1
|
Gu Y, Gao L, Han Q, Li A, Yu H, Liu D, Pang Q. GSK-3β at the Crossroads in Regulating Protein Synthesis and Lipid Deposition in Zebrafish. Cells 2019; 8:cells8030205. [PMID: 30823450 PMCID: PMC6468354 DOI: 10.3390/cells8030205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 01/22/2023] Open
Abstract
In this study, the mechanism by which GSK-3β regulates protein synthesis and lipid deposition was investigated in zebrafish (Danio rerio). The vector of pEGFP-N1-GSK-3β was constructed and injected into the muscle of zebrafish. It was found that the mRNA and protein expression of tuberous sclerosis complex 2 (TSC2) was significantly increased. However, the mRNA and protein expression of mammalian target of rapamycin (mTOR), p70 ribosomal S6 kinase 1 (S6K1), and 4E-binding protein 1 (4EBP1) was significantly decreased by the pEGFP-N1-GSK-3β vector in the muscle of zebrafish. In addition, the mRNA and protein expression of β-catenin, CCAAT/enhancer binding protein α (C/EBPα), and peroxisome proliferators-activated receptor γ (PPARγ) was significantly decreased, but the mRNA expression of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), ATP-citrate lyase (ACL), and HMG-CoA reductase (HMGCR) was significantly increased by the pEGFP-N1-GSK-3β vector. The activity of FAS, ACC, ACL, and HMGCR as well as the content of triglyceride (TG), total cholesterol (TC), and nonesterified fatty acids (NEFA) were significantly increased by the pEGFP-N1-GSK-3β vector in the muscle of zebrafish. The content of free amino acids Arg, Lys, His, Phe, Leu, Ile, Val, and Thr was significantly decreased by the pEGFP-N1-GSK-3β vector. The results indicate that GSK-3β may participate in regulating protein synthesis via TSC2/mTOR signaling and regulating lipid deposition via β-catenin in the muscle of zebrafish (Danio rerio).
Collapse
Affiliation(s)
- Yaqi Gu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Qiang Han
- Sunwei Biotech Shandong Co., Ltd., Weifang 261205, China.
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Hairui Yu
- College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang 261061, China.
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
2
|
Lamming DW, Bar-Peled L. Lysosome: The metabolic signaling hub. Traffic 2019; 20:27-38. [PMID: 30306667 PMCID: PMC6294686 DOI: 10.1111/tra.12617] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
For the past five decades, the lysosome has been characterized as an unglamorous cellular recycling center. This notion has undergone a radical shift in the last 10 years, with new research revealing that this organelle serves as a major hub for metabolic signaling pathways. The discovery that master growth regulators, including the protein kinase mTOR (mechanistic target of rapamycin), make their home at the lysosomal surface has generated intense interest in the lysosome's key role in nutrient sensing and cellular homeostasis. The transcriptional networks required for lysosomal maintenance and function are just being unraveled and their connection to lysosome-based signaling pathways revealed. The catabolic and anabolic pathways that converge on the lysosome connect this organelle with multiple facets of cellular function; when these pathways are deregulated they underlie multiple human diseases, and promote cellular and organismal aging. Thus, understanding how lysosome-based signaling pathways function will not only illuminate the fascinating biology of this organelle but will also be critical in unlocking its therapeutic potentials.
Collapse
Affiliation(s)
- Dudley W. Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Liron Bar-Peled
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
3
|
Glycophagy: An emerging target in pathology. Clin Chim Acta 2018; 484:298-303. [DOI: 10.1016/j.cca.2018.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/14/2022]
|
4
|
Ribeiro GF, de Góes CG, Onorio DS, de Campos CBL, Morais FV. Autophagy in Paracoccidioides brasiliensis under normal mycelia to yeast transition and under selective nutrient deprivation. PLoS One 2018; 13:e0202529. [PMID: 30138387 PMCID: PMC6107164 DOI: 10.1371/journal.pone.0202529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/03/2018] [Indexed: 11/23/2022] Open
Abstract
Paracoccidioides spp. is a thermally dimorphic fungus endemic to Latin America and the etiological agent of paracoccidioidomycosis (PCM), a granulomatous disease acquired through fungal propagule inhalation by its mammalian host. The infection is established after successful mycelia to yeast transition in the host pulmonary alveoli. The challenging environment inside the host exposes the fungus to the need of adaptation in order to circumvent nutritional, thermal, oxidative, immunological and other stresses that can directly affect their survival. Considering that autophagy is a response to abrupt environmental changes and is induced by stress conditions, this study hypothesizes that this process might be crucially involved in the adaptation of Paracoccidioides spp. to the host and, therefore, it is essential for the proper establishment of the disease. By labelling autophagous vesicles with monodansylcadaverine, autophagy was observed as an early event in cells during the normal mycelium to yeast transition, as well as in yeast cells of P. brasiliensis under glucose deprivation, and under either rapamycin or 3-methyladenine (3-MA). Findings in this study demonstrated that autophagy is triggered in P. brasiliensis during the thermal-induced mycelium to yeast transition and by glucose-limited conditions in yeasts, both of which modulated by rapamycin or 3-MA. Certainly, further genetic and in vivo analyses are needed in order to finally address the contribution of autophagy for adaptation. Yet, our data propose that autophagy possibly plays an important role in Paracoccidioides brasiliensis virulence and pathogenicity.
Collapse
Affiliation(s)
- Giselle Ferreira Ribeiro
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Caroline Gonçalves de Góes
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Diego Santos Onorio
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Cláudia Barbosa Ladeira de Campos
- Laboratório de Bioquímica, Biologia Celular e Molecular de Fungos, Instituto de Ciência e Tecnologia–Universidade Federal de São Paulo–UNIFESP, São José dos Campos, SP, Brazil
| | - Flavia Villaça Morais
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
- * E-mail:
| |
Collapse
|
5
|
Cross Talk Networks of Mammalian Target of Rapamycin Signaling With the Ubiquitin Proteasome System and Their Clinical Implications in Multiple Myeloma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:219-297. [PMID: 30712673 DOI: 10.1016/bs.ircmb.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy and results from the clonal amplification of plasma cells. Despite recent advances in treatment, MM remains incurable with a median survival time of only 5-6years, thus necessitating further insights into MM biology and exploitation of novel therapeutic approaches. Both the ubiquitin proteasome system (UPS) and the PI3K/Akt/mTOR signaling pathways have been implicated in the pathogenesis, and treatment of MM and different lines of evidence suggest a close cross talk between these central cell-regulatory signaling networks. In this review, we outline the interplay between the UPS and mTOR pathways and discuss their implications for the pathophysiology and therapy of MM.
Collapse
|
6
|
Hung CW, Martínez-Márquez JY, Javed FT, Duncan MC. A simple and inexpensive quantitative technique for determining chemical sensitivity in Saccharomyces cerevisiae. Sci Rep 2018; 8:11919. [PMID: 30093662 PMCID: PMC6085351 DOI: 10.1038/s41598-018-30305-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Chemical sensitivity, growth inhibition in response to a chemical, is a powerful phenotype that can reveal insight into diverse cellular processes. Chemical sensitivity assays are used in nearly every model system, however the yeast Saccharomyces cerevisiae provides a particularly powerful platform for discovery and mechanistic insight from chemical sensitivity assays. Here we describe a simple and inexpensive approach to determine chemical sensitivity quantitatively in yeast in the form of half maximal inhibitory concentration (IC50) using common laboratory equipment. We demonstrate the utility of this method using chemicals commonly used to monitor changes in membrane traffic. When compared to traditional agar-based plating methods, this method is more sensitive and can detect defects not apparent using other protocols. Additionally, this method reduces the experimental protocol from five days to 18 hours for the toxic amino acid canavanine. Furthermore, this method provides reliable results using lower amounts of chemicals. Finally, this method is easily adapted to additional chemicals as demonstrated with an engineered system that activates the spindle assembly checkpoint in response to rapamycin with differing efficiencies. This approach provides researchers with a cost-effective method to perform chemical genetic profiling without specialized equipment.
