE, Xie TY, Steyn FJ, Grattan DR, Bunn SJ. Restraint stress increases prolactin-mediated phosphorylation of signal transducer and activator of transcription 5 in the hypothalamus and adrenal cortex in the male mouse. J Neuroendocrinol 2017; 29. [PMID: 28425631 DOI: 10.1111/jne.12477] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/22/2017] [Accepted: 04/14/2017] [Indexed: 11/28/2022]
Abstract
Prolactin is a pleiotropic peptide hormone produced by the lactotrophs in the anterior pituitary. Its rate of secretion is primarily regulated by a negative-feedback mechanism where prolactin stimulates the activity of the tuberoinfundibular dopaminergic (TIDA) neurones, increasing their release of dopamine, which accesses the pituitary via the median eminence to suppress further prolactin secretion. In addition to its well established role in lactation, circulating prolactin is secreted in response to stress, although the mechanism by which this is achieved or its cellular targets remains unknown. In the present study, we show that 15 minutes of restraint stress causes an approximately seven-fold increase in circulating prolactin concentration in male mice. Monitoring prolactin receptor activation, using immunohistochemistry to determine the level and distribution of tyrosine phosphorylated signal transducer and activator of transcription 5 (pSTAT5), we show that this stress-induced increase in prolactin interacts with both central and peripheral targets. Restraint stress for 15 minutes significantly increased pSTAT5 staining in the arcuate nucleus, median eminence and the zona fasciculata of the adrenal cortex. In each case, this response was prevented by pretreating the animals with bromocriptine to block prolactin secretion from the pituitary. Interestingly, in contrast to many cells in the arcuate nucleus, stress reduced pSTAT5 staining of the TIDA neurones (identified by dual-labelling for tyrosine hydroxylase). This suggests that there is reduced prolactin signalling in these cells and thus potentially a decline in their inhibitory influence on prolactin secretion. These results provide evidence that prolactin secreted in response to acute stress is sufficient to activate prolactin receptors in selected target tissues known to be involved in the physiological adaptation to stress.
Collapse
Affiliation(s)
- S E Kirk
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - T Y Xie
- School of Biomedical Sciences, The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - F J Steyn
- School of Biomedical Sciences, The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - D R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - S J Bunn
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Liang D, Fan Z, Weng S, Jiao S, Wu Z, Zou Y, Tan X, Li J, Zhang P, You F. Characterization and expression of StAR2a and StAR2b in the olive flounder Paralichthys olivaceus. Gene 2017; 626:1-8. [PMID: 28479382 DOI: 10.1016/j.gene.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 02/03/2023]
Abstract
Steroidogenic acute regulatory protein 2 (StAR2) is a key protein in transporting cholesterol from the outer mitochondria membrane to the inner mitochondria membrane for sex steroid synthesis. In this study, two StAR2 gene isoforms, StAR2a and StAR2b, were isolated from the olive flounder Paralichthys olivaceus gonads. Semi-quantitative RT-PCR results indicated that their expression levels were higher in testis than those in ovary. StAR2a was mainly expressed in the thecal cells and ooplasm of ovary, and Leydig cells and spermatid of testis according to the results of in situ hybridization. The quantitative real-time PCR results showed that the expressions of StAR2a and StAR2b were high in undifferentiation gonads and differentiating testis, and then decreased in differentiated testis in the high temperature (28°C) and exogenous testosterone treatment groups. While, in the exogenous 17β-estradiol treatment group, both genes' expression levels were high in differentiating ovary, and then significantly decreased in differentiated ovary (P<0.05). StAR2a and StAR2b expression levels were significantly down-regulated in the cultured testis cells treated with the 75 and 150μM cAMP, but significantly up-regulated in the cultured testis cells treated with the 300μM cAMP (P<0.05). Moreover, their expression levels were significantly up-regulated by transfecting the cultured testis cells with pcDNA3.1-NR5a2 and pcDNA3.1-NR0b1 (P<0.05). Above study showed that expression of StAR2 was regulated by cAMP and the transcription factors, NR5a2 and NR0b1, indicating that StAR2 may have functions in flounder gonadal differentiation and maintenance.
Collapse
Affiliation(s)
- Dongdong Liang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Shenda Weng
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
11
|
Gu SH, Hsieh YC, Lin PL. Stimulation of orphan nuclear receptor HR38 gene expression by PTTH in prothoracic glands of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2016; 90:8-16. [PMID: 27090809 DOI: 10.1016/j.jinsphys.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
A complex signaling network appears to be involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs). Less is known about the genomic action of PTTH signaling. In the present study, we investigated the effect of PTTH on the expression of Bombyx mori HR38, an immediate early gene (IEG) identified in insect systems. Our results showed that treatment of B. mori PGs with PTTH in vitro resulted in a rapid increase in HR38 expression. Injection of PTTH into day-5 last instar larvae also greatly increased HR38 expression, verifying the in vitro effect. Cycloheximide did not affect induction of HR38 expression, suggesting that protein synthesis is not required for PTTH's effect. A mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor (U0126), and a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), partially inhibited PTTH-stimulated HR38 expression, implying the involvement of both the ERK and PI3K signaling pathways. When PGs were treated with agents that directly elevate the intracellular Ca(2+) concentration (either A23187 or thapsigargin), an increase in HR38 expression was also detected, indicating that Ca(2+) is involved in PTTH-stimulated HR38 gene expression. A Western blot analysis showed that PTTH treatment increased the HR38 protein level, and protein levels showed a dramatic increase during the later stages of the last larval instar. Expression of HR38 transcription in response to PTTH appeared to undergo development-specific changes. Treatment with ecdysone in vitro did not affect HR38 expression. However, 20-hydroxyecdysone treatment decreased HR38 expression. Taken together, these results demonstrate that HR38 is a PTTH-stimulated IEG that is, at least in part, induced through Ca(2+)/ERK and PI3K signaling. The present study proposes a potential cross talk mechanism between PTTH and ecdysone signaling to regulate insect development and lays a foundation for a better understanding of the mechanisms of PTTH's actions.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Yun-Chih Hsieh
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
12
|
Zheng Y, Chen J, Liu Y, Gao J, Yang Y, Zhang Y, Bing X, Gao Z, Liang H, Wang Z. Molecular mechanism of endocrine system impairment by 17α-methyltestosterone in gynogenic Pengze crucian carp offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:143-152. [PMID: 26938152 DOI: 10.1016/j.ecoenv.2015.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
The effects of synthetic androgen 17α-methyltestosterone (MT) on endocrine impairment were examined in crucian carp. Immature 7-month old mono-female Pengze crucian carp (Pcc) F2 offspring were exposed to 50 and 100 μg/L of MT (week 2, 4, and 8). Gonadosomatic index, hepatosomatic index and intestine weight altered considerably and oocyte development was repressed. In the treatment groups, ovarian 11-ketotestosterone decreased, whereas 17β-estradiol and testosterone increased, and ovarian aromatase activities increased at week 4. However, in the brain tissue, those values significantly decreased. Quantitative RT-PCR analysis demonstrated changes in steroid receptor genes and upregulation of steroidogenic genes (Pcc-3bhsd, Pcc-11bhsd2 Pcc-cyp11a1), while the other three steroidogenic genes (Pcc-cyp17a1, Pcc-cyp19a1a and Pcc-star) decreased from week 4 to week 8. Ovarian, hepatic Pcc-vtg B and vitellogenin concentration increased in both 50 and 100 μg/L of MT exposure groups. This study adds further information regarding the effects of androgens on the development of previtellogenic oocytes, which suggests that MT could directly target estrogen signaling pathway, or indirectly affect steroidogenesis and vitellogenesis.
Collapse
Affiliation(s)
- Yao Zheng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, HZAU, Wuhan 430070, China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yanping Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Key Open Laboratory of Ecological Environment and Resources of Inland Fisheries, Chinese Academy of Fishery Sciences, China; Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zexia Gao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, HZAU, Wuhan 430070, China
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Castillo AF, Orlando U, Helfenberger KE, Poderoso C, Podesta EJ. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Mol Cell Endocrinol 2015; 408:73-9. [PMID: 25540920 DOI: 10.1016/j.mce.2014.12.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 12/16/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity.
