1
|
Pavón Arocas O, Branco T. Preparation of acute midbrain slices containing the superior colliculus and periaqueductal Gray for patch-clamp recordings. PLoS One 2022; 17:e0271832. [PMID: 35951507 PMCID: PMC9371254 DOI: 10.1371/journal.pone.0271832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
This protocol is a practical guide for preparing acute coronal slices from the midbrain of young adult mice for electrophysiology experiments. It describes two different sets of solutions with their respective incubation strategies and two alternative procedures for brain extraction: decapitation under terminal isoflurane anaesthesia and intracardial perfusion with artificial cerebrospinal fluid under terminal isoflurane anaesthesia. Slices can be prepared from wild-type mice as well as from mice that have been genetically modified or transfected with viral constructs to label subsets of cells. The preparation can be used to investigate the electrophysiological properties of midbrain neurons in combination with pharmacology, opto- and chemogenetic manipulations, and calcium imaging; which can be followed by morphological reconstruction, immunohistochemistry, or single-cell transcriptomics. The protocol also provides a detailed list of materials and reagents including the design for a low-cost and easy to assemble 3D printed slice recovery chamber, general advice for troubleshooting common issues leading to suboptimal slice quality, and some suggestions to ensure good maintenance of a patch-clamp rig.
Collapse
Affiliation(s)
- Oriol Pavón Arocas
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
| |
Collapse
|
2
|
Imaging and analysis of neuronal mitochondria in murine acute brain slices. J Neurosci Methods 2022; 372:109558. [PMID: 35271874 DOI: 10.1016/j.jneumeth.2022.109558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mitochondrial alterations are common to many inflammatory, degenerative as well as metabolic diseases. However, due to the vulnerability of mitochondria in explanted tissue, there is a general lack of ex vivo models, especially of CNS tissue, that preserve mitochondria and allow investigation of mitochondrial dynamics. NEW METHODS Here, we present a model of acute hippocampal slices to study neuronal mitochondria ex vivo. We used two-photon microscopy to image CFP fluorescent neuronal mitochondria in B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich mice brain slices. To define the optimal processing and culturing conditions, we compared mitochondrial morphology and motility with three different sets of slicing and incubation solutions. The investigation of mitochondrial dynamics was performed on deconvoluted images. For morphological investigation, images were segmented into three different categories according to the shape of mitochondria, while motility was investigated using semi-automated tracking. RESULTS The imaging of acute brain slices by two-photon microscopy represented a suitable tool to monitor neuronal mitochondria ex vivo. We observed that mitochondrial dynamics were better preserved in slices incubated with HEPES aCSF, maintaining elongated rod-shaped morphology and the motility. COMPARISON WITH EXISTING METHODS We showed for the first time a method that allows live imaging of mitochondria and its quantification, while the existing in vitro protocol are not suitable to investigate mitochondria in live tissue. CONCLUSION We have established the best incubation conditions and microscopy tools to investigate living mitochondria in acute slices. We showed that preventing initial swelling with HEPES and addition of glucose, pyruvate, ascorbate and thiourea preserved mitochondria in adult brain slices, which could be monitored by two-photon microscopy.
Collapse
|
3
|
Abstract
Evaluating redox homeostasis involves gauging the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) directly in tissues and cells. The brain is especially metabolically active and is particularly vulnerable to excessive ROS and RNS. Here, we describe a methodology to quantitatively measure ROS in ex vivo mouse brain slices at baseline and after neural stimulation. Evaluating ROS in slices provides a more complete picture of neural redox signaling than when measured in isolated neurons or astrocytes. For complete details on the use and execution of this protocol, please refer to Vasavda et al. (2019).
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Berke IM, McGrath TM, Stivers JJ, Gui C, Barcellona MN, Gayoso MG, Tang SY, Cao YQ, Gupta MC, Setton LA. Electric Field Stimulation for the Functional Assessment of Isolated Dorsal Root Ganglion Neuron Excitability. Ann Biomed Eng 2021; 49:1110-1118. [PMID: 33479787 PMCID: PMC8204591 DOI: 10.1007/s10439-021-02725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Genetically encoded calcium indicators have proven useful for characterizing dorsal root ganglion neuron excitability in vivo. Challenges persist in achieving high spatial-temporal resolutions in vivo, however, due to deep tissue imaging and motion artifacts that may be limiting technical factors in obtaining measurements. Here we report an ex vivo imaging method, using a peripheral neuron-specific Advillin-GCaMP mouse line and electric field stimulation of dorsal root ganglion tissues, to assess the sensitivity of neurons en bloc. The described method rapidly characterizes Ca2+ activity in hundreds of dorsal root ganglion neurons (221 ± 64 per dorsal root ganglion) with minimal perturbation to the in situ soma environment. We further validate the method for use as a drug screening platform with the voltage-gated sodium channel inhibitor, tetrodotoxin. Drug treatment led to decreased evoked Ca2+ activity; half-maximal response voltage (EV50) increased from 13.4 V in untreated tissues to 21.2, 23.3, 51.5 (p < 0.05), and 60.6 V (p < 0.05) at 0.01, 0.1, 1, and 10 µM doses, respectively. This technique may help improve an understanding of neural signaling while retaining tissue structural organization and serves as a tool for the rapid ex vivo recording and assessment of neural activity.
Collapse
Affiliation(s)
- Ian M Berke
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA
| | - Tom M McGrath
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA
| | - J Jordan Stivers
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chang Gui
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA
| | - Marcos N Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA
| | - Matthew G Gayoso
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Munish C Gupta
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lori A Setton
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA.
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Abstract
Brain structures change shape dramatically during development. Elucidating the mechanisms of morphogenesis provides insights relevant to understanding brain function in health and disease. The tension-based morphogenesis (TBM) hypothesis posits that mechanical tension along axons, dendrites, and glial processes contributes to many aspects of central nervous system morphogenesis. Since TBM was proposed in 1997, extensive evidence supports a role for tension in diverse cellular phenomena, but tension’s role in cortical folding has been controversial. An extensively revised version of the TBM model for cerebral cortex addresses limitations of the original model, incorporates new features, and can be tested by many experimental approaches. For cerebellar cortex, a revised model accounts for many aspects of its development and adult architecture. Mechanical tension along the length of axons, dendrites, and glial processes has been proposed as a major contributor to morphogenesis throughout the nervous system [D. C. Van Essen, Nature 385, 313–318 (1997)]. Tension-based morphogenesis (TBM) is a conceptually simple and general hypothesis based on physical forces that help shape all living things. Moreover, if each axon and dendrite strive to shorten while preserving connectivity, aggregate wiring length would remain low. TBM can explain key aspects of how the cerebral and cerebellar cortices remain thin, expand in surface area, and acquire their distinctive folds. This article reviews progress since 1997 relevant to TBM and other candidate morphogenetic mechanisms. At a cellular level, studies of diverse cell types in vitro and in vivo demonstrate that tension plays a major role in many developmental events. At a tissue level, I propose a differential expansion sandwich plus (DES+) revision to the original TBM model for cerebral cortical expansion and folding. It invokes tangential tension and “sulcal zipping” forces along the outer cortical margin as well as tension in the white matter core, together competing against radially biased tension in the cortical gray matter. Evidence for and against the DES+ model is discussed, and experiments are proposed to address key tenets of the DES+ model. For cerebellar cortex, a cerebellar multilayer sandwich (CMS) model is proposed that can account for many distinctive features, including its unique, accordion-like folding in the adult, and experiments are proposed to address its specific tenets.