Collapse
Affiliation(s)
- Chao-Wei Hung
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
- Department of Medicine, University of California, San Diego, California, USA.
| | | | - Fatima T Javed
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mara C Duncan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast. Proc Natl Acad Sci U S A 2017; 114:E376-E385. [PMID: 28049830 DOI: 10.1073/pnas.1619735114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Zika virus (ZIKV) causes microcephaly and the Guillain-Barré syndrome. Little is known about how ZIKV causes these conditions or which ZIKV viral protein(s) is responsible for the associated ZIKV-induced cytopathic effects, including cell hypertrophy, growth restriction, cell-cycle dysregulation, and cell death. We used fission yeast for the rapid, global functional analysis of the ZIKV genome. All 14 proteins or small peptides were produced under an inducible promoter, and we measured the intracellular localization and the specific effects on ZIKV-associated cytopathic activities of each protein. The subcellular localization of each ZIKV protein was in overall agreement with its predicted protein structure. Five structural and two nonstructural ZIKV proteins showed various levels of cytopathic effects. The expression of these ZIKV proteins restricted cell proliferation, induced hypertrophy, or triggered cellular oxidative stress leading to cell death. The expression of premembrane protein (prM) resulted in cell-cycle G1 accumulation, whereas membrane-anchored capsid (anaC), membrane protein (M), envelope protein (E), and nonstructural protein 4A (NS4A) caused cell-cycle G2/M accumulation. A mechanistic study revealed that NS4A-induced cellular hypertrophy and growth restriction were mediated specifically through the target of rapamycin (TOR) cellular stress pathway involving Tor1 and type 2A phosphatase activator Tip41. These findings should provide a reference for future research on the prevention and treatment of ZIKV diseases.
Collapse
|
8
|
Abstract
An intricate machinery protects cells from the accumulation of misfolded, non-functional proteins and protein aggregates. Protein quality control pathways have been best described in the cytoplasm and the endoplasmic reticulum, however, recent findings indicate that the nucleus is also an important compartment for protein quality control. Several nuclear ubiquitinylation pathways target soluble and membrane proteins in the nucleus and mediate their degradation through nuclear proteasomes. In addition, emerging data suggest that nuclear envelope components are also degraded by autophagy, although the mechanisms by which cytoplasmic autophagy machineries get access to nuclear targets remain unclear. In this minireview we summarize the nuclear ubiquitin-proteasome pathways in yeast, focusing on pathways involved in the protein degradation at the inner nuclear membrane. In addition, we discuss potential mechanisms how nuclear targets at the nuclear envelope may be delivered to the cytoplasmic autophagy pathways in yeast and mammals.
Collapse
Affiliation(s)
- Mirta Boban
- a Croatian Institute for Brain Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Roland Foisner
- b Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry , Medical University of Vienna, Vienna Biocenter (VBC) , Vienna , Austria
| |
Collapse
|
9
|
Das R, Xu S, Nguyen TT, Quan X, Choi SK, Kim SJ, Lee EY, Cha SK, Park KS. Transforming Growth Factor β1-induced Apoptosis in Podocytes via the Extracellular Signal-regulated Kinase-Mammalian Target of Rapamycin Complex 1-NADPH Oxidase 4 Axis. J Biol Chem 2015; 290:30830-42. [PMID: 26565025 DOI: 10.1074/jbc.m115.703116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 02/04/2023] Open
Abstract
TGF-β is a pleiotropic cytokine that accumulates during kidney injuries, resulting in various renal diseases. We have reported previously that TGF-β1 induces the selective up-regulation of mitochondrial Nox4, playing critical roles in podocyte apoptosis. Here we investigated the regulatory mechanism of Nox4 up-regulation by mTORC1 activation on TGF-β1-induced apoptosis in immortalized podocytes. TGF-β1 treatment markedly increased the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream targets p70S6K and 4EBP1. Blocking TGF-β receptor I with SB431542 completely blunted the phosphorylation of mTOR, p70S6K, and 4EBP1. Transient adenoviral overexpression of mTOR-WT and constitutively active mTORΔ augmented TGF-β1-treated Nox4 expression, reactive oxygen species (ROS) generation, and apoptosis, whereas mTOR kinase-dead suppressed the above changes. In addition, knockdown of mTOR mimicked the effect of mTOR-KD. Inhibition of mTORC1 by low-dose rapamycin or knockdown of p70S6K protected podocytes through attenuation of Nox4 expression and subsequent oxidative stress-induced apoptosis by TGF-β1. Pharmacological inhibition of the MEK-ERK cascade, but not the PI3K-Akt-TSC2 pathway, abolished TGF-β1-induced mTOR activation. Inhibition of either ERK1/2 or mTORC1 did not reduce the TGF-β1-stimulated increase in Nox4 mRNA level but significantly inhibited total Nox4 expression, ROS generation, and apoptosis induced by TGF-β1. Moreover, double knockdown of Smad2 and 3 or only Smad4 completely suppressed TGF-β1-induced ERK1/2-mTORactivation. Our data suggest that TGF-β1 increases translation of Nox4 through the Smad-ERK1/2-mTORC1 axis, which is independent of transcriptional regulation. Activation of this pathway plays a crucial role in ROS generation and mitochondrial dysfunction, leading to podocyte apoptosis. Therefore, inhibition of the ERK1/2-mTORC1 pathway could be a potential therapeutic and preventive target in proteinuric and chronic kidney diseases.
Collapse
Affiliation(s)
- Ranjan Das
- From the Department of Physiology, Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Republic of Korea and
| | - Shanhua Xu
- From the Department of Physiology, Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Republic of Korea and
| | - Tuyet Thi Nguyen
- From the Department of Physiology, Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Republic of Korea and
| | - Xianglan Quan
- From the Department of Physiology, Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Republic of Korea and
| | - Seong-Kyung Choi
- From the Department of Physiology, Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Republic of Korea and
| | - Soo-Jin Kim
- From the Department of Physiology, Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Republic of Korea and
| | - Eun Young Lee
- the Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 330-721, Republic of Korea
| | - Seung-Kuy Cha
- From the Department of Physiology, Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Republic of Korea and
| | - Kyu-Sang Park
- From the Department of Physiology, Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon-Do 220-701, Republic of Korea and
| |
Collapse
|
10
|
Ojini I, Gammie A. Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants. G3 (BETHESDA, MD.) 2015; 5:1925-35. [PMID: 26199284 PMCID: PMC4555229 DOI: 10.1534/g3.115.020560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/20/2015] [Indexed: 01/12/2023]
Abstract
Resistance to cancer therapy is a major obstacle in the long-term treatment of cancer. A greater understanding of drug resistance mechanisms will ultimately lead to the development of effective therapeutic strategies to prevent resistance from occurring. Here, we exploit the mutator phenotype of mismatch repair defective yeast cells combined with whole genome sequencing to identify drug resistance mutations in key pathways involved in the development of chemoresistance. The utility of this approach was demonstrated via the identification of the known CAN1 and TOP1 resistance targets for two compounds, canavanine and camptothecin, respectively. We have also experimentally validated the plasma membrane transporter HNM1 as the primary drug resistance target of mechlorethamine. Furthermore, the sequencing of mitoxantrone-resistant strains identified inactivating mutations within IPT1, a gene encoding inositolphosphotransferase, an enzyme involved in sphingolipid biosynthesis. In the case of bactobolin, a promising anticancer drug, the endocytosis pathway was identified as the drug resistance target responsible for conferring resistance. Finally, we show that that rapamycin, an mTOR inhibitor previously shown to alter the fitness of the ipt1 mutant, can effectively prevent the formation of mitoxantrone resistance. The rapid and robust nature of these techniques, using Saccharomyces cerevisiae as a model organism, should accelerate the identification of drug resistance targets and guide the development of novel therapeutic combination strategies to prevent the development of chemoresistance in various cancers.