Collapse
Affiliation(s)
- Ana F Castillo
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Ulises Orlando
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Katia E Helfenberger
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Cecilia Poderoso
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina
| | - Ernesto J Podesta
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine University of Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), C1121ABG, Argentina.
| |
Collapse
|
14
|
Cooke M, Di Cónsoli H, Maloberti P, Cornejo Maciel F. Expression and function of OXE receptor, an eicosanoid receptor, in steroidogenic cells. Mol Cell Endocrinol 2013; 371:71-8. [PMID: 23159987 DOI: 10.1016/j.mce.2012.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
Hormonal regulation of steroidogenesis involves arachidonic acid (AA) metabolism through the 5-lipoxygenase pathway. One of the products, 5-hydroperoxy-eicosatetraenoic acid (5-HpETE), acts as a modulator of the activity of the steroidogenic acute regulatory (StAR) protein promoter. Besides, an oxoeicosanoid receptor of the leukotriene receptor family named OXE-R is a membrane protein with high affinity and response to 5-HpETE, among other AA derivatives. The aim of our work was to elucidate whether this receptor may be involved in steroidogenesis. RT-PCR and western blot analysis demonstrated the presence of the mRNA and protein of the receptor in human H295R adrenocortical cells. The treatment of H295R or MA-10 cells (murine Leydig cell line) with 8Br-cAMP together with docosahexaenoic acid (DHA, an antagonist of the receptor) partially reduced StAR induction and steroidogenesis. On the contrary, 5-oxo-ETE - the prototypical agonist, with higher affinity and potency on the receptor - increased cAMP-dependent steroid production, StAR mRNA and protein levels. These results lead us to conclude that AA might modulate StAR induction and steroidogenesis, at least in part, through 5-HpETE production and activation of a membrane receptor, such as the OXE-R.
Collapse
Affiliation(s)
- Mariana Cooke
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | | | | | | |
Collapse
|
15
|
Interleukin-8 stimulates progesterone production via the MEK pathway in ovarian theca cells. Mol Cell Biochem 2012; 374:157-61. [PMID: 23160800 DOI: 10.1007/s11010-012-1515-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
Interleukin 8 (IL-8) is a chemoattractant associated with ovulation in the mammalian ovary. This chemokine is also involved in the recruitment and activation of neutrophils. Using bovine tissue, we examined the possible role of IL-8 in steroid production by theca cells of the large ovarian follicles. IL-8 promoted progesterone production and stimulated StAR expression in cultured theca cells. The inhibitor of p38 did not disturb the P4 production and StAR expression in IL-8-treated theca cells. On the other hand, the inhibitor of MEK disturbed the P4 production and expression of StAR in theca cells treated with IL-8. These results suggest that IL-8 is associated with progesterone production in bovine theca cells via the MEK pathway.
Collapse
|
16
|
Ahn SW, Gang GT, Tadi S, Nedumaran B, Kim YD, Park JH, Kweon GR, Koo SH, Lee K, Ahn RS, Yim YH, Lee CH, Harris RA, Choi HS. Phosphoenolpyruvate carboxykinase and glucose-6-phosphatase are required for steroidogenesis in testicular Leydig cells. J Biol Chem 2012; 287:41875-87. [PMID: 23074219 DOI: 10.1074/jbc.m112.421552] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclic AMP (cAMP) induces steroidogenic enzyme gene expression and stimulates testosterone production in Leydig cells. Phosphoenolpyruvate carboxykinase (PEPCK) is expressed in Leydig cells, but its role has not been defined. In this study, we found that PEPCK and glucose-6-phosphatase (Glc-6-Pase) are increased significantly following cAMP treatment of mouse Leydig cells. Moreover, cAMP treatment increased recruitment of the cAMP-response element-binding transcription factor and decreased recruitment of the corepressor DAX-1 on the pepck promoter. Furthermore, cAMP induced an increase in ATP that correlated with a decrease in phospho-AMP-activated protein kinase (AMPK). In contrast, knockdown or inhibition of PEPCK decreased ATP and increased phospho-AMPK. Treatment with an AMPK activator or overexpression of the constitutively active form of AMPK inhibited cAMP-induced steroidogenic enzyme promoter activities and gene expression. Liver receptor homolog-1 (LRH-1) was involved in cAMP-induced steroidogenic enzyme gene expression but was inhibited by AMPK activation in Leydig cells. Additionally, inhibition or knockdown of PEPCK and Glc-6-Pase decreased cAMP-mediated induction of steroidogenic enzyme gene expression and steroidogenesis. Finally, pubertal mouse (8-week-old) testes and human chorionic gonadotropin-induced prepubertal mouse testes showed increased PEPCK and Glc-6-Pase gene expression. Taken together, these results suggest that induction of PEPCK and Glc-6-Pase by cAMP plays an important role in Leydig cell steroidogenesis.
Collapse
Affiliation(s)
- Seung Won Ahn
- National Creative Research Initiatives Center for Nuclear Receptor Signals, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu S, Qin F, Wang H, Wu T, Zhang Y, Zheng Y, Li M, Wang Z. Effects of 17α-ethinylestradiol and bisphenol A on steroidogenic messenger ribonucleic acid levels in the rare minnow gonads. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 122-123:19-27. [PMID: 22710023 DOI: 10.1016/j.aquatox.2012.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 05/20/2012] [Accepted: 05/24/2012] [Indexed: 06/01/2023]
Abstract
Previous studies showed that the endocrine disrupting chemicals (EDCs) affect reproductive physiology in teleosts. How the EDCs regulate gonadal steroidogenesis remains to be determined. The gonadal transcript changes of steroidogenic enzyme genes in adult rare minnow Gobiocypris rarus exposed to 17α-ethinylestradiol (EE2) and bisphenol A (BPA) were detected in the present study. The full-length cDNAs encoding steroidogenic enzymes, including steroidogenic acute regulatory protein (StAR), cytochrome P450-mediated side-chain cleavage enzyme (CYP11A1), 3β-hydroxysteroid dehydrogenase (3β-HSD), and cytochrome P450 17 A1 (CYP17A1) were isolated and characterized by RT-PCR and RACE methods. The homology and phylogenetic analyses of the amino acid sequences confirmed that the nucleotide sequences of these steroidogenic genes were correct. The mRNA tissue distribution results indicated that StAR, cyp11a1, and cyp17a1 mRNAs were mainly expressed in the gonads and 3β-HSD was mainly expressed in both the gonads and the brains. The 233 dpf adult G. rarus were exposed to EE2 (25ng/L) and BPA (5, 15, and 50 μg/L) dissolved in dimethyl sulfoxide (DMSO) or control for 7 days. The gonadal mRNA levels of StAR, cyp11a1, 3β-HSD, cyp17a1 and ovarian cytochrome P450 aromatase (cyp19a1a) were quantified by qRT-PCR. Our data indicated that 25 ng/L EE2 had different degrees of inhibitory effects on the expression of steroidogenic genes in the gonads. BPA at different levels caused concentration-specific effects on the mRNA expression of the steroidogenic genes. The transcripts of several ovarian steroidogenic genes were more sensitive to 15 μg/L BPA than that at other two levels. These findings suggest that EE2 could impair gonadal steroidogenesis by suppressing mRNA expression of steroidogenic genes and BPA could cause variations in gonadal steroidogenesis modulation with a potential consequence of compensation for the disturbance.
Collapse
Affiliation(s)
- Shaozhen Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Xue K, Liu JY, Murphy BD, Tsang BK. Orphan nuclear receptor NR4A1 is a negative regulator of DHT-induced rat preantral follicular growth. Mol Endocrinol 2012; 26:2004-15. [PMID: 23028064 DOI: 10.1210/me.2012-1200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nuclear receptor subfamily 4 group A member1 (NR4A1), an orphan nuclear receptor, is involved in the transcriptional regulation of thecal cell androgen biosynthesis and paracrine factor insulin-like 3 (INSL3) expression. Androgens are known to play an important regulatory role in ovarian follicle growth. Using a chronically androgenized rat model, a preantral follicle culture model and virus-mediated gene delivery, we examined the role and regulation of NR4A1 in the androgenic control of preantral follicular growth. In the present study, Ki67 staining was increased in preantral follicles on ovarian sections from 5α-dihydrotestosterone (DHT)-treated rats. Preantral follicles from DHT-treated rats cultured for 4 d exhibited increased growth and up-regulation of mRNA abundance of G(1)/S-specific cyclin-D2 (Ccnd2) and FSH receptor (Fshr). Similarly, DHT (1 μm) increased preantral follicular growth and Ccnd2 and Fshr mRNA abundance in vitro. The NR4A1 expression was high in theca cells and was down-regulated by DHT in vivo and in vitro. Forced expression of NR4A1 augmented preantral follicular growth, androstenedione production, and Insl3 expression in vitro. Inhibiting the action of androgen (with androgen receptor antagonist flutamide) or INSL3 (with INSL3 receptor antagonist INSL3 B-chain) reduced NR4A1-induced preantral follicular growth. Furthermore, NR4A1 overexpression enhanced DHT-induced preantral follicular growth, a response attenuated by inhibiting INSL3. In conclusion, DHT promotes preantral follicular growth and attenuates thecal NR4A1 expression in vivo and in vitro. Our findings are consistent with the notion that NR4A1 serves as an important point of negative feedback to minimize the excessive preantral follicle growth in hyperandrogenism.
