1
|
Simmen FA, Alhallak I, Simmen RCM. Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis. Cancers (Basel) 2023; 15:5667. [PMID: 38067370 PMCID: PMC10705314 DOI: 10.3390/cancers15235667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Yu Y, Li C, Wang Y, Wang Q, Wang S, Wei S, Yang M, Qin Q. Molecular cloning and characterization of grouper Krϋppel-like factor 9 gene: Involvement in the fish immune response to viral infection. FISH & SHELLFISH IMMUNOLOGY 2019; 89:677-686. [PMID: 30905839 DOI: 10.1016/j.fsi.2019.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Krϋppel-like factor 9 (KLF9) is a member of the SP/KL family, which are transcription factors implicated in several biological processes, including cell proliferation, differentiation, development and apoptosis. Studies have focused on the function of KLF9 in mammalian disease and the immune system, such as its regulatory role in the growth of tumors and its impact on interferon-related genes and inflammatory cytokines. In fish, little is known about the role of KLF9, especially its regulatory function in the innate antiviral immune response. In this study, we characterized the grouper KLF9 gene (EcKLF9) and investigated its role in viral infection. Amino acid alignment analysis showed that EcKLF9 was approximately 228 amino acids long and contained a typical three-tandem Krϋppel-like zinc fingers. Phylogenetic tree analysis revealed that EcKLF9 clustered with three fish species: Amphiprion ocellaris, Acanthochromis pollyacanthus and Stegastes partitus. Comparison analyses showed that the three Kruppel-like zinc finger domains of KLF9 were highly conserved in different fish species. Tissue expression analysis showed that EcKLF9 was constitutively expressed in all 12 tissues tested, in the healthy grouper, the highest expression being detected in the gonads. The relative expression levels of EcKLF9 in the head kidney, spleen and brain was significantly increased during red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infections. Using fluorescence microscopy, EcKLF9 was primarily localized to the nucleus and cytoplasm. The in vitro ectopic expression of EcKLF9 significantly increased the severity of vacuoles induced by RGNNV and the cytopathic effect progression evoked by SGIV infection. Real-time PCR results showed that the transcription levels of viral genes, such as the Singapore grouper iridovirus infection genes, MCP (major capsid protein), LITAF (lipopolysaccharide induced TNF-α factor), VP19 (envelop protein) ICP-18 (infected cell protein-18) and the red-spotted grouper nervous necrosis virus genes, CP (coat protein), RdRp (RNA-dependent RNA polymerase), were all significantly increased in EcKLF9 overexpressing cells, when compared to control cells. Furthermore, western blotting analyses showed that protein levels of the RGNNV gene, CP and the SGIV gene, MCP were also increased in EcKLF9 overexpressing cells, suggesting EcKLF9 may promote viral activity against iridovirus and nodavirus, in vitro. Moreover, the overexpression of EcKLF9 significantly inhibited the expression of several interferon related cytokines and several inflammatory cytokines. Accordingly, we speculate that EcKLF9 may exert stimulatory effects on RGNNV and SGIV replication, through the negative regulation of host immune and inflammation responses.
Collapse
Affiliation(s)
- Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yuxin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Fernandes LM, Al-Dwairi A, Simmen RCM, Marji M, Brown DM, Jewell SW, Simmen FA. Malic Enzyme 1 (ME1) is pro-oncogenic in Apc Min/+ mice. Sci Rep 2018; 8:14268. [PMID: 30250042 PMCID: PMC6155149 DOI: 10.1038/s41598-018-32532-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Cytosolic Malic Enzyme (ME1) provides reduced NADP for anabolism and maintenance of redox status. To examine the role of ME1 in tumor genesis of the gastrointestinal tract, we crossed mice having augmented intestinal epithelial expression of ME1 (ME1-Tg mice) with ApcMin/+ mice to obtain male ApcMin/+/ME1-Tg mice. ME1 protein levels were significantly greater within gut epithelium and adenomas of male ApcMin/+/ME1-Tg than ApcMin/+ mice. Male ApcMin/+/ME1-Tg mice had larger and greater numbers of adenomas in the small intestine (jejunum and ileum) than male ApcMin/+ mice. Male ApcMin/+/ME1-Tg mice exhibited greater small intestine crypt depth and villus length in non-adenoma regions, correspondent with increased KLF9 protein abundance in crypts and lamina propria. Small intestines of male ApcMin/+/ME1-Tg mice also had enhanced levels of Sp5 mRNA, suggesting Wnt/β-catenin pathway activation. A small molecule inhibitor of ME1 suppressed growth of human CRC cells in vitro, but had little effect on normal rat intestinal epithelial cells. Targeting of ME1 may add to the armentarium of therapies for cancers of the gastrointestinal tract.
Collapse
Affiliation(s)
- Lorenzo M Fernandes
- Interdisciplinary Biomedical Sciences Program, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ahmed Al-Dwairi
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Rosalia C M Simmen
- Interdisciplinary Biomedical Sciences Program, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Meera Marji
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Dustin M Brown
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sarah W Jewell
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Frank A Simmen
- Interdisciplinary Biomedical Sciences Program, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
4
|
Mackawy AM, Megahed O. Significance of matrix metalloproteinase-1 and -3 gene polymorphisms and their expression in normal and neoplastic endometrium. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
A Review of the Molecular Basis for Reduced Endometrial Receptivity in Uterine Fibroids and Polyps. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2017. [DOI: 10.5301/jeppd.5000304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presence of fibroids and endometrial polyps is associated with reduced endometrial receptivity and subsequent fertility outcomes. The following review explores the molecular mechanisms behind reduced endometrial receptivity, with a focus upon homebox genes, basic transcription element binding proteins, transforming growth factor β-3, and bone morphogenetic protein 2. A better understanding of these processes is essential for future targeted therapy.