Collapse
Affiliation(s)
- Irene Ojini
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Alison Gammie
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
11
|
Yi DG, Huh WK. PKA, PHO and stress response pathways regulate the expression of UDP-glucose pyrophosphorylase through Msn2/4 in budding yeast. FEBS Lett 2015; 589:2409-16. [DOI: 10.1016/j.febslet.2015.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/30/2015] [Accepted: 07/09/2015] [Indexed: 11/26/2022]
|
12
|
Ma BL, Shan MH, Sun G, Ren GH, Dong C, Yao X, Zhou M. Immunohistochemical analysis of phosphorylated mammalian target of rapamycin and its downstream signaling components in invasive breast cancer. Mol Med Rep 2015; 12:5246-54. [PMID: 26151180 DOI: 10.3892/mmr.2015.4037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate whether the mammalian target of rapamycin (mTOR) signaling pathway is activated in invasive breast cancer. The expression levels of phosphorylated (p)‑mTOR at ser2448 were detected, as well as the expression levels of its downstream signaling molecules: Eukaryotic translation initiation factor 4E‑binding protein 1 (4E‑BP1), and p70 ribosomal protein S6 kinase 1 (S6K1). The correlation between p‑mTOR, p‑4E‑BP1, p‑S6K1, and the clinicopathological parameters of breast cancer were also determined. p‑mTOR, p‑4E‑BP1 and p‑S6K1 expression was detected in 285 breast cancer tumor samples and adjacent normal tissue samples using immunohistochemistry. The expression levels and the location of the proteins were analyzed and compared in the various tissue samples. Multivariate Cox regression was used to analyze the clinicopathological factors and prognosis associated with the tissue samples. The disease‑free survival rate was examined using survival analyses and Log‑rank tests. The results of the present study indicated that the expression levels of p‑mTOR, p‑4E‑BP1, and p‑S6K1 were significantly higher in breast cancer tissue, as compared with normal tissue (P<0.01). p‑mTOR was predominantly expressed in the cytoplasm, whereas p‑4E‑BP1 and p‑S6K1 were predominantly co‑expressed in the cytoplasm and the nucleus. In addition, p‑4E‑BP1 and p‑S6K1 were more likely to be expressed in the cytoplasm in breast cancer tissue samples, as compared with normal tissue samples (P<0.001). Positive p‑mTOR was not significantly correlated with positive p‑4E‑BP1 and p‑S6K1 expression. The survival analyses of the patients with positive p‑mTOR, p‑4E‑BP1, and p‑S6K1 tissue samples were not significantly different from those of the patients with negative tissue samples (P>0.05). Thus suggesting that these markers are not adequate risk factors for disease free survival (P>0.05). In conclusion, the results of the present study suggested that p‑mTOR, p‑4E‑BP1, and p‑S6K1 are activated in invasive breast cancer. In addition, the exclusive expression of p‑4E‑BP1 and p‑S6K1 in the cytoplasm may be characteristic of progressive breast cancer. However, p‑mTOR, p‑4E‑BP1, and p‑S6K1 are not prognostic factors for breast cancer.
Collapse
Affiliation(s)
- Bin-Lin Ma
- Department of Breast and Neck, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Mei-Hui Shan
- Department of Breast and Neck, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Gang Sun
- Department of Breast and Neck, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Guang-Hui Ren
- Department of Breast and Neck, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Chao Dong
- Department of Breast and Neck, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xuemei Yao
- Department of Epidemiology and Health Statistics, Public Health College of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Mei Zhou
- Department of Pathology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
13
|
Baldin C, Valiante V, Krüger T, Schafferer L, Haas H, Kniemeyer O, Brakhage AA. Comparative proteomics of a tor inducible Aspergillus fumigatus mutant reveals involvement of the Tor kinase in iron regulation. Proteomics 2015; 15:2230-43. [PMID: 25728394 DOI: 10.1002/pmic.201400584] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/27/2015] [Accepted: 02/24/2015] [Indexed: 01/20/2023]
Abstract
The Tor (target of rapamycin) kinase is one of the major regulatory nodes in eukaryotes. Here, we analyzed the Tor kinase in Aspergillus fumigatus, which is the most important airborne fungal pathogen of humans. Because deletion of the single tor gene was apparently lethal, we generated a conditional lethal tor mutant by replacing the endogenous tor gene by the inducible xylp-tor gene cassette. By both 2DE and gel-free LC-MS/MS, we found that Tor controls a variety of proteins involved in nutrient sensing, stress response, cell cycle progression, protein biosynthesis and degradation, but also processes in mitochondria, such as respiration and ornithine metabolism, which is required for siderophore formation. qRT-PCR analyses indicated that mRNA levels of ornithine biosynthesis genes were increased under iron limitation. When tor was repressed, iron regulation was lost. In a deletion mutant of the iron regulator HapX also carrying the xylp-tor cassette, the regulation upon iron deprivation was similar to that of the single tor inducible mutant strain. In line, hapX expression was significantly reduced when tor was repressed. Thus, Tor acts either upstream of HapX or independently of HapX as a repressor of the ornithine biosynthesis genes and thereby regulates the production of siderophores.
Collapse
Affiliation(s)
- Clara Baldin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.,Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Vito Valiante
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Lukas Schafferer
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Austria
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Austria
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.,Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
14
|
Müller M, Lu K, Reichert AS. Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2766-74. [PMID: 25753536 DOI: 10.1016/j.bbamcr.2015.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/10/2015] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Abstract
Mitochondria fulfill central cellular functions including energy metabolism, iron-sulfur biogenesis, and regulation of apoptosis and calcium homeostasis. Accumulation of dysfunctional mitochondria is observed in ageing and many human diseases such as cancer and various neurodegenerative disorders. Appropriate quality control of mitochondria is important for cell survival in most eukaryotic cells. One important pathway in this respect is mitophagy, a selective form of autophagy which removes excess and dysfunctional mitochondria. In the past decades a series of essential factors for mitophagy have been identified and characterized. However, little is known about the molecular mechanisms regulating mitophagy. The role of mitochondrial dynamics in mitophagy is controversially discussed. Here we will review recent advances in this context promoting our understanding on the molecular regulation of mitophagy in Saccharomyces cerevisiae and on the role of mitochondrial dynamics in mitochondrial quality control.
Collapse
Affiliation(s)
- Matthias Müller
- Mitochondrial Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Germany; Mitochondrial Biology, Medical School, Goethe University Frankfurt am Main, Germany
| | - Kaihui Lu
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas S Reichert
- Mitochondrial Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Germany; Mitochondrial Biology, Medical School, Goethe University Frankfurt am Main, Germany; Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
15
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
16
|
Sampaio-Marques B, Burhans WC, Ludovico P. Longevity pathways and maintenance of the proteome: the role of autophagy and mitophagy during yeast ageing. MICROBIAL CELL 2014; 1:118-127. [PMID: 28357232 PMCID: PMC5349200 DOI: 10.15698/mic2014.04.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ageing is a complex and multi-factorial process that results in the progressive
accumulation of molecular alterations that disrupt different cellular functions.
The budding yeast Saccharomyces cerevisiae is an important
model organism that has significantly contributed to the identification of
conserved molecular and cellular determinants of ageing. The nutrient-sensing
pathways are well-recognized modulators of longevity from yeast to mammals, but
their downstream effectors and outcomes on different features of ageing process
are still poorly understood. A hypothesis that is attracting increased interest
is that one of the major functions of these “longevity pathways” is to
contribute to the maintenance of the proteome during ageing. In support of this
hypothesis, evidence shows that TOR/Sch9 and Ras/PKA pathways are important
regulators of autophagy that in turn are essential for healthy cellular ageing.
It is also well known that mitochondria homeostasis and function regulate
lifespan, but how mitochondrial dynamics, mitophagy and biogenesis are regulated
during ageing remains to be elucidated. This review describes recent findings
that shed light on how longevity pathways and metabolic status impact
maintenance of the proteome in both yeast ageing paradigms. These findings
demonstrate that yeast remain a powerful model system for elucidating these
relationships and their influence on ageing regulation.
Collapse
Affiliation(s)
- Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - William C Burhans
- Dept. of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Banreti A, Hudry B, Sass M, Saurin AJ, Graba Y. Hox proteins mediate developmental and environmental control of autophagy. Dev Cell 2014; 28:56-69. [PMID: 24389064 DOI: 10.1016/j.devcel.2013.11.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 09/06/2013] [Accepted: 11/27/2013] [Indexed: 11/16/2022]
Abstract
Hox genes encode evolutionarily conserved transcription factors, providing positional information used for differential morphogenesis along the anteroposterior axis. Here, we show that Drosophila Hox proteins are potent repressors of the autophagic process. In inhibiting autophagy, Hox proteins display no apparent paralog specificity and do not provide positional information. Instead, they impose temporality on developmental autophagy and act as effectors of environmental signals in starvation-induced autophagy. Further characterization establishes that temporality is controlled by Pontin, a facultative component of the Brahma chromatin remodeling complex, and that Hox proteins impact on autophagy by repressing the expression of core components of the autophagy machinery. Finally, the potential of central and posterior mouse Hox proteins to inhibit autophagy in Drosophila and in vertebrate COS-7 cells indicates that regulation of autophagy is an evolutionary conserved feature of Hox proteins.