Collapse
Affiliation(s)
- Kai Xue
- State Key Laboratory in Reproductive Medicine, Centre for Clinical Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | | | | | | |
Collapse
|
19
|
Ishii T, Mitsui T, Suzuki S, Matsuzaki Y, Hasegawa T. A genome-wide expression profile of adrenocortical cells in knockout mice lacking steroidogenic acute regulatory protein. Endocrinology 2012; 153:2714-23. [PMID: 22529212 DOI: 10.1210/en.2011-1627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steroidogenic acute regulatory protein (StAR) facilitates cholesterol transfer into the inner mitochondrial membrane in the acute phase of steroidogenesis. Mice lacking StAR (Star(-/-)) share phenotypes with human individuals having congenital lipoid adrenal hyperplasia including compromised production of steroid hormones and florid accumulation of cholesterol esters in adrenal glands and gonads. To define a specific pattern of molecular changes with StAR deficiency, we performed transcriptome analysis of adrenal cells selectively isolated by fluorescent-activated cell sorting at embryonic d 17.5 or 18.5 in seven wild-type (Star(+/+)) or four Star(-/-) mice having the transgene targeting the enhanced green fluorescent protein to cell lineages that express StAR. A gene expression profile was obtained by whole-mouse genome microarray and confirmed by quantitative real-time PCR, identifying 1206 and 767 significantly up-regulated and down-regulated genes, respectively, in Star(-/-) mice compared with Star(+/+) mice (fold difference ≥ 2 and P value < 0.05 with false discovery rate < 0.2). In Star(-/-) mice, expression levels of genes involved in cholesterol efflux and the inflammatory response were significantly up-regulated, whereas those related to steroid hormone biosynthesis or cholesterol biosynthesis and influx were not significantly changed. Immunoreactive Iba1 or F4/80 (macrophage marker) in adrenal glands of Star(-/-) mice was detected not only in an increased number of resident macrophages but also in most adrenocortical cells. These findings expand our understanding of the pathophysiology of adrenal glands with the disruption of StAR and propose a reciprocal interaction between adrenocortical cells and resident macrophages inside adrenal glands of Star(-/-) mice.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582, Japan.
| | | | | | | | | |
Collapse
|
20
|
Walsh SW, Mehta JP, McGettigan PA, Browne JA, Forde N, Alibrahim RM, Mulligan FJ, Loftus B, Crowe MA, Matthews D, Diskin M, Mihm M, Evans ACO. Effect of the metabolic environment at key stages of follicle development in cattle: focus on steroid biosynthesis. Physiol Genomics 2012; 44:504-17. [PMID: 22414914 DOI: 10.1152/physiolgenomics.00178.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cellular mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovarian follicle in cattle with a compromised metabolic status are largely unknown. To gain insight into the main metabolic mechanisms affecting preovulatory follicle function, two different animal models were used. Experiment 1 compared Holstein-Friesian nonlactating heifers (n = 17) and lactating cows (n = 16) at three stages of preovulatory follicle development: 1) newly selected dominant follicle in the luteal phase (Selection), 2) follicular phase before the LH surge (Differentiation), and 3) preovulatory phase after the LH surge (Luteinization). Experiment 2 compared newly selected dominant follicles in the luteal phase in beef heifers fed a diet of 1.2 times maintenance (M, n = 8) or 0.4 M (n = 11). Lactating cows and 0.4 M beef heifers had higher concentrations of β-hydroxybutyrate, and lower concentrations of glucose, insulin, and IGF-I compared with dairy heifers and 1.2 M beef heifers, respectively. In lactating cows this altered metabolic environment was associated with reduced dominant follicle estradiol and progesterone synthesis during Differentiation and Luteinization, respectively, and in 0.4 M beef heifers with reduced dominant follicle estradiol synthesis. Using a combination of RNA sequencing, Ingenuity Pathway Analysis, and qRT-PCR validation, we identified several important molecular markers involved in steroid biosynthesis, such as the expression of steroidogenic acute regulatory protein (STAR) within developing dominant follicles, to be downregulated by the catabolic state. Based on this, we propose that the adverse metabolic environment caused by lactation or nutritional restriction decreases preovulatory follicle function mainly by affecting cholesterol transport into the mitochondria to initiate steroidogenesis.
Collapse
Affiliation(s)
- S W Walsh
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nair PMG, Choi J. Effects of cadmium chloride and nonylphenol on the expression of StAR-related lipid transfer domain containing protein (START1) gene in aquatic midge, Chironomus riparius. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:369-74. [PMID: 22056801 DOI: 10.1016/j.cbpc.2011.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 11/22/2022]
Abstract
We identified and characterized a partial cDNA of StAR-related lipid transfer domain containing protein gene from Chironomus riparius (CrSTART1) having homology with human MLN64 and Drosophila melanogaster START1 (DmSTART1) and evaluated the effects of cadmium chloride (Cd) and nonylphenol (NP) on its expression. Pfam analysis identified the presence of two StAR-related lipid transfer (START) domains in CrSTART1 having several conserved amino acid residues, characteristic of the MLN64 and DmSTART1. The mRNA expression of CrSTART1 was observed in all developmental stages. The modulation in the mRNA expression of CrSTART1 was investigated after exposure to different concentrations Cd (0, 2, 10, and 20 mg/L) and NP (0, 10, 50, and 100 μg/L) for different time intervals in fourth instar larvae of C. riparius. Significant downregulation of CrSTART1 mRNA was observed after exposure to 2, 10 and 20 mg/L of Cd for 24, 48 and 72 h. Significant upregulation of CrSTART1 was observed after exposure to 10 and 50 μg/L of NP for 24, and 48 h period. At 100 μg/L of NP significant upregulation of CrSTART1 was observed after 12 h and downregulated after 24, 48 and 72 h.
Collapse
Affiliation(s)
- Prakash M Gopalakrishnan Nair
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | | |
Collapse
|
22
|
Mechanistic profiling of the cAMP-dependent steroidogenic pathway in the H295R endocrine disrupter screening system: new endpoints for toxicity testing. Toxicol Lett 2011; 208:174-84. [PMID: 22079614 DOI: 10.1016/j.toxlet.2011.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 01/26/2023]
Abstract
The need for implementation of effects on steroid synthesis and hormone processing in screening batteries of endocrine disruptive compounds is widely acknowledged. In this perspective, hormone profiling in the H295R adrenocortical cell system is extensively examined and recently OECD validated (TG 456) as a replacement of the minced testis assay. To further elucidate the complete mechanisms and endocrine responsiveness of this cell system, microarray-based gene expression profiling of the cAMP response pathway, one of the major pathways in steroidogenesis regulation, was examined in H295R cells. Next to the steroid synthesis pathway, a broader lipid metabolic pathway, including cholesterol uptake/biosynthesis, hormone metabolization and many hormone and nuclear receptors, are sensitive towards cAMP stimulation in this cell system. Moreover, these pathways were clearly dose and time responsive, indicating early regulation (10 h) of cholesterol uptake and mobilization genes and later expression (24-48 h) of cholesterol biosynthesis and steroid synthesis. Transcription network analysis suggested several important transcription factors that could be involved in regulation of the steroid hormone pathway, of which HNF4α, a broader lipid metabolism related transcription factor, might indicate some new transcription regulation patterns in this cell line. Overall we can conclude that the time dependent gene expression patterns of the strongly coordinated cholesterol supply and steroidogenesis pathways in the H295R cell system seem to reflect well the in vivo ACTH/cAMP signalling cascade in adrenal cells. Moreover, the completeness of the steroidogenic related pathways in terms of gene expression sensitivity, indicates the H295R cell line as a promising cell line in omics-based endocrine disruption screening.
Collapse
|
23
|
Kojić Z, Scepanovic LJ, Kostić T. Immobilization stress reduces oxygen consumption of the isolated interstitial rats' testes cells. ACTA ACUST UNITED AC 2011; 98:45-50. [PMID: 21388930 DOI: 10.1556/aphysiol.98.2011.1.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effects of acute and repeated immobilization stress on oxygen consumption (QO2) of the isolated interstitial rats' testes cells (ISC). The oxygen consumption by ISC testes was measured in vitro with a Clark-type oxygen electrode. Acute immobilization stress (2 h) induced decrease in QO2 (-49% V4, -31% V3) which was statistically significant (p<0.01). Repeated immobilization stress (2 hours daily for 10 consecutive days) induced a fall in QO2 (-10% V4, -4% V3) but this inhibition of respiration was not statistically significant (p>0.05). The mechanisms by which immobilization stress induces mitochondrial dysfunction as well as mechanisms which develop an adaptive response to repeated immobilization remain unclear, so that further investigations of this mechanisms are required.
