1
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function. ADVANCES IN NEUROBIOLOGY 2023; 34:255-310. [PMID: 37962798 DOI: 10.1007/978-3-031-36159-3_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glia comprise a heterogeneous group of cells involved in the structure and function of the central and peripheral nervous system. Glial cells are found from invertebrates to humans with morphological specializations related to the neural circuits in which they are embedded. Glial cells modulate neuronal functions, brain wiring and myelination, and information processing. For example, astrocytes send processes to the synaptic cleft, actively participate in the metabolism of neurotransmitters, and release gliotransmitters, whose multiple effects depend on the targeting cells. Human astrocytes are larger and more complex than their mice and rats counterparts. Astrocytes and microglia participate in the development and plasticity of neural circuits by modulating dendritic spines. Spines enhance neuronal connectivity, integrate most postsynaptic excitatory potentials, and balance the strength of each input. Not all central synapses are engulfed by astrocytic processes. When that relationship occurs, a different pattern for thin and large spines reflects an activity-dependent remodeling of motile astrocytic processes around presynaptic and postsynaptic elements. Microglia are equally relevant for synaptic processing, and both glial cells modulate the switch of neuroendocrine secretion and behavioral display needed for reproduction. In this chapter, we provide an overview of the structure, function, and plasticity of glial cells and relate them to synaptic maturation and modulation, also involving neurotrophic factors. Together, neurons and glia coordinate synaptic transmission in both normal and abnormal conditions. Neglected over decades, this exciting research field can unravel the complexity of species-specific neural cytoarchitecture as well as the dynamic region-specific functional interactions between diverse neurons and glial subtypes.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
2
|
Central Stimulatory Effect of Kynurenic Acid on BDNF-TrkB Signaling and BER Enzymatic Activity in the Hippocampal CA1 Field in Sheep. Int J Mol Sci 2022; 24:ijms24010136. [PMID: 36613581 PMCID: PMC9820639 DOI: 10.3390/ijms24010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Deficiency of neurotrophic factors and oxidative DNA damage are common causes of many neurodegenerative diseases. Recently, the importance of kynurenic acid (KYNA), an active metabolite of tryptophan, has increased as a neuroprotective molecule in the brain. Therefore, the present study tested the hypothesis that centrally acting KYNA would positively affect: (1) brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling and (2) selected base excision repair (BER) pathway enzymes activities in the hippocampal CA1 field in sheep. Both lower (20 μg in total) and higher (100 μg in total) doses of KYNA infused into the third brain ventricle differentially increased the abundance of BDNF and TrkB mRNA in the CA1 field; additionally, the higher dose increased BDNF tissue concentration. The lower dose of KYNA increased mRNA expression for 8-oxoguanine glycosylase (OGG1), N-methylpurine DNA glycosylase (MPG), and thymine DNA glycosylase and stimulated the repair of 1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxy-cytosine as determined by the excision efficiency of lesioned nucleobases. The higher dose increased the abundance of OGG1 and MPG transcripts, however, its stimulatory effect on repair activity was less pronounced in all cases compared to the lower dose. The increased level of AP-endonuclease mRNA expression was dose-dependent. In conclusion, the potential neurotrophic and neuroprotective effects of KYNA in brain cells may involve stimulation of the BDNF-TrkB and BER pathways.
Collapse
|
3
|
CaMKIV mediates spine growth deficiency of hippocampal neurons by regulation of EGR3/BDNF signal axis in congenital hypothyroidism. Cell Death Dis 2022; 8:482. [PMID: 36473844 PMCID: PMC9723595 DOI: 10.1038/s41420-022-01270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Congenital hypothyroidism (CH) will cause cognitive impairment in the condition of delayed treatment. The hippocampus is one of the most affected tissues by CH, in which the functional structures of hippocampal neurons manifest deficiency due to aberrant expression of effector molecules. The Ca2+/Calmodulin-dependent protein kinase, CaMKIV, is downregulated in the hippocampal neurons, influencing the growth of dendritic spines in response to CH. However, the underlying mechanism is not fully elucidated. In the present study, the early growth response factor 3 (EGR3) was regulated by CaMKIV in the hippocampal neurons of CH rat pups, as was analyzed by transcriptome sequencing and in vitro cell experiments. EGR3 localized within hippocampal neurons in CA1, CA3, and dentate gyrus regions. Deficient EGR3 in the primary hippocampal neurons significantly reduced the density of dendritic spines by downregulating the expression of BDNF, and such effects could be rescued by supplementing recombinant BDNF protein. Taken together, CH mediates cognitive impairment of pups through the inactivation of CaMKIV in the hippocampal neurons, which decreases the expression of EGR3 and further reduces the production of BDNF, thereby impairing the growth of dendritic spines. Identifying CaMKIV/EGR3/BDNF pathway in the hippocampal neurons in the context of CH will benefit the drug development of intellectual disability caused by CH.