Collapse
|
6
|
Avegno EM, Middleton JW, Gilpin NW. Synaptic GABAergic transmission in the central amygdala (CeA) of rats depends on slice preparation and recording conditions. Physiol Rep 2020; 7:e14245. [PMID: 31587506 PMCID: PMC6778595 DOI: 10.14814/phy2.14245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 11/24/2022] Open
Abstract
The central nucleus of the amygdala (CeA) is a primarily GABAergic brain region implicated in stress and addictive disorders. Using in vitro slice electrophysiology, many studies measure GABAergic neurotransmission to evaluate the impact of experimental manipulations on inhibitory tone in the CeA, as a measure of alterations in CeA activity and function. In a recent study, we reported spontaneous inhibitory postsynaptic current (sIPSC) frequencies higher than those typically reported in CeA neurons in the literature, despite utilizing similar recording protocols and internal recording solutions. The purpose of this study was to systematically evaluate two common methods of slice preparation, an NMDG-based aCSF perfusion method and an ice-cold sucrose solution, as well as the use of an in-line heater to control recording temperature, on measures of intrinsic excitability and spontaneous inhibitory neurotransmission in CeA neurons. We report that both slice preparation and recording conditions significantly impact spontaneous GABAergic transmission in CeA neurons, and that recording temperature, but not slicing solution, alters measures of intrinsic excitability in CeA neurons. Bath application of corticotropin-releasing factor (CRF) increased sIPSC frequency under all conditions, but the magnitude of this effect was significantly different across recording conditions that elicited different baseline GABAergic transmission. Furthermore, CRF effects on synaptic transmission differed according to data reporting methods (i.e., raw vs. normalized data), which is important to consider in relation to baseline synaptic transmission values. These studies highlight the impact of experimental conditions and data reporting methods on neuronal excitability and synaptic transmission in the CeA.
Collapse
Affiliation(s)
- Elizabeth M Avegno
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Jason W Middleton
- Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, Louisiana.,Department of Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, Louisiana.,Department of Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
7
|
Sanz Cortes M, Torres P, Yepez M, Guimaraes C, Zarutskie A, Shetty A, Hsiao A, Pyarali M, Davila I, Espinoza J, Shamshirsaz AA, Nassr A, Whitehead W, Lee W, Belfort MA. Comparison of brain microstructure after prenatal spina bifida repair by either laparotomy-assisted fetoscopic or open approach. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 55:87-95. [PMID: 31219638 DOI: 10.1002/uog.20373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To compare prenatal and postnatal brain microstructure between infants that underwent fetoscopic myelomeningocele (MMC) repair and those that had open-hysterotomy repair. METHODS This was a longitudinal retrospective cohort study of 57 fetuses that met the Management of Myelomeningocele Study (MOMS) trial criteria and underwent prenatal MMC repair, by a fetoscopic (n = 27) or open-hysterotomy (n = 30) approach, at 21.4-25.9 weeks' gestation. Fetoscopic repair was performed under CO2 insufflation, according to our protocol. Diffusion-weighted magnetic resonance imaging (MRI) was performed before surgery in 30 cases (14 fetoscopic and 16 open), at 6 weeks postsurgery in 48 cases (24 fetoscopic and 24 open) and within the first year after birth in 23 infants (five fetoscopic and 18 open). Apparent diffusion coefficient (ADC) values from the basal ganglia, frontal, occipital and parietal lobes, mesencephalon and genu as well as splenium of the corpus callosum were calculated. ADC values at each of the three timepoints (presurgery, 6 weeks postsurgery and postnatally) and the percentage change in the ADC values between the timepoints were compared between the fetoscopic-repair and open-repair groups. ADC values at 6 weeks after surgery in the two prenatally repaired groups were compared with those in a control group of eight healthy fetuses that underwent MRI at a similar gestational age (GA). Comparison of ADC values was performed using the Student's t-test for independent samples (or Mann-Whitney U-test if non-normally distributed) and multivariate general linear model analysis, adjusting for GA or age at MRI and mean ventricular width. RESULTS There were no differences in GA at surgery or GA/postnatal age at MRI between the groups. No significant differences were observed in ADC values in any of the brain areas assessed between the open-repair and fetoscopic-repair groups at 6 weeks after surgery and in the first year after birth. No differences were detected in the ADC values of the studied areas between the control and prenatally repaired groups, except for significantly increased ADC values in the genu of the corpus callosum in the open-hysterotomy and fetoscopic-repair groups. Additionally, there were no differences between the two prenatally repaired groups in the percentage change in ADC values at any of the time intervals analyzed. CONCLUSIONS Fetoscopic MMC repair has no detectable effect on brain microstructure when compared to babies repaired using an open-hysterotomy technique. CO2 insufflation of the uterine cavity during fetoscopy does not seem to have any isolated deleterious effects on fetal brain microstructure. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- M Sanz Cortes
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - P Torres
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - M Yepez
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - C Guimaraes
- Department of Radiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - A Zarutskie
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - A Shetty
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - A Hsiao
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - M Pyarali
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - I Davila
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - J Espinoza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - A A Shamshirsaz
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - A Nassr
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - W Whitehead
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - W Lee
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - M A Belfort
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
8
|
Ting JT, Kalmbach B, Chong P, de Frates R, Keene CD, Gwinn RP, Cobbs C, Ko AL, Ojemann JG, Ellenbogen RG, Koch C, Lein E. A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits. Sci Rep 2018; 8:8407. [PMID: 29849137 PMCID: PMC5976666 DOI: 10.1038/s41598-018-26803-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
The powerful suite of available genetic tools is driving tremendous progress in understanding mouse brain cell types and circuits. However, the degree of conservation in human remains largely unknown in large part due to the lack of such tools and healthy tissue preparations. To close this gap, we describe a robust and stable adult human neurosurgically-derived ex vivo acute and cultured neocortical brain slice system optimized for rapid molecular-genetic manipulation. Surprisingly, acute human brain slices exhibited exceptional viability, and neuronal intrinsic membrane properties could be assayed for at least three days. Maintaining adult human slices in culture under sterile conditions further enabled the application of viral tools to drive rapid expression of exogenous transgenes. Widespread neuron-specific labeling was achieved as early as two days post infection with HSV-1 vectors, with virally-transduced neurons exhibiting membrane properties largely comparable to uninfected neurons over this short timeframe. Finally, we demonstrate the suitability of this culture paradigm for optical manipulation and monitoring of neuronal activity using genetically encoded probes, opening a path for applying modern molecular-genetic tools to study human brain circuit function.
Collapse
Affiliation(s)
| | - Brian Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter Chong
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Charles Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Andrew L Ko
- Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey G Ojemann
- Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
9
|
Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch C, Zeng H, Lein E. Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method. J Vis Exp 2018. [PMID: 29553547 DOI: 10.3791/53825] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation.