Collapse
Affiliation(s)
- Zvezdana Kojić
- University of Belgrade, Institute of Physiology, School of Medicine, Belgrade, Serbia.
| | | | | |
Collapse
|
24
|
Tsagué Manfo FP, Chao WF, Moundipa PF, Pugeat M, Wang PS. Effects of maneb on testosterone release in male rats. Drug Chem Toxicol 2011; 34:120-8. [DOI: 10.3109/01480545.2010.482589] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Karri S, G V. Effect of methotrexate and leucovorin on female reproductive tract of albino rats. Cell Biochem Funct 2010; 29:1-21. [DOI: 10.1002/cbf.1711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Contribution of Potassium in Human Placental Steroidogenesis. Placenta 2010; 31:860-6. [DOI: 10.1016/j.placenta.2010.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/04/2010] [Accepted: 07/17/2010] [Indexed: 11/22/2022]
|
27
|
Paden NE, Carr JA, Kendall RJ, Wages M, Smith EE. Expression of steroidogenic acute regulatory protein (StAR) in male American bullfrog (Rana catesbeiana) and preliminary evaluation of the response to TNT. CHEMOSPHERE 2010; 80:41-45. [PMID: 20416921 DOI: 10.1016/j.chemosphere.2010.03.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/12/2010] [Accepted: 03/28/2010] [Indexed: 05/29/2023]
Abstract
We examined the expression of steroidogenic acute regulatory (StAR) protein mRNA in the American bullfrog (Rana catesbeiana). Primers and probes were designed to obtain a partial sequence of bullfrog StAR cDNA consisting of 349 base pairs. Quantitative PCR analysis of StAR mRNA equivalents was performed in tissues of juvenile and adult bullfrogs. In this study 18S mRNA was used as an internal standard. There were no differences in the expression of 18S RNA among tissues or between age groups. In juvenile males, the rank order for the constitutive levels of StAR was testes>skin>brain>kidneys. In adult males, StAR mRNA equivalent was greatest in testes, followed by kidneys, brain, and skin. In addition, stimulation and induction of testicular StAR by human chorionic gonadotropin significantly increased expression of StAR at 2, 4, and 6h after injection. Preliminary evaluation of 2, 4, 6-trinitrotoluene (TNT) revealed that acute exposure is associated with reduction of StAR mRNA expression. The information provided in this study will be useful for future research on StAR gene expression in amphibian reproductive biology and the development of reproductive biomarkers.
Collapse
|
28
|
Kocerha J, Prucha MS, Kroll KJ, Steinhilber D, Denslow N. Regulation of steroidogenic acute regulatory protein transcription in largemouth bass by orphan nuclear receptor signaling pathways. Endocrinology 2010; 151:341-9. [PMID: 19906818 PMCID: PMC2803149 DOI: 10.1210/en.2009-0551] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The steroidogenic acute regulatory (StAR) protein mediates the rate-limiting step of mitochondrial transport of cholesterol for steroid biosynthesis. To investigate the regulation of this protein in lower vertebrates, we cloned the StAR coding region from large-mouth bass for analysis. Induction of the mRNA corresponded with increasing levels of plasma sex steroids in vivo. Cultures of largemouth bass ovarian follicles were exposed to dibutyryl cAMP (dbcAMP), a potent signaling molecule for steroidogenesis. StAR mRNA expression was significantly up-regulated by dbcAMP signaling, suggesting that the 5' regulatory region of the gene is functionally conserved. To further analyze its transcriptional regulation, a 2.9-kb portion of the promoter was cloned and transfected into Y-1 cells, a steroidogenic mouse adrenocortical cell line. The promoter activity was induced in a dose-responsive manner upon stimulation with dbcAMP; however, deletion of 1 kb from the 5' end of the promoter segment significantly diminished the transcriptional activation. A putative retinoic acid-related receptor-alpha/rev-erb alpha element was identified between the -1.86- and -2.9-kb region and mutated to assess its potential role in dbcAMP regulation of the promoter. Mutation of the rev-erb alpha element significantly impeded dbcAMP-induced activation. Chromatin immunoprecipitation and EMSA results revealed rev-erb alpha and retinoic acid-related receptor-alpha enrichment at the site under basal and dbcAMP-induced conditions, respectively. These results implicate important roles for these proteins previously uncharacterized for the StAR promoter. Altogether these data suggest novel regulatory mechanisms for dbcAMP up-regulation of StAR transcription in the distal part of the largemouth bass promoter.
Collapse
MESH Headings
- Animals
- Bass/genetics
- Bass/metabolism
- Cells, Cultured
- Cloning, Molecular
- Female
- Gene Expression Regulation
- Mice
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/physiology
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/physiology
- Orphan Nuclear Receptors/metabolism
- Orphan Nuclear Receptors/physiology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic
- Signal Transduction/genetics
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Jannet Kocerha
- Department of Biochemistry and Molecular Biology, University of Florida, P.O. Box 110885, Gainesville, Florida 32611, USA
| | | | | | | | | |
Collapse
|
29
|
Effects of acute and repeated immobilization stress on oxygen consumption of the isolated interstitial rats' testes cells. ACTA VET-BEOGRAD 2009. [DOI: 10.2298/avb0904349k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Braathen M, Mortensen AS, Sandvik M, Skåre JU, Arukwe A. Estrogenic effects of selected hydroxy polychlorinated biphenyl congeners in primary culture of Atlantic Salmon (Salmo salar) hepatocytes. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 56:111-122. [PMID: 18414928 DOI: 10.1007/s00244-008-9163-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 03/03/2008] [Indexed: 05/26/2023]
Abstract
Many persistent organic pollutants are known to have endocrine-disrupting effects in several aquatic and terrestrial species. In this regard, hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) represent serious health and environmental concern because they are shown to act agonistic or antagonistic at hormone receptors (HRs) or to cause hormone-receptor-mediated responses. In the present study, salmon primary hepatocytes were used to study alterations in an estrogen signaling pathway resulting from exposure to four hydroxylated (4OH-CB 107, 4OH-CB146, 4OH-CB187, and 3OH-CB138) metabolites of PCB at different concentrations using quantitative real-time polymerase chain reaction. The effects of the PCB metabolites were compared to the mRNA expression in 17alpha-ethynylestradiol (EE2)-treated cells. Concentration-specific increase of vitellogenin (Vtg) mRNA transcription after exposure to OH-PCBs was observed. Decreased mRNA transcription was observed for zona radiata protein (Zr-protein) and cytochrome P450 side-chain cleavage (P450scc) enzyme. For estrogen receptor beta (ERbeta), the mRNA expression pattern was OH-PCB-metabolite congener-specific. A novel aspect of this study is that OH-PCBs produced effects on hepatic steroidogenic pathways by targeting the StAR protein and P450scc genes. Given that endocrine toxicology research mainly has focused on estrogenicity involving direct ER-mediated effects and that steroidogenic enzyme and proteins are highly tissue- and cell-type-specific and controlled by different promoters and second-messenger pathways, the present findings provide potential new targets for interaction with xenobiotics such as hydroxylated congeners of certain chemicals. The quantitative expression patterns of hepatic and extrahepatic steroidogenic genes and proteins after exposure to environmental contaminants are the subject of systematic investigations in our laboratory.
Collapse
|
31
|
Abdo M, Hisheh S, Arfuso F, Dharmarajan A. The expression of tumor necrosis factor-alpha, its receptors and steroidogenic acute regulatory protein during corpus luteum regression. Reprod Biol Endocrinol 2008; 6:50. [PMID: 18990246 PMCID: PMC2584631 DOI: 10.1186/1477-7827-6-50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 11/07/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corpus luteum (CL) regression is known to occur as two parts; functional regression when steroidogenesis declines and structural regression when apoptosis is induced. Previous studies suggest this process occurs by the production of luteolytic factors, such as tumour necrosis factor-alpha (TNF-alpha). METHODS We examined TNF-alpha, TNF-alpha receptors (TNFR1 and 2) and steroidogenic acute regulatory (StAR) protein expression during CL regression in albino Wistar rats. CL from Days 16 and 22 of pregnancy and Day 3 post-partum were examined, in addition CL from Day 16 of pregnancy were cultured in vitro to induce apoptosis. mRNA was quantitated by kinetic RT-PCR and protein expression examined by immunohistochemistry and Western blot analyses. RESULTS TNF-alpha mRNA increased on Day 3 post-partum. TNFR were immunolocalized to luteal cells, and an increase in TNFR2 mRNA observed on Day 3 post-partum whilst no change was detected in TNFR1 mRNA relative to Day 16. StAR protein decreased on Day 3 post-partum and following trophic withdrawal but no change was observed following exogenous TNF-alpha treatment. StAR mRNA decreased on Day 3 post-partum; however, it increased following trophic withdrawal and TNF-alpha treatment in vitro. CONCLUSION These results demonstrate the existence of TNFR1 and TNFR2 in rat CL and suggest the involvement of TNF-alpha in rat CL regression following parturition. Furthermore, decreased StAR expression over the same time points was consistent with the functional regression of the CL.
