1
|
Jandu D, Latar N, Bajrami A, Queen R, Hasoon M, Teasdale M, Hussain R, Coxhead J, Aspinall S, Meeson A. Single Cell RNA Sequencing of Papillary Cancer Mesenchymal Stem/Stromal Cells Reveals a Transcriptional Profile That Supports a Role for These Cells in Cancer Progression. Int J Mol Sci 2025; 26:4957. [PMID: 40430098 DOI: 10.3390/ijms26104957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Papillary thyroid cancer (PTC) contains mesenchymal stem/stromal cells (MSCs), but their contribution to PTC progression is not clear. In this study, we compared the transcriptional signatures of normal thyroid (NT) and PTC-derived MSCs with the aim of determining if these have distinct transcriptomes that might influence PTC progression. We used flow cytometry in combination with a panel of MSC clusters of differentiation (CD) markers and showed that both thyroid MSC populations expressed MSC markers and lacked expression of markers not normally expressed by MSCs. In addition, we determined that both MSC populations could differentiate to adipocytes and osteocytes. Analysis of single cell RNA sequencing data from both MSC populations revealed, regardless of tissue of origin, that both contained similar numbers of subpopulations. Cluster analysis revealed similarity in expression of both MSC populations for stromal markers, the vascular marker VEGFA and the smooth muscle marker CALD1, while smaller subpopulations expressed markers of more lineage-committed thyroid cells. PTC MSCs also showed upregulated expression of 28 genes, many of which are known to be involved in epithelial-mesenchymal transition (EMT) and/or disease progression in several types of cancers, including but not limited to breast cancer, gastric cancer, cervical carcinoma, bladder cancer and thyroid cancer. This included several members of the S100 and IGFBP gene families. Taken together, these data support a role for PTC MSCs in PTC progression.
Collapse
Affiliation(s)
- Danny Jandu
- Bioscience Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Nani Latar
- Bioscience Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia
| | - Artida Bajrami
- Bioscience Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Rachel Queen
- Bioscience Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Megan Hasoon
- Computational Biology Facility, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3DR, UK
| | - Matthew Teasdale
- Bioinformatics Support Unit, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rafiqul Hussain
- Bioscience Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Jonathan Coxhead
- Bioscience Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Sebastian Aspinall
- Department of General Surgery, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK
| | - Annette Meeson
- Bioscience Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
2
|
Sterenborg RBTM, Steinbrenner I, Li Y, Bujnis MN, Naito T, Marouli E, Galesloot TE, Babajide O, Andreasen L, Astrup A, Åsvold BO, Bandinelli S, Beekman M, Beilby JP, Bork-Jensen J, Boutin T, Brody JA, Brown SJ, Brumpton B, Campbell PJ, Cappola AR, Ceresini G, Chaker L, Chasman DI, Concas MP, Coutinho de Almeida R, Cross SM, Cucca F, Deary IJ, Kjaergaard AD, Echouffo Tcheugui JB, Ellervik C, Eriksson JG, Ferrucci L, Freudenberg J, Fuchsberger C, Gieger C, Giulianini F, Gögele M, Graham SE, Grarup N, Gunjača I, Hansen T, Harding BN, Harris SE, Haunsø S, Hayward C, Hui J, Ittermann T, Jukema JW, Kajantie E, Kanters JK, Kårhus LL, Kiemeney LALM, Kloppenburg M, Kühnel B, Lahti J, Langenberg C, Lapauw B, Leese G, Li S, Liewald DCM, Linneberg A, Lominchar JVT, Luan J, Martin NG, Matana A, Meima ME, Meitinger T, Meulenbelt I, Mitchell BD, Møllehave LT, Mora S, Naitza S, Nauck M, Netea-Maier RT, Noordam R, Nursyifa C, Okada Y, Onano S, Papadopoulou A, Palmer CNA, Pattaro C, Pedersen O, Peters A, Pietzner M, Polašek O, Pramstaller PP, Psaty BM, Punda A, Ray D, Redmond P, Richards JB, Ridker PM, Russ TC, Ryan KA, Olesen MS, Schultheiss UT, Selvin E, Siddiqui MK, et alSterenborg RBTM, Steinbrenner I, Li Y, Bujnis MN, Naito T, Marouli E, Galesloot TE, Babajide O, Andreasen L, Astrup A, Åsvold BO, Bandinelli S, Beekman M, Beilby JP, Bork-Jensen J, Boutin T, Brody JA, Brown SJ, Brumpton B, Campbell PJ, Cappola AR, Ceresini G, Chaker L, Chasman DI, Concas MP, Coutinho de Almeida R, Cross SM, Cucca F, Deary IJ, Kjaergaard AD, Echouffo Tcheugui JB, Ellervik C, Eriksson JG, Ferrucci L, Freudenberg J, Fuchsberger C, Gieger C, Giulianini F, Gögele M, Graham SE, Grarup N, Gunjača I, Hansen T, Harding BN, Harris SE, Haunsø S, Hayward C, Hui J, Ittermann T, Jukema JW, Kajantie E, Kanters JK, Kårhus LL, Kiemeney LALM, Kloppenburg M, Kühnel B, Lahti J, Langenberg C, Lapauw B, Leese G, Li S, Liewald DCM, Linneberg A, Lominchar JVT, Luan J, Martin NG, Matana A, Meima ME, Meitinger T, Meulenbelt I, Mitchell BD, Møllehave LT, Mora S, Naitza S, Nauck M, Netea-Maier RT, Noordam R, Nursyifa C, Okada Y, Onano S, Papadopoulou A, Palmer CNA, Pattaro C, Pedersen O, Peters A, Pietzner M, Polašek O, Pramstaller PP, Psaty BM, Punda A, Ray D, Redmond P, Richards JB, Ridker PM, Russ TC, Ryan KA, Olesen MS, Schultheiss UT, Selvin E, Siddiqui MK, Sidore C, Slagboom PE, Sørensen TIA, Soto-Pedre E, Spector TD, Spedicati B, Srinivasan S, Starr JM, Stott DJ, Tanaka T, Torlak V, Trompet S, Tuhkanen J, Uitterlinden AG, van den Akker EB, van den Eynde T, van der Klauw MM, van Heemst D, Verroken C, Visser WE, Vojinovic D, Völzke H, Waldenberger M, Walsh JP, Wareham NJ, Weiss S, Willer CJ, Wilson SG, Wolffenbuttel BHR, Wouters HJCM, Wright MJ, Yang Q, Zemunik T, Zhou W, Zhu G, Zöllner S, Smit JWA, Peeters RP, Köttgen A, Teumer A, Medici M. Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications. Nat Commun 2024; 15:888. [PMID: 38291025 PMCID: PMC10828500 DOI: 10.1038/s41467-024-44701-9] [Show More Authors] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.