Collapse
Affiliation(s)
| | - Brian R Lee
- Cell Types Program, Allen Institute for Brain Science
| | - Peter Chong
- Cell Types Program, Allen Institute for Brain Science
| | | | - Charles Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute
| | - Christof Koch
- Cell Types Program, Allen Institute for Brain Science
| | - Hongkui Zeng
- Cell Types Program, Allen Institute for Brain Science
| | - Ed Lein
- Cell Types Program, Allen Institute for Brain Science
| |
Collapse
|
10
|
Bu F, Wang Y, Jiang L, Ma D, Quinn JP, Wang M. Sarcoma family kinase activity is required for cortical spreading depression. Cephalalgia 2017; 38:1748-1758. [PMID: 29239212 DOI: 10.1177/0333102417748572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives Sarcoma family kinase activity is associated with multiple diseases including ischemia and cancer; however, its role in the mechanism of migraine aura has been less well characterised. This study aims to investigate whether sarcoma family kinase is required for cortical spreading depression. Methods Cortical spreading depression was induced by topical application of K+ to the cerebral cortex and was monitored using electrophysiology in rats, and intrinsic optical signal in mouse brain slices. Drugs were perfused into the contralateral cerebral ventricle for pharmacological manipulations in rats. Western blot analysis was used for detecting the level of phosphorylated, and total, sarcoma family kinase in the ipsilateral cortex of rats. Key results The data demonstrate that a single cortical spreading depression in rats induced ipsilateral cortical sarcoma family kinase phosphorylation at the Y416 site. Deactivation of sarcoma family kinase by its inhibitor (3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1 H-pyrazolo[3,4- dpyrimidin-4-amine) suppressed the elevated enzyme activity and cortical susceptibility to cortical spreading depression. Interestingly, the inhibitory effect of the N-methyl-D-aspartate receptor antagonist NVP-AAM077 on cortical spreading depression was reversed by the sarcoma family kinase activator pYEEI (EPQY(PO3H2)EEEIPIYL), suggesting a link between this enzyme and N-methyl-D-aspartate receptors. Similarly, after deactivation of sarcoma family kinase, a reduction of sarcoma family kinase phosphorylation and cortical susceptibility to cortical spreading depression was observed with NVP-AAM077. Conclusions We conclude that activation of sarcoma family kinase is required for cortical spreading depression, and this process is regulated by recruiting N-methyl-D-aspartate receptors. This study provides novel insight for sarcoma family kinase function in the mechanism of migraine aura.
Collapse
Affiliation(s)
- Fan Bu
- 1 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China.,2 Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Yan Wang
- 2 Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Liwen Jiang
- 1 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China.,2 Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Dongqing Ma
- 1 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China.,2 Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - John P Quinn
- 3 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Minyan Wang
- 1 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China.,2 Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| |
Collapse
|
11
|
Smolyakov G, Dague E, Roux C, Seguelas MH, Galés C, Senard JM, Arvanitis DN. Nanoscale structural mapping as a measure of maturation in the murine frontal cortex. Brain Struct Funct 2017; 223:255-265. [PMID: 28779306 DOI: 10.1007/s00429-017-1486-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023]
Abstract
Atomic force microscopy (AFM) is emerging as an innovative tool to phenotype the brain. This study demonstrates the utility of AFM to determine nanomechanical and nanostructural features of the murine dorsolateral frontal cortex from weaning to adulthood. We found an increase in tissue stiffness of the primary somatosensory cortex with age, along with an increased cortical mechanical heterogeneity. To characterize the features potentially responsible for this heterogeneity, we applied AFM scan mode to directly image the topography of thin sections of the primary somatosensory cortical layers II/III, IV and V/VI. Topographical mapping of the cortical layers at successive ages showed progressive smoothing of the surface. Topographical images were also compared with histochemically derived morphological information, which demonstrated the deposition of perineuronal nets, important extracellular components and markers of maturity. Our work demonstrates that high-resolution AFM images can be used to determine the nanostructural properties of cortical maturation, well beyond embryonic and postnatal development. Furthermore, it may offer a new method for brain phenotyping and screening to uncover topographical changes in early stages of neurodegenerative diseases.
Collapse
Affiliation(s)
- G Smolyakov
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
- ITAV-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - E Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
- ITAV-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - C Roux
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
- ITAV-CNRS, Université de Toulouse, CNRS, Toulouse, France
- Laboratoire Des IMRCP, Université de Toulouse, CNRS UMR 5623, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
- Institut Des Maladies Métaboliques Et Cardiovasculaires, INSERM, UMR1048, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - M H Seguelas
- Institut Des Maladies Métaboliques Et Cardiovasculaires, INSERM, UMR1048, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - C Galés
- ITAV-CNRS, Université de Toulouse, CNRS, Toulouse, France
- Institut Des Maladies Métaboliques Et Cardiovasculaires, INSERM, UMR1048, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - J M Senard
- Institut Des Maladies Métaboliques Et Cardiovasculaires, INSERM, UMR1048, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - D N Arvanitis
- Institut Des Maladies Métaboliques Et Cardiovasculaires, INSERM, UMR1048, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France.
| |
Collapse
|
12
|
Glutamate Clearance Is Locally Modulated by Presynaptic Neuronal Activity in the Cerebral Cortex. J Neurosci 2017; 36:10404-10415. [PMID: 27707974 DOI: 10.1523/jneurosci.2066-16.2016] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/18/2016] [Indexed: 02/02/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) are abundantly expressed by astrocytes, rapidly remove glutamate from the extracellular environment, and restrict the temporal and spatial extent of glutamate signaling. Studies probing EAAT function suggest that their capacity to remove glutamate is large and does not saturate, even with substantial glutamate challenges. In contrast, we report that neuronal activity rapidly and reversibly modulates EAAT-dependent glutamate transport. To date, no physiological manipulation has shown changes in functional glutamate uptake in a nonpathological state. Using iGluSnFr-based glutamate imaging and electrophysiology in the adult mouse cortex, we show that glutamate uptake is slowed up to threefold following bursts of neuronal activity. The slowing of glutamate uptake depends on the frequency and duration of presynaptic neuronal activity but is independent of the amount of glutamate released. The modulation of glutamate uptake is brief, returning to normal within 50 ms after stimulation ceases. Interestingly, the slowing of glutamate uptake is specific to activated synapses, even within the domain of an individual astrocyte. Activity-induced slowing of glutamate uptake, and the increased persistence of glutamate in the extracellular space, is reflected by increased decay times of neuronal NR2A-mediated NMDA currents. These results show that astrocytic clearance of extracellular glutamate is slowed in a temporally and spatially specific manner following bursts of neuronal activity ≥30 Hz and that these changes affect the neuronal response to released glutamate. This suggests a previously unreported form of neuron-astrocyte interaction. SIGNIFICANCE STATEMENT We report the first fast, physiological modulation of astrocyte glutamate clearance kinetics. We show that presynaptic activity in the cerebral cortex increases the persistence of glutamate in the extracellular space by slowing its clearance by astrocytes. Because of abundant EAAT expression, glutamate clearance from the extracellular space has been thought to have invariant kinetics. While multiple studies report experimental manipulations resulting in altered EAAT expression, our findings show that astrocytic glutamate uptake is dynamic on a fast time-scale. This shows rapid plasticity of glutamate clearance, which locally modulates synaptic signaling in the cortex. As astrocytic glutamate uptake is a fundamental and essential mechanism for neurotransmission, this work has implications for neurotransmission, extrasynaptic receptor activation, and synaptic plasticity.