Collapse
|
4
|
Cote JL, Vander PB, Ellis M, Cline JM, Svezhova N, Doche ME, Maures TJ, Choudhury TA, Kong S, Klaft OGJ, Joe RM, Argetsinger LS, Carter-Su C. The nucleolar δ isoform of adapter protein SH2B1 enhances morphological complexity and function of cultured neurons. J Cell Sci 2022; 135:jcs259179. [PMID: 35019135 PMCID: PMC8918807 DOI: 10.1242/jcs.259179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022] Open
Abstract
The adapter protein SH2B1 is recruited to neurotrophin receptors, including TrkB (also known as NTRK2), the receptor for brain-derived neurotrophic factor (BDNF). Herein, we demonstrate that the four alternatively spliced isoforms of SH2B1 (SH2B1α-SH2B1δ) are important determinants of neuronal architecture and neurotrophin-induced gene expression. Primary hippocampal neurons from Sh2b1-/- [knockout (KO)] mice exhibit decreased neurite complexity and length, and BDNF-induced expression of the synapse-related immediate early genes Egr1 and Arc. Reintroduction of each SH2B1 isoform into KO neurons increases neurite complexity; the brain-specific δ isoform also increases total neurite length. Human obesity-associated variants, when expressed in SH2B1δ, alter neurite complexity, suggesting that a decrease or increase in neurite branching may have deleterious effects that contribute to the severe childhood obesity and neurobehavioral abnormalities associated with these variants. Surprisingly, in contrast to SH2B1α, SH2B1β and SH2B1γ, which localize primarily in the cytoplasm and plasma membrane, SH2B1δ resides primarily in nucleoli. Some SH2B1δ is also present in the plasma membrane and nucleus. Nucleolar localization, driven by two highly basic regions unique to SH2B1δ, is required for SH2B1δ to maximally increase neurite complexity and BDNF-induced expression of Egr1, Arc and FosL1.
Collapse
Affiliation(s)
- Jessica L. Cote
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul B. Vander
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Ellis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joel M. Cline
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nadezhda Svezhova
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael E. Doche
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Travis J. Maures
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tahrim A. Choudhury
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Seongbae Kong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Olivia G. J. Klaft
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ray M. Joe
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lawrence S. Argetsinger
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christin Carter-Su
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
6
|
Park B, Lee YJ. Pterostilbene Improves Stress-Related Behaviors and Partially Reverses Underlying Neuroinflammatory and Hormonal Changes in Stress-Challenged Mice. J Med Food 2021; 24:299-309. [PMID: 33739881 DOI: 10.1089/jmf.2020.4766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Pterostilbene is a natural compound contained in various dietary sources that has received tremendous attention due to its antioxidant properties with promising benefits in cancers and vascular diseases. Currently, little is known about pterostilbene-associated neuroimmune endocrine effects. We aimed to examine the efficacy of pterostilbene for improving stress-related behaviors, neuroinflammation, and hormonal changes in a mouse stress model. To evaluate the efficacy of oral administration of pterostilbene or vehicle for 16 days for improving behavior, inflammation, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, mice were divided into a normal control group or one of five restraint stress groups-the vehicle group; the 20, 40, or 80 mg/[kg·day] pterostilbene treatment group; or the 20 mg/[kg·day] resveratrol treatment group. Open field and forced swimming tests were conducted. Hippocampal brain-derived neurotrophic factor (BDNF) levels, endocrine hormone levels, oxidative stress parameters, and histopathological features were assessed. Oral pterostilbene administration significantly increased the measured times in the open field and forced swimming tests, elevated the BDNF levels, decreased the inducible nitric oxide synthase and superoxide dismutase levels in the brain, and reduced the plasma adrenocorticotropic hormone and corticosterone levels. Compared with vehicle treatment, pterostilbene dose dependently increased the numbers of neurons and decreased the numbers of glial and tumor necrosis factor alpha-immunolabeled cells in the hypothalamus. These findings suggest that pterostilbene may effectively modulate stress-related abnormal behaviors, neuroinflammation, and HPA axis hyperactivity.