Collapse
Affiliation(s)
- Agnes Banreti
- CNRS, Aix Marseille Université, IBDML, UMR 7288, Campus de Luminy, Marseille, cedex 09, 13288, France; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary.
| | - Bruno Hudry
- CNRS, Aix Marseille Université, IBDML, UMR 7288, Campus de Luminy, Marseille, cedex 09, 13288, France
| | - Miklos Sass
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Andrew J Saurin
- CNRS, Aix Marseille Université, IBDML, UMR 7288, Campus de Luminy, Marseille, cedex 09, 13288, France
| | - Yacine Graba
- CNRS, Aix Marseille Université, IBDML, UMR 7288, Campus de Luminy, Marseille, cedex 09, 13288, France.
| |
Collapse
|
18
|
Cortes CJ, Qin K, Norstrom EM, Green WN, Bindokas VP, Mastrianni JA. Early Delivery of Misfolded PrP from ER to Lysosomes by Autophagy. Int J Cell Biol 2013; 2013:560421. [PMID: 24454378 PMCID: PMC3877647 DOI: 10.1155/2013/560421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/20/2013] [Indexed: 01/17/2023] Open
Abstract
Prion diseases are linked to the accumulation of a misfolded isoform (PrP(Sc)) of prion protein (PrP). Evidence suggests that lysosomes are degradation endpoints and sites of the accumulation of PrP(Sc). We questioned whether lysosomes participate in the early quality control of newly generated misfolded PrP. We found PrP carrying the disease-associated T182A mutation (Mut-PrP) was delivered to lysosomes in a Golgi-independent manner. Time-lapse live cell imaging revealed early formation and uptake of GFP-tagged Mut-PrP aggregates into LysoTracker labeled vesicles. Compared with Wt-PrP, Mut-PrP expression was associated with an elevation in several markers of the autophagy-lysosomal pathway, and it extensively colocalized with the autophagosome-specific marker, LC3B. In autophagy deficient (ATG5(-/-)) mouse embryonic fibroblasts, or in normal cells treated with the autophagy-inhibitor 3-MA, Mut-PrP colocalization with lysosomes was reduced to a similar extent. Additionally, 3-MA selectively impaired the degradation of insoluble Mut-PrP, resulting in an increase in protease-resistant PrP, whereas the induction of autophagy by rapamycin reduced it. These findings suggest that autophagy might function as a quality control mechanism to limit the accumulation of misfolded PrP that normally leads to the generation of PrP(Sc).
Collapse
Affiliation(s)
- Constanza J. Cortes
- Departments of Neurology, MC2030, The University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Kefeng Qin
- Departments of Neurology, MC2030, The University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Eric M. Norstrom
- Departments of Neurology, MC2030, The University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - William N. Green
- Departments of Neurobiology, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Vytautas P. Bindokas
- Departments of Neurobiology, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - James A. Mastrianni
- Departments of Neurology, MC2030, The University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Abstract
Autophagy refers to a group of processes that involve degradation of cytoplasmic components including cytosol, macromolecular complexes, and organelles, within the vacuole or the lysosome of higher eukaryotes. The various types of autophagy have attracted increasing attention for at least two reasons. First, autophagy provides a compelling example of dynamic rearrangements of subcellular membranes involving issues of protein trafficking and organelle identity, and thus it is fascinating for researchers interested in questions pertinent to basic cell biology. Second, autophagy plays a central role in normal development and cell homeostasis, and, as a result, autophagic dysfunctions are associated with a range of illnesses including cancer, diabetes, myopathies, some types of neurodegeneration, and liver and heart diseases. That said, this review focuses on autophagy in yeast. Many aspects of autophagy are conserved from yeast to human; in particular, this applies to the gene products mediating these pathways as well as some of the signaling cascades regulating it, so that the information we relate is relevant to higher eukaryotes. Indeed, as with many cellular pathways, the initial molecular insights were made possible due to genetic studies in Saccharomyces cerevisiae and other fungi.
Collapse
|
20
|
Nuclear FKBPs, Fpr3 and Fpr4 affect genome-wide genes transcription. Mol Genet Genomics 2013; 289:125-36. [DOI: 10.1007/s00438-013-0794-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
|
21
|
Lopes P, Fuhrmann A, Sereno J, Pereira MJ, Nunes P, Pedro J, Melão A, Reis F, Carvalho E. Effects of cyclosporine and sirolimus on insulin-stimulated glucose transport and glucose tolerance in a rat model. Transplant Proc 2013; 45:1142-8. [PMID: 23622647 DOI: 10.1016/j.transproceed.2013.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cyclosporine (CsA) and sirolimus (SRL) have been associated with undesirable side effects, including posttransplantation diabetes and hyperlipidemia, but the molecular mechanisms underlying these effects remain to be elucidated. Animal studies focusing on clinically relevant doses are advised. This study sought to compare the metabolic effects on isolated rat adipocytes treated with either CsA or SRL ex vivo and after long-term in vivo treatment in Wistar rats. We assessed the ex vivo effects of CsA (0.5-30 μmol/L) and SRL (1-250 μmol/L) on insulin-stimulated (14)C-glucose uptake in epididymal adipocytes (n = 6-9). In parallel, rats (n = 12) were treated with either vehicle, CsA (5 mg/kg/d) or SRL (1 mg/kg/d) for either 3 or 9 weeks. At the end of the treatment, glucose tolerance test (GTT) and insulin-stimulated (14)C-glucose uptake as well as biochemical parameters were analyzed. A significant reduction in the insulin-stimulated glucose uptake over basal was observed among isolated adipocytes, whether exposed ex vivo or in vivo to CsA or SRL treatment. Furthermore, the SRL group showed significantly lighter fat pads and smaller adipocytes at 3 weeks with a smaller gain in body weight throughout the study compared with either the vehicle or CsA cohorts. Glucose intolerance was observed after a GTT, at the end of the treatment with either drug. Additionally, at 9 weeks serum triglycerides were increased by CsA compared with vehicle or SRL treatment. Interestingly, although SRL-treated animals presented higher fed and fasted insulin levels compared with either group, suggesting insulin resistance, the CsA group presented lower fed and fasted insulin values, suggesting a defect in insulin secretion at 9 weeks. These results suggested that either ex vivo treatment of fat cells or in vivo treatment of rats with CsA or SRL impaired insulin-stimulated glucose uptake by adipocytes. Both drugs caused glucose intolerance, which altogether could be responsible for the development of posttransplantation diabetes.
Collapse
Affiliation(s)
- P Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Junkins RD, Shen A, Rosen K, McCormick C, Lin TJ. Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLoS One 2013; 8:e72263. [PMID: 24015228 PMCID: PMC3756076 DOI: 10.1371/journal.pone.0072263] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Robert D. Junkins
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Ann Shen
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kirill Rosen
- Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
23
|
Pereira MJ, Palming J, Rizell M, Aureliano M, Carvalho E, Svensson MK, Eriksson JW. mTOR inhibition with rapamycin causes impaired insulin signalling and glucose uptake in human subcutaneous and omental adipocytes. Mol Cell Endocrinol 2012; 355:96-105. [PMID: 22333157 DOI: 10.1016/j.mce.2012.01.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/17/2012] [Accepted: 01/27/2012] [Indexed: 02/07/2023]
Abstract
Rapamycin is an immunosuppressive agent used after organ transplantation, but its molecular effects on glucose metabolism needs further evaluation. We explored rapamycin effects on glucose uptake and insulin signalling proteins in adipocytes obtained via subcutaneous (n=62) and omental (n=10) fat biopsies in human donors. At therapeutic concentration (0.01 μM) rapamycin reduced basal and insulin-stimulated glucose uptake by 20-30%, after short-term (15 min) or long-term (20 h) culture of subcutaneous (n=23 and n=10) and omental adipocytes (n=6 and n=7). Rapamycin reduced PKB Ser473 and AS160 Thr642 phosphorylation, and IRS2 protein levels in subcutaneous adipocytes. Additionally, it reduced mTOR-raptor, mTOR-rictor and mTOR-Sin1 interactions, suggesting decreased mTORC1 and mTORC2 formation. Rapamycin also reduced IR Tyr1146 and IRS1 Ser307/Ser616/Ser636 phosphorylation, whereas no effects were observed on the insulin stimulated IRS1-Tyr and TSC2 Thr1462 phosphorylation. This is the first study to show that rapamycin reduces glucose uptake in human adipocytes through impaired insulin signalling and this may contribute to the development of insulin resistance associated with rapamycin therapy.
Collapse
Affiliation(s)
- Maria J Pereira
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
24
|
Lipopolysaccharide induction of autophagy is associated with enhanced bactericidal activity in Dictyostelium discoideum. Biochem Biophys Res Commun 2012; 422:417-22. [PMID: 22575510 DOI: 10.1016/j.bbrc.2012.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 11/21/2022]
Abstract
Innate immune cells respond to microbial invaders using pattern recognition receptors that detect conserved microbial patterns. Among the cellular processes stimulated downstream of pattern recognition machinery is the initiation of autophagy, which plays protective roles against intracellular microbes. We have shown recently that Dictyostelium discoideum, which takes up bacteria for nutritive purposes, may employ pattern recognition machinery to respond to bacterial prey, as D. discoideum cells upregulate bactericidal activity upon stimulation by lipopolysaccharide (LPS). Here we extend these findings, showing that LPS treatment leads to induction of autophagosomal maturation in cells responding to the bacteria Staphylococcus aureus. Cells treated with the autophagy-inducing drug rapamycin clear internalized bacteria at an accelerated rate, while LPS-enhanced clearance of bacteria is reduced in cells deficient for the autophagy-related genes atg1 and atg9. These findings link microbial pattern recognition with autophagy in the social amoeba D. discoideum.