Collapse
|
13
|
Brown PL, Shepard PD. Functional evidence for a direct excitatory projection from the lateral habenula to the ventral tegmental area in the rat. J Neurophysiol 2016; 116:1161-74. [PMID: 27358317 DOI: 10.1152/jn.00305.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022] Open
Abstract
The lateral habenula, a phylogenetically conserved epithalamic structure, is activated by aversive stimuli and reward omission. Excitatory efferents from the lateral habenula predominately inhibit midbrain dopamine neuronal firing through a disynaptic, feedforward inhibitory mechanism involving the rostromedial tegmental nucleus. However, the lateral habenula also directly targets dopamine neurons within the ventral tegmental area, suggesting that opposing actions may result from increased lateral habenula activity. In the present study, we tested the effect of habenular efferent stimulation on dopamine and nondopamine neurons in the ventral tegmental area of Sprague-Dawley rats using a parasagittal brain slice preparation. Single pulse stimulation of the fasciculus retroflexus excited 48% of dopamine neurons and 51% of nondopamine neurons in the ventral tegmental area of rat pups. These proportions were not altered by excision of the rostromedial tegmental nucleus and were evident in both cortical- and striatal-projecting dopamine neurons. Glutamate receptor antagonists blocked this excitation, and fasciculus retroflexus stimulation elicited evoked excitatory postsynaptic potentials with a nearly constant onset latency, indicative of a monosynaptic, glutamatergic connection. Comparison of responses in rat pups and young adults showed no significant difference in the proportion of neurons excited by fasciculus retroflexus stimulation. Our data indicate that the well-known, indirect inhibitory effect of lateral habenula activation on midbrain dopamine neurons is complemented by a significant, direct excitatory effect. This pathway may contribute to the role of midbrain dopamine neurons in processing aversive stimuli and salience.
Collapse
Affiliation(s)
- P Leon Brown
- Maryland Psychiatric Research Center, Catonsville, Maryland; and Department of Psychiatry, University of Maryland-Baltimore, Baltimore, Maryland
| | - Paul D Shepard
- Maryland Psychiatric Research Center, Catonsville, Maryland; and Department of Psychiatry, University of Maryland-Baltimore, Baltimore, Maryland
| |
Collapse
|
14
|
Burrell MH, Atcherley CW, Heien ML, Lipski J. A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices. ACS Chem Neurosci 2015; 6:1802-12. [PMID: 26322962 DOI: 10.1021/acschemneuro.5b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tonic dopamine (DA) levels influence the activity of dopaminergic neurons and the dynamics of fast dopaminergic transmission. Although carbon fiber microelectrodes and fast-scan cyclic voltammetry (FSCV) have been extensively used to quantify stimulus-induced release and uptake of DA in vivo and in vitro, this technique relies on background subtraction and thus cannot provide information about absolute extracellular concentrations. It is also generally not suitable for prolonged (>90 s) recordings due to drift of the background current. A recently reported, modified FSCV approach called fast-scan controlled-adsorption voltammetry (FSCAV) has been used to assess tonic DA levels in solution and in the anesthetized mouse brain. Here we describe a novel extension of FSCAV to investigate pharmacologically induced, slowly occurring changes in tonic (background) extracellular DA concentration, and phasic (stimulated) DA release in brain slices. FSCAV was used to measure adsorption dynamics and changes in DA concentration (for up to 1.5 h, sampling interval 30 s, detection threshold < 10 nM) evoked by drugs affecting DA release and uptake (amphetamine, l-DOPA, pargyline, cocaine, Ro4-1284) in submerged striatal slices obtained from rats. We also show that combined FSCAV-FSCV recordings can be used for concurrent study of stimulated release and changes in tonic DA concentration. Our results demonstrate that FSCAV can be effectively used in brain slices to measure prolonged changes in extracellular level of endogenous DA expressed as absolute values, complementing studies conducted in vivo with microdialysis.
Collapse
Affiliation(s)
- Mark H. Burrell
- Department
of Physiology and Centre for Brain Research, Faculty of Medical and
Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Christopher W. Atcherley
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael L. Heien
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Janusz Lipski
- Department
of Physiology and Centre for Brain Research, Faculty of Medical and
Health Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
15
|
Peinado A, Abrams CK. Patterns of Spontaneous Local Network Activity in Developing Cerebral Cortex: Relationship to Adult Cognitive Function. PLoS One 2015; 10:e0131259. [PMID: 26098958 PMCID: PMC4476761 DOI: 10.1371/journal.pone.0131259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/29/2015] [Indexed: 11/18/2022] Open
Abstract
Detecting neurodevelopμental disorders of cognition at the earliest possible stages could assist in understanding them mechanistically and ultimately in treating them. Finding early physiological predictors that could be visualized with functional neuroimaging would represent an important advance in this regard. We hypothesized that one potential source of physiological predictors is the spontaneous local network activity prominent during specific periods in development. To test this we used calcium imaging in brain slices and analyzed variations in the frequency and intensity of this early activity in one area, the entorhinal cortex (EC), in order to correlate early activity with level of cognitive function later in life. We focused on EC because of its known role in different types of cognitive processes and because it is an area where spontaneous activity is prominent during early postnatal development in rodent models of cortical development. Using rat strains (Long-Evans, Wistar, Sprague-Dawley and Brattleboro) known to differ in cognitive performance in adulthood we asked whether neonatal animals exhibit corresponding strain-related differences in EC spontaneous activity. Our results show significant differences in this activity between strains: compared to a high cognitive-performing strain, we consistently found an increase in frequency and decrease in intensity in neonates from three lower performing strains. Activity was most different in one strain considered a model of schizophrenia-like psychopathology. While we cannot necessarily infer a causal relationship between early activity and adult cognition our findings suggest that the pattern of spontaneous activity in development could be an early predictor of a developmental trajectory advancing toward sub-optimal cognitive performance in adulthood. Our results further suggest that the strength of dopaminergic signaling, by setting the balance between excitation and inhibition, is a potential underlying mechanism that could explain the observed differences in early spontaneous activity patterns.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn/anatomy & histology
- Animals, Newborn/growth & development
- Cerebral Cortex/growth & development
- Cognition/physiology
- Entorhinal Cortex/anatomy & histology
- Entorhinal Cortex/growth & development
- Nerve Net/anatomy & histology
- Nerve Net/growth & development
- Nerve Net/physiology
- Rats
- Rats, Brattleboro/growth & development
- Rats, Brattleboro/physiology
- Rats, Long-Evans/growth & development
- Rats, Long-Evans/physiology
- Rats, Sprague-Dawley/growth & development
- Rats, Sprague-Dawley/physiology
- Rats, Wistar/growth & development
- Rats, Wistar/physiology
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D5/physiology
- Receptors, GABA-A/physiology
- Species Specificity
Collapse
Affiliation(s)
- Alejandro Peinado
- Department of Neurology and Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
- * E-mail:
| | - Charles K. Abrams
- Department of Neurology and Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
16
|
Preserving GABAergic interneurons in acute brain slices of mice using the N-methyl-D-glucamine-based artificial cerebrospinal fluid method. Neurosci Bull 2015; 31:265-70. [PMID: 25648546 DOI: 10.1007/s12264-014-1497-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/20/2014] [Indexed: 10/24/2022] Open
Abstract
Defects in the function and development of GABAergic interneurons have been linked to psychiatric disorders, so preservation of these interneurons in brain slices is important for successful electrophysiological recording in various ex vivo methods. However, it is difficult to maintain the activity and morphology of neurons in slices from mice of >30 days old. Here we evaluated the N-methyl-D-glucamine (NMDG)-based artificial cerebrospinal fluid (aCSF) method for the preservation of interneurons in slices from mice of up to ∼6 months old and discussed the steps that may affect their quality during slicing. We found that the NMDG-aCSF method rescued more cells than sucrose-aCSF and successfully preserved different types of interneurons including parvalbumin- and somatostatin-positive interneurons. In addition, both the chemical and electrical synaptic signaling of interneurons were maintained. These results demonstrate that the NMDG-aCSF method is suitable for the preservation of interneurons, especially in studies of gap junctions.