Collapse
Affiliation(s)
- Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Medicine, Yonsei University Graduate School of Medicine, Seoul, Korea
| | - Yong-Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Family Medicine, Gangnam Severance Hospital, Seoul, Korea
| |
Collapse
|
7
|
Intervention of Brain-Derived Neurotrophic Factor and Other Neurotrophins in Adult Neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:95-115. [PMID: 34453295 DOI: 10.1007/978-3-030-74046-7_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell survival during adult neurogenesis and the modulation of each step, namely, proliferation, lineage differentiation, migration, maturation, and functional integration of the newborn cells into the existing circuitry, is regulated by intrinsic and extrinsic factors. Transduction of extracellular niche signals triggers the activation of intracellular mechanisms that regulate adult neurogenesis by affecting gene expression. While the intrinsic factors include transcription factors and epigenetic regulators, the extrinsic factors are molecular signals that are present in the neurogenic niche microenvironment. These include morphogens, growth factors, neurotransmitters, and signaling molecules secreted as soluble factors or associated to the extracellular matrix. Among these molecular mechanisms are neurotrophins and neurotrophin receptors which have been implicated in the regulation of adult neurogenesis at different levels, with brain-derived neurotrophic factor (BDNF) being the most studied neurotrophin. In this chapter, we review the current knowledge about the role of neurotrophins in the regulation of adult neurogenesis in both the subventricular zone (SVZ) and the hippocampal subgranular zone (SGZ).
Collapse
|
8
|
Quality of life 6 and 18 months after mild traumatic brain injury in early childhood: An exploratory study of the role of genetic, environmental, injury, and child factors. Brain Res 2020; 1748:147061. [DOI: 10.1016/j.brainres.2020.147061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/18/2022]
|
9
|
Sonoyama T, Stadler LKJ, Zhu M, Keogh JM, Henning E, Hisama F, Kirwan P, Jura M, Blaszczyk BK, DeWitt DC, Brouwers B, Hyvönen M, Barroso I, Merkle FT, Appleyard SM, Wayman GA, Farooqi IS. Human BDNF/TrkB variants impair hippocampal synaptogenesis and associate with neurobehavioural abnormalities. Sci Rep 2020; 10:9028. [PMID: 32493978 PMCID: PMC7270116 DOI: 10.1038/s41598-020-65531-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/29/2020] [Indexed: 01/12/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signals through its high affinity receptor Tropomyosin receptor kinase-B (TrkB) to regulate neuronal development, synapse formation and plasticity. In rodents, genetic disruption of Bdnf and TrkB leads to weight gain and a spectrum of neurobehavioural phenotypes. Here, we functionally characterised a de novo missense variant in BDNF and seven rare variants in TrkB identified in a large cohort of people with severe, childhood-onset obesity. In cells, the E183K BDNF variant resulted in impaired processing and secretion of the mature peptide. Multiple variants in the kinase domain and one variant in the extracellular domain of TrkB led to a loss of function through multiple signalling pathways, impaired neurite outgrowth and dominantly inhibited glutamatergic synaptogenesis in hippocampal neurons. BDNF/TrkB variant carriers exhibited learning difficulties, impaired memory, hyperactivity, stereotyped and sometimes, maladaptive behaviours. In conclusion, human loss of function BDNF/TrkB variants that impair hippocampal synaptogenesis may contribute to a spectrum of neurobehavioural disorders.
Collapse
Affiliation(s)
- Takuhiro Sonoyama
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Lukas K J Stadler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Mingyan Zhu
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Fuki Hisama
- Department of Medicine (Medical Genetics), University of Washington School of Medicine, Seattle, Washington, USA
| | - Peter Kirwan
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Magdalena Jura
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Beata K Blaszczyk
- Department of Biochemistry, 80 Tennis Court Road, CB2 1QW, University of Cambridge, Cambridge, UK
| | - David C DeWitt
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Bas Brouwers
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Marko Hyvönen
- Department of Biochemistry, 80 Tennis Court Road, CB2 1QW, University of Cambridge, Cambridge, UK
| | - Inês Barroso
- MRC Epidemiology Unit, Addenbrooke's Hospital, Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
| | - Florian T Merkle
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Suzanne M Appleyard
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Gary A Wayman
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
10
|
Wang H, Shi X, Qiu M, Lv S, Liu H. Hydrogen Sulfide Plays an Important Protective Role through Influencing Endoplasmic Reticulum Stress in Diseases. Int J Biol Sci 2020; 16:264-271. [PMID: 31929754 PMCID: PMC6949148 DOI: 10.7150/ijbs.38143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum is an important organelle responsible for protein synthesis, modification, folding, assembly and transport of new peptide chains. When the endoplasmic reticulum protein folding ability is impaired, the unfolded or misfolded proteins accumulate to lead to endoplasmic reticulum stress. Hydrogen sulfide is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicate that H2S plays an important protective role in many diseases through influencing endoplasmic reticulum stress, but its mechanism is not fully understood. This article reviewed the progress about the effect of H2S on endoplasmic reticulum stress and its mechanisms involved in diseases in recent years to provide theoretical basis for in-depth study.