Collapse
Affiliation(s)
- Rosalie B T M Sterenborg
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Digital Environment Research Institute, Queen Mary University of London, London, UK
| | - Tessel E Galesloot
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oladapo Babajide
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Laura Andreasen
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Astrup
- Department of Obesity and Nutritional Sciences, The Novo Nordisk Foundation, Hellerup, Denmark
| | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | - Marian Beekman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - John P Beilby
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Suzanne J Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Ben Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, 7600, Norway
| | - Purdey J Campbell
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Anne R Cappola
- Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Graziano Ceresini
- Oncological Endocrinology, University of Parma, Parma, Italy
- Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Layal Chaker
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone M Cross
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042, Monserrato (CA), Italy
- Università di Sassari, Dipartimento di Scienze Biomediche, V.le San Pietro, 07100, Sassari (SS), Italy
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Alisa Devedzic Kjaergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Blvd. 11, Entrance A, 8200, Aarhus, Denmark
| | - Justin B Echouffo Tcheugui
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Christina Ellervik
- Harvard Medical School, Boston, USA
- Faculty of Medical Science, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Clinical Biochemistry, Zealand University Hospital, Køge, Denmark
| | - Johan G Eriksson
- Department of General Practice and Primary health Care, University of Helsinki, Helsinki, Finland
- National University Singapore, Yong Loo Lin School of Medicine, Department of Obstetrics and Gynecology, Singapore, Singapore
| | - Luigi Ferrucci
- Longitudinal Study Section, National Institute on Aging, Baltimore, MD, USA
| | | | - Christian Fuchsberger
- Institute for Biomedicine (affiliated with the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, USA
| | - Martin Gögele
- Institute for Biomedicine (affiliated with the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Sarah E Graham
- Department of Internal Medicine, Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Gunjača
- Department of Medical Biology, University of Split, School of Medicine, Split, Croatia
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Barbara N Harding
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Barcelona Institute for Global Health, Barcelona, Spain
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Stig Haunsø
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jennie Hui
- Pathwest Laboratory Medicine WA, Nedlands, WA, 6009, Australia
- School of Population and Global Health, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Eero Kajantie
- Finnish Institute for Health and Welfare, Population Health Unit, Helsinki and Oulu, Oulu, Finland
- Clinical Medicine Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen K Kanters
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center of Physiological Research, University of California San Francisco, San Francisco, USA
| | - Line L Kårhus
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Lambertus A L M Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margreet Kloppenburg
- Departments of Rheumatology and Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brigitte Kühnel
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | | | - Shuo Li
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - David C M Liewald
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Allan Linneberg
- Center of Physiological Research, University of California San Francisco, San Francisco, USA
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesus V T Lominchar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | | | - Antonela Matana
- Department of Medical Biology, University of Split, School of Medicine, Split, Croatia
| | - Marcel E Meima
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thomas Meitinger
- Institute for Human Genetics, Technical University of Munich, Munich, Germany
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Braxton D Mitchell
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition, Baltimore, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, 21201, USA
| | - Line T Møllehave
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Samia Mora
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | - Silvia Naitza
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042, Monserrato (CA), Italy
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Romana T Netea-Maier
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Casia Nursyifa
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| | - Stefano Onano
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042, Monserrato (CA), Italy
| | - Areti Papadopoulou
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Colin N A Palmer
- Division of Population Health Genomics, School of Medicine, University of Dundee, DD19SY, Dundee, UK
| | - Cristian Pattaro
- Institute for Biomedicine (affiliated with the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Herlev-Gentofte University Hospital, Copenhagen, Denmark
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maik Pietzner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Ozren Polašek
- Department of Public Health, University of Split, School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Peter P Pramstaller
- Institute for Biomedicine (affiliated with the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - Debashree Ray
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - J Brent Richards
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | - Tom C Russ
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathleen A Ryan
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition, Baltimore, USA
| | - Morten Salling Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine IV - Nephrology and Primary Care, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Moneeza K Siddiqui
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042, Monserrato (CA), Italy
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Enrique Soto-Pedre
- Division of Population Health Genomics, School of Medicine, University of Dundee, DD19SY, Dundee, UK
| | - Tim D Spector
- The Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Campus, Lambeth Palace Road, London, SE1 7EH, UK
| | - Beatrice Spedicati
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Sundararajan Srinivasan
- Division of Population Health Genomics, School of Medicine, University of Dundee, DD19SY, Dundee, UK
| | - John M Starr
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Toshiko Tanaka
- Longitudinal Study Section, National Institute on Aging, Baltimore, MD, USA
| | - Vesela Torlak
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Johanna Tuhkanen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik B van den Akker
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Tibbert van den Eynde
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Melanie M van der Klauw
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Charlotte Verroken
- Department of Endocrinology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - W Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dina Vojinovic
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - John P Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- Medical School, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Stefan Weiss
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Cristen J Willer
- Department of Internal Medicine, Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott G Wilson
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
- The Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Campus, Lambeth Palace Road, London, SE1 7EH, UK
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hanneke J C M Wouters
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Qiong Yang
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Tatijana Zemunik
- Department of Medical Biology, University of Split, School of Medicine, Split, Croatia
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sebastian Zöllner
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Johannes W A Smit
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany.
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany.
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland.
| | - Marco Medici
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Nijmegen, The Netherlands.
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
de Figueiredo WLD, Lopes EF, Jezini DL, Marçal LN, de Assunção EN, Ribeiro Rodrigues PR, José da Mota A, de Carvalho DM, Filho SA, Lopes Botelho JB. Differential gene expression profile of multinodular goiter. PLoS One 2022; 17:e0268354. [PMID: 35594253 PMCID: PMC9122239 DOI: 10.1371/journal.pone.0268354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The goiter, a neglected heterogeneous molecular disease, remains a major indication for thyroidectomies in its endemic regions. Objectives This study analyzed differential gene expression in surgical specimens diagnosed with multi nodular and compared the data to that of thyroid tissue without multinodular goiter from patients undergoing thyroidectomy in Manaus-AM, Brazil using RNA-seq technology. Methodology The transcriptome information of the surgical specimen fragments with and without multinodular goiter was accessed by Illumina HiSeq 2000 New Generation Sequencing (NGS) using the RNA-seq NEBNext® Ultra™ RNA Library Prep Kit for Illumina®—#E7530L protocol and differential gene expression analysis. Results Differences were found between the gene expression profiles of the diseased tissues and those of the healthy control tissues; at least 70 genes were differentially expressed. The HOTS gene was expressed only in multinodular goiter tissues (p < 0.05). Conclusion These results demonstrate that the gene expression profile of multinodular goiter is pro-tumoral and that HOTS can play a central role in multinodular goiter development.
Collapse
Affiliation(s)
| | - Eraldo Ferreira Lopes
- Coari Institute of Health and Biotechnology, Federal University of Amazonas, Coari, Amazonas, Brazil
| | - Deborah Laredo Jezini
- Department of Internal Medicine, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Lorena Naciff Marçal
- Institute of Biological Sciences, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Adolfo José da Mota
- Institute of Biological Sciences, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Spartaco Astolfi Filho
- Institute of Biological Sciences, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | |
Collapse
|
4
|
Guibon J, Sugier PE, Kulkarni O, Karimi M, Bacq-Daian D, Besse C, Boland A, Adjadj E, Rachédi F, Rubino C, Xhaard C, Mulot C, Laurent-Puig P, Guizard AV, Schvartz C, Ortiz RM, Ren Y, Ostroumova E, Deleuze JF, Boutron-Ruault MC, Kesminiene A, De Vathaire F, Guénel P, Lesueur F, Truong T. Fine-mapping of two differentiated thyroid carcinoma susceptibility loci at 2q35 and 8p12 in Europeans, Melanesians and Polynesians. Oncotarget 2021; 12:493-506. [PMID: 33747362 PMCID: PMC7939525 DOI: 10.18632/oncotarget.27888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023] Open
Abstract
Differentiated thyroid carcinoma (DTC) incidence is characterized by wide ethnic and geographic variations, with high incidence rates observed in Oceanian populations. Genome-wide association studies (GWAS) identified mainly four DTC susceptibility loci at 9q22.33, 14q13.3, 2q35 and 8p12. Here we performed fine-mapping of the 2q35 and 8p12 loci in the population of the EPITHYR consortium that includes Europeans, Melanesians and Polynesians to identify likely causal variants for DTC risk. We conducted a colocalization analysis using eQTLs data to determine the SNPs with the highest probability of causality. At 2q35, we highlighted rs16857609 located in DIRC3. This SNP has a high probability of causality in the three populations, and a significant association in Europeans (OR = 1.4, p = 1.9 x 10-10). It is also associated with expression of DIRC3 and of the nearby gene IGFBP5 in thyroid tumour cells. At 8p12, we identified rs7844425 which was significantly associated with DTC in Europeans (OR = 1.32, p = 7.6 x 10-8) and rs2439304, which was highlighted by the colocalization analysis but only moderately associated with DTC in our dataset (OR = 1.2, p = 0.001). These SNPs are linked to the expression of NRG1 in thyroid tissue. Hence, our study identified novel variants at 2q35 and 8p12 to be prioritized for further functional studies.