Collapse
|
25
|
Santini E, Klann E. Dysregulated mTORC1-Dependent Translational Control: From Brain Disorders to Psychoactive Drugs. Front Behav Neurosci 2011; 5:76. [PMID: 22073033 PMCID: PMC3210466 DOI: 10.3389/fnbeh.2011.00076] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/21/2011] [Indexed: 01/09/2023] Open
Abstract
In the last decade, a plethora of studies utilizing pharmacological, biochemical, and genetic approaches have shown that precise translational control is required for long-lasting synaptic plasticity and the formation of long-term memory. Moreover, more recent studies indicate that alterations in translational control are a common pathophysiological feature of human neurological disorders, including developmental disorders, neuropsychiatric disorders, and neurodegenerative diseases. Finally, translational control mechanisms are susceptible to modification by psychoactive drugs. Taken together, these findings point to a central role for translational control in the regulation of synaptic function and behavior.
Collapse
Affiliation(s)
- Emanuela Santini
- Center for Neural Science, New York University New York, NY, USA
| | | |
Collapse
|
26
|
Foss EJ, Radulovic D, Shaffer SA, Goodlett DR, Kruglyak L, Bedalov A. Genetic variation shapes protein networks mainly through non-transcriptional mechanisms. PLoS Biol 2011; 9:e1001144. [PMID: 21909241 PMCID: PMC3167781 DOI: 10.1371/journal.pbio.1001144] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/29/2011] [Indexed: 12/22/2022] Open
Abstract
Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance proteins in this genetically diverse population is not caused by variation of their underlying transcripts.
Collapse
Affiliation(s)
- Eric J. Foss
- Clinical Research Division, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Dragan Radulovic
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Scott A. Shaffer
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - David R. Goodlett
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
27
|
Zacharogianni M, Kondylis V, Tang Y, Farhan H, Xanthakis D, Fuchs F, Boutros M, Rabouille C. ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association. EMBO J 2011; 30:3684-700. [PMID: 21847093 DOI: 10.1038/emboj.2011.253] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 07/07/2011] [Indexed: 01/08/2023] Open
Abstract
RNAi screening for kinases regulating the functional organization of the early secretory pathway in Drosophila S2 cells has identified the atypical Mitotic-Associated Protein Kinase (MAPK) Extracellularly regulated kinase 7 (ERK7) as a new modulator. We found that ERK7 negatively regulates secretion in response to serum and amino-acid starvation, in both Drosophila and human cells. Under these conditions, ERK7 turnover through the proteasome is inhibited, and the resulting higher levels of this kinase lead to a modification in a site within the C-terminus of Sec16, a key ER exit site component. This post-translational modification elicits the cytoplasmic dispersion of Sec16 and the consequent disassembly of the ER exit sites, which in turn results in protein secretion inhibition. We found that ER exit site disassembly upon starvation is TOR complex 1 (TORC1) independent, showing that under nutrient stress conditions, cell growth is not only inhibited at the transcriptional and translational levels, but also independently at the level of secretion by inhibiting the membrane flow through the early secretory pathway. These results reveal the existence of new signalling circuits participating in the complex regulation of cell growth.
Collapse
Affiliation(s)
- Margarita Zacharogianni
- Department of Cell Biology, Cell microscopy Centre, UMC Utrecht, Heidelberglaan, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Some hypothesize that aging in humans is a cumulative process of macromolecular and mitochondrial damage starting years, even decades before any symptoms arise. Aging may begin when the rate of damage exceeds the rate of continual repair and turnover. Quality control for damaged mitochondria entails cellular digestion by mitophagy, a specialized kind of autophagy. Insufficient protective autophagy could cause damaged cellular components to accumulate over many years until they affect normal function in the cell. Alternatively, aging could be the result of overactive, pathologic autophagy. Current knowledge supports both hypotheses with conflicting data, depending on which stage of autophagy is examined. To distinguish these opposite hypotheses, two criteria need to be observed. First, is there a buildup of undigested waste that can be removed by stimulation of autophagy? Or second, if autophagy is overactive, does inhibition of autophagy rescue cell, organ and organism demise. Both of these are best determined by rate measures rather than measures at a single time point. Here, we review the generalized process of autophagy, with a focus on the limited information available for neuron mitophagy, aging, and Alzheimer's disease (AD). In two mouse models, treatment with rapamycin abolishes the AD pathology and reverses memory deficits. As a working model, we hypothesize that insufficient protective autophagy accelerates both aging and AD pathology, possibly caused by defects in autophagosome fusion with lysosomes.
Collapse
Affiliation(s)
- Aaron Barnett
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | | |
Collapse
|
29
|
Rohatgi N, Remedi MS, Kwon G, Pappan KL, Marshall CA, McDaniel ML. Therapeutic Strategies to Increase Human β-Cell Growth and Proliferation by Regulating mTOR and GSK-3/β-Catenin Pathways. ACTA ACUST UNITED AC 2010; 4. [PMID: 24339841 DOI: 10.2174/1874216501004010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This perspective delineates approaches to develop therapeutic strategies to stimulate the proliferative potential of adult human β-cells in vitro. Previous findings demonstrated that nutrients, through regulation of mTOR signaling, promote regenerative processes including DNA synthesis, cell cycle progression and β-cell proliferation in rodent islets but rarely in human islets. Recently, we discovered that regulation of the Wnt/GSK-3/β-catenin pathway by directly inhibiting GSK-3 with pharmacologic agents, in combination with nutrient activation of mTOR, was required to increase growth and proliferation in human islets. Studies also revealed that nuclear translocation of β-catenin in response to GSK-3 inhibition regulated these processes and was rapamycin sensitive, indicating a role for mTOR. Human islets displayed a high level of insulin resistance consistent with the inability of exogenous insulin to activate Akt and engage the Wnt pathway by GSK-3 inhibition. This insulin resistance in human islets is not present in rodent islets and may explain the differential requirement in human islets to inhibit GSK-3 to enhance these regenerative processes. Human islets exhibited normal insulin secretion but a loss of insulin content, which was independent of all treatment conditions. The loss of insulin content may be related to insulin resistance, the isolation process or culture conditions. In this perspective, we provide strategies to enhance the proliferative capacity of adult human β-cells and highlight important differences between human and rodent islets: the lack of a nutrient response, requirement for direct GSK-3 inhibition, insulin resistance and loss of insulin content that emphasize the physiological significance of conducting studies in human islets.
Collapse
Affiliation(s)
- Nidhi Rohatgi
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
30
|
Shertz CA, Bastidas RJ, Li W, Heitman J, Cardenas ME. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. BMC Genomics 2010; 11:510. [PMID: 20863387 PMCID: PMC2997006 DOI: 10.1186/1471-2164-11-510] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki. Results Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions. Conclusions The repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural environments.
Collapse
Affiliation(s)
- Cecelia A Shertz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
31
|
Pasini E, Flati V, Paiardi S, Rizzoni D, Porteri E, Aquilani R, Assanelli D, Corsetti G, Speca S, Rezzani R, De Ciuceis C, Agabiti-Rosei E. Intracellular molecular effects of insulin resistance in patients with metabolic syndrome. Cardiovasc Diabetol 2010; 9:46. [PMID: 20809949 PMCID: PMC2940873 DOI: 10.1186/1475-2840-9-46] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/01/2010] [Indexed: 01/21/2023] Open
Abstract
Aim of the study Patients with metabolic syndrome (MetS) have an increased risk of cardiovascular disease. Data obtained from muscle biopsies have demonstrated altered insulin signaling (IS) in patients with MetS. The IS regulates critical cell functions including molecular-regulated cellular metabolite fluxes, protein and energetic metabolism, cell proliferation and apoptosis with consequent regulation of cell life including endothelial homeostasis and blood coagulation. However, little is known about blood cell IS in MetS patients. The aim of this study was to develop a method to evaluate IS in peripheral lymphocytes to identify altered intracellular molecules in patients with MetS to use as risk biomarkers of vascular thrombosis. Patients and Methods We investigated 40 patients with MetS and 20 controls. MetS was defined according to guidelines from the US National Cholesterol Education Program Adult Treatment Panel III. Blood samples were taken from all participants. Total mononuclear cells were isolated from peripheral blood using density gradient centrifugation. IS molecules were evaluated using Western blot analysis followed by computer-assisted densitometer evaluation. Results Lymphocytes of MetS patients showed a reduced mTOR expression (the mammalian target of rapamycin) which is a fundamental molecule of IS. Major impairment of IS was confirmed by reduced upstream and downstream mTOR molecules which regulate fundamental cells metabolic functions. Conclusions In patients with MetS, we found a reduction of mTOR and other mTOR-related molecules involved in insulin resistance, cell repair, coagulation and vasculogenesis. A reduced expression of mTOR may reflect an increased risk of vascular thrombosis.