Collapse
|
17
|
Gautier HO, Thompson AJ, Achouri S, Koser DE, Holtzmann K, Moeendarbary E, Franze K. Atomic force microscopy-based force measurements on animal cells and tissues. Methods Cell Biol 2015; 125:211-35. [DOI: 10.1016/bs.mcb.2014.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Raz A, Grady SM, Krause BM, Uhlrich DJ, Manning KA, Banks MI. Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex. Front Syst Neurosci 2014; 8:191. [PMID: 25339873 PMCID: PMC4188029 DOI: 10.3389/fnsys.2014.00191] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022] Open
Abstract
The mechanism of loss of consciousness (LOC) under anesthesia is unknown. Because consciousness depends on activity in the cortico-thalamic network, anesthetic actions on this network are likely critical for LOC. Competing theories stress the importance of anesthetic actions on bottom-up “core” thalamo-cortical (TC) vs. top-down cortico-cortical (CC) and matrix TC connections. We tested these models using laminar recordings in rat auditory cortex in vivo and murine brain slices. We selectively activated bottom-up vs. top-down afferent pathways using sensory stimuli in vivo and electrical stimulation in brain slices, and compared effects of isoflurane on responses evoked via the two pathways. Auditory stimuli in vivo and core TC afferent stimulation in brain slices evoked short latency current sinks in middle layers, consistent with activation of core TC afferents. By contrast, visual stimuli in vivo and stimulation of CC and matrix TC afferents in brain slices evoked responses mainly in superficial and deep layers, consistent with projection patterns of top-down afferents that carry visual information to auditory cortex. Responses to auditory stimuli in vivo and core TC afferents in brain slices were significantly less affected by isoflurane compared to responses triggered by visual stimuli in vivo and CC/matrix TC afferents in slices. At a just-hypnotic dose in vivo, auditory responses were enhanced by isoflurane, whereas visual responses were dramatically reduced. At a comparable concentration in slices, isoflurane suppressed both core TC and CC/matrix TC responses, but the effect on the latter responses was far greater than on core TC responses, indicating that at least part of the differential effects observed in vivo were due to local actions of isoflurane in auditory cortex. These data support a model in which disruption of top-down connectivity contributes to anesthesia-induced LOC, and have implications for understanding the neural basis of consciousness.
Collapse
Affiliation(s)
- Aeyal Raz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Anesthesiology, Rabin Medical Center, Petah-Tikva, Israel, Affiliated with Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Sean M Grady
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | - Bryan M Krause
- Neuroscience Training Program, University of Wisconsin Madison, WI, USA
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin Madison, WI, USA
| | - Karen A Manning
- Department of Neuroscience, University of Wisconsin Madison, WI, USA
| | - Matthew I Banks
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Neuroscience, University of Wisconsin Madison, WI, USA
| |
Collapse
|
19
|
Krause BM, Raz A, Uhlrich DJ, Smith PH, Banks MI. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity. Front Syst Neurosci 2014; 8:170. [PMID: 25285071 PMCID: PMC4168681 DOI: 10.3389/fnsys.2014.00170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/31/2014] [Indexed: 12/23/2022] Open
Abstract
The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce "packets" of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2-6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory cells.
Collapse
Affiliation(s)
- Bryan M Krause
- Neuroscience Training Program, University of Wisconsin Madison, WI, USA
| | - Aeyal Raz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Anesthesiology, Rabin Medical Center, Petah-Tikva, Israel, affiliated with Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Daniel J Uhlrich
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | - Philip H Smith
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | - Matthew I Banks
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| |
Collapse
|
20
|
Ting JT, Daigle TL, Chen Q, Feng G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol Biol 2014; 1183:221-42. [PMID: 25023312 DOI: 10.1007/978-1-4939-1096-0_14] [Citation(s) in RCA: 470] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of the living acute brain slice preparation for analyzing synaptic function roughly a half century ago was a pivotal achievement that greatly influenced the landscape of modern neuroscience. Indeed, many neuroscientists regard brain slices as the gold-standard model system for detailed cellular, molecular, and circuitry level analysis and perturbation of neuronal function. A critical limitation of this model system is the difficulty in preparing slices from adult and aging animals, and over the past several decades few substantial methodological improvements have emerged to facilitate patch clamp analysis in the mature adult stage. In this chapter we describe a robust and practical protocol for preparing brain slices from mature adult mice that are suitable for patch clamp analysis. This method reduces swelling and damage in superficial layers of the slices and improves the success rate for targeted patch clamp recordings, including recordings from fluorescently labeled populations in slices derived from transgenic mice. This adult brain slice method is suitable for diverse experimental applications, including both monitoring and manipulating neuronal activity with genetically encoded calcium indicators and optogenetic actuators, respectively. We describe the application of this adult brain slice platform and associated methods for screening kinetic properties of Channelrhodopsin (ChR) variants expressed in genetically defined neuronal subtypes.
Collapse
Affiliation(s)
- Jonathan T Ting
- Human Cell Types Department, Allen Institute for Brain Science, 551 N 34th Street, Seattle, WA, 98103, USA,
| | | | | | | |
Collapse
|
21
|
Patel JC, Rice ME. Monitoring axonal and somatodendritic dopamine release using fast-scan cyclic voltammetry in brain slices. Methods Mol Biol 2013; 964:243-73. [PMID: 23296788 DOI: 10.1007/978-1-62703-251-3_15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain dopamine pathways serve wide-ranging functions including the control of movement, reward, cognition, learning, and mood. Consequently, dysfunction of dopamine transmission has been implicated in clinical conditions such as Parkinson's disease, schizophrenia, addiction, and depression. Establishing factors that regulate dopamine release can provide novel insights into dopaminergic communication under normal conditions, as well as in animal models of disease in the brain. Here we describe methods for the study of somatodendritic and axonal dopamine release in brain slice preparations. Topics covered include preparation and calibration of carbon-fiber microelectrodes for use with fast-scan cyclic voltammetry, preparation of midbrain and forebrain slices, and procedures of eliciting and recording electrically evoked dopamine release from in vitro brain slices.