Collapse
|
6
|
Knoedler JR, Subramani A, Denver RJ. The Krüppel-like factor 9 cistrome in mouse hippocampal neurons reveals predominant transcriptional repression via proximal promoter binding. BMC Genomics 2017; 18:299. [PMID: 28407733 PMCID: PMC5390390 DOI: 10.1186/s12864-017-3640-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Background Krüppel-like factor 9 (Klf9) is a zinc finger transcription factor that functions in neural cell differentiation, but little is known about its genomic targets or mechanism of action in neurons. Results We used the mouse hippocampus-derived neuronal cell line HT22 to identify genes regulated by Klf9, and we validated our findings in mouse hippocampus. We engineered HT22 cells to express a Klf9 transgene under control of the tetracycline repressor, and used RNA sequencing to identify genes modulated by Klf9. We found 217 genes repressed and 21 induced by Klf9. We also engineered HT22 cells to co-express biotin ligase and a Klf9 fusion protein containing an N-terminal biotin ligase recognition peptide. Using chromatin-streptavidin precipitation (ChSP) sequencing we identified 3,514 genomic regions where Klf9 associated. Seventy-five percent of these were within 1 kb of transcription start sites, and Klf9 associated in chromatin with 60% of the repressed genes. We analyzed the promoters of several repressed genes containing Klf9 ChSP peaks using transient transfection reporter assays and found that Klf9 repressed promoter activity, which was abolished after mutation of Sp/Klf-like motifs. Knockdown or knockout of Klf9 in HT22 cells caused dysregulation of Klf9 target genes. Chromatin immunoprecipitation assays showed that Klf9 associated in chromatin from mouse hippocampus with genes identified by ChSP sequencing on HT22 cells, and expression of Klf9 target genes was dysregulated in the hippocampus of neonatal Klf9-null mice. Gene ontology analysis revealed that Klf9 genomic targets include genes involved in cystokeletal remodeling, Wnt signaling and inflammation. Conclusions We have identified genomic targets of Klf9 in hippocampal neurons and created a foundation for future studies on how it functions in chromatin, and regulates neuronal morphology and survival across the lifespan. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3640-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA.,Current address: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Natural Science Building, Ann Arbor, MI, 48109, USA
| | - Robert J Denver
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Natural Science Building, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Bonnet A, Servin B, Mulsant P, Mandon-Pepin B. Spatio-Temporal Gene Expression Profiling during In Vivo Early Ovarian Folliculogenesis: Integrated Transcriptomic Study and Molecular Signature of Early Follicular Growth. PLoS One 2015; 10:e0141482. [PMID: 26540452 PMCID: PMC4634757 DOI: 10.1371/journal.pone.0141482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Background The successful achievement of early ovarian folliculogenesis is important for fertility and reproductive life span. This complex biological process requires the appropriate expression of numerous genes at each developmental stage, in each follicular compartment. Relatively little is known at present about the molecular mechanisms that drive this process, and most gene expression studies have been performed in rodents and without considering the different follicular compartments. Results We used RNA-seq technology to explore the sheep transcriptome during early ovarian follicular development in the two main compartments: oocytes and granulosa cells. We documented the differential expression of 3,015 genes during this phase and described the gene expression dynamic specific to these compartments. We showed that important steps occurred during primary/secondary transition in sheep. We also described the in vivo molecular course of a number of pathways. In oocytes, these pathways documented the chronology of the acquisition of meiotic competence, migration and cellular organization, while in granulosa cells they concerned adhesion, the formation of cytoplasmic projections and steroid synthesis. This study proposes the involvement in this process of several members of the integrin and BMP families. The expression of genes such as Kruppel-like factor 9 (KLF9) and BMP binding endothelial regulator (BMPER) was highlighted for the first time during early follicular development, and their proteins were also predicted to be involved in gene regulation. Finally, we selected a data set of 24 biomarkers that enabled the discrimination of early follicular stages and thus offer a molecular signature of early follicular growth. This set of biomarkers includes known genes such as SPO11 meiotic protein covalently bound to DSB (SPO11), bone morphogenetic protein 15 (BMP15) and WEE1 homolog 2 (S. pombe)(WEE2) which play critical roles in follicular development but other biomarkers are also likely to play significant roles in this process. Conclusions To our knowledge, this is the first in vivo spatio-temporal exploration of transcriptomes derived from early follicles in sheep.
Collapse
Affiliation(s)
- Agnes Bonnet
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
- * E-mail:
| | - Bertrand Servin
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
| | - Philippe Mulsant
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
| | - Beatrice Mandon-Pepin
- INRA, UMR1198 Biologie du Développement et de la Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
8
|
Wu Z, Wang S. Role of kruppel-like transcription factors in adipogenesis. Dev Biol 2012; 373:235-43. [PMID: 23142072 DOI: 10.1016/j.ydbio.2012.10.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 01/27/2023]
Abstract
The zinc-finger transcription factors of the kruppel-like factor family (KLF) are critical in many physiological and pathological processes including cell proliferation, differentiation, inflammation, and apoptosis. Recently, there is increasing evidence that suggests these KLFs have an important role in fat biology. This review summarizes the role of KLFs in lipid metabolism, especially in adipogenesis, and reveals the relationship networks among members of KLF family in differentiation.