Collapse
Affiliation(s)
- Evasio Pasini
- Salvatore Maugeri Foundation, IRCCS, Medical Center of Lumezzane, Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mahoney SJ, Dempsey JM, Blenis J. Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:53-107. [PMID: 20374739 DOI: 10.1016/s1877-1173(09)90002-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein synthesis is a highly energy-consuming process that must be tightly regulated. Signal transduction cascades respond to extracellular and intracellular cues to phosphorylate proteins involved in ribosomal biogenesis and translation initiation and elongation. These phosphorylation events regulate the timing and rate of translation of both specific and total mRNAs. Alterations in this regulation can result in dysfunction and disease. While many signaling pathways intersect to control protein synthesis, the mTOR and MAPK pathways appear to be key players. This chapter briefly reviews the mTOR and MAPK pathways and then focuses on individual phosphorylation events that directly control ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Sarah J Mahoney
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
33
|
Campoy E, Colombo MI. Autophagy in intracellular bacterial infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1465-77. [DOI: 10.1016/j.bbamcr.2009.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/06/2009] [Accepted: 03/10/2009] [Indexed: 12/24/2022]
|
34
|
|
35
|
Abstract
Deferoxamine (DFO) is a high-affinity Fe (III) chelator produced by Streptomyces pilosus. DFO is used clinically to remove iron from patients with iron overload disorders. Orally administered DFO cannot be absorbed, and therefore it must be injected. Here we show that DFO induces ferritin degradation in lysosomes through induction of autophagy. DFO-treated cells show cytosolic accumulation of LC3B, a critical protein involved in autophagosomal-lysosomal degradation. Treatment of cells with the oral iron chelators deferriprone and desferasirox did not show accumulation of LC3B, and degradation of ferritin occurred through the proteasome. Incubation of DFO-treated cells with 3-methyladenine, an autophagy inhibitor, resulted in degradation of ferritin by the proteasome. These results indicate that ferritin degradation occurs by 2 routes: a DFO-induced entry of ferritin into lysosomes and a cytosolic route in which iron is extracted from ferritin before degradation by the proteasome.
Collapse
|
36
|
Kim MS, Wu KY, Auyeung V, Chen Q, Gruppuso PA, Phornphutkul C. Leucine restriction inhibits chondrocyte proliferation and differentiation through mechanisms both dependent and independent of mTOR signaling. Am J Physiol Endocrinol Metab 2009; 296:E1374-82. [PMID: 19401455 PMCID: PMC2692404 DOI: 10.1152/ajpendo.91018.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Linear growth in children is sensitive to nutritional status. Amino acids, in particular leucine, have been shown to regulate cell growth, proliferation, and differentiation through the mammalian target of rapamycin (mTOR), a nutrient-sensing protein kinase. Having recently demonstrated a role for mTOR in chondrogenesis, we hypothesized that leucine restriction, acting through mTOR, would inhibit growth plate chondrocyte proliferation and differentiation. The effect of leucine restriction was compared with that of the specific mTOR inhibitor, rapamycin. Leucine restriction produced a dose-dependent inhibition of fetal rat metatarsal explant growth. This was accounted by reduced cell proliferation and hypertrophy but not apoptosis. mTOR activity, as reflected by ribosomal protein S6 phosphorylation, was only partially inhibited by leucine restriction, whereas rapamycin abolished S6 phosphorylation. In chondrogenic ATDC5 cells, leucine restriction inhibited cell number, proteoglycan accumulation, and collagen X expression despite minimal inhibition of mTOR. Microarray analysis demonstrated that the effect of leucine restriction on ATDC5 cell gene expression differed from that of rapamycin. Out of 1,571 genes affected by leucine restriction and 535 genes affected by rapamycin, only 176 genes were affected by both. These findings indicate that the decreased chondrocyte growth and differentiation associated with leucine restriction is only partly attributable to inhibition of mTOR signaling. Thus nutrient restriction appears to directly modulate bone growth through unidentified mTOR-independent mechanisms in addition to the well-characterized mTOR nutrient-sensing pathway.
Collapse
Affiliation(s)
- Mimi S Kim
- Division of Pediatric Endocrinology and Metabolism, Rhode Island Hospital, 593 Eddy St., Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10:307-18. [DOI: 10.1038/nrm2672] [Citation(s) in RCA: 1895] [Impact Index Per Article: 118.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Nien WL, Dauphinee SM, Moffat LD, Too CKL. Overexpression of the mTOR alpha4 phosphoprotein activates protein phosphatase 2A and increases Stat1alpha binding to PIAS1. Mol Cell Endocrinol 2007; 263:10-7. [PMID: 17084018 DOI: 10.1016/j.mce.2006.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/08/2006] [Accepted: 08/14/2006] [Indexed: 11/29/2022]
Abstract
Alpha4 phosphoprotein in the mTOR pathway is a prolactin (PRL)-downregulated gene product that interacts with the catalytic subunit of serine/threonine protein phosphatase 2A (PP2Ac) in rat Nb2 lymphoma cells. Transient overexpression of alpha4 in COS-1 cells inhibited PRL-inducible interferon-regulatory-1 (IRF-1) promoter activity, but the mechanism underlying this inhibition was not known. The present study showed a stable alpha4-PP2Ac complex that was not dissociated by rapamycin in COS-1 cells. Transient overexpression of alpha4 in COS-1 cells had no effect on endogenous PP2Ac protein levels but significantly increased PP2Ac carboxymethylation and PP2A activity as compared to controls. The increased PP2A activity was accompanied by decreased phosphorylation of eukaryotic initiation factor 4E-binding protein (4E-BP1) but had no effect on Stat phosphorylation. However, overexpressed alpha4 decreased arginine methylation of Stat1alpha and increased Stat1alpha binding to the Stat1alpha-specific inhibitor, PIAS1. In summary, ectopic alpha4 increased PP2A activity in COS-1 cells and this was accompanied by Stat1alpha hypomethylation and increased Stat1alpha-PIAS1 association. These events would inhibit Stat action and ultimately inhibit PRL-inducible IRF-1 promoter activity.
Collapse
Affiliation(s)
- Wei Lun Nien
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
39
|
Wu MYW, Cully M, Andersen D, Leevers SJ. Insulin delays the progression of Drosophila cells through G2/M by activating the dTOR/dRaptor complex. EMBO J 2006; 26:371-9. [PMID: 17183368 PMCID: PMC1783464 DOI: 10.1038/sj.emboj.7601487] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 11/10/2006] [Indexed: 01/13/2023] Open
Abstract
In Drosophila and mammals, insulin signalling can increase growth, progression through G1/S, cell size and tissue size. Here, we analyse the way insulin affects cell size and cell-cycle progression in two haemocyte-derived Drosophila cell lines. Surprisingly, we find that although insulin increases cell size, it slows the rate at which these cells increase in number. By using BrdU pulse-chase to label S-phase cells and follow their progression through the cell cycle, we show that insulin delays progression through G2/M, thereby slowing cell division. The ability of insulin to slow progression through G2/M is independent of its ability to stimulate progression through G1/S, so is not a consequence of feedback by the cell-cycle machinery to maintain cell-cycle length. Insulin's effects on progression through G2/M are mediated by dTOR/dRaptor signalling. Partially inhibiting dTOR/dRaptor signalling by dsRNAi or mild rapamycin treatment can increase cell number in cultured haemocytes and the Drosophila wing, respectively. Thus, insulin signalling can influence cell number depending on a balance between its ability to accelerate progression through G1/S and delay progression through G2/M.