Collapse
Affiliation(s)
- Julie Guibon
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Exposome and Heredity Team, Villejuif, France
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Pierre-Emmanuel Sugier
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Exposome and Heredity Team, Villejuif, France
| | - Om Kulkarni
- University Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Mojgan Karimi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Exposome and Heredity Team, Villejuif, France
| | - Delphine Bacq-Daian
- University Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Céline Besse
- University Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Anne Boland
- University Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Elisabeth Adjadj
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Epidemiology of Radiations Team, Villejuif, France
| | - Frédérique Rachédi
- Endocrinology Unit, Territorial Hospital Taaone, Papeete, French Polynesia
| | - Carole Rubino
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Epidemiology of Radiations Team, Villejuif, France
| | - Constance Xhaard
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Epidemiology of Radiations Team, Villejuif, France
- University of Lorraine, INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, Nancy, France
| | - Claire Mulot
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, EPIGENETEC, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, EPIGENETEC, Paris, France
| | - Anne-Valérie Guizard
- Registre Général des Tumeurs du Calvados, Centre François Baclesse, Caen, France
- Inserm U1086 -UCN "ANTICIPE", Caen, France
| | - Claire Schvartz
- Registre des Cancers Thyroïdiens, Institut Godinot, Reims, France
| | | | - Yan Ren
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Epidemiology of Radiations Team, Villejuif, France
| | | | - Jean-François Deleuze
- University Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | | | | | - Florent De Vathaire
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Epidemiology of Radiations Team, Villejuif, France
| | - Pascal Guénel
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Exposome and Heredity Team, Villejuif, France
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
- These authors contributed equally to this work
| | - Thérèse Truong
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Exposome and Heredity Team, Villejuif, France
- These authors contributed equally to this work
| |
Collapse
|
5
|
Karagiannis A, Kassi E, Chatzigeorgiou A, Koutsilieris M. IGF Bioregulation System in Benign and Malignant Thyroid Nodular Disease: A Systematic Review. In Vivo 2020; 34:3069-3091. [PMID: 33144411 PMCID: PMC7811675 DOI: 10.21873/invivo.12141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM The insulin-like growth factor bioregulation system is implicated in cancer biology. Herein, we aim to review the evidence on the expression of the insulin-like growth factor 1 and 2 (IGF1 and IGF2), their receptors (IGF-Rs) and IGF-binding proteins (IGFBPs) in thyroid tissue and their possible association with benign and malignant thyroid nodular diseases. MATERIALS AND METHODS We systematically reviewed Pubmed and Scopus databases up to May 2020. A total of 375 articles were retrieved and analyzed. RESULTS Among 375 articles, 45 were included in this systematic review study. IGF1 was investigated in 31 studies, IGF2 in 1, IGF1 receptor in 15 and IGF-binding proteins in 13 articles. IGF1 expression in humans was dependent on the number and compound of benign nodules as well as the method of measurement. In differentiated thyroid carcinoma, a positive correlation between IGF1 and immunohistological stage was documented in some studies while in others only a positive trend was observed. IGF-1R and IGFBPs expression was higher in malignant rather than benign lesions. There was only a positive trend for increased IGF2 expression in malignancy, while IGFBPs were in most studies statistically increased in various cancer types compared to benign nodular disease. CONCLUSION The present data demonstrate that in most studies there is statistically positive expression of IGF-1 and less of IGF-2 in thyroid cancer compared to normal thyroid tissue.
Collapse
Affiliation(s)
- Apostolos Karagiannis
- Department of Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Liu H, Li R, Guan L, Jiang T. Knockdown of lncRNA UCA1 inhibits proliferation and invasion of papillary thyroid carcinoma through regulating miR-204/IGFBP5 axis. Onco Targets Ther 2018; 11:7197-7204. [PMID: 30425512 PMCID: PMC6203091 DOI: 10.2147/ott.s175467] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Long noncoding RNA (LncRNA) UCA1 has been reported to function as an oncogene in multiple cancers. However, the biological roles and underlying mechanism of UCA1 in papillary thyroid carcinoma (PTC) remain unclear. This study aimed to investigate the underlying function of UCA1 on thyroid cancer progression. Materials and methods A series of experiments involving Cell Counting Kit-8, wound-healing, and transwell invasion assays were conducted to determine the cellular capabilities of proliferation, migration, and invasion, respectively. Binding sites between UCA1 and miR-204 were identified using a luciferase reporter system, whereas mRNA and protein expression of target genes were determined by real-time quantitative reverse transcription-PCR (qRT-PCR) and Western blot, respectively. Results The results revealed that UCA1 was upregulated in PTC tissue and cell lines. UCA1 knockdown significantly suppressed the cell proliferation, migration, and invasion of TPC-1 cells. Bioinformatics analysis and luciferase reporter assay verified the complementary binding within UCA1 and miR-204 at the 3′-UTR. Moreover, miR-204 inhibition reversed the UCA1 knockdown-mediated inhibitory effect on cell proliferation, migration, and invasion. We also found that UCA1 could regulate expression of IGFBP5, a direct target of miR-204 in PTC. Conclusion Our study demonstrated that UCA1 exerts activity of oncogenes in PTC through regulating miR-204/IGFBP5 axis.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Hepatopancreatobiliary Surgery, China-Japan Union Hospital of Jilin University, Nangun District, Changchun 130033, China,
| | - Ruil Li
- Department of Thyroid Surgery, The First Hospital of Jilin University, Chaoyang District, Changchun 130021, China
| | - Lianyue Guan
- Department of Hepatopancreatobiliary Surgery, China-Japan Union Hospital of Jilin University, Nangun District, Changchun 130033, China,
| | - Tao Jiang
- Department of Hepatopancreatobiliary Surgery, China-Japan Union Hospital of Jilin University, Nangun District, Changchun 130033, China,
| |
Collapse
|
7
|
Brčić L, Gračan S, Barić A, Gunjača I, Torlak Lovrić V, Kolčić I, Zemunik T, Polašek O, Barbalić M, Punda A, Boraska Perica V. Association of Established Thyroid-stimulating Hormone and Free Thyroxine Genetic Variants with Hashimoto's Thyroiditis. Immunol Invest 2018; 46:625-638. [PMID: 28753406 DOI: 10.1080/08820139.2017.1337785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hashimoto's thyroiditis (HT), the most frequent autoimmune thyroid disease (AITD), is characterized by chronic inflammation of the thyroid gland that usually results in hypothyroidism. Thyroid-stimulating hormone (TSH) and free thyroxine (FT4) levels are used as clinical determinants of thyroid function. The main aim of this study was to explore the association of established TSH and FT4 genetic variants with HT. We performed a case-control analysis using 23 genetic markers in 200 HT patients and 304 controls. Additionally, we tested the association of selected variants with several thyroid-related quantitative traits in HT cases only. Two genetic variants showed nominal association with HT: rs11935941 near NR3C2 gene (p = 0.0034, OR = 0.57, 95% CI = 0.39-0.83) and rs1537424 near MBIP gene (p = 0.0169, OR = 0.72, 95% CI = 0.55-0.94). Additionally, three SNPs showed nominal association with thyroglobulin antibody (TgAb) levels: rs4804416 in INSR gene (p = 0.0073, β = -0.51), rs6435953 near IGFBP5 gene (p = 0.0081, β = 0.75), and rs1537424 near MBIP gene (p = 0.0117, β = 0.49). GLIS3 genetic variant rs10974423 showed nominal association with thyroid peroxidase antibody (TPOAb) levels (p = 0.0465, β = -0.56) and NRG1 genetic variant rs7825175 was nominally associated with thyroid gland volume (p = 0.0272, β = -0.18). All detected loci were previously related to thyroid function or pathology. Findings from our study suggest biological relevance of NR3C2 and MBIP with HT, although these loci require additional confirmation in a larger replication study.