Collapse
Affiliation(s)
- Michael Abdo
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Susan Hisheh
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Frank Arfuso
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Arun Dharmarajan
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
32
|
Martin LJ, Boucher N, Brousseau C, Tremblay JJ. The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Mol Endocrinol 2008; 22:2021-37. [PMID: 18599618 DOI: 10.1210/me.2007-0370] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cholesterol transport in the mitochondrial membrane, an essential step of steroid biosynthesis, is mediated by a protein complex containing the steroidogenic acute regulatory (StAR) protein. The importance of this transporter is underscored by mutations in the human StAR gene that cause lipoid congenital adrenal hyperplasia, male pseudohermaphroditism, and adrenal insufficiency. StAR transcription in steroidogenic cells is hormonally regulated and involves several transcription factors. The nuclear receptor NUR77 is present in steroidogenic cells, and its expression is induced by hormones known to activate StAR expression. We have now established that StAR transcription in cAMP-stimulated Leydig cells requires de novo protein synthesis and involves NUR77. We found that cAMP-induced NUR77 expression precedes that of StAR both at the mRNA and protein levels in Leydig cells. In these cells, small interfering RNA-mediated NUR77 knockdown reduces cAMP-induced StAR expression. Chromatin immunoprecipitation assays revealed a cAMP-dependent increase in NUR77 recruitment to the proximal StAR promoter, whereas transient transfections in MA-10 Leydig cells confirmed that NUR77 can activate the StAR promoter and that this requires an element located at -95 bp. cAMP-induced StAR and NUR77 expression in Leydig cells was found to require a Ca2+/calmodulin-dependent protein kinase (CaMK)-dependent signaling pathway. Consistent with this, we show that within the testis, CaMKI is specifically expressed in Leydig cells. Finally, we report that CaMKI transcriptionally cooperates with NUR77, but not steroidogenic factor 1, to further enhance StAR promoter activity in Leydig cells. All together, our results implicate NUR77 as a mediator of cAMP action on StAR transcription in steroidogenic Leydig cells and identify a role for CaMKI in this process.
Collapse
Affiliation(s)
- Luc J Martin
- Reproduction, Perinatal and Child Health, Centre Hospitalier Universitaire of Quebec Research Centre, CHUL Room T1-49, 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2
| | | | | | | |
Collapse
|
33
|
Muhammad F, Yivgi-Ohana N, Shveiky D, Orly J, Alexander S, Laufer N. Levels of steroidogenic acute regulatory protein and mitochondrial membrane potential in granulosa cells of older poor-responder women. Fertil Steril 2008; 91:220-5. [PMID: 18191841 DOI: 10.1016/j.fertnstert.2007.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To compare mitochondrial function in granulosa cells obtained from older (>40 y) low-responder IVF patients with that of young (<35 y) good-responder patients. DESIGN Prospective laboratory research. SETTING In vitro fertilization unit in a university hospital. PATIENT(S) Twenty patients undergoing IVF treatment cycles. INTERVENTION(S) Ultrasound guided oocytes pick-up. MAIN OUTCOME MEASURE(S) Mitochondrial function examined by using JC-1 stain for the mitochondrial membrane potential in granulosa cells of both groups and Western blots for assaying and quantification of steroidogenic acute regulatory protein (StAR) and p450scc (side-chain cleavage). RESULT(S) The number of granulosa cells per follicle differed between the two groups, with fewer granulosa cells isolated in the older low-responder women, compared with in the young, normal responders who were the control women. Trypan blue-negative cells showed similar undisturbed mitochondrial membrane potential, and similar ratios of apoptotic granulosa cells were observed in the two groups. In addition, there was no difference in StAR and P450scc protein levels between the two groups. CONCLUSION(S) Our results demonstrate a significant decrease in the number of total aspirated granulosa cells per follicle in older, poor-responder women, which probably explains the reduced hormonal production by those follicles. However, those cells demonstrate normal mitochondrial membrane potential as well as similar levels of StAR, P450scc, and de novo steroid hormone synthesis in the two groups of patients. Our results do not support mitochondrial dysfunction as a main mechanism of reproductive aging.
Collapse
Affiliation(s)
- Fatum Muhammad
- IVF Unit, Department of Obstetrics and Gynecology, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
34
|
Dyson MT, Jones JK, Kowalewski MP, Manna PR, Alonso M, Gottesman ME, Stocco DM. Mitochondrial A-kinase anchoring protein 121 binds type II protein kinase A and enhances steroidogenic acute regulatory protein-mediated steroidogenesis in MA-10 mouse leydig tumor cells. Biol Reprod 2007; 78:267-77. [PMID: 17989356 DOI: 10.1095/biolreprod.107.064238] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The expression of the steroidogenic acute regulatory protein (STAR) is regulated by PKA in response to trophic hormone stimulation through the second messenger cAMP. However, in steroidogenic cells, the concentrations of hormone necessary to maximally induce cAMP synthesis and PKA activity are often significantly higher than is necessary to achieve maximum steroidogenesis. One general mechanism believed to make PKA signaling more effective is the use of A-kinase anchoring proteins (AKAPs) to recruit PKA to discrete subcellular compartments, which coordinates and focuses PKA action with respect to its substrates. The characterization of AKAP121 has suggested that it enhances the posttranscriptional regulation of STAR by recruiting both Star mRNA and PKA to the mitochondria, thereby permitting more effective translation and phosphorylation of STAR. Testing this hypothesis revealed that cAMP-induced STAR expression and steroidogenesis closely followed AKAP121 abundance when this AKAP was silenced or overexpressed in MA-10 cells but that these changes were effected posttranscriptionally. Moreover, silencing AKAP121 expression in these cells specifically altered the localization of type II PKA regulatory subunit alpha (PKAR2A) at the mitochondria but did not affect its relative expression within the cell. Affinity purification experiments showed that PKAR2A preferentially associated with AKAP121, and cAMP analogs that activate type II PKA induced STAR phosphorylation more efficiently than analogs stimulating type I PKA. This suggests that AKAP121 and PKAR2A serve to enhance steroidogenesis by directing the synthesis and activation of STAR at the mitochondria in response to cAMP.
Collapse
Affiliation(s)
- Matthew T Dyson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Takemori H, Kanematsu M, Kajimura J, Hatano O, Katoh Y, Lin XZ, Min L, Yamazaki T, Doi J, Okamoto M. Dephosphorylation of TORC initiates expression of the StAR gene. Mol Cell Endocrinol 2007; 265-266:196-204. [PMID: 17210223 DOI: 10.1016/j.mce.2006.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyclic AMP responsive element (CRE) binding protein (CREB) is known to activate transcription when its Ser133 is phosphorylated. However, transducer of regulated CREB activity (TORC), a CREB specific co-activator, upregulates CREB activity in a phospho-Ser133-independent manner. Interestingly, TORC is also regulated by phosphorylation; the phospho-form is inactive, and the dephospho-form active. When PKA phosphorylates CREB, it inhibits TORC kinases simultaneously and accelerates dephosphorylation of TORC. We show in this report that staurosporine, a kinase inhibitor, induces the expression of the StAR gene in Y1 adrenocortical cells, possibly a result of an increase in the population of dephospho-TORC. The expression of the StAR gene is known to be regulated by SF-1 and CREB, and the co-activators CBP/p300 may mediate the actions of both factors. Our experiments using KG501, a disruptor of the interaction between phospho-CREB and CBP/p300, also support the importance of TORC in the regulation of StAR gene expression.
Collapse
Affiliation(s)
- Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolism, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
El Ramy R, Ould Elhkim M, Poul M, Forest MG, Leduque P, Le Magueresse-Battistoni B. Lack of effect on rat testicular organogenesis after in utero exposure to 3-monochloropropane-1,2-diol (3-MCPD). Reprod Toxicol 2006; 22:485-92. [PMID: 16472968 DOI: 10.1016/j.reprotox.2005.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
3-Monochloropropane-1,2-diol (3-MCPD) is a food-born contaminant known to display toxic effects on male reproduction, producing infertility in rats and humans. Using the rat as a model, we investigated whether or not testicular organogenesis, which, in the rat species, occurs during the second half of gestation, was at particular risk regarding 3-MCPD toxicity. Pregnant rats were given daily doses of 5, 10 or 25 mg/kg BW of 3-MCPD from days 11.5-18.5 postcoitum (dpc). On 19.5 dpc, testes were removed from fetuses for histological examination and testosterone analysis. Eight genes were selected among the differentiation markers of testicular cell lineages, and their expression was studied by RT-PCR. The levels of 3-MCPD and its main metabolite, beta-chlorolactic acid, were assayed in fetal tissues and dam plasma. Our results show a statistically significant decrease in the mean body weight gain of pregnant rats treated with 10 and 25 mg/kg BW of 3-MCPD. Fetal testes exposed to 3-MCPD exhibited normal histology and produced testosterone at levels that were similar to controls. In addition, 3-MCPD did not alter gene expression in the fetal testes. This lack of effect occurred under conditions where 3-MCPD and beta-chlorolactic acid were found to readily cross the placental barrier and diffuse throughout the fetal tissues. Our findings indicate that 3-MCPD has minimal effect on rat testicular organogenesis.