Collapse
Affiliation(s)
- Zeni Wu
- School of Public Health, Wuhan University, Wuhan, China
| | | |
Collapse
|
9
|
Krüppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes. Proc Natl Acad Sci U S A 2012; 109:10903-8. [PMID: 22711835 DOI: 10.1073/pnas.1118641109] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circadian clocks govern a wide range of cellular and physiological functions in various organisms. Recent evidence suggests distinct functions of local clocks in peripheral mammalian tissues such as immune responses and cell cycle control. However, studying circadian action in peripheral tissues has been limited so far to mouse models, leaving the implication for human systems widely elusive. In particular, circadian rhythms in human skin, which is naturally exposed to strong daytime-dependent changes in the environment, have not been investigated to date on a molecular level. Here, we present a comprehensive analysis of circadian gene expression in human epidermis. Whole-genome microarray analysis of suction-blister epidermis obtained throughout the day revealed a functional circadian clock in epidermal keratinocytes with hundreds of transcripts regulated in a daytime-dependent manner. Among those, we identified a circadian transcription factor, Krüppel-like factor 9 (Klf9), that is substantially up-regulated in a cortisol and differentiation-state-dependent manner. Gain- and loss-of-function experiments showed strong antiproliferative effects of Klf9. Putative Klf9 target genes include proliferation/differentiation markers that also show circadian expression in vivo, suggesting that Klf9 affects keratinocyte proliferation/differentiation by controlling the expression of target genes in a daytime-dependent manner.
Collapse
|
10
|
Simmons CD, Pabona JMP, Heard ME, Friedman TM, Spataro MT, Godley AL, Simmen FA, Burnett AF, Simmen RCM. Krüppel-like factor 9 loss-of-expression in human endometrial carcinoma links altered expression of growth-regulatory genes with aberrant proliferative response to estrogen. Biol Reprod 2011; 85:378-85. [PMID: 21543766 DOI: 10.1095/biolreprod.110.090654] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Endometrial cancer is the most commonly diagnosed female genital tract malignancy. Krüppel-like factor 9 (KLF9), a member of the evolutionarily conserved Sp family of transcription factors, is expressed in uterine stroma and glandular epithelium, where it affects cellular proliferation, differentiation, and apoptosis. Deregulated expression of a number of Sp proteins has been associated with multiple types of human tumors, but a role for KLF9 in endometrial cancer development and/or progression is unknown. Here, we evaluated KLF9 expression in endometrial tumors and adjacent uninvolved endometrium of women with endometrial carcinoma. KLF9 mRNA and protein levels were lower in endometrial tumors coincident with decreased expression of family member KLF4 and growth-regulators FBJ murine osteosarcoma viral oncogene homolog (FOS) and myelocytomatosis viral oncogene homolog (MYC) and with increased expression of telomerase reverse transcriptase (TERT) and the chromatin-modifying enzymes DNA methyltransferase 1 (DNMT1) and histone deacetylase 3 (HDAC3). Expression of estrogen receptor alpha (ESR1) and the tumor-suppressor phosphatase and tensin homolog deleted in chromosome 10 (PTEN) did not differ between tumor and normal tissue. The functional relevance of attenuated KLF9 expression in endometrial carcinogenesis was further evaluated in the human endometrial carcinoma cell line Ishikawa by siRNA targeting. KLF9 depletion resulted in loss of normal cellular response to the proliferative effects of estrogen concomitant with reductions in KLF4 and MYC and with enhancement of TERT and ESR1 gene expression. Silencing of KLF4 did not mimic the effects of silencing KLF9 in Ishikawa cells. We suggest that KLF9 loss-of-expression accompanying endometrial carcinogenesis may predispose endometrial epithelial cells to mechanisms of escape from estrogen-mediated growth regulation, leading to progression of established neoplasms.
Collapse
Affiliation(s)
- Christian D Simmons
- Departments of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
12
|
Simmen RCM, Pabona JMP, Velarde MC, Simmons C, Rahal O, Simmen FA. The emerging role of Krüppel-like factors in endocrine-responsive cancers of female reproductive tissues. J Endocrinol 2010; 204:223-31. [PMID: 19833720 PMCID: PMC2971688 DOI: 10.1677/joe-09-0329] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Krüppel-like factors (KLFs), of which there are currently 17 known protein members, belong to the specificity protein (Sp) family of transcription factors and are characterized by the presence of Cys(2)/His(2) zinc finger motifs in their carboxy-terminal domains that confer preferential binding to GC/GT-rich sequences in gene promoter and enhancer regions. While previously regarded to simply function as silencers of Sp1 transactivity, many KLFs are now shown to be relevant to human cancers by their newly identified abilities to mediate crosstalk with signaling pathways involved in the control of cell proliferation, apoptosis, migration, and differentiation. Several KLFs act as tumor suppressors and/or oncogenes under distinct cellular contexts, underscoring their prognostic potential for cancer survival and outcome. Recent studies suggest that a number of KLFs can influence steroid hormone signaling through transcriptional networks involving steroid hormone receptors and members of the nuclear receptor family of transcription factors. Since inappropriate sensitivity or resistance to steroid hormone actions underlies endocrine-related malignancies, we consider the intriguing possibility that dysregulation of expression and/or activity of KLF members is linked to the pathogenesis of endometrial and breast cancers. In this review, we focus on recently described mechanisms of actions of several KLFs (KLF4, KLF5, KLF6, and KLF9) in cancers of the mammary gland and uterus. We suggest that understanding the mode of actions of KLFs and their functional networks may lead to the development of novel therapeutics to improve current prospects for cancer prevention and cure.