Collapse
Affiliation(s)
- Luka Brčić
- a Department of Medical Biology , University of Split, School of Medicine , Split , Croatia
| | - Sanda Gračan
- b Department of Nuclear Medicine , University Hospital Split , Split , Croatia
| | - Ana Barić
- b Department of Nuclear Medicine , University Hospital Split , Split , Croatia
| | - Ivana Gunjača
- a Department of Medical Biology , University of Split, School of Medicine , Split , Croatia
| | | | - Ivana Kolčić
- c Department of Epidemiology , University of Split, School of Medicine , Split , Croatia
| | - Tatijana Zemunik
- a Department of Medical Biology , University of Split, School of Medicine , Split , Croatia
| | - Ozren Polašek
- c Department of Epidemiology , University of Split, School of Medicine , Split , Croatia
| | - Maja Barbalić
- a Department of Medical Biology , University of Split, School of Medicine , Split , Croatia
| | - Ante Punda
- b Department of Nuclear Medicine , University Hospital Split , Split , Croatia
| | - Vesna Boraska Perica
- a Department of Medical Biology , University of Split, School of Medicine , Split , Croatia
| |
Collapse
|
8
|
Dikshit A, Gao C, Small C, Hales K, Hales DB. Flaxseed and its components differentially affect estrogen targets in pre-neoplastic hen ovaries. J Steroid Biochem Mol Biol 2016; 159:73-85. [PMID: 26925929 PMCID: PMC4821676 DOI: 10.1016/j.jsbmb.2016.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
Flaxseed has been studied for decades for its health benefits that include anti-cancer, cardio-protective, anti-diabetic, anti-inflammatory properties. The biologically active components that mediate these effects are the omega-3 fatty acids and the lignan, secoisolariciresinol diglucoside. We have previously shown that whole flaxseed supplemented diet decreases the severity and incidence of ovarian cancer while a 15% dose of flaxseed is most protective against inflammation and estrogen-induced chemical and genotoxicity. The objective of this study was to dissect the independent effects of the two flaxseed components on estrogen signaling and metabolism. Two and half year old hens were fed either a control diet, 15% whole flaxseed diet, defatted flax meal diet or 5% flax oil diet for 3 months after which the animals were sacrificed and blood and tissues were harvested. Whole flaxseed diet caused a decrease in expression of ERα. ERα target gene expression was assessed using RT(2) profiler PCR array. Some targets involved in the IGF/insulin signaling pathway (IRS1, IGFBP4, IGFBP5) were downregulated by flaxseed and its components. Flaxseed diet also downregulated AKT expression. A number of targets related to NF-kB signaling were altered by flaxseed diet including a series of targets implicated in cancer. Whole flaxseed diet also affected E2 metabolism by increasing CYP1A1 expression with a corresponding increase in the onco-protective E2 metabolite, 2-methoxyestradiol. The weak anti-estrogens, enterolactone, enterodiol and 2-methoxyestradiol, might be working synergistically to generate a protective effect on the ovaries from hens on whole flaxseed diet by altering the estrogen signaling and metabolism.
Collapse
Affiliation(s)
- Anushka Dikshit
- Department of Physiology, Southern Illinois University School of Medicine, 1125 Lincoln Drive, Life Science II, Room 245B, Carbondale, Illinois 62901, USA
| | - Chunqi Gao
- Department of Physiology, Southern Illinois University School of Medicine, 1125 Lincoln Drive, Life Science II, Room 245B, Carbondale, Illinois 62901, USA
| | - Carrie Small
- Department of Physiology, Southern Illinois University School of Medicine, 1125 Lincoln Drive, Life Science II, Room 245B, Carbondale, Illinois 62901, USA
| | - Karen Hales
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Dale Buchanan Hales
- Department of Physiology, Southern Illinois University School of Medicine, 1125 Lincoln Drive, Life Science II, Room 245B, Carbondale, Illinois 62901, USA.
| |
Collapse
|
9
|
Ha YM, Nam JO, Kang YJ. Pitavastatin Regulates Ang II Induced Proliferation and Migration via IGFBP-5 in VSMC. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:499-506. [PMID: 26557016 PMCID: PMC4637352 DOI: 10.4196/kjpp.2015.19.6.499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/28/2015] [Accepted: 08/16/2015] [Indexed: 11/15/2022]
Abstract
Angiotensin II (Ang II), a key mediator of hypertensive, causes structural changes in the arteries (vascular remodeling), which involve alterations in cell growth, vascular smooth muscle cell (VSMC) hypertrophy. Ang II promotes fibrotic factor like IGFBP5, which mediates the profibrotic effects of Ang II in the heart and kidneys, lung and so on. The purpose of this study was to identify the signaling pathway of IGFBP5 on cell proliferation and migration of Ang II-stimulated VSMC. We have been interested in Ang II-induced IGFBP5 and were curious to determine whether a Pitavastatin would ameliorate the effects. Herein, we investigated the question of whether Ang II induced the levels of IGFBP5 protein followed by proliferation and migration in VSMC. Pretreatment with the specific Angiotensin receptor type 1 (AT1) inhibitor (Losartan), Angiotensin receptor type 2 (AT2) inhibitor (PD123319), MAPK inhibitor (U0126), ERK1/2 inhibitor (PD98059), P38 inhibitor (SB600125) and PI3K inhibitor (LY294002) resulted in significantly inhibited IGFBP5 production, proliferation, and migration in Ang II-stimulated VSMC. In addition, IGFBP5 knockdown resulted in modulation of Ang II induced proliferation and migration via IGFBP5 induction. In addition, Pitavastatin modulated Ang II induced proliferation and migration in VSMC. Taken together, our results indicated that Ang II induces IGFBP5 through AT1, ERK1/2, P38, and PI3K signaling pathways, which were inhibited by Pitavastatin. These findings may suggest that Pitavastatin has an effect on vascular disease including hypertension.
Collapse
Affiliation(s)
- Yu Mi Ha
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Ju-Ock Nam
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 42415, Korea
| |
Collapse
|
10
|
Liu L, Wang J, Li X, Ma J, Shi C, Zhu H, Xi Q, Zhang J, Zhao X, Gu M. MiR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma. Biochem Biophys Res Commun 2015; 457:621-626. [PMID: 25603050 DOI: 10.1016/j.bbrc.2015.01.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/11/2015] [Indexed: 01/13/2023]
Abstract
microRNAs (miRNAs) are frequently dysregulated in human malignancies. It was recently shown that miR-204-5p is downregulated in papillary thyroid carcinoma (PTC); however, the functional significance of this observation is not known. This study investigated the role of miR-204-5p in PTC. Overexpressing miR-204-5p suppressed PTC cell proliferation and induced cell cycle arrest and apoptosis. The results of a luciferase reporter assay showed that miR-204-5p can directly bind to the 3' untranslated region (UTR) of insulin-like growth factor-binding protein 5 (IGFBP5) mRNA, and IGFBP5 overexpression partially reversed the growth-inhibitory effects of miR-204-5p. These results indicate that miR-204-5p acts as a tumor suppressor in PTC by regulating IGFBP5 expression and that miR-204-5p can potentially serve as an antitumorigenic agent in the treatment of PTC.
Collapse
Affiliation(s)
- Lianyong Liu
- Department of Endocrine, Shanghai Pudong Gongli Hospital, Shanghai 200135, China
| | - Jingnan Wang
- Department of Endocrine, Shanghai Pudong Gongli Hospital, Shanghai 200135, China
| | - Xiangqi Li
- Department of Endocrine, Shanghai Pudong Gongli Hospital, Shanghai 200135, China
| | - Junhua Ma
- Department of Endocrine, Shanghai Pudong Gongli Hospital, Shanghai 200135, China
| | - Chao Shi
- Department of Endocrine, Shanghai Pudong Gongli Hospital, Shanghai 200135, China
| | - Hongling Zhu
- Department of Endocrine, Shanghai Pudong Gongli Hospital, Shanghai 200135, China
| | - Qian Xi
- Department of Endocrine, Shanghai Pudong Gongli Hospital, Shanghai 200135, China
| | - Jichen Zhang
- Department of Endocrine, Shanghai Pudong Gongli Hospital, Shanghai 200135, China
| | - Xuemei Zhao
- Department of Endocrine, Shanghai Pudong Gongli Hospital, Shanghai 200135, China
| | - Mingjun Gu
- Department of Endocrine, Shanghai Pudong Gongli Hospital, Shanghai 200135, China.
| |
Collapse
|
11
|
Luther GA, Lamplot J, Chen X, Rames R, Wagner ER, Liu X, Parekh A, Huang E, Kim SH, Shen J, Haydon RC, He TC, Luu HH. IGFBP5 domains exert distinct inhibitory effects on the tumorigenicity and metastasis of human osteosarcoma. Cancer Lett 2013; 336:222-30. [PMID: 23665505 DOI: 10.1016/j.canlet.2013.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 12/23/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignancy of bone. We investigated the roles of insulin-like growth factor binding protein 5 (IGFBP5) domains in modulating OS tumorigenicity and metastasis. The N-terminal (to a lesser extent the C-terminal) domain inhibited cell proliferation and induced apoptosis while the C-terminal domain inhibited cell migration and invasion. The Linker domain had no independent effects. In vivo, the N-terminal domain decreased tumor growth without affecting pulmonary metastases while the C-terminal domain inhibited tumor growth and metastases. In summary, the N- and C-terminal domains modulated OS tumorigenic phenotypes while the C-terminal domain inhibited OS metastatic phenotypes.