Collapse
Affiliation(s)
- Rosy El Ramy
- Agence Française de Sécurité Sanitaire des Aliments, Unité de Toxicologie Génétique des Contaminants Alimentaires, la Haute Marche, 35133 Javené, Fougères, France.
| | | | | | | | | | | |
Collapse
|
37
|
Lazzaro MA, Pépin D, Pescador N, Murphy BD, Vanderhyden BC, Picketts DJ. The imitation switch protein SNF2L regulates steroidogenic acute regulatory protein expression during terminal differentiation of ovarian granulosa cells. Mol Endocrinol 2006; 20:2406-17. [PMID: 16740656 DOI: 10.1210/me.2005-0213] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Luteinization is a complex process, stimulated by gonadotropins, that promotes ovulation and development of the corpus luteum through terminal differentiation of granulosa cells. The pronounced expression of the mammalian imitation switch (ISWI) genes, SNF2H and SNF2L, in adult ovaries prompted us to investigate the role of these chromatin remodeling proteins during follicular development and luteinization. SNF2H expression is highest during growth of preovulatory follicles and becomes less prevalent during luteinization. In contrast, both SNF2L transcript and SNF2L protein levels are rapidly increased in granulosa cells of the mouse ovary 8 h after human chorionic gonadotropin treatment, and continue to be expressed 36 h later within the functional corpus luteum. We demonstrate a physical interaction between SNF2L and the progesterone receptor A isoform, which regulates progesterone receptor-responsive genes required for ovulation. Moreover, chromatin immunoprecipitation demonstrated that, after gonadotropin stimulation, SNF2L is associated with the proximal promoter of the steroidogenic acute regulatory protein (StAR) gene, a classic marker of luteinization in granulosa cells. Interaction of SNF2L with the StAR promoter is required for StAR expression, because small interfering RNA knockdown of SNF2L prevents the activation of the StAR gene. Our results provide the first indication that ISWI chromatin remodeling proteins are responsive to the LH surge and that this response is required for the activation of the StAR gene and the overall development of a functional luteal cell.
Collapse
Affiliation(s)
- Maribeth A Lazzaro
- Molecular Medicine Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | | | | | |
Collapse
|
38
|
Arukwe A. Modulation of brain steroidogenesis by affecting transcriptional changes of steroidogenic acute regulatory (StAR) protein and cholesterol side chain cleavage (P450scc) in juvenile Atlantic salmon (Salmo salar) is a novel aspect of nonylphenol toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:9791-8. [PMID: 16475368 DOI: 10.1021/es0509937] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gene expression patterns for key brain steroidogenic (StAR, P450scc, CYP11beta) and xenobiotic- and steroid-metabolizing enzymes (CYP1A1 and CYP3A) have been investigated in waterborne nonylphenol (5, 15, and 50 microg/ L) treated juvenile Atlantic salmon (Salmo salar), in addition to carrier vehicle (ethanol) exposed fish, sampled at different time intervals (0, 3, and 7 days) after exposure. Gene expression patterns were studied using the quantitative polymerase chain reaction (real-time PCR). Treatment of juvenile salmon with nonylphenol caused significant induction of steroidogenic acute regulatory (StAR) protein mRNA at day 7 postexposure in the group receiving 15 microg of nonylphenol/L. P450scc was first induced in the group treated with 5 microg of nonylphenol/L at day 7; thereafter, an apparent nonylphenol-concentration-dependent decrease in P450scc mRNA was observed. CYP11beta mRNA was significantly induced at day 3 after exposure to 5 betag of nonylphenol/L; thereafter, CYP11beta mRNA levels were inhibited below control levels in the 15 and 50 microg of nonylphenol/L groups at day 3. At day 7, significant induction of CYP11beta mRNA was observed only in the group exposed to 15 microg of nonylphenol/L. For CYP1A1 mRNA, apparent nonylphenol-concentration-dependent decreases were observed at day 7 postexposure. CYP3A mRNA was significantly induced by all nonylphenol exposure concentrations at day 7. When exposed groups were compared, CYP3A transcript was significantly induced between 5 and 15 microg of nonylphenol/ L, and decreased between 15 and 50 microg of nonylphenol/ L. The ethanol control showed a significant reduction of CYP3A mRNA at day 3 postexposure. The present study has demonstrated variations in three key steroidogenic proteins and xenobiotic- and steroid-metabolizing CYP isoenzyme gene transcripts in the brain of nonylphenol-exposed juvenile salmon. Therefore, the present study represents a novel aspect of neuroendocrine effects of nonylphenol in fish not previously demonstrated and should be studied in more detail.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway.
| |
Collapse
|
39
|
Blomberg LA, Zuelke KA. Expression analysis of the steroidogenic acute regulatory protein (STAR) gene in developing porcine conceptuses. Mol Reprod Dev 2005; 72:419-29. [PMID: 16155961 DOI: 10.1002/mrd.20369] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Steroidogenesis in porcine non-conceptus tissue is regulated by the STAR-dependent transport of cholesterol from the outer to inner mitochondrial membrane. Previous serial analysis of gene expression (SAGE) identified a STAR mRNA transcript in the porcine peri-implantation conceptus during trophectoderm elongation and increased conceptus estrogen synthesis between gestational day 11 and 12. To assess a potential role for STAR in the modulation of conceptus steroidogenesis via cholesterol transport, the conceptus STAR transcript was PCR cloned and temporal expression of mRNA and protein were examined. Northern analysis of day 12 corpora lutea and pig conceptus RNA detected multiple STAR transcripts in both tissues and identified the cloned transcript as the longest variant. The transcript had a 99% similarity to a truncated ovarian STAR transcript. The conceptus STAR transcript was temporally regulated during elongation but trace expression was present in day 6 blastocysts and day 25 conceptuses. Differential regulation of STAR mRNA was concomitant with the presence of the stimulatory transcription factor steroidogenic factor 1, and absence of the inhibitory transcription factor dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene-1, transcripts. In contrast to peak STAR mRNA expression at the filamentous stage, Western blot analyses revealed STAR protein levels were highest in tubular conceptuses. These data confirm the presence of STAR mRNA and protein during porcine conceptus elongation and suggest regulation of STAR at two levels, transcriptionally, in part, through differential regulation of transcription factors, and post-transcriptionally, evidenced by the disparity of protein to RNA in filamentous conceptuses.
Collapse
Affiliation(s)
- Le Ann Blomberg
- Biotechnology and Germplasm Laboratory, USDA Agricultural Research Service, Beltsville, Maryland 20705, USA.
| | | |
Collapse
|
40
|
Diaz ES, Pellizzari E, Casanova M, Cigorraga SB, Denduchis B. Type IV collagen induces down-regulation of steroidogenic response to gonadotropins in adult rat Leydig cells involving mitogen-activated protein kinase. Mol Reprod Dev 2005; 72:208-15. [PMID: 16037942 DOI: 10.1002/mrd.20259] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously shown that type IV collagen (alpha1 (IV) and alpha2 (IV) collagen chains) (Col-IV) inhibits testosterone (T) production by Leydig cells (LC). The aim of this study was to analyze mechanism/s by which Col-IV exerts this effect. No significant differences in the specific binding of hCG to LH/hCG receptors in LC cultured on uncoated or Col-IV coated plates were observed. An inhibition of cAMP production in hCG-stimulated LC cultured on Col-IV was detected. The inhibition exerted by Col-IV on T production in response to hCG was also observed when cells were stimulated with 8Bromo-cAMP. In addition, conversion of steroid precursors to T in LC cultured on uncoated and Col-IV coated plates was similar. On the other hand, we detected an increase of ERK1/2 phosphorylation in hCG-stimulated LC cultured on Col-IV. Genistein added to LC cultures reduced the ability of Col-IV to increase ERK1/2 phosphorylation and reverted the inhibitory effect of Col-IV on T production. An inhibitor of MEK, PD98059 added to LC cultures also reverted the inhibitory effect of Col-IV on T production. A decrease of steroidogenic acute regulatory protein (StAR) expression in hCG-stimulated LC cultured on Col-IV coated plates that could be reverted by addition of PD98059 to the cultures was also demonstrated. All together these results suggest that Col-IV inhibits T production in LC by binding to integrins, activating ERK1/2, decreasing cAMP production and decreasing StAR expression.