Collapse
Affiliation(s)
- Jyoti C Patel
- Departments of Neurosurgery and Physiology & Neuroscience, New York University School of Medicine, New York, NY, USA.
| | | |
Collapse
|
22
|
Hugel S, Kadiri N, Rodeau JL, Gaillard S, Schlichter R. pH-dependent inhibition of native GABA(A) receptors by HEPES. Br J Pharmacol 2012; 166:2402-16. [PMID: 22452286 DOI: 10.1111/j.1476-5381.2012.01956.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Artificial buffers such as HEPES are extensively used to control extracellular pH (pH(e) ) to investigate the effect of H(+) ions on GABA(A) receptor function. EXPERIMENTAL APPROACH In neurones cultured from spinal cord dorsal horn (DH), dorsal root ganglia (DRG) and cerebellar granule cells (GC) of neonatal rats, we studied the effect of pH(e) on currents induced by GABA(A) receptor agonists, controlling pH(e) with HCO(3) (-) or different concentrations of HEPES. KEY RESULTS Changing HEPES concentration from 1 to 20 mM at constant pH(e) strongly inhibited the currents induced by submaximal GABA applications, but not those induced by glycine or glutamate, on DH, DRG or GC neurones, increasing twofold the EC(50) for GABA in DH neurones and GC. Submaximal GABA(A) receptor-mediated currents were also inhibited by piperazine-N,N'-bis(2-ethanesulfonic acid) (PIPES), 3-(N-morpholino)propanesulfonic acid, tris(hydroxymethyl)aminomethane or imidazole. PIPES and HEPES, both piperazine derivatives, similarly inhibited GABA(A) receptors, whereas the other buffers had weaker effects and 2-(N-morpholino)ethanesulfonic acid had no effect. HEPES-induced inhibition of submaximal GABA(A) receptor-mediated currents was unaffected by diethylpyrocarbonate, a histidine-modifying reagent. HEPES-induced inhibition of GABA(A) receptors was independent of membrane potential, HCO(3) (-) and intracellular Cl(-) concentration and was not modified by flumazenil, which blocks the benzodiazepine binding site. However, it strongly depended on pH(e) . CONCLUSIONS AND IMPLICATIONS Inhibition of GABA(A) receptors by HEPES depended on pH(e) , leading to an apparent H(+) -induced inhibition of DH GABA(A) receptors, unrelated to the pH sensitivity of these receptors in both low and physiological buffering conditions, suggesting that protonated HEPES caused this inhibition.
Collapse
Affiliation(s)
- S Hugel
- Nociception et Douleur, INCI, UPR3212 CNRS, Université de Strasbourg, Strasbourg, France.
| | | | | | | | | |
Collapse
|
23
|
Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM, Feng G. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 2011; 8:745-52. [PMID: 21985008 PMCID: PMC3191888 DOI: 10.1038/nmeth.1668] [Citation(s) in RCA: 480] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function and dysfunction. We used a bacterial artificial chromosome (BAC) transgenic strategy to express the H134R variant of channelrhodopsin-2, ChR2(H134R), under the control of cell type–specific promoter elements. We performed an extensive functional characterization of the newly established VGAT-ChR2(H134R)-EYFP, ChAT-ChR2(H134R)-EYFP, Tph2-ChR2(H134R)-EYFP and Pvalb(H134R)-ChR2-EYFP BAC transgenic mouse lines and demonstrate the utility of these lines for precisely controlling action-potential firing of GABAergic, cholinergic, serotonergic and parvalbumin-expressing neuron subsets using blue light. This resource of cell type–specific ChR2(H134R) mouse lines will facilitate the precise mapping of neuronal connectivity and the dissection of the neural basis of behavior.
Collapse
Affiliation(s)
- Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wong MY, Sulzer D, Bamford NS. Imaging presynaptic exocytosis in corticostriatal slices. Methods Mol Biol 2011; 793:363-76. [PMID: 21913113 DOI: 10.1007/978-1-61779-328-8_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Optical imaging is a valuable tool for investigating alterations in membrane turnover and vesicle trafficking. Established techniques can easily be adapted to study the mechanisms of synaptic dysfunction in models of neuropsychiatric disorders and neurodegenerative diseases, such as drug addiction, Parkinsonism, and Huntington's disease. Fluorescent endocytic tracers, including FM1-43, have been used to optically monitor synaptic vesicle fusion and measure synaptic function in various preparations, including chromaffin cells, dissociated cell cultures, and brain slices. In this chapter, we describe a technique that provides a direct measure of pathway-specific exocytosis from glutamatergic corticostriatal terminals.
Collapse
Affiliation(s)
- Minerva Y Wong
- Department of Neurology, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
25
|
Dietrich CJ, Morad M. Synaptic acidification enhances GABAA signaling. J Neurosci 2010; 30:16044-52. [PMID: 21106843 PMCID: PMC3073570 DOI: 10.1523/jneurosci.6364-09.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 07/22/2010] [Accepted: 07/26/2010] [Indexed: 11/21/2022] Open
Abstract
To determine the role of cellularly generated protons in synaptic signaling, we recorded GABA miniature IPSCs (mIPSCs) from cultured rat cerebellar granule cells (CGCs) while varying the extracellular pH buffering capacity. Consistent with previous reports, we found that increasing pH from 7.4 to 8.0 sped mIPSC rise time and suppressed both amplitude of the current and total charge transferred. Conversely, acidification (from pH 7.4 to 6.8) slowed the rise time and increased current amplitude and total charge transferred. In a manner consistent with alkalinization, increasing the buffering capacity from 3 to 24 mm HEPES at pH 7.4 resulted in faster mIPSC rise time, a 37% reduction in amplitude, and a 48% reduction in charge transferred. Supplementing the normal physiological buffers (24 mm HCO(3)(-)/5%CO(2)) with 10 mm HEPES similarly diminished mIPSCs in a manner consistent with alkalinization, resulting in faster rise time, a 39% reduction in amplitude, and a 51% reduction in charge transferred. These findings suggest the existence of an acidifying synaptic force that is overcome by commonly used concentrations (10 mm) of HEPES buffer. Here we show that Na(+)/H(+) exchanger (NHE) activity appears to, in part, contribute to this synaptic acidification because inhibition of NHE by amiloride or lithium under physiological or weak buffering conditions alters mIPSCs in a manner consistent with alkalinization. These results suggest that acidification of the synaptic cleft occurs physiologically during GABAergic transmission and that NHE plays a critical role in generating the acidic nano-environment at the synapse.