Collapse
Affiliation(s)
- R C M Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Simmen FA, Su Y, Xiao R, Zeng Z, Simmen RCM. The Krüppel-like factor 9 (KLF9) network in HEC-1-A endometrial carcinoma cells suggests the carcinogenic potential of dys-regulated KLF9 expression. Reprod Biol Endocrinol 2008; 6:41. [PMID: 18783612 PMCID: PMC2542371 DOI: 10.1186/1477-7827-6-41] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/10/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Krüppel-like factor 9 (KLF9) is a transcriptional regulator of uterine endometrial cell proliferation, adhesion and differentiation; processes essential for pregnancy success and which are subverted during tumorigenesis. The network of endometrial genes controlled by KLF9 is largely unknown. Over-expression of KLF9 in the human endometrial cancer cell line HEC-1-A alters cell morphology, proliferative indices, and differentiation, when compared to KLF9 under-expressing HEC-1-A cells. This cell line provides a unique model for identifying KLF9 downstream gene targets and signaling pathways. METHODS HEC-1-A sub-lines differing in relative levels of KLF9 were subjected to microarray analysis to identify differentially-regulated RNAs. RESULTS KLF9 under-expression induced twenty four genes. The KLF9-suppressed mRNAs encode protein participants in: aldehyde metabolism (AKR7A2, ALDH1A1); regulation of the actin cytoskeleton and cell motility (e.g., ANK3, ITGB8); cellular detoxification (SULT1A1, ABCC4); cellular signaling (e.g., ACBD3, FZD5, RAB25, CALB1); and transcriptional regulation (PAX2, STAT1). Sixty mRNAs were more abundant in KLF9 over-expressing sub-lines. The KLF9-induced mRNAs encode proteins which participate in: regulation and function of the actin cytoskeleton (COTL1, FSCN1, FXYD5, MYO10); cell adhesion, extracellular matrix and basement membrane formation (e.g., AMIGO2, COL4A1, COL4A2, LAMC2, NID2); transport (CLIC4); cellular signaling (e.g., BCAR3, MAPKAPK3); transcriptional regulation [e.g., KLF4, NR3C1 (glucocorticoid receptor), RXRalpha], growth factor/cytokine actions (SLPI, BDNF); and membrane-associated proteins and receptors (e.g., CXCR4, PTCH1). In addition, the abundance of mRNAs that encode hypothetical proteins (KLF9-inhibited: C12orf29 and C1orf186; KLF9-induced: C10orf38 and C9orf167) were altered by KLF9 expression. Human endometrial tumors of high tumor grade had decreased KLF9 mRNA abundance. CONCLUSION KLF9 influences the expression of uterine epithelial genes through mechanisms likely involving its transcriptional activator and repressor functions and which may underlie altered tumor biology with aberrant KLF9 expression.
Collapse
Affiliation(s)
- Frank A Simmen
- Department of Physiology and Biophysics, and the Arkansas Children's Nutrition Center, 1212 Marshall Street, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72202, USA
| | - Ying Su
- Department of Physiology and Biophysics, and the Arkansas Children's Nutrition Center, 1212 Marshall Street, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72202, USA
| | - Rijin Xiao
- Department of Physiology and Biophysics, and the Arkansas Children's Nutrition Center, 1212 Marshall Street, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72202, USA
| | - Zhaoyang Zeng
- Department of Physiology and Biophysics, and the Arkansas Children's Nutrition Center, 1212 Marshall Street, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72202, USA
| | - Rosalia CM Simmen
- Department of Physiology and Biophysics, and the Arkansas Children's Nutrition Center, 1212 Marshall Street, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72202, USA
| |
Collapse
|
14
|
Rackow BW, Taylor HS. Submucosal uterine leiomyomas have a global effect on molecular determinants of endometrial receptivity. Fertil Steril 2008; 93:2027-34. [PMID: 18555231 DOI: 10.1016/j.fertnstert.2008.03.029] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 03/12/2008] [Accepted: 03/12/2008] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To evaluate the effect of uterine leiomyomas on the endometrium using molecular markers of endometrial receptivity: HOXA10, HOXA11, LIF, and BTEB1. DESIGN Case-control study. SETTING University medical center. PATIENT(S) Thirty reproductive-aged women with submucosal, intramural, or no uterine myomas who underwent hysteroscopy or hysterectomy. INTERVENTION(S) Proliferative phase endometrial sampling was performed at the time of surgery. In uteri with a submucosal myoma, directed endometrial biopsies were obtained over the myoma and over normal myometrium. MAIN OUTCOME MEASURE(S) Endometrial HOXA10 expression was evaluated as a primary endpoint using quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry. HOXA11, BTEB1, and LIF were evaluated using real-time RT-PCR. RESULT(S) Endometrial HOXA10 and HOXA11 messenger RNA (mRNA) expression were significantly decreased in uteri with submucosal myomas compared with controls and with uteri with intramural myomas. A similar trend was seen in BTEB1 mRNA expression; however, no difference was found in LIF mRNA expression. Immunohistochemistry localized the decrease in endometrial HOXA10 protein expression to stroma. In the presence of a submucosal myoma, there were no regional differences in gene expression. CONCLUSION(S) The molecular mechanism by which submucosal myomas adversely affect reproduction includes a global decrease in endometrial HOX gene expression, not simply a focal change over the myoma. This may explain the reproductive dysfunction observed with submucosal myomas.