Collapse
Affiliation(s)
- Gaurav A Luther
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Porcu E, Medici M, Pistis G, Volpato CB, Wilson SG, Cappola AR, Bos SD, Deelen J, den Heijer M, Freathy RM, Lahti J, Liu C, Lopez LM, Nolte IM, O'Connell JR, Tanaka T, Trompet S, Arnold A, Bandinelli S, Beekman M, Böhringer S, Brown SJ, Buckley BM, Camaschella C, de Craen AJM, Davies G, de Visser MCH, Ford I, Forsen T, Frayling TM, Fugazzola L, Gögele M, Hattersley AT, Hermus AR, Hofman A, Houwing-Duistermaat JJ, Jensen RA, Kajantie E, Kloppenburg M, Lim EM, Masciullo C, Mariotti S, Minelli C, Mitchell BD, Nagaraja R, Netea-Maier RT, Palotie A, Persani L, Piras MG, Psaty BM, Räikkönen K, Richards JB, Rivadeneira F, Sala C, Sabra MM, Sattar N, Shields BM, Soranzo N, Starr JM, Stott DJ, Sweep FCGJ, Usala G, van der Klauw MM, van Heemst D, van Mullem A, H.Vermeulen S, Visser WE, Walsh JP, Westendorp RGJ, Widen E, Zhai G, Cucca F, Deary IJ, Eriksson JG, Ferrucci L, Fox CS, Jukema JW, Kiemeney LA, Pramstaller PP, Schlessinger D, Shuldiner AR, Slagboom EP, Uitterlinden AG, Vaidya B, Visser TJ, Wolffenbuttel BHR, Meulenbelt I, Rotter JI, Spector TD, Hicks AA, Toniolo D, Sanna S, Peeters RP, Naitza S. A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS Genet 2013; 9:e1003266. [PMID: 23408906 PMCID: PMC3567175 DOI: 10.1371/journal.pgen.1003266] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/12/2012] [Indexed: 12/15/2022] Open
Abstract
Thyroid hormone is essential for normal metabolism and development, and overt abnormalities in thyroid function lead to common endocrine disorders affecting approximately 10% of individuals over their life span. In addition, even mild alterations in thyroid function are associated with weight changes, atrial fibrillation, osteoporosis, and psychiatric disorders. To identify novel variants underlying thyroid function, we performed a large meta-analysis of genome-wide association studies for serum levels of the highly heritable thyroid function markers TSH and FT4, in up to 26,420 and 17,520 euthyroid subjects, respectively. Here we report 26 independent associations, including several novel loci for TSH (PDE10A, VEGFA, IGFBP5, NFIA, SOX9, PRDM11, FGF7, INSR, ABO, MIR1179, NRG1, MBIP, ITPK1, SASH1, GLIS3) and FT4 (LHX3, FOXE1, AADAT, NETO1/FBXO15, LPCAT2/CAPNS2). Notably, only limited overlap was detected between TSH and FT4 associated signals, in spite of the feedback regulation of their circulating levels by the hypothalamic-pituitary-thyroid axis. Five of the reported loci (PDE8B, PDE10A, MAF/LOC440389, NETO1/FBXO15, and LPCAT2/CAPNS2) show strong gender-specific differences, which offer clues for the known sexual dimorphism in thyroid function and related pathologies. Importantly, the TSH-associated loci contribute not only to variation within the normal range, but also to TSH values outside the reference range, suggesting that they may be involved in thyroid dysfunction. Overall, our findings explain, respectively, 5.64% and 2.30% of total TSH and FT4 trait variance, and they improve the current knowledge of the regulation of hypothalamic-pituitary-thyroid axis function and the consequences of genetic variation for hypo- or hyperthyroidism. Levels of thyroid hormones are tightly regulated by TSH produced in the pituitary, and even mild alterations in their concentrations are strong indicators of thyroid pathologies, which are very common worldwide. To identify common genetic variants associated with the highly heritable markers of thyroid function, TSH and FT4, we conducted a meta-analysis of genome-wide association studies in 26,420 and 17,520 individuals, respectively, of European ancestry with normal thyroid function. Our analysis identified 26 independent genetic variants regulating these traits, several of which are new, and confirmed previously detected polymorphisms affecting TSH (within the PDE8B gene and near CAPZB, MAF/LOC440389, and NR3C2) and FT4 (within DIO1) levels. Gender-specific differences in the genetic effects of several variants for TSH and FT4 levels were identified at several loci, which offer clues to understand the known sexual dimorphism in thyroid function and pathology. Of particular clinical interest, we show that TSH-associated loci contribute not only to normal variation, but also to TSH values outside reference range, suggesting that they may be involved in thyroid dysfunction. Overall, our findings add to the developing landscape of the regulation of thyroid homeostasis and the consequences of genetic variation for thyroid related diseases.
Collapse
Affiliation(s)
- Eleonora Porcu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Marco Medici
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Giorgio Pistis
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
- Università degli Studi di Trieste, Trieste, Italy
| | - Claudia B. Volpato
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Scott G. Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Anne R. Cappola
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Steffan D. Bos
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Joris Deelen
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Martin den Heijer
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Internal Medicine, Free University Medical Center, Amsterdam, The Netherlands
| | - Rachel M. Freathy
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Chunyu Liu
- Center for Population Studies, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
| | - Lorna M. Lopez
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ilja M. Nolte
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeffrey R. O'Connell
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
| | - Toshiko Tanaka
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alice Arnold
- Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Marian Beekman
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Stefan Böhringer
- Leiden University Medical Center, Medical Statistics and Bioinformatics, Leiden, The Netherlands
| | - Suzanne J. Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Brendan M. Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
- Vita e Salute University, San Raffaele Scientific Institute, Milano, Italy
| | - Anton J. M. de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gail Davies
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Marieke C. H. de Visser
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, United Kingdom
| | - Tom Forsen
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
- Vaasa Health Care Centre, Diabetes Unit, Vaasa, Finland
| | - Timothy M. Frayling
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Laura Fugazzola
- Endocrine Unit, Fondazione Ca' Granda Policlinico and Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Martin Gögele
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Andrew T. Hattersley
- Peninsula NIHR Clinical Research Facility, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Ad R. Hermus
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)–sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | | | - Richard A. Jensen
- Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Eero Kajantie
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Margreet Kloppenburg
- Department of Clinical Epidemiology and Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ee M. Lim
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Pathwest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Corrado Masciullo
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
| | - Stefano Mariotti
- Dipartimento di Scienze Mediche, Università di Cagliari, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Cosetta Minelli
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
| | - Ramaiah Nagaraja
- Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Romana T. Netea-Maier
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Aarno Palotie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
- Division of Endocrinology and Metabolic Diseases, IRCCS Ospedale San Luca, Milan, Italy
| | - Maria G. Piras
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - J. Brent Richards
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Department of Medicine, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Departments of Human Genetics, Epidemiology, and Biostatistics, Jewish General Hospital, Lady Davis Institute, McGill University, Montréal, Québec
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)–sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
| | - Mona M. Sabra
- Memorial Sloan Kettering Cancer Center, Medicine-Endocrinology, New York, New York, United States of America
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, United Kingdom
| | - Beverley M. Shields
- Peninsula NIHR Clinical Research Facility, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Nicole Soranzo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Stott
- Academic Section of Geriatric Medicine, Faculty of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Fred C. G. J. Sweep
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Gianluca Usala
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Melanie M. van der Klauw
- LifeLines Cohort Study, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diana van Heemst
- Leiden University Medical Center, Gerontology and Geriatrics, Leiden, The Netherlands
| | - Alies van Mullem
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Sita H.Vermeulen
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - W. Edward Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - John P. Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Rudi G. J. Westendorp
- Leiden University Medical Center, Gerontology and Geriatrics, Leiden, The Netherlands
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Guangju Zhai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Johan G. Eriksson
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
- Folkhalsan Research Centre, Helsinki, Finland
- Vasa Central Hospital, Vasa, Finland
| | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Caroline S. Fox
- Division of Intramural Research, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
- Division of Endocrinology, Hypertension, and Metabolism, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Urology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter P. Pramstaller
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
- Department of Neurology, General Central Hospital, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Alan R. Shuldiner
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
- Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, United States of America
| | - Eline P. Slagboom
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)–sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - Bijay Vaidya
- Diabetes, Endocrinology and Vascular Health Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Theo J. Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Bruce H. R. Wolffenbuttel
- LifeLines Cohort Study, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ingrid Meulenbelt
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Jerome I. Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Andrew A. Hicks
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
- Institute of Molecular Genetics–CNR, Pavia, Italy
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- * E-mail: (S Sanna); (RP Peeters); (S Naitza)
| | - Robin P. Peeters
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- * E-mail: (S Sanna); (RP Peeters); (S Naitza)
| | - Silvia Naitza
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- * E-mail: (S Sanna); (RP Peeters); (S Naitza)
| |
Collapse
|
13
|
Güllü G, Karabulut S, Akkiprik M. Functional roles and clinical values of insulin-like growth factor-binding protein-5 in different types of cancers. CHINESE JOURNAL OF CANCER 2012; 31:266-80. [PMID: 22313597 PMCID: PMC3777492 DOI: 10.5732/cjc.011.10405] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) are critical regulators of the mitogenic activity of insulin-like growth factors (IGFs). IGFBP5, one of these IGFBPs, has special structural features, including a nuclear transport domain, heparin-binding motif, and IGF/extracellular matrix/acid-labile subunit-binding sites. Furthermore, IGFBP5 has several functional effects on carcinogenesis and even normal cell processes, such as cell growth, death, motility, and tissue remodeling. These biological effects are sometimes related with IGF (IGF-dependent effects) and sometimes not (IGF-independent effects). The functional role of IGFBP5 is most likely determined in a cell-type and tissue-type specific manner but also depends on cell context, especially in terms of the diversity of interacting proteins and the potential for nuclear localization. Clinical findings show that IGFBP5 has the potential to be a useful clinical biomarker for predicting response to therapy and clinical outcome of cancer patients. In this review, we summarize the functional diversity and clinical importance of IGFBP5 in different types of cancers.