Collapse
Affiliation(s)
- Craig J. Dietrich
- Interdisciplinary Program in Neuroscience and Department of Pharmacology, Georgetown University School of Medicine, Washington, DC 20007, and
| | - Martin Morad
- Interdisciplinary Program in Neuroscience and Department of Pharmacology, Georgetown University School of Medicine, Washington, DC 20007, and
- Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina 29425
| |
Collapse
|
26
|
Benesova J, Hock M, Butenko O, Prajerova I, Anderova M, Chvatal A. Quantification of astrocyte volume changes during ischemia in situ reveals two populations of astrocytes in the cortex of GFAP/EGFP mice. J Neurosci Res 2009; 87:96-111. [PMID: 18752295 DOI: 10.1002/jnr.21828] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Energy depletion during ischemia leads to disturbed ionic homeostasis and accumulation of neuroactive substances in the extracellular space, subsequently leading to volume changes in astrocytes. Confocal microscopy combined with 3D reconstruction was used to quantify ischemia-induced astrocyte volume changes in cortical slices of GFAP/EGFP transgenic mice. Twenty-minutes of oxygen-glucose deprivation (OGD) or oxygen-glucose deprivation combined with acidification (OGD(pH 6.8)) revealed the presence of two distinct astrocytic populations, the first showing a large volume increase (HR astrocytes) and the second displaying a small volume increase (LR astrocytes). In addition, changes in resting membrane potential (V(m)), measured by the patch-clamp technique, supported the existence of two astrocytic populations responding differently to ischemia. Although one group markedly depolarized during OGD or OGD(pH 6.8), only small changes in V(m) toward more negative values were observed in the second group. Conversely, acidification (ACF(pH 6.8)) led to a uniform volume decrease in all astrocytes, accompanied by only a small depolarization. Interestingly, two differently responding populations were not detected during acidification. Differences in the expression of inwardly rectifying potassium channels (Kir4.1), glial fibrillary acidic protein (GFAP), and taurine levels in cortical astrocytes were detected using immunohistochemical methods. We conclude that two distinct populations of astrocytes are present in the cortex of GFAP/EGFP mice, based on volume and V(m) changes during exposure to OGD or OGD(pH 6.8). Immunohistochemical analysis suggests that the diverse expression of Kir4.1 channels and GFAP as well as differences in the accumulation of taurine might contribute to the distinct ability of astrocytes to regulate their volume.
Collapse
Affiliation(s)
- Jana Benesova
- Laboratory of Neurobiology, Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
27
|
Avshalumov MV, Patel JC, Rice ME. AMPA receptor-dependent H2O2 generation in striatal medium spiny neurons but not dopamine axons: one source of a retrograde signal that can inhibit dopamine release. J Neurophysiol 2008; 100:1590-601. [PMID: 18632893 PMCID: PMC2544473 DOI: 10.1152/jn.90548.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 07/14/2008] [Indexed: 12/24/2022] Open
Abstract
Dopamine-glutamate interactions in the striatum are critical for normal basal ganglia-mediated control of movement. Although regulation of glutamatergic transmission by dopamine is increasingly well understood, regulation of dopaminergic transmission by glutamate remains uncertain given the apparent absence of ionotropic glutamate receptors on dopaminergic axons in dorsal striatum. Indirect evidence suggests glutamatergic regulation of striatal dopamine release is mediated by a diffusible messenger, hydrogen peroxide (H2O2), generated downstream from glutamatergic AMPA receptors (AMPARs). The mechanism of H2O2-dependent inhibition of dopamine release involves activation of ATP-sensitive K+ (KATP) channels. However, the source of modulatory H2O2 is unknown. Here, we used whole cell recording, fluorescence imaging of H2O2, and voltammetric detection of evoked dopamine release in guinea pig striatal slices to examine contributions from medium spiny neurons (MSNs), the principal neurons of striatum, and dopamine axons to AMPAR-dependent H2O2 generation. Imaging studies of H2O2 generation in MSNs provide the first demonstration of AMPAR-dependent H2O2 generation in neurons in the complex brain-cell microenvironment of brain slices. Stimulation-induced increases in H2O2 in MSNs were prevented by GYKI-52466, an AMPAR antagonist, or catalase, an H2O2 metabolizing enzyme, but amplified by mercaptosuccinate (MCS), a glutathione peroxidase inhibitor. By contrast, dopamine release evoked by selective stimulation of dopamine axons was unaffected by GYKI-52466 or MCS, arguing against dopamine axons as a significant source of modulatory H2O2. Together, these findings suggest that glutamatergic regulation of dopamine release via AMPARs is mediated through retrograde signaling by diffusible H2O2 generated in striatal cells, including medium spiny neurons, rather than in dopamine axons.
Collapse
Affiliation(s)
- Marat V Avshalumov
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
28
|
Makani S, Chesler M. Endogenous alkaline transients boost postsynaptic NMDA receptor responses in hippocampal CA1 pyramidal neurons. J Neurosci 2007; 27:7438-46. [PMID: 17626204 PMCID: PMC6672609 DOI: 10.1523/jneurosci.2304-07.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In hippocampus, activation of the Schaffer collaterals generates an extracellular alkaline transient both in vitro and in vivo. This pH change may provide relief of the H+ block of NMDA receptors (NMDARs) and thereby increase excitability. To test this hypothesis, we augmented extracellular buffering in mouse hippocampal slices by adding 2 microM bovine type II carbonic anhydrase to the superfusate. With addition of enzyme, the alkaline transient elicited by a 10 pulse, 100 Hz stimulus train was reduced by 33%. At a holding potential (V(H)) of -30 mV, the enzyme decreased the half-time of decay and charge transfer of EPSCs by 32 and 39%, respectively, but had no effect at a V(H) of -80 mV. In current clamp, a 10 pulse, 100 Hz stimulus train gave rise to an NMDAR-dependent afterdepolarization (ADP). Exogenous enzyme curtailed the ADP half-width and voltage integral by 20 and 25%, respectively. Similar reduction of the ADP was noted with a brief 12 Hz stimulus train. The effect persisted in the presence of GABAergic antagonists or the L-type Ca2+ channel blocker methoxyverapamil hydrochloride but was absent in the presence of the carbonic anhydrase inhibitor benzolamide or when the exogenous enzyme was heat inactivated. The effects of the enzyme in voltage and current clamp were noted in 0 Mg2+ media but were abolished when (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine maleate was included in the patch pipette. These results provide strong evidence that endogenous alkaline transients are sufficiently large in the vicinity of the synapse to augment NMDAR responses.
Collapse
Affiliation(s)
- Sachin Makani
- Departments of Neurosurgery and Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016
| | - Mitchell Chesler
- Departments of Neurosurgery and Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
29
|
Abstract
Preterm and ill term infants are at risk for brain injury and subsequent neurodevelopmental delay as a result of many perinatal factors. Outlined in this article are the basic science mechanisms by which hypoxia, hypocapnia, and hypercapnia may result in neuronal injury in the newborn brain.
Collapse
Affiliation(s)
- Karen I Fritz
- Department of Pediatrics, Division of Neonatology, St. Christopher's Hospital for Children, Front and Erie Streets, Philadelphia, PA 19134, USA.