Collapse
Affiliation(s)
- Beth W Rackow
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520-8063, USA.
| | | |
Collapse
|
15
|
Kang L, Lü B, Xu J, Hu H, Lai M. Downregulation of Krüppel-like factor 9 in human colorectal cancer. Pathol Int 2008; 58:334-8. [PMID: 18477211 DOI: 10.1111/j.1440-1827.2008.02233.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mammalian Sp and Krüppel-like factors (KLF), a family of zinc finger-containing transcription factors, are involved in growth control, proliferation, apoptosis and angiogenesis of a wide variety of tissues and cells. Several KLF have been linked to various types of human cancers, but the relationship between Krüppel-like factor 9 (KLF9) and colorectal cancer has not been explored. The purpose of the present study was to investigate KLF9 expression in human colorectal cancer tissue. KLF9 mRNA was detected on quantitative real-time reverse transcriptase-polymerase chain reaction (Q-PCR). Of the 50 cancerous tissues examined, 86% (43/50) expressed lower levels of KLF9 mRNA than individually matched normal mucosa (P < 0.0001). On western blot, reduced or absent expression of KLF9 protein was observed in 65% (13/20) of the samples (P < 0.01). A total of 81% (35/43) of normal samples had expression of KLF9 protein, whereas its protein was detected in only 9% (4/43) of tumor tissues (P < 0.001) on tissue microarray. These results indicate that KLF9 may be involved in the carcinogenesis of human colorectal cancer.
Collapse
Affiliation(s)
- Ling Kang
- Department of Pathology and Pathophysiology, Affiliated Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
16
|
Simmen FA, Xiao R, Velarde MC, Nicholson RD, Bowman MT, Fujii-Kuriyama Y, Oh SP, Simmen RCM. Dysregulation of intestinal crypt cell proliferation and villus cell migration in mice lacking Kruppel-like factor 9. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1757-69. [PMID: 17379758 DOI: 10.1152/ajpgi.00013.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Krüppel-like factor 9 (Klf9), a zinc-finger transcription factor, is implicated in the control of cell proliferation, cell differentiation, and cell fate. Using Klf9-null mutant mice, we have investigated the involvement of Klf9 in intestine crypt-villus cell renewal and lineage determination. We report the predominant expression of Klf9 gene in small and large intestine smooth muscle (muscularis externa). Jejunums null for Klf9 have shorter villi, reduced crypt stem/transit cell proliferation, and altered lineage determination as indicated by decreased and increased numbers of goblet and Paneth cells, respectively. A stimulatory role for Klf9 in villus cell migration was demonstrated by bromodeoxyuridine labeling. Results suggest that Klf9 controls the elaboration, from intestine smooth muscle, of molecular mediator(s) of crypt cell proliferation and lineage determination and of villus cell migration.
Collapse
Affiliation(s)
- Frank A Simmen
- Arkansas Children's Nutrition Center, 1120 Marshall St., Little Rock, AR 72202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu X, Ding J, Rao G, Shen J, Prinz RA, Rana N, Dmowski WP. Estradiol induces heparanase-1 expression and heparan sulphate proteoglycan degradation in human endometrium. Hum Reprod 2007; 22:927-37. [PMID: 17261577 DOI: 10.1093/humrep/del483] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND This study seeks to determine whether estrogen is able to regulate the expression of heparanase-1 (HPR1) in human endometrium. METHODS HPR1 expression and heparan sulphate (HS) deposition in the endometrium collected in various menstrual phases were analysed by immunohistochemical and immunofluorescence staining, respectively. HPR1 expression in the endometrial cells unexposed or exposed to estradiol was analysed by using RT-PCR and luciferase reporter assay. HPR1 activity was analysed by using a novel enzyme-linked immunosorbent assay (ELISA). Cell surface HS levels were analysed by flow cytometry. Serum HPR1 activity in women receiving follicle-stimulating hormone (FSH) for IVF was measured by ELISA. RESULTS HPR1 expression was rarely detected in the endometrium in the early and mid-proliferative phases but was increased in the late proliferative phase and in the secretory phases. HPR1 expression was negatively associated with HS in the basement membrane (BM) of the endometrial glands. HPR1 gene expression, HPR1 promoter activity and HPR1 enzymatic activity were increased in the endometrial cells when exposed to 17beta-estradiol (E(2)), whereas cell surface HS levels showed a decrease which could be blocked by PI-88, an HPR1 inhibitor. Serum HPR1 levels were increased in women with moderately elevated blood estrogen levels after receiving FSH. CONCLUSIONS HPR1 is differentially expressed in the endometrium in different menstrual phases. Estrogen plays an important role in inducing HPR1 expression, subsequently leading to HS degradation on the endometrial cell surface and in the BM of the endometrium.