Collapse
Affiliation(s)
- Gökçe Güllü
- Department of Medical Biology, School of Medicine, DMarmara University, Istanbul 34468, Turkey
| | | | | |
Collapse
|
14
|
Insulin-like growth factor binding protein 5 suppresses tumor growth and metastasis of human osteosarcoma. Oncogene 2011; 30:3907-17. [PMID: 21460855 DOI: 10.1038/onc.2011.97] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignancy of bone. There is a critical need to identify the events that lead to the poorly understood mechanism of OS development and metastasis. The goal of this investigation is to identify and characterize a novel marker of OS progression. We have established and characterized a highly metastatic OS subline that is derived from the less metastatic human MG63 line through serial passages in nude mice via intratibial injections. Microarray analysis of the parental MG63, the highly metastatic MG63.2 subline, as well as the corresponding primary tumors and pulmonary metastases revealed insulin-like growth factor binding protein 5 (IGFBP5) to be one of the significantly downregulated genes in the metastatic subline. Confirmatory quantitative RT-PCR on 20 genes of interest demonstrated IGFBP5 to be the most differentially expressed and was therefore chosen to be one of the genes for further investigation. Adenoviral mediated overexpression and knockdown of IGFBP5 in the MG63 and MG63.2 cell lines, as well as other OS lines (143B and MNNG/HOS) that are independent of our MG63 lines, were employed to examine the role of IGFBP5. We found that overexpression of IGFBP5 inhibited in vitro cell proliferation, migration and invasion of OS cells. Additionally, IGFBP5 overexpression promoted apoptosis and cell cycle arrest in the G1 phase. In an orthotopic xenograft animal model, overexpression of IGFBP5 inhibited OS tumor growth and pulmonary metastases. Conversely, siRNA-mediated knockdown of IGFBP5 promoted OS tumor growth and pulmonary metastases in vivo. Immunohistochemical staining of patient-matched primary and metastatic OS samples demonstrated decreased IGFBP5 expression in the metastases. These results suggest 1) a role for IGFBP5 as a novel marker that has an important role in the pathogenesis of OS, and 2) that the loss of IGFBP5 function may contribute to more metastatic phenotypes in OS.
Collapse
|
15
|
Xu XL, Lee TC, Offor N, Cheng C, Liu A, Fang Y, Jhanwar SC, Abramson DH, Cobrinik D. Tumor-associated retinal astrocytes promote retinoblastoma cell proliferation through production of IGFBP-5. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:424-35. [PMID: 20508032 DOI: 10.2353/ajpath.2010.090512] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Retinoblastomas consist of cone-like neoplastic cells and diverse non-neoplastic cells whose roles in tumorigenesis have not been defined. Here, we investigated the glial cells that constitute 2% to 3% of the cells in retinoblastoma tumors, including their origin, their relationship to a potential retinoblastoma stem cell population, and their effects on tumor cell proliferation. Retinoblastoma glia consistently expressed the retinal astrocyte marker Pax2 but inconsistently expressed the Müller cell and occasional astrocyte marker CRALBP. Many of the glia expressed the stem cell-associated Sox2 but nevertheless were non-neoplastic as they coexpressed Rb and/or retained two RB1 alleles. Conversely, the glia were distinct from the non-neoplastic cells that strongly expressed the stem cell-associated ABCG2. Adherent Pax2(+),Sox2(+),Rb(+) glia readily grew from explanted retinoblastomas and produced soluble factors that enhanced the proliferation of cocultured retinoblastoma cells. This effect was emulated by normal retinal glia and appeared to be mediated by insulin-like growth factor binding protein-5 (IGFBP-5), as it was mimicked by recombinant IGFBP-5 and mitigated by neutralizing IGFBP-5 antibody. As glia-derived IGFBP-5 was earlier found to promote photoreceptor survival, our findings indicate that retinal astrocytes enhance the proliferation of cone-like retinoblastoma cells by deploying a factor that also provides trophic support to the tumor cells' non-neoplastic counterparts. These observations suggest that a tissue-specific microenvironmental feature cooperates with oncogenic mutations in a cancer cell of origin to promote retinoblastoma tumorigenesis.
Collapse
Affiliation(s)
- Xiaoliang L Xu
- Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gleason CE, Ning Y, Cominski TP, Gupta R, Kaestner KH, Pintar JE, Birnbaum MJ. Role of insulin-like growth factor-binding protein 5 (IGFBP5) in organismal and pancreatic beta-cell growth. Mol Endocrinol 2009; 24:178-92. [PMID: 19897600 DOI: 10.1210/me.2009-0167] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A family of IGF-binding proteins (IGFBP) exerts biological actions both dependent on and independent of IGF-I. A major effector of the insulin/IGF-I signaling pathway, the serine/threonine protein kinase Akt, mediates cellular processes such as glucose uptake, protein synthesis, cell survival, and growth. IGF-I is required for normal organismal growth, and in the pancreatic beta-cell, the insulin/IGF-I signaling pathway is critical for normal and adaptive maintenance of beta-cell mass. Expression of myrAkt1, an activated form of Akt, in the endocrine pancreas drives beta-cell expansion through dramatic increases in both islet and beta-cell size and number. Herein we present a comparative expression profiling of myrAkt1 transgenic islets that demonstrates the increased abundance of transcripts encoding proteins associated with growth, suppression of apoptosis, RNA processing, and metabolism. Although IGFBP5 is identified as a gene induced by Akt1 activation in the beta-cell, Igfbp5 expression is not necessary for myrAkt1 to augment beta-cell size or mass in vivo. However, in the absence of Igfbp5, mice demonstrate an increase in size and mild glucose intolerance. This is accentuated during diet-induced obesity, when Igfbp5-deficient mice have increased adiposity compared with wild-type mice on the same diet. These studies reveal a novel role for Igfbp5 in the control of growth and metabolism.
Collapse
Affiliation(s)
- Catherine E Gleason
- University of Pennsylvania School of Medicine, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Tripathi G, Salih DAM, Drozd AC, Cosgrove RA, Cobb LJ, Pell JM. IGF-independent effects of insulin-like growth factor binding protein-5 (Igfbp5) in vivo. FASEB J 2009; 23:2616-26. [PMID: 19332648 DOI: 10.1096/fj.08-114124] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IGF activity is regulated tightly by a family of IGF binding proteins (IGFBPs). IGFBP-5 is the most conserved of these and is up-regulated significantly during differentiation of several key lineages and in some cancers. The function of IGFBP-5 in these physiological and pathological situations is unclear, however, several IGFBP-5 sequence motifs and studies in vitro suggest IGF-independent actions. Therefore, we aimed to compare the phenotypes of mice overexpressing wild-type Igfbp5 or an N-terminal mutant Igfbp5 with negligible IGF binding affinity. Both significantly inhibited growth, even at low expression levels. Even though wild-type IGFBP-5 severely disrupted the IGF axis, we found no evidence for interaction of mutant IGFBP-5 with the IGF system. Further, overexpression of wild-type IGFBP-5 rescued the lethal phenotype induced by "excess" IGF-II in type 2 receptor-null mice; mutant IGFBP-5 overexpression could not. Therefore, wild-type IGFBP-5 provides a very effective mechanism for the inhibition of IGF activity and a powerful in vivo mechanism to inhibit IGF activity in pathologies such as cancer. This study is also the first to suggest significant IGF-independent actions for IGFBP-5 during development.