Collapse
Affiliation(s)
- Mary Y W Wu
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Megan Cully
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Ditte Andersen
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Sally J Leevers
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, UK
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, PO Box 123, 44 Lincoln's Inn Fields, London WC2A 3PX, UK. Tel.: +44 20 7269 3240; Fax: +44 20 7269 3479; E-mail:
| |
Collapse
|
40
|
Teichert S, Wottawa M, Schönig B, Tudzynski B. Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. EUKARYOTIC CELL 2006; 5:1807-19. [PMID: 17031002 PMCID: PMC1595341 DOI: 10.1128/ec.00039-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In Fusarium fujikuroi, the biosynthesis of gibberellins (GAs) and bikaverin is under control of AreA-mediated nitrogen metabolite repression. Thus far, the signaling components acting upstream of AreA and regulating its nuclear translocation are unknown. In Saccharomyces cerevisiae, the target of rapamycin (TOR) proteins, Tor1p and Tor2p, are key players of nutrient-mediated signal transduction to control cell growth. In filamentous fungi, probably only one TOR kinase-encoding gene exists. However, nothing is known about its function. Therefore, we investigated the role of TOR in the GA-producing fungus F. fujikuroi in order to determine whether TOR plays a role in nitrogen regulation, especially in the regulation of GA and bikaverin biosynthesis. We cloned and characterized the F. fujikuroi tor gene. However, we were not able to create knockout mutants, suggesting that TOR is essential for viability. Inhibition of TOR by rapamycin affected the expression of AreA-controlled secondary metabolite genes for GA and bikaverin biosynthesis, as well as genes involved in transcriptional and translational regulation, ribosome biogenesis, and autophagy. Deletion of fpr1 encoding the FKBP12-homologue confirmed that the effects of rapamycin are due to the specific inhibition of TOR. Interestingly, the expression of most of the TOR target genes has been previously shown to be also affected in the glutamine synthetase mutant, although in the opposite way. We demonstrate here for the first time in a filamentous fungus that the TOR kinase is involved in nitrogen regulation of secondary metabolism and that rapamycin affects also the expression of genes involved in translation control, ribosome biogenesis, carbon metabolism, and autophagy.
Collapse
Affiliation(s)
- Sabine Teichert
- Westfälische Wilhelms-Universität Münster, Institut für Botanik, Schlossgarten 3, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
41
|
Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen autophagy in glucose homeostasis. Pathol Res Pract 2006; 202:631-8. [PMID: 16781826 DOI: 10.1016/j.prp.2006.04.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
Glycogen autophagy, the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective, hormonally controlled and highly regulated process, representing a mechanism of glucose homeostasis under conditions of demand for the production of this sugar. In the newborn animals, this process is induced by glucagon secreted during the postnatal hypoglycemia and inhibited by insulin and parenteral glucose, which abolishes glucagon secretion. Hormonal action is mediated by the cAMP/protein kinase A (induction) and phosphoinositides/mTOR (inhibition) pathways that converge on common targets, such as the protein phosphatase 2A to regulate autophgosomal glycogen-hydrolyzing acid glucosidase and glycogen autophagy. Intralysosomal phosphate exchange reactions, which are affected by changes in the calcium levels and acid mannose 6- and acid glucose 6-phosphatase activities, can modify the intralysosomal composition in phosphorylated and nonphosphorylated glucose and promote the exit of free glucose through the lysosomal membrane. Glycogen autophagy-derived nonphosphorylated glucose assists the hyaloplasmic glycogen degradation-derived glucose 6-phosphate to combat postnatal hypoglycemia and participates in other metabolic pathways to secure the fine tuning of glucose homeostasis during the neonatal period.
Collapse
Affiliation(s)
- O B Kotoulas
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | |
Collapse
|
42
|
Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald ME, Cotman SL. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 2006; 281:20483-93. [PMID: 16714284 DOI: 10.1074/jbc.m602180200] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis is caused by mutation of a novel, endosomal/lysosomal membrane protein encoded by CLN3. The observation that the mitochondrial ATPase subunit c protein accumulates in this disease suggests that autophagy, a pathway that regulates mitochondrial turnover, may be disrupted. To test this hypothesis, we examined the autophagic pathway in Cln3(Deltaex7/8) knock-in mice and CbCln3(Deltaex7/8) cerebellar cells, accurate genetic models of juvenile neuronal ceroid lipofuscinosis. In homozygous knock-in mice, we found that the autophagy marker LC3-II was increased, and mammalian target of rapamycin was down-regulated. Moreover, isolated autophagic vacuoles and lysosomes from homozygous knock-in mice were less mature in their ultrastructural morphology than the wild-type organelles, and subunit c accumulated in autophagic vacuoles. Intriguingly, we also observed subunit c accumulation in autophagic vacuoles in normal aging mice. Upon further investigation of the autophagic pathway in homozygous knock-in cerebellar cells, we found that LC3-positive vesicles were altered and overlap of endocytic and lysosomal dyes was reduced when autophagy was stimulated, compared with wildtype cells. Surprisingly, however, stimulation of autophagy did not significantly impact cell survival, but inhibition of autophagy led to cell death. Together these observations suggest that autophagy is disrupted in juvenile neuronal ceroid lipofuscinosis, likely at the level of autophagic vacuolar maturation, and that activation of autophagy may be a prosurvival feedback response in the disease process.
Collapse
Affiliation(s)
- Yi Cao
- Molecular Neurogenetics Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Dauphinee SM, Ma M, Too CKL. Role of O-linked beta-N-acetylglucosamine modification in the subcellular distribution of alpha4 phosphoprotein and Sp1 in rat lymphoma cells. J Cell Biochem 2005; 96:579-88. [PMID: 16052526 DOI: 10.1002/jcb.20508] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mTOR alpha4 phosphoprotein is a prolactin (PRL)-downregulated gene product that is found in the nucleus of PRL-dependent rat Nb2 lymphoma cells. Alpha4 lacks a nuclear localization signal (NLS) and the mechanism of its nuclear targeting is unknown. Post-translational modification by O-linked beta-N-acetylglucosamine (O-GlcNAc) moieties has been implicated in the nuclear transport of some proteins, including transcription factor Sp1. The nucleocytoplasmic enzymes O-beta-N-acetylglucosaminyltransferase (OGT) and O-beta-N-acetylglucosaminidase (O-GlcNAcase) adds or remove O-GlcNAc moieties, respectively. If O-GlcNac moieties contribute to the nuclear targeting of alpha4, a decrease in O-GlcNAcylation (e.g., by inhibition of OGT) may redistribute alpha4 to the cytosol. The present study showed that alpha4 and Sp1 were both O-GlcNAcylated in quiescent and PRL-treated Nb2 cells. PRL alone or PRL + streptozotocin (STZ; an O-GlcNAcase inhibitor) significantly (P <or=.05) increased the O-GlcNAc/alpha4 ratio above that in control quiescent cells. However, PRL + alloxan (ALX; an OGT inhibitor) or ALX alone did not decrease O-GlcNAcylation of alpha4 below that of controls and alpha4 remained nuclear. In comparison, PRL (+/-ALX/STZ) greatly increased Sp1 protein levels, caused a significant decrease in the GlcNAc/Sp1 ratio (P <or=0.05, n = 3) as compared to controls and partially redistributed Sp1 to the cytosol. Finally, a 50% downregulation of OGT gene expression by small interfering RNA (i.e., siOGT) partially redistributed both alpha4 and Sp1 to the cytosol. The alpha4 protein partner PP2Ac had no detectable O-GlcNAc moieties and its nuclear distribution was not affected by siOGT. In summary, alpha4 and Sp1 contained O-GlcNAc moieties, which contributed to their nuclear targeting in Nb2 cells.
Collapse
Affiliation(s)
- Shauna M Dauphinee
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | |
Collapse
|
44
|
Abstract
Autophagy is a major intracellular pathway for the degradation and recycling of long-lived proteins and cytoplasmic organelles. Like apoptotic programmed cell death, autophagy is an essential part of growth regulation and maintenance of homeostasis in multicellular organisms. Autophagic vacuole formation is also activated as an adaptive response to a variety of extracellular and intracellular stimuli, including nutrient deprivation, hormonal or therapeutic treatment, bacterial infection, aggregated and misfolded proteins and damaged organelles. Mediators of class I and class III PI3 kinase signaling pathways and trimeric G proteins play major roles in regulating autophagosome formation during the stress response. Defective autophagy is the underlying cause of a number of pathological conditions, including vacuolar myopathies, neurodegenerative diseases, liver disease, and some forms of cancer. This chapter provides an overview of the morphology and molecular basis of autophagosome formation and offers a glimpse into the role of autophagy in normal growth and development, while discussing the pathological implications of its deregulation.
Collapse
Affiliation(s)
- Ameeta Kelekar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
45
|
Gutierrez MG, Vázquez CL, Munafó DB, Zoppino FCM, Berón W, Rabinovitch M, Colombo MI. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 2005; 7:981-93. [PMID: 15953030 DOI: 10.1111/j.1462-5822.2005.00527.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pathogens evolved mechanisms to invade host cells and to multiply in the cytosol or in compositionally and functionally customized membrane-bound compartments. Coxiella burnetii, the agent of Q fever in man is a Gram-negative gamma-proteobacterium which multiplies in large, acidified, hydrolase-rich and fusogenic vacuoles with phagolysosomal-like characteristics. We reported previously that C. burnetii phase II replicative compartments are labelled by LC3, a protein specifically localized to autophagic vesicles. We show here that autophagy in Chinese hamster ovary cells, induced by amino acid deprivation prior to infection with Coxiella increased the number of infected cells, the size of the vacuoles, and their bacterial load. Furthermore, overexpression of GFP-LC3 or of GFP-Rab24 - a protein also localized to autophagic vacuoles - likewise accelerated the development of Coxiella-vacuoles at early times after infection. However, overexpression of mutants of those proteins that cannot be targeted to autophagosomes dramatically decreased the number and size of the vacuoles in the first hours of infection, although by 48 h the infection was similar to that of non-transfected controls. Overall, the results suggest that transit through the autophagic pathway increases the infection with Coxiella by providing a niche more favourable to their initial survival and multiplication.