Collapse
Affiliation(s)
- Xiulong Xu
- Department of General Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Velarde MC, Geng Y, Eason RR, Simmen FA, Simmen RCM. Null Mutation of Krüppel-Like Factor9/Basic Transcription Element Binding Protein-1 Alters Peri-Implantation Uterine Development in Mice1. Biol Reprod 2005; 73:472-81. [PMID: 15917344 DOI: 10.1095/biolreprod.105.041855] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Female mice null for the basic transcription element binding protein-1 (Bteb1) gene have reduced numbers of implanting embryos. We hypothesized that the implantation defect, resulting in subfertility, is a consequence of developmental asynchrony between the embryo and uterine endometrium at peri-implantation. To address this, endometrium from wild-type (WT) and Bteb1(-/-) females at 0.5 to 5.5 days postcoitum (dpc) were evaluated for proliferation (BrdU labeling), apoptosis (TUNEL), and steroid hormone receptor expression (immunohistochemistry). Loss of BTEB1 did not affect serum estrogen (E) and progesterone (P) levels. In stroma (ST), the numbers of progesterone receptor (PGR) and HomeoboxA10 (HOXA10)-expressing cells were lower (3.5 and 4.5 dpc), while those of estrogen receptor-alpha (ESR1) were higher (3.5 dpc), with Bteb1 ablation. The peak of proliferation in luminal epithelium (LE), glandular epithelium (GE), and ST was delayed, while the apoptotic index in all cell types was increased (2.5 dpc) in Bteb1(-/-) relative to WT mice. The numbers of PGR-positive ST cells was negatively correlated with LE proliferation in WT mice; this correlation was lost in Bteb1(-/-) mice and was not observed before 2.5 dpc for both genotypes. Proliferation and apoptosis in all endometrial compartments, as well as the numbers of PGR-, HOXA10-, and ESR1-expressing ST cells, were lower in Bteb1(-/-) relative to WT mice after ovariectomy and E + P treatment. Results suggest that BTEB1, by regulating ST PGR expression and transactivation, participates in the paracrine control of LE proliferation by PGR and thus is important for establishment of a receptive uterus critical for successful implantation.
Collapse
Affiliation(s)
- Michael C Velarde
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock. AR 72202, USA
| | | | | | | | | |
Collapse
|
19
|
Liu H, Harris TM, Kim HH, Childs G. Cardiac myocyte differentiation: the Nkx2.5 and Cripto target genes in P19 clone 6 cells. Funct Integr Genomics 2005; 5:218-39. [PMID: 15806425 DOI: 10.1007/s10142-005-0140-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 01/07/2005] [Accepted: 01/12/2005] [Indexed: 01/29/2023]
Abstract
Genetic evidence has implicated several genes as being critical for the development of cardiomyocytes. Whereas a few of the targets of these genes and the pathways they constitute are known the majority of targets and the interrelationships of the pathways involved still remains largely unknown. The power of high-throughput analytical techniques like microarrays and real-time RT-PCR combined with the ability to selectively silence specific mRNA in model tissue culture systems can begin to fill in these gaps and increase our understanding of the molecular mechanisms of cell commitment and terminal differentiation. We have used microarray analysis and siRNA directed against the cardiac-specific transcription factor Nkx2.5 and one of its targets Cripto in P19 clone 6 (P19Cl6) cells to identify potential targets for these genes. We demonstrate Nkx2.5 affects genes that have been shown to be controlled by the canonical Wnt or TGFbeta/BMP signaling pathways. We also show that Cripto can regulate the critical stem cell gene Nanog and two Oct 4-regulated genes: Dppa2 and 4. Cripto also affects the formation of nitric oxide, a small signaling molecule that has been reported to be important for growth and development of cardiac and smooth muscle. It affects the nitric oxide system by regulating genes that control the levels of nitric oxide synthase mRNA concentration as well as the activation and bioavailability of the protein.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
20
|
Simmen RCM, Eason RR, McQuown JR, Linz AL, Kang TJ, Chatman L, Till SR, Fujii-Kuriyama Y, Simmen FA, Oh SP. Subfertility, Uterine Hypoplasia, and Partial Progesterone Resistance in Mice Lacking the Krüppel-like Factor 9/Basic Transcription Element-binding Protein-1 (Bteb1) Gene. J Biol Chem 2004; 279:29286-94. [PMID: 15117941 DOI: 10.1074/jbc.m403139200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progesterone receptor (PR), a ligand-activated transcription factor, is a key regulator of cellular proliferation and differentiation in reproductive tissues. The transcriptional activity of PR is influenced by co-regulatory proteins typically expressed in a tissue- and cell-specific fashion. We previously demonstrated that basic transcription element-binding protein-1 (BTEB1), a member of the Sp/Krüppel-like family of transcription factors, functionally interacts with the two PR isoforms, PR-A and PR-B, to mediate progestin sensitivity of target genes in endometrial epithelial cells in vitro. Here we report that ablation of the Bteb1 gene in female mice results in uterine hypoplasia, reduced litter size, and increased incidence of neonatal deaths in offspring. The reduced litter size is solely a maternal genotype effect and results from fewer numbers of implantation sites, rather than defects in ovulation. In the early pregnant uterus, Bteb1 expression in stromal cells temporally coincides with PR-A isoform-dependent decidual formation at the time of implantation. Expression of two implantation-specific genes, Hoxa10 and cyclin D3, was decreased in uteri of early pregnant Bteb1-null mutants, whereas that of Bteb3, a related family member, was increased, the latter possibly compensating for the loss of Bteb1. Progesterone responsiveness of several uterine genes was altered with Bteb1-null mutation. These results identify Bteb1 as a functionally relevant PR-interacting protein and suggest its selective modulation of cellular processes that are regulated by PR-A in the uterine stroma.