Collapse
Affiliation(s)
- Gyanendra Tripathi
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | | | | | |
Collapse
|
18
|
Akkiprik M, Feng Y, Wang H, Chen K, Hu L, Sahin A, Krishnamurthy S, Ozer A, Hao X, Zhang W. Multifunctional roles of insulin-like growth factor binding protein 5 in breast cancer. Breast Cancer Res 2008; 10:212. [PMID: 18710598 PMCID: PMC2575530 DOI: 10.1186/bcr2116] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The insulin-like growth factor axis, which has been shown to protect cells from apoptosis, plays an essential role in normal cell physiology and in cancer development. The family of insulin-like growth factor binding proteins (IGFBPs) has been shown to have a diverse spectrum of functions in cell growth, death, motility, and tissue remodeling. Among the six IGFBP family members, IGFBP-5 has recently been shown to play an important role in the biology of breast cancer, especially in breast cancer metastasis; however, the exact mechanisms of action remain obscure and sometimes paradoxical. An in-depth understanding of IGFBP-5 would shed light on its potential role as a target for breast cancer therapeutics.
Collapse
Affiliation(s)
- Mustafa Akkiprik
- Department of Medical Biology, Marmara University, School of Medicine, 34668 Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim KS, Seu YB, Baek SH, Kim MJ, Kim KJ, Kim JH, Kim JR. Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell 2007; 18:4543-52. [PMID: 17804819 PMCID: PMC2043568 DOI: 10.1091/mbc.e07-03-0280] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling pathway plays a crucial role in the regulation of cell growth, differentiation, apoptosis, and aging. IGF-binding proteins (IGFBPs) are important members of the IGF axis. IGFBP-5 is up-regulated during cellular senescence in human dermal fibroblasts and endothelial cells, but the function of IGFBP-5 in cellular senescence is unknown. Here we show that IGFBP-5 plays important roles in the regulation of cellular senescence. Knockdown of IGFBP-5 in old human umbilical endothelial cells (HUVECs) with IGFBP-5 micro-RNA lentivirus caused partial reduction of a variety of senescent phenotypes, such as changes in cell morphology, increases in cell proliferation, and decreases in senescence-associated beta-galactosidase (SA-beta-gal) staining. In addition, treatment with IGFBP-5 protein or up-regulation of IGFBP-5 in young cells accelerates cellular senescence, as confirmed by cell proliferation and SA-beta-gal staining. Premature senescence induced by IGFBP-5 up-regulation in young cells was rescued by knockdown of p53, but not by knockdown of p16. Furthermore, atherosclerotic arteries exhibited strong IGFBP-5-positive staining along intimal plaques. These results suggest that IGFBP-5 plays a role in the regulation of cellular senescence via a p53-dependent pathway and in aging-associated vascular diseases.
Collapse
Affiliation(s)
- Kwang Seok Kim
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
- Department of Microbiology, College of Natural Science, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Young Bae Seu
- Department of Microbiology, College of Natural Science, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Suk-Hwan Baek
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
| | - Mi Jin Kim
- Aging-associated Vascular Disease Research Center, and
- Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea; and
| | - Keuk Jun Kim
- Aging-associated Vascular Disease Research Center, and
- Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea; and
| | - Jung Hye Kim
- *Department of Biochemistry and Molecular Biology
| | - Jae-Ryong Kim
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
| |
Collapse
|
20
|
Jeong H, Kim YR, Kim KN, Choe JG, Chung JK, Kim MK. Effect of all-trans retinoic acid on sodium/iodide symporter expression, radioiodine uptake and gene expression profiles in a human anaplastic thyroid carcinoma cell line. Nucl Med Biol 2007; 33:875-82. [PMID: 17045167 DOI: 10.1016/j.nucmedbio.2006.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
The plasma membrane glycoprotein sodium/iodide symporter (NIS) is crucial for thyroid hormone biosynthesis and mediates the iodide uptake of thyrocytes. It has been shown that retinoic acid (RA) alters NIS gene expression in thyroid carcinoma lines and stimulates their iodide uptake. Here, we generated an ARO human thyroidal cancer cell line that expresses the NIS gene (ARO-NIS) and found that its baseline 125I uptake was threefold higher than that of its parental ARO cells. However, a 1-microM all-trans retinoic acid (tRA) treatment significantly increased this 125I uptake up to approximately approximately 6.5-fold on Day 3. tRA also elevated NIS mRNA expression in ARO-NIS cells, with peaks of expression being observed on Day 3. To investigate the underlying genomic mechanisms involved in these tRA-induced phenotypic changes, we subjected tRA-treated and untreated ARO-NIS cells to cDNA microarray analysis. Of 1152, genes spotted onto the microarray membrane, 18 were up-regulated (z ratio>2.0) and 33 were down-regulated (z ratio<-2.0) in ARO-NIS cells after 3 days of tRA treatment. More specifically, tRA increased the expression of BCL3, CSRP3, v-fos, and CDK5 genes and decreased the expression of the FGF12 and IGFBP6 genes. Thus, tRA treatment of human anaplastic thyroid carcinoma cells stably expressing the NIS gene significantly elevates their NIS-mediated radioiodine uptake and alters the expression of many genes involved in cell growth and cellular differentiation. Therefore, tRA treatment and NIS gene transfection are potential tools for the diagnosis and treatment of thyroid cancer.
Collapse
Affiliation(s)
- Hwanjeong Jeong
- Department of Nuclear Medicine, College of Medicine, Wonkwang University, Iksan, Jellabuk-do 570-711, South Korea
| | | | | | | | | | | |
Collapse
|
21
|
Beattie J, Allan GJ, Lochrie JD, Flint DJ. Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J 2006; 395:1-19. [PMID: 16526944 PMCID: PMC1409685 DOI: 10.1042/bj20060086] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/30/2006] [Indexed: 11/17/2022]
Abstract
The six members of the insulin-like growth factor-binding protein family (IGFBP-1-6) are important components of the IGF (insulin-like growth factor) axis. In this capacity, they serve to regulate the activity of both IGF-I and -II polypeptide growth factors. The IGFBPs are able to enhance or inhibit the activity of IGFs in a cell- and tissue-specific manner. One of these proteins, IGFBP-5, also has an important role in controlling cell survival, differentiation and apoptosis. In this review, we report on the structural and functional features of the protein which are important for these effects. We also examine the regulation of IGFBP-5 expression and comment on its potential role in tumour biology, with special reference to work with breast cancer cells.
Collapse
Key Words
- extracellular matrix (ecm)
- glycosaminoglycan
- insulin-like growth factor-i (igf-i)
- insulin-like growth factor-binding protein 5 (igfbp-5)
- mammary gland
- proteolysis
- adam, adisintegrin and metalloprotease
- ap-2, activator protein 2
- cat, chloramphenicol acetyltransferase
- cbp-4, c-terminus of insulin-like growth factor-binding protein 4 (residues 151–232)
- c/ebp, ccaat/enhancer-binding protein
- ecm, extracellular matrix
- er, oestrogen receptor
- erk1/2, extracellular-signal-regulated protein kinase 1/2
- fhl-2, four-and-a-half lim domain 2
- gag, glycosaminoglycan
- gh, growth hormone
- igf, insulin-like growth factor
- igfbp, igf-binding protein
- igf-ir, igf-i receptor
- igf-iir, igf-ii receptor
- ir, insulin receptor
- irs, ir substrate
- mapk, mitogen-activated protein kinase
- nbp-4, n-terminus of igfbp-4 (residues 3–82)
- oe2, oestradiol
- op-1, osteogenic protein-1
- opn, osteopontin
- pai-1, plasminogen activator inhibitor-1
- papp, pregnancy-associated plasma protease
- pge2, prostaglandin e2
- psmc, porcine smooth-muscle cell
- ra, retinoic acid
- rassf1c, isoform c of the ras association family 1 protein group
- rt, reverse transcription
- spr, surface plasmon resonance
- tpa, tissue plasminogen activator
- tsp-1, thrombospondin-1
- vn, vitronectin
Collapse
Affiliation(s)
- James Beattie
- Hannah Research Institute, Ayr KA6 5HL, Scotland, UK.
| | | | | | | |
Collapse
|
22
|
Gao XQ, Han JX, Huang HY, Song B, Zhu B, Song CZ. Effect of NS398 on metastasis-associated gene expression in a human colon cancer cell line. World J Gastroenterol 2005; 11:4337-43. [PMID: 16038031 PMCID: PMC4434659 DOI: 10.3748/wjg.v11.i28.4337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of NS398 on the metastasis-associated gene expression in LoVo colorectal cancer cells.