Collapse
Affiliation(s)
- Maximiliano G Gutierrez
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, Mendoza, 5500, Argentina
| | | | | | | | | | | | | |
Collapse
|
46
|
Kwon G, Marshall CA, Pappan KL, Remedi MS, McDaniel ML. Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes 2004; 53 Suppl 3:S225-32. [PMID: 15561916 DOI: 10.2337/diabetes.53.suppl_3.s225] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a protein kinase that integrates signals from mitogens and the nutrients, glucose and amino acids, to regulate cellular growth and proliferation. Previous findings demonstrated that glucose robustly activates mTOR in an amino acid-dependent manner in rodent and human islets. Furthermore, activation of mTOR by glucose significantly increases rodent islet DNA synthesis that is abolished by rapamycin. Glucagon-like peptide-1 (GLP-1) agonists, through the production of cAMP, have been shown to enhance glucose-dependent proinsulin biosynthesis and secretion and to stimulate cellular growth and proliferation. The objective of this study was to determine if the glucose-dependent and cAMP-mediated mechanism by which GLP-1 agonists enhance beta-cell growth and proliferation is mediated, in part, through mTOR. Our studies demonstrated that forskolin-generated cAMP resulted in activation of mTOR at basal glucose concentrations as assessed by phosphorylation of S6K1, a downstream effector of mTOR. Conversely, an adenylyl cyclase inhibitor partially blocked glucose-induced S6K1 phosphorylation. Furthermore, the GLP-1 receptor agonist, Exenatide, dose-dependently enhanced phosphorylation of S6K1 at an intermediate glucose concentration (8 mmol/l) in a rapamycin-sensitive manner. To determine the mechanism responsible for this potentiation of mTOR, the effects of intra- and extracellular Ca2+ were examined. Glyburide, an inhibitor of ATP-sensitive K+ channels (K(ATP) channels), provided partial activation of mTOR at basal glucose concentrations due to the influx of extracellular Ca2+, and diazoxide, an activator of KATP channels, resulted in partial inhibition of S6K1 phosphorylation by 20 mmol/l glucose. Furthermore, Exenatide or forskolin reversed the inhibition by diazoxide, probably through mobilization of intracellular Ca2+ stores by cAMP. BAPTA, a chelator of intracellular Ca2+, resulted in inhibition of glucose-stimulated S6K1 phosphorylation due to a reduction in cytosolic Ca2+ concentrations. Selective blockade of glucose-stimulated Ca2+ influx unmasked a protein kinase A (PKA)-sensitive component involved in the mobilization of intracellular Ca2+ stores, as revealed with the PKA inhibitor H-89. Overall, these studies support our hypothesis that incretin-derived cAMP participates in the metabolic activation of mTOR by mobilizing intracellular Ca2+ stores that upregulate mitochondrial dehydrogenases and result in enhanced ATP production. ATP can then modulate KATP channels, serve as a substrate for adenylyl cyclase, and possibly directly regulate mTOR activation.
Collapse
Affiliation(s)
- Guim Kwon
- Department of Pathology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
47
|
Cárdenas-Aguayo MDC, Santa-Olalla J, Baizabal JM, Salgado LM, Covarrubias L. Growth factor deprivation induces an alternative non-apoptotic death mechanism that is inhibited by Bcl2 in cells derived from neural precursor cells. ACTA ACUST UNITED AC 2004; 12:735-48. [PMID: 14977482 DOI: 10.1089/15258160360732759] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although apoptosis has been considered the typical mechanism for physiological cell death, presently alternative mechanisms need to be considered. We previously showed that fibroblast growth factor-2 (FGF2) could act as a survival factor for neural precursor cells. To study the death mechanism activated by the absence of this growth factor, we followed the changes in cell morphology and determined cell viability by staining with several dyes after FGF2 removal from mesencephalic neural-progenitor-cell cultures. The changes observed did not correspond to those associated with apoptosis. After 48 h in the absence of FGF2, cells began to develop vacuoles in their cytoplasm, a phenotype that became very obvious 3-5 days later. Double-membrane vacuoles containing cell debris were observed. Vacuolated cells did not stain with either ethidium bromide or trypan Blue, and did not show chromatin condensations. Nonetheless, during the course of culture, vacuolated cells formed aggregates with highly condensed chromatin and detached from the plate. Neural progenitor cells grown in the presence of FGF2 did not display any of those characteristics. The vacuolated phenotype could be reversed by the addition of FGF2. Typical autophagy inhibitors such as 3-MA and LY294002 inhibited vacuole development, whereas a broad-spectrum caspase inhibitor did not. Interestingly, Bcl-2 overexpression retarded vacuole development. In conclusion, we identified a death autophagy-like mechanism activated by the lack of a specific survival factor that can be inhibited by Bcl2. We propose that anti-apoptotic Bcl2 family members are key molecules controlling death activation independently of the cell degeneration mechanism used.
Collapse
Affiliation(s)
- María del Carmen Cárdenas-Aguayo
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. 62210, México
| | | | | | | | | |
Collapse
|
48
|
Gutierrez MG, Munafó DB, Berón W, Colombo MI. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 2004; 117:2687-97. [PMID: 15138286 DOI: 10.1242/jcs.01114] [Citation(s) in RCA: 521] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Autophagy is a normal degradative pathway that involves the sequestration of cytoplasmic components and organelles in a vacuole called an autophagosome that finally fuses with the lysosome. Rab7 is a member of the Rab family involved in transport to late endosomes and in the biogenesis of the perinuclear lysosome compartment. To assess the role of Rab7 in autophagy we stably transfected CHO cells with wild-type pEGFP-Rab7, and the mutants T22N (GDP form) and Q67L (GTP form). Autophagy was induced by amino acid starvation and the autophagic vacuoles were labeled with monodansylcadaverine. By fluorescence microscopy we observed that Rab7wt and the active mutant Rab7Q67L were associated with ring-shaped vesicles labeled with monodansylcadaverine indicating that these Rab proteins associate with the membrane of autophagic vesicles. As expected, in cells transfected with the negative mutant Rab7T22N the protein was diffusely distributed in the cytosol. However, upon induction of autophagy by amino acid starvation or by rapamycin treatment this mutant clearly decorated the monodansylcadaverine-labeled vesicles. Furthermore, a marked increase in the size of the monodansylcadaverine-labeled vacuoles induced by starvation was observed by overexpression of the inactive mutant T22N. Similarly, there was an increase in the size of vesicles labeled with LC3, a protein that specifically localizes on the autophagosomal membrane. Taken together the results indicate that a functional Rab7 is important for the normal progression of autophagy.
Collapse
Affiliation(s)
- Maximiliano G Gutierrez
- Laboratorio de Biología Celular y Molecular-Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina
| | | | | | | |
Collapse
|
49
|
Kalamidas SA, Kondomerkos DJ, Kotoulas OB, Hann AC. Electron microscopic and biochemical study of the effects of rapamycin on glycogen autophagy in the newborn rat liver. Microsc Res Tech 2004; 63:215-9. [PMID: 14988919 DOI: 10.1002/jemt.20032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of rapamycin on glycogen autophagy in the newborn rat liver were studied using biochemical determinations, electron microscopy, and morphometric analysis. Rapamycin increased the fractional volume of hepatocytic autophagic vacuoles, the liver lysosomal glycogen-hydrolyzing activity of acid glucosidase, the degradation of glycogen inside the autophagic vacuoles, and decreased the activity of acid mannose 6-phosphatase. These findings suggest that rapamycin, a known inhibitor of the mammalian target of rapamycin (mTOR) signaling, induces glycogen autophagy in the newborn rat hepatocytes. mTOR may participate in the regulation of this process.
Collapse
Affiliation(s)
- S A Kalamidas
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | | | |
Collapse
|
50
|
Kirkegaard K, Taylor MP, Jackson WT. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2004; 2:301-14. [PMID: 15031729 PMCID: PMC7097095 DOI: 10.1038/nrmicro865] [Citation(s) in RCA: 343] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|