| | | |
Collapse
|
30
|
Calderon DP, Leverkova N, Peinado A. Gq/11-induced and spontaneous waves of coordinated network activation in developing frontal cortex. J Neurosci 2005; 25:1737-49. [PMID: 15716410 PMCID: PMC6725933 DOI: 10.1523/jneurosci.2765-04.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repeated episodes of spontaneous large-scale neuronal bursting and calcium influx in the developing brain can potentially affect such fundamental processes as circuit formation and gene expression. Between postnatal day 3 (P3) and P7, the immature cortex can express one such form of activation whereby a wave of neuronal activity propagates through cortical networks, generating massive calcium influx. We previously showed that this activity could be triggered by brief stimulation of muscarinic receptors. Here, we show, by monitoring large cortical areas at low magnification, that although all areas respond to muscarinic agonists to some extent, only some areas are likely to generate the coordinated wave-like activation. The waves can be triggered repeatedly in frontal areas where, as we also show, waves occur spontaneously at a low frequency. In parietal and occipital areas, no such waves are seen. This selectivity may be related in part to differences in the cortical distribution of dopaminergic signaling, because we find that activation of dopamine receptors enables the response. Because M1 muscarinic receptors are typically coupled with G-alpha(q)/11, we investigated whether other receptors known to couple with this G-protein (group I glutamate metabotropic receptors, neurotensin type 1) could similarly elicit wave-like activation in responsive cortical areas. Our results suggest that multiple neurotransmitter systems can enable this form of activation in the frontal cortex. The findings suggest that a poorly recognized, developmentally regulated form of strong network activation found predominantly in the frontal cortex could potentially exert a profound influence on brain development.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Action Potentials
- Animals
- Benzazepines/pharmacology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Dopamine/physiology
- Frontal Lobe/growth & development
- Frontal Lobe/physiology
- GTP-Binding Protein alpha Subunits, Gq-G11/drug effects
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Glutamic Acid/pharmacology
- Indans/pharmacology
- Muscarine/pharmacology
- Nerve Tissue Proteins/physiology
- Neurotensin/pharmacology
- Occipital Lobe/growth & development
- Parietal Lobe/growth & development
- Peptide Fragments/pharmacology
- Phenanthridines/pharmacology
- Picrotoxin/pharmacology
- Rats
- Rats, Long-Evans
- Rats, Wistar
- Receptor, Metabotropic Glutamate 5
- Receptor, Muscarinic M1/drug effects
- Receptor, Muscarinic M1/physiology
- Receptor, Muscarinic M3/drug effects
- Receptor, Muscarinic M3/physiology
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/physiology
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
Collapse
Affiliation(s)
- D Paola Calderon
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
31
|
Putnam RW, Filosa JA, Ritucci NA. Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 2004; 287:C1493-526. [PMID: 15525685 DOI: 10.1152/ajpcell.00282.2004] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increase in CO(2)/H(+) is a major stimulus for increased ventilation and is sensed by specialized brain stem neurons called central chemosensitive neurons. These neurons appear to be spread among numerous brain stem regions, and neurons from different regions have different levels of chemosensitivity. Early studies implicated changes of pH as playing a role in chemosensitive signaling, most likely by inhibiting a K(+) channel, depolarizing chemosensitive neurons, and thereby increasing their firing rate. Considerable progress has been made over the past decade in understanding the cellular mechanisms of chemosensitive signaling using reduced preparations. Recent evidence has pointed to an important role of changes of intracellular pH in the response of central chemosensitive neurons to increased CO(2)/H(+) levels. The signaling mechanisms for chemosensitivity may also involve changes of extracellular pH, intracellular Ca(2+), gap junctions, oxidative stress, glial cells, bicarbonate, CO(2), and neurotransmitters. The normal target for these signals is generally believed to be a K(+) channel, although it is likely that many K(+) channels as well as Ca(2+) channels are involved as targets of chemosensitive signals. The results of studies of cellular signaling in central chemosensitive neurons are compared with results in other CO(2)- and/or H(+)-sensitive cells, including peripheral chemoreceptors (carotid body glomus cells), invertebrate central chemoreceptors, avian intrapulmonary chemoreceptors, acid-sensitive taste receptor cells on the tongue, and pain-sensitive nociceptors. A multiple factors model is proposed for central chemosensitive neurons in which multiple signals that affect multiple ion channel targets result in the final neuronal response to changes in CO(2)/H(+).
Collapse
Affiliation(s)
- Robert W Putnam
- Department of Anatomy and Physiology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
32
|
Dienel GA, Cruz NF. Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 2004; 45:321-51. [PMID: 15145548 DOI: 10.1016/j.neuint.2003.10.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 10/24/2003] [Accepted: 10/27/2003] [Indexed: 10/26/2022]
Abstract
Functional activation of astrocytic metabolism is believed, according to one hypothesis, to be closely linked to excitatory neurotransmission and to provide lactate as fuel for oxidative metabolism in neighboring neurons. However, review of emerging evidence suggests that the energetic demands of activated astrocytes are higher and more complex than recognized and much of the lactate presumably produced by astrocytes is not locally oxidized during activation. In vivo activation studies in normal subjects reveal that the rise in consumption of blood-borne glucose usually exceeds that of oxygen, especially in retina compared to brain. When the contribution of glycogen, the brain's major energy reserve located in astrocytes, is taken into account the magnitude of the carbohydrate-oxygen utilization mismatch increases further because the magnitude of glycogenolysis greatly exceeds the incremental increase in utilization of blood-borne glucose. Failure of local oxygen consumption to equal that of glucose plus glycogen in vivo is strong evidence against stoichiometric transfer of lactate from astrocytes to neighboring neurons for oxidation. Thus, astrocytes, not nearby neurons, use the glycogen for energy during physiological activation in normal brain. These findings plus apparent compartmentation of metabolism of glycogen and blood-borne glucose during activation lead to our working hypothesis that activated astrocytes have high energy demands in their fine perisynaptic processes (filopodia) that might be met by glycogenolysis and glycolysis coupled to rapid lactate clearance. Tissue culture studies do not consistently support the lactate shuttle hypothesis because key elements of the model, glutamate-induced increases in glucose utilization and lactate release, are not observed in many astrocyte preparations, suggesting differences in their oxidative capacities that have not been included in the model. In vivo nutritional interactions between working neurons and astrocytes are not as simple as implied by "sweet (glucose-glycogen) and sour (lactate) food for thought."
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, Slot 830, University of Arkansas for Medical Sciences, Room 715, Shorey Building, 4301 W. Markham Street, Little Rock, AR 72205, USA.
| | | |
Collapse
|
33
|
Peinado A, Calderon DP. Hyperactivation of developing cortical circuits by acetylcholine and the ontogeny of abnormal cognition and emotion: findings and hypothesis. PROGRESS IN BRAIN RESEARCH 2003; 145:131-42. [PMID: 14650912 DOI: 10.1016/s0079-6123(03)45009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Alejandro Peinado
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| | | |
Collapse
|
34
|
Hrabetová S, Chen KC, Masri D, Nicholson C. Water compartmentalization and spread of ischemic injury in thick-slice ischemia model. J Cereb Blood Flow Metab 2002; 22:80-8. [PMID: 11807397 DOI: 10.1097/00004647-200201000-00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Water compartmentalization was studied in a thick-slice (1000 microm) model of ischemia by combining water-content measurements with extracellular diffusion analysis. Thick slices bathed in artificial cerebrospinal fluid continually gained water. Total tissue water content was increased by 67% after 6 hours of the incubation. Diffusion measurements using the tetramethylammonium method showed that the extracellular space, typically occupying 20% of brain tissue in vivo, was decreased to 10% at 30 minutes and 15% at 6 hours in both deep and superficial layers of thick slices. Quantification of water compartmentalization revealed that water moved initially from the extracellular space into the cells. Later, however, both compartments gained water. The initial cell swelling was accompanied by dramatic shifts in potassium. An initial rise of extracellular potassium to about 50 mmol/L was measured with a potassium-selective microelectrode positioned in the center of the thick slice; the concentration decreased slowly afterwards. Potassium content analysis revealed a 63% loss of tissue potassium within two hours of the incubation. In thick slices, ionic shifts, water redistribution, and a loss of synaptic transmission occur in both deep and superficial layers, indicating the spread of ischemic conditions even to areas with an unrestricted supply of nutrients.
Collapse
Affiliation(s)
- Sabina Hrabetová
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|