METHODS: LoVo cells were treated with NS398 at the concentration of 100 mmol/L for 24 and 48 h respectively. Total RNA was extracted with TRIzol reagents and reverse transcribed with Superscript II and hybridized with cDNA microarray (containing oncogenes, tumor suppressor genes, signal transduction molecules, adhesive molecules, growth factors, and ESTs) fabricated in our laboratory. After normalization, the ratio of gene expression of NS398 treated to untreated LoVo cells was either 2-fold up or 0.5-fold down was defined as the differentially expressed genes. Semi-quantitative RT-PCR was used to validate the microarray results.
RESULTS: Among the 447 metastasis-associated genes, 9 genes were upregulated and 8 genes were downregulated in LoVo cells treated with NS398 for 24 h compared to untreated cells. While 31 genes were upregulated and 14 genes were downregulated in LoVo cells treated with NS398 for 48 h. IGFBP-5, PAI-2, JUN, REL, BRCA1, and BRCA2 might be the new targets of NS398 in treatment of colorectal cancer.
CONCLUSION: NS398 might exert its anti-metastasis effect on colorectal cancer by affecting several metastasis-associated gene expression.
Collapse
Affiliation(s)
- Xue-Qin Gao
- Key Laboratory of Ministry of Public health for Biotech-Drug, Shandong Medicinal and Biological Center, Shandong Academy of Medical Sciences, 89 Jingshi Road, Jinan 250062, Shandong Province, China
| | | | | | | | | | | |
Collapse
|
23
|
Eszlinger M, Krohn K, Berger K, Läuter J, Kropf S, Beck M, Führer D, Paschke R. Gene expression analysis reveals evidence for increased expression of cell cycle-associated genes and Gq-protein-protein kinase C signaling in cold thyroid nodules. J Clin Endocrinol Metab 2005; 90:1163-70. [PMID: 15522933 DOI: 10.1210/jc.2004-1242] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In contrast to the molecular etiology of autonomously functioning thyroid nodules, the molecular cause of cold thyroid nodules (CTNs), their benign, functional inactive counterparts, are so far largely unknown. Because of the partially dedifferentiated phenotype of CTNs, alterations in signaling cascades that favor proliferation, but not differentiation, are likely candidates for tumor induction and progression. The importance of RAS mutations for the development of benign nodules with follicular histology is still in question. However, differentially expressed genes in the context of their signaling cascades could define aberrant signaling in CTNs. Therefore, we investigated gene expression in 22 CTNs and their normal surrounding tissue using Affymetrix GeneChips. Most prominently, data analysis revealed an increased expression of cell cycle-associated genes and a special relevance of protein kinase C signaling, whereas no evidence of RAS-MAPK signaling in CTNs was found. Moreover, we determined 31 differentially regulated genes in CTNs, including several histone mRNAs. Taken together, these results explain recent findings showing an increased proliferation in CTNs and draw attention to protein kinase C signaling, but away from RAS-MAPK signaling, as being involved in the etiology of CTNs.
Collapse
Affiliation(s)
- Markus Eszlinger
- III. Medical Department, University of Leipzig, Philipp-Rosenthal-Strasse 27, D-04103 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Stolf BS, Abreu CM, Mahler-Araújo MB, Dellamano M, Martins WK, de Carvalho MB, Curado MP, Díaz JP, Fabri A, Brentani H, Carvalho AF, Soares FA, Kowalski LP, Hirata R, Reis LFL. Expression profile of malignant and non-malignant diseases of the thyroid gland reveals altered expression of a common set of genes in goiter and papillary carcinomas. Cancer Lett 2005; 227:59-73. [PMID: 16051032 DOI: 10.1016/j.canlet.2004.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 11/25/2004] [Accepted: 11/28/2004] [Indexed: 11/20/2022]
Abstract
Using cDNA microarrays with 3800 cDNA fragments, we determined the expression profile of normal thyroid tissue, goiter, adenoma and papillary carcinoma (10 samples from each class). After background correction and statistical analysis, we identified a set of 160 genes as being differentially expressed in all pair-wise comparisons. Here we demonstrate that, at least on the basis of these differentially expressed genes, a positive correlation between goiter and papillary carcinomas could be observed. We identified a common set of genes whose expression is diminished in both goiter and papillary carcinomas as compared to normal thyroid tissue. Moreover, no genes with inverse correlation in samples from goiter and papillary carcinomas could be detected. Using Real-Time PCR and/or tissue microarrays, we confirmed the altered expression of some of the identified genes. Of notice, we demonstrate that the reduced mRNA levels of p27(kip1) observed in papillary carcinomas as compared to either goiter or normal thyroid tissues (P<0.001) is accompanied by an altered protein distribution within the cell. In papillary carcinomas, P27(KIP1) is preferentially cytoplasmic as opposed to goiter or normal thyroid tissue, where P27(KIP1) is preferentially located in the nucleus. The exploitation of the data presented here could contribute to the understanding of the molecular events related to thyroid diseases and gives support to the notion that common molecular events might be related to the frequent observation of areas of papillary carcinomas in the gland of patients with goiter.
Collapse
Affiliation(s)
- Beatriz S Stolf
- Ludwig Institute for Cancer Research, São Paulo, Brazil; Instituto de Química, USP, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cobb LJ, Salih DAM, Gonzalez I, Tripathi G, Carter EJ, Lovett F, Holding C, Pell JM. Partitioning of IGFBP-5 actions in myogenesis: IGF-independent anti-apoptotic function. J Cell Sci 2004; 117:1737-46. [PMID: 15075235 DOI: 10.1242/jcs.01028] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Igfbp5 is upregulated during the differentiation of several key cell lineages and in some tumours; the function of IGFBP-5 in these physiological and pathological situations is unknown. Since IGFBP-5 contains sequence motifs consistent with IGF-independent actions, the aim of these studies was to distinguish between IGF-dependent and -independent actions of IGFBP-5. Myc-tagged wild-type (termed wtIGFBP-5) and non-IGF binding mouse Igfbp5 (termed mutIGFBP-5) cDNAs were generated and used to transfect C2 myoblasts, a cell line that undergoes differentiation to myotubes in an IGF- and IGFBP-5-regulated manner. WtIGFBP-5, but not mutIGFBP-5, inhibited myogenesis, as assessed by cell morphology, MHC immunocytochemistry and caveolin 3 expression. However, both wt- and mutIGFBP-5 increased cell survival and decreased apoptosis, as indicated by decreased caspase-3 activity and cell surface annexin V binding. Further examination of apoptotic pathways revealed that wt- and mutIGFBP-5 ameliorated the increase in caspase-9 but not the modest increase in caspase-8 during myogenesis, suggesting that IGFBP-5 increased cell survival via inhibition of intrinsic cell death pathways in an IGF-independent manner. The relationship between IGF-II and IGFBP-5 was examined further by cotransfecting C2 myoblasts with antisense Igf2 (previously established to induce increased cell death) and Igfbp5; both wt- and mutIGFBP-5 conferred equivalent protection against the decreased cell survival and increased apoptosis. In conclusion, we have partitioned IGFBP-5 action in myogenesis into IGF-dependent inhibition of differentiation and IGF-independent cell survival. Our findings suggest that, by regulation of cell survival, IGFBP-5 has an autonomous role in the regulation of cell fate in development and in tumourigenesis.
Collapse
Affiliation(s)
- Laura J Cobb
- Signalling Programme, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | |
Collapse
|