Collapse
Affiliation(s)
- Emilce S Diaz
- Centro de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, (C 1121 ABG) Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
41
|
Zhao D, Xue H, Artemenko I, Jefcoate C. Novel signaling stimulated by arsenite increases cholesterol metabolism through increases in unphosphorylated steroidogenic acute regulatory (StAR) protein. Mol Cell Endocrinol 2005; 231:95-107. [PMID: 15713539 DOI: 10.1016/j.mce.2004.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 08/03/2004] [Accepted: 08/19/2004] [Indexed: 11/26/2022]
Abstract
Cholesterol metabolism to pregnenolone is dependent on the steroidogenic acute regulatory protein (StAR), which activates mitochondrial transfer of cholesterol to cytochrome CYP450scc. In mouse Y-1 adrenal cells and testis MA10 cells stimulation by 8-Bromo-cAMP (Br-cAMP) is augmented by a novel signaling initiated by low concentrations of arsenite (3-20 microM) and anisomycin (0.2 microM), a more selective stress agent. Each elevated StAR mRNA (three-fold after 6 h treatment) even with simultaneous stimulation by Br-cAMP. Arsenite produced parallel increases in StAR protein expression and cholesterol metabolism, but not for P450scc-mediated metabolism of 20alpha-hydroxycholesterol. Although arsenite and anisomycin each stimulated the phosphorylation of p38, the p38 inhibitor SB203580 (SB) produced additive increases in StAR expression. Cholesterol metabolism increased in parallel but without the increased StAR protein phosphorylation produced by Br-cAMP. Arsenite and anisomycin each elevated StAR mRNA but preferentially increased the 3.5 kb form relative to the 1.6 kb form. Arsenite and anisomycin each enhanced the stability of the more labile 3.5 kb mRNA which contains AU-rich elements that control mRNA stability. Although there were increases in both forms of StAR mRNA, arsenite did not stimulate a StAR promoter-reporter that exhibited a typical three-fold response to Br-cAMP. Arsenite and anisomycin may therefore activate a novel SB-independent MAP kinase which in part increases StAR expression through stabilizing the 3.5 kb mRNA but which may also activate a mechanism that by-passes transcription factors detected by the reporter. SB stimulation, which was completely blocked by a MEK inhibitor, was also selective towards the 3.5 kb StAR mRNA suggesting a second pathway for mRNA stabilization. These activations contrast with inhibition of StAR expression by arsenite at higher concentrations or longer incubation times.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Pharmacology, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
42
|
Rusovici R, Hui YY, Lavoie HA. Epidermal growth factor-mediated inhibition of follicle-stimulating hormone-stimulated StAR gene expression in porcine granulosa cells is associated with reduced histone H3 acetylation. Biol Reprod 2004; 72:862-71. [PMID: 15590903 DOI: 10.1095/biolreprod.104.034298] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Steroidogenic acute regulatory protein (StAR) mediates cholesterol transport into the mitochondria and is essential for ovarian steroidogenesis. Epidermal growth factor (EGF) has been reported to inhibit FSH-stimulated differentiation in porcine granulosa cells. Previous studies have demonstrated FSH stimulates StAR mRNA accumulation and gene promoter activation in granulosa cells. Treatment of granulosa cells with FSH (5 ng/ml, 6 h) increased StAR mRNA, whereas coaddition of EGF (10 ng/ ml) significantly reduced (P < 0.05) FSH-stimulated mRNA accumulation by 62.7% +/- 13.9%. Under these same conditions, FSH-stimulated cAMP accumulation in cultures was unaltered by coincubation with EGF. RNA stability studies showed that cotreatment with FSH and EGF did not alter the StAR mRNA half-life compared with FSH alone, t(1/2) = 1.9-3.8 and 2.7-4.1 h, respectively. EGF significantly inhibited (P < 0.05) FSH-stimulated StAR heterogeneous nuclear RNA levels by 47.6% +/- 6.8 %, implicating a repressive effect on transcription. Surprisingly, EGF (1-50 ng/ml) did not affect FSH stimulation of a 1423-base pair StAR gene promoter-luciferase construct in transient transfection assays in porcine granulosa cells. To evaluate FSH and EGF effects on the endogenous StAR gene, chromatin immunoprecipitation assays were performed in combination with real-time polymerase chain reaction. FSH increased histone H3 acetylation (lysines 9, 14) within the proximal region of the StAR gene promoter and coincubation with EGF blocked this effect. Dimethylation (lysine 9) of histone H3 was not influenced by treatments. In conclusion, EGF repression of FSH-stimulated StAR transcription in porcine granulosa cells is accompanied by reductions in histone H3 acetylation associated with the StAR gene promoter.
Collapse
Affiliation(s)
- Raluca Rusovici
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
43
|
Walker CD, Salzmann C, Long H, Otis M, Roberge C, Gallo-Payet N. Direct inhibitory effects of leptin on the neonatal adrenal and potential consequences for brain glucocorticoid feedback. Endocr Res 2004; 30:837-44. [PMID: 15666834 DOI: 10.1081/erc-200044096] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Leptin is most studied for its primary role in the CNS control of energy balance and food intake in humans and rodents, yet it has functions on multiple target sites including the adrenal gland. In adult rodents, leptin has been shown to inhibit adrenal steroidogenesis and we have recently demonstrated that some of the mechanisms responsible for leptin-induced inhibition of adrenal glucocorticoid production, namely a reduction of StAR protein expression are already present in the neonatal adrenal gland. The effect of leptin on the neonatal adrenal gland integrates well with the previously demonstrated effect of this protein to inhibit stress responses, enhance glucocorticoid receptor expression in the CNS and sensitivity to glucocorticoid inhibitory feedback in neonates. The leptin receptor isoform and intracellular mechanisms involved in regulation of the adrenocortical activity at multiple levels might differ between target tissues (CNS vs periphery) and age (neonates vs adult). Neonatal leptin represents an important regulator of adrenocortical function during a critical period of brain development, which is exquisitely sensitive to circulating glucocortcoid concentrations. Since circulating leptin levels in neonates vary according to maternal diet, this protein can be viewed as a critical link between environmental and maternal factors and the developing physiology of the infant.
Collapse
Affiliation(s)
- Claire-Dominique Walker
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Saxena D, Safi R, Little-Ihrig L, Zeleznik AJ. Liver receptor homolog-1 stimulates the progesterone biosynthetic pathway during follicle-stimulating hormone-induced granulosa cell differentiation. Endocrinology 2004; 145:3821-9. [PMID: 15117876 DOI: 10.1210/en.2004-0423] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FSH-stimulated granulosa cell differentiation is associated with the induction of the LH receptor (LHr) as well as induction of the estrogen and progesterone biosynthetic pathways. Although activation of the cAMP-protein kinase A pathway is sufficient to stimulate progesterone production, additional pathways are required for the induction of the LHr and p450 aromatase. The orphan nuclear receptor, liver receptor homolog-1 (LRH-1), is expressed in granulosa cells and has been shown to synergize with the cAMP signaling system to regulate the gonadal type II aromatase promoter in transient transfection assays. To determine whether LRH-1 can interact with the cAMP pathway in the induction of aromatase and the LHr, we examined the effects of an adenoviral vector that directs the expression of human LRH-1 (Ad-LRH-1) on FSH-stimulated granulosa cell differentiation. Infection of undifferentiated granulosa cells with LRH-1 alone had no effect on estrogen production, progesterone production, or the expression of the LHr. However, combination of FSH stimulation and Ad-LRH-1 infection led to significantly greater progesterone production and increases in mRNA for p450 side-chain cleavage and 3beta-hydroxysteroid dehydrogenase than granulosa cells stimulated by FSH alone. However, infection with Ad-LRH-1 did not stimulate estradiol production or increases in mRNA for p450 aromatase or the LHr above that seen with FSH treatment alone. Moreover, infection with Ad-LRH-1 was able to overcome H-89 inhibition of FSH-stimulated progesterone but not estrogen production. Collectively, these observations support a direct role for LRH-1 in the induction of the progesterone but not the estrogen biosynthetic pathway during granulosa cell differentiation.