Collapse
Affiliation(s)
- Rosalia C M Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang XL, Zhang D, Michel FJ, Blum JL, Simmen FA, Simmen RCM. Selective interactions of Kruppel-like factor 9/basic transcription element-binding protein with progesterone receptor isoforms A and B determine transcriptional activity of progesterone-responsive genes in endometrial epithelial cells. J Biol Chem 2003; 278:21474-82. [PMID: 12672823 DOI: 10.1074/jbc.m212098200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Sp/KLF transcription factor basic transcription element-binding protein (BTEB1) regulates gene transcription by binding to GC-rich sequence motifs present in the promoters of numerous tissue-specific as well as housekeeping genes. Similar to other members of this family, BTEB1 can act as a transactivator or transrepressor depending on cell and promoter context, although the molecular mechanism underlying these distinct activities remains unclear. Here we report that BTEB1 can mediate signaling pathways involving the nuclear receptor for the steroid hormone progesterone in endometrial epithelial cells by its selective interaction with the progesterone receptor (PR) isoforms, PR-A and PR-B. Functional interaction with ligand-activated PR-B resulted in superactivation of PR-B transactivity, facilitated the recruitment of the transcriptional integrator CREB-binding protein within the PR-dimer, and was dependent on the structure of the ligand bound by PR-B. By contrast, BTEB1 did not influence agonist-bound PR-A transactivity, although it augmented PR-A inhibition of PR-B-mediated transactivation as well as potentiated ligand-independent PR-A transcriptional activity in the presence of CREB-binding protein. We also demonstrate similar positive modulatory actions of BTEB1-related family members Krüppel-like family (KLF) 13/FKLF2/BTEB3 and Sp1 on PR-B transactivity. Further, we provide support for the potential significance of the selective functional interactions of PR isoforms with BTEB1 in the peri-implantation uterus using mouse and pig models and in the breast cancer cell lines MCF-7 and T47D. Our results suggest a novel mechanism for the divergent physiological consequences of PR-A and PR-B on progesterone-dependent gene transcription in the uterus involving select KLF members.
Collapse
Affiliation(s)
- Xue-Lian Zhang
- Interdisciplinary Concentration in Animal Molecular and Cell Biology, University of Florida, Gainesville, FL 32611-0910, USA
| | | | | | | | | | | |
Collapse
|
22
|
Atamna H, Killilea DW, Killilea AN, Ames BN. Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging. Proc Natl Acad Sci U S A 2002; 99:14807-12. [PMID: 12417755 PMCID: PMC137500 DOI: 10.1073/pnas.192585799] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Heme, a major functional form of iron in the cell, is synthesized in the mitochondria by ferrochelatase inserting ferrous iron into protoporphyrin IX. Heme deficiency was induced with N-methylprotoporphyrin IX, a selective inhibitor of ferrochelatase, in two human brain cell lines, SHSY5Y (neuroblastoma) and U373 (astrocytoma), as well as in rat primary hippocampal neurons. Heme deficiency in brain cells decreases mitochondrial complex IV, activates nitric oxide synthase, alters amyloid precursor protein, and corrupts iron and zinc homeostasis. The metabolic consequences resulting from heme deficiency seem similar to dysfunctional neurons in patients with Alzheimer's disease. Heme-deficient SHSY5Y or U373 cells die when induced to differentiate or to proliferate, respectively. The role of heme in these observations could result from its interaction with heme regulatory motifs in specific proteins or secondary to the compromised mitochondria. Common causes of heme deficiency include aging, deficiency of iron and vitamin B6, and exposure to toxic metals such as aluminum. Iron and B6 deficiencies are especially important because they are widespread, but they are also preventable with supplementation. Thus, heme deficiency or dysregulation may be an important and preventable component of the neurodegenerative process.
Collapse
Affiliation(s)
- Hani Atamna
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | | | | | |
Collapse
|
23
|
Shin CH, Liu ZP, Passier R, Zhang CL, Wang DZ, Harris TM, Yamagishi H, Richardson JA, Childs G, Olson EN. Modulation of Cardiac Growth and Development by HOP, an Unusual Homeodomain Protein. Cell 2002; 110:725-35. [PMID: 12297046 DOI: 10.1016/s0092-8674(02)00933-9] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have discovered an unusual homeodomain protein, called HOP, which is comprised simply of a homeodomain. HOP is highly expressed in the developing heart where its expression is dependent on the cardiac-restricted homeodomain protein Nkx2.5. HOP does not bind DNA and acts as an antagonist of serum response factor (SRF), which regulates the opposing processes of proliferation and myogenesis. Mice homozygous for a HOP null allele segregate into two phenotypic classes characterized by an excess or deficiency of cardiac myocytes. We propose that HOP modulates SRF activity during heart development; its absence results in an imbalance between cardiomyocyte proliferation and differentiation with consequent abnormalities in cardiac morphogenesis.
Collapse
Affiliation(s)
- Chong Hyun Shin
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang D, Simmen RCM, Michel FJ, Zhao G, Vale-Cruz D, Simmen FA. Secretory leukocyte protease inhibitor mediates proliferation of human endometrial epithelial cells by positive and negative regulation of growth-associated genes. J Biol Chem 2002; 277:29999-30009. [PMID: 12023969 DOI: 10.1074/jbc.m203503200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI) inhibits chymotrypsin, trypsin, elastase, and cathepsin G. This protein also exhibits proliferative effects, although little is known about the molecular mechanisms underlying this activity. We have generated SLPI-ablated epithelial sublines by stably transfecting the Ishikawa human endometrial cell line with an antisense human SLPI RNA expression vector. We demonstrate a positive correlation between cellular SLPI production and proliferation. We further show that Ishikawa sublines expressing low to undetectable SLPI have correspondingly increased and decreased expression, respectively, of transforming growth factor-beta 1 and cyclin D1 genes, relative to parental cells. SLPI selectively increased cyclin D1 gene expression, with the effect occurring in part at the level of promoter activity. Cellular SLPI levels negatively influenced the anti-proliferative and pro-apoptotic insulin-like growth factor-binding protein-3 expression. We also identified lysyl oxidase, a phenotypic inhibitor of the ras oncogenic pathway and a tumor suppressor, as SLPI-repressed gene, whose expression is up-regulated by transforming growth factor-beta1. Our results suggest that SLPI acts at the node(s) of at least three major interacting growth inhibitory pathways. Because expression of SLPI is generally high in epithelial cells exhibiting abnormal proliferation such as in carcinomas, SLPI may define a novel pathway by which cellular growth is modulated.
Collapse
Affiliation(s)
- Daying Zhang
- Interdisciplinary Concentration in Animal Molecular & Cell Biology and the Department of Animal Sciences, University of Florida, Gainesville, Florida 32611-0910, USA
| | | | | | | | | | | |
Collapse
|
25
|
Simmen RCM, Zhang XL, Michel FJ, Min SH, Zhao G, Simmen FA. Molecular markers of endometrial epithelial cell mitogenesis mediated by the Sp/Krüppel-like factor BTEB1. DNA Cell Biol 2002; 21:115-28. [PMID: 11953011 DOI: 10.1089/104454902753604998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Basic transcription element binding (BTEB1) protein is one of at least 20 Sp/KLF family members that function as transcriptional activators or repressors by binding to GC/GT-rich sequences within target genes to influence cellular homeostasis in mammals. Previously, we demonstrated that increased expression of BTEB1 in a human endometrial epithelial cell line Hec-1-A resulted in serum dependent-enhanced proliferation, which was accompanied by heightened expression of cell cycle- and growth-associated genes. In the present study, we examined the mechanism underlying the altered proliferative potential associated with BTEB1 by the identification of additional BTEB1 downstream gene targets and by the demonstration of BTEB1 transactivation of promoters for a number of growth-associated genes. Using mRNA differential display in the analysis of RNA populations from Hec-1-A sublines with high (4S, 9S) and low (2As, 3As) BTEB1 cellular content, we identified 10 distinct differentially expressed transcripts, nine of which had higher levels in S than in As sublines. The expression levels of two of these cDNAs, Axl receptor tyrosine kinase and mitosin, whose encoded products are implicated in cellular proliferation, were modestly induced by serum, albeit in a BTEB1-independent manner. Moreover, insulin-like growth factor-I, a mitogen present in serum, had no significant effect on their expression in either subline. In transient reporter assays, the basal activities of the Axl gene promoter and those for two other growth-regulatory genes, namely p21(WAF1) and IGFBP-2, were increased by serum and were significantly higher in 4S than in 2As lines. However, while BTEB1 and its ubiquitous family member Sp1 increased basal p21(WAF1) and IGFBP-2 transcription when added as expression constructs in the parental Hec-1-A cell line, only Sp1 activated Axl transcription, despite the presence in all three gene promoters of GC-enriched regions that presumably can bind BTEB1 and Sp1 with similar affinities. To elucidate intracellular signaling pathways that might involve BTEB1, inhibitors of specific kinase-dependent transducers were used in transient transfection assays involving the IGFBP-2 gene promoter in 4S and 2As sublines. While inhibitors of the MAPK, PI-3K, and PKA pathways elicited similar effects on the IGFBP-2 gene promoter activity, irrespective of cellular BTEB1 content, that for JNK had a more pronounced effect on Hec-1-A sublines exhibiting higher BTEB1 expression levels. Taken together, the results suggest that BTEB1 mediates the expression of growth-associated genes through direct and indirect transactivation mechanisms, one of which may involve the participation of a JNK family member.
Collapse
Affiliation(s)
- Rosalia C M Simmen
- Department of Animal Sciences and Interdisciplinary Concentration in Animal Molecular & Cell Biology, University of Florida, Gainesville, Florida 32611-0910, USA.
| | | | | | | | | | | |
Collapse
|