Collapse
Affiliation(s)
- Deeksha Saxena
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
45
|
Guyot R, Odet F, Leduque P, Forest MG, Le Magueresse-Battistoni B. Diethylstilbestrol inhibits the expression of the steroidogenic acute regulatory protein in mouse fetal testis. Mol Cell Endocrinol 2004; 220:67-75. [PMID: 15196701 DOI: 10.1016/j.mce.2004.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 03/26/2004] [Accepted: 03/28/2004] [Indexed: 11/22/2022]
Abstract
This study investigated the early deleterious effects of an in-utero exposure to diethylstilbestrol (DES) on mouse testicular development. To that purpose, pregnant mice were injected daily with up to 100 microg/kg DES from 10.5 to 17.5 days postcoitum (dpc). At 18.5 dpc, testes were removed from fetuses for RNA (RT-PCR) and protein (Western blot, immunohistochemistry) analysis. Twenty-two genes were selected among which transcription factors, markers of differentiation of the different testicular cell lineages, steroidogenic enzymes and hormone receptors. The Steroidogenic Acute Regulatory (StAR) protein produced by the fetal Leydig cells was dramatically reduced in the DES-exposed testes. The P450c17 was the other gene modified following DES exposure. The alteration of these two genes is consistent with the decrease observed in the intratesticular testosterone levels, in the DES-exposed testes. Collectively, we demonstrated that DES did not alter testicular cell lineage specification but that it strongly inhibited the major function of the fetal Leydig cells.
Collapse
Affiliation(s)
- Romain Guyot
- Inserm U329, Hopital Debrousse, 29 rue Soeur Bouvier, 69322 Lyon, France
| | | | | | | | | |
Collapse
|
46
|
Roth GE, Gierl MS, Vollborn L, Meise M, Lintermann R, Korge G. The Drosophila gene Start1: a putative cholesterol transporter and key regulator of ecdysteroid synthesis. Proc Natl Acad Sci U S A 2004; 101:1601-6. [PMID: 14745013 PMCID: PMC341787 DOI: 10.1073/pnas.0308212100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human metastatic lymph node 64 (MLN64) is a transmembrane protein that shares homology with the cholesterol-binding vertebrate steroid acute regulatory protein (StAR)-related lipid transfer domain (START) and is involved in cholesterol traffic and steroid synthesis. We identified a Drosophila melanogaster gene whose putative protein product shows extensive homology with MLN64 and that we name Start1 (FlyBase CG3522). The putative Start1 protein, derived from Start1 cDNA sequences, contains an additional 122 aa of unknown function within the StAR-related lipid transfer domain. Similar inserts seem to exist in the Start1 homologues of Drosophila pseudoobscura and Anopheles gambiae, but not in the homologous protein of the urochordate Ciona intestinalis. Immunostaining using an insert-specific antibody confirms the presence of the insert in the cytoplasm. Whereas RT-PCR data indicate that Start1 is expressed ubiquitously, RNA in situ hybridizations demonstrate its overexpression in prothoracic gland cells, where ecdysteroids are synthesized from cholesterol. Transcripts of Start1 are detectable in embryonic ring gland progenitor cells and are abundant in prothoracic glands of larvae showing wave-like expression during larval stages. In adults, Start1 is expressed in nurse cells of the ovary. These observations are consistent with the assumption that Start1 plays a key role in the regulation of ecdysteroid synthesis. Vice versa, the expression of Start1 itself seems to depend on ecdysone, as in the ecdysone-deficient mutant ecd-1, Start1 expression is severely reduced.
Collapse
Affiliation(s)
- Guenther E Roth
- Institut für Biologie, Freie Universität Berlin, Arnimallee 7, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Manna PR, Wang XJ, Stocco DM. Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids 2003; 68:1125-34. [PMID: 14643873 DOI: 10.1016/j.steroids.2003.07.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate-limiting, committed, and regulatable step in steroid hormone biosynthesis is the transport of cholesterol from the outer to the inner mitochondrial membrane, a process that is mediated by the steroidogenic acute regulatory (StAR) protein. In steroidogenic cells, the StAR protein is regulated by cAMP-dependent mechanisms. However, the StAR promoter lacks a consensus cAMP response-element (CRE), suggesting the involvement of alternate regulatory factor(s) in cAMP responsiveness. These regulatory elements are found to be located in a transcription factor-binding site-rich region (consisting of approximately 150 nucleotides upstream of the transcription start site) of the StAR promoter, and appears to be the most important region in regulating transcription of the StAR gene. The StAR promoter sequences in mouse, rat and human are highly homologous, and in the absence of a canonical CRE, multiple cis-elements have been shown to be instrumental in the regulation of StAR gene expression. Nevertheless, it has become apparent that functional cooperation, interaction, and alteration of different transcription factors are involved in the fine-tuning of the regulatory events associated with StAR gene transcription.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
48
|
Christenson LK, Devoto L. Cholesterol transport and steroidogenesis by the corpus luteum. Reprod Biol Endocrinol 2003; 1:90. [PMID: 14613534 PMCID: PMC280730 DOI: 10.1186/1477-7827-1-90] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 11/10/2003] [Indexed: 11/25/2022] Open
Abstract
The synthesis of progesterone by the corpus luteum is essential for the establishment and maintenance of early pregnancy. Regulation of luteal steroidogenesis can be broken down into three major events; luteinization (i.e., conversion of an ovulatory follicle), luteal regression, and pregnancy induced luteal maintenance/rescue. While the factors that control these events and dictate the final steroid end products are widely varied among different species, the composition of the corpus luteum (luteinized thecal and granulosa cells) and the enzymes and proteins involved in the steroidogenic pathway are relatively similar among all species. The key factors involved in luteal steroidogenesis and several new exciting observations regarding regulation of luteal steroidogenic function are discussed in this review.
Collapse
Affiliation(s)
- Lane K Christenson
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luigi Devoto
- Instituto de Investigaciones Materno Infantil (IDIMI) y Departamento de Obstetricia y Ginecologia, Facultad de Medicina, Universidad de Chile, Hospital Clinico San Borja-Arriaran CP6519100, Santiago, Chile
| |
Collapse
|
49
|
Chen LY, Huang YL, Liu MY, Leu SF, Huang BM. Effects of amphetamine on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci 2003; 72:1983-95. [PMID: 12597997 DOI: 10.1016/s0024-3205(03)00011-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amphetamine influences plasma and testicular testosterone levels. However, there is no evidence that amphetamine can directly influence Leydig cell functions. In the present study, a MA-10 mouse Leydig tumor cell line was used to determine whether and how amphetamine affected Leydig cell steroidogenesis. MA-10 cells were treated with different concentrations of amphetamine without or with human chorionic gonadotropin (hCG) and/or enzyme precursors over different time durations. Steroid production, enzyme activities and StAR protein expression were determined. Amphetamine alone had no any effect on MA-10 cell steroidogenesis. However, amphetamine (10(-11)M and 10(-10)M) significantly enhanced hCG-treated progesterone production at 3 hr in MA-10 cells (p < 0.05). Furthermore, amphetamine significantly induced more progesterone production upon treatment with 22R-hydroxycholesterol (p < 0.05), a precursor of P450 side-chain cleavage enzyme (P450scc). However, amphetamine did not induce more progesterone production when treated with pregnenolone (p > 0.05), a precursor of 3beta-hydroxysteroid dehydrogenase. In addition, the expressions of StAR protein and P450scc enzyme were not significantly different between hCG alone and hCG plus amphetamine treatment in MA-10 cells (p > 0.05). These results suggested that amphetamine enhanced hCG-induced progesterone production in MA-10 cells by increasing P450scc activity without influencing StAR protein and P450scc enzyme expression or 3beta-HSD enzyme activity.
Collapse
Affiliation(s)
- Liang-Yu Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
50
|
Katoh Y, Takemori H, Doi J, Okamoto M. Identification of the nuclear localization domain of salt-inducible kinase. Endocr Res 2002; 28:315-8. [PMID: 12530631 DOI: 10.1081/erc-120016802] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Salt-inducible kinase (SIK), a novel serine/threonine protein kinase from adrenal glands of rats fed with a high-salt diet, is induced by ACTH in Y1 mouse adrenocortical tumor cells. Overexpression of SIK repressed ACTH-mediated expression of CYP11A- and Steroidogenic acute regulatory (StAR)-genes by inhibiting CREB bound to their promoters. Immunocytochemical and GFP-fluorocytochemical analyses indicated that SIK was present both in the nucleus and cytosol of resting cells. Responding to ACTH, the nuclear SIK moved to the cytosol. The level of phosphorylation at Ser577, a canonical PKA-phosphorylation site, was elevated by ACTH treatment. The disruption of the serine residue inhibited the nuclear export and enhanced the transcription repression activity of SIK. Various deletion mutants suggested a functional nuclear localization signal was present near Ser577. We conclude that the nucleocytoplasmic shuttling of SIK may play an important role in the transcriptional regulation of the cAMP-responsive element (CRE)-dependent gene expression.
Collapse
Affiliation(s)
- Yoshiko Katoh
- Department of Molecular Physiological Chemistry, Osaka University Medical School, 2-2 Yamadaoka, Osaka, 565-0871 Japan
| | | | | | | |
Collapse
|