Collapse
Affiliation(s)
- Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Xingzhuo Shi
- School of Life Science, Henan University, Kaifeng, Henan, 475000, China
| | - Mengyuan Qiu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Shuangyu Lv
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Huiyang Liu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| |
Collapse
|
11
|
Du Q, Zhu X, Si J. Angelica polysaccharide ameliorates memory impairment in Alzheimer's disease rat through activating BDNF/TrkB/CREB pathway. Exp Biol Med (Maywood) 2019; 245:1-10. [PMID: 31847588 DOI: 10.1177/1535370219894558] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study aimed to investigate the effect of Angelica sinensis polysaccharides (ASP) on Alzheimer’s disease (AD) and its underlying mechanisms. In our study, we build the AD model by injecting Aβ25–35. Morris water maze (MWM) was applied to investigate learning and memory. Moreover, neurotransmitters, free radical, and inflammatory factors were also measured. Pathological change and neuronal death in hippocampus CA1, CA3, and DG region were detected by HE staining and Nissl staining. The neuronal apoptosis was detected by TUNEL. The expressions of caspase-3, Bcl-2 and Bax were measured by immunohistochemistry and Western blot. The expressions of BDNF, TrkB, p-Akt, Akt, p-CREB, and CREB were measured by Western blot. Our results showed that ASP could ameliorate spatial learning and memory deficiency in AD rats. ASP decreased AchE level and increased the levels of Ach and chAT in AD rats. ASP could increase the activity of SOD and CAT, decrease MDA activity, and inhibit the expression levels of inflammatory factors and neurons apoptosis in AD rats. Pathological change of hippocampus CA1, CA3, and DG region was ameliorated by ASP. In addition, the effects of ASP were reversed by K252a (TrkB inhibitor). Our study demonstrated that ASP could ameliorate memory impairment in AD rat through activating BDNF/TrkB/CREB pathway. Impact statement The present study demonstrated that ASP could ameliorate memory impairment through regulation of the balance of neurotransmitters, free radical metabolism, inflammation, and neurons apoptosis. Moreover, the mechanism of ASP on memory impairment may be related to BDNF/TrkB/CREB pathway in AD. Our research provides an innovatively regulatory mechanism about the ASP in AD rat and points a new way to the treatment of AD.
Collapse
Affiliation(s)
- Qian Du
- Department of EEG Room, Liaocheng People's Hospital, Liaocheng City, Shandong Province 252000, China
| | - Xiaoyu Zhu
- Department of Neurology, Liaocheng People's Hospital, Liaocheng City, Shandong Province 252000, China
| | - Jieru Si
- Department of Cadre Health/General Medical, Liaocheng People's Hospital, Liaocheng City, Shandong Province 252000, China
| |
Collapse
|
12
|
Chen S, Guo W, Qi X, Zhou J, Liu Z, Cheng Y. Natural alkaloids from lotus plumule ameliorate lipopolysaccharide-induced depression-like behavior: integrating network pharmacology and molecular mechanism evaluation. Food Funct 2019; 10:6062-6073. [PMID: 31486445 DOI: 10.1039/c9fo01092k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Depression is a mental disorder that brings severe burdens to patients and their families. Neuroinflammation and neurotrophins are involved in depression. Lotus plumule is a nutritional food with medicinal values. In the present study, we tried to clarify the anti-depressive effect and molecular mechanism of lotus plumule. Network pharmacological analysis, behavior tests, qRT-PCR and western blotting were used. We found 7 potential active components and 91 targets from the TCMSP database. KEGG analysis suggested that lotus plumule significantly affected nitrogen metabolism, calcium signaling, and inflammatory mediator regulation signaling pathways. Consistent with those effects, total alkaloids of lotus plumule (TLA) and active alkaloids differently suppressed the nitric oxide (NO) production and pro-inflammatory mediators. TLA and higenamine significantly ameliorated LPS-induced depression-like behavior, increased BDNF levels, suppressed microglia activation, and inhibited the expression of ER stress-related proteins. Meanwhile, TLA and higenamine activated microglia autophagy by increasing the beclin-1 and LC3B-II expression. Additionally, in the presence of autophagy inhibitor 3-MA, TLA and higenamine did not reduce the LPS-induced NO production or pro-inflammatory mediators. Collectively, TLA and higenamine attenuated LPS-induced depression-like behavior by regulating BDNF-mediated ER stress and autophagy. Therefore, drinking tea of lotus plumule may provide a potential strategy for preventing depression.
Collapse
Affiliation(s)
- Sixuan Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Wanyi Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Jiuyao Zhou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
13
|
Kathpalia P, Nag TC, Chattopadhyay P, Sharma A, Bhat MA, Roy TS, Wadhwa S. In ovo Sound Stimulation Mediated Regulation of BDNF in the Auditory Cortex and Hippocampus of Neonatal Chicks. Neuroscience 2019; 408:293-307. [PMID: 31026564 DOI: 10.1016/j.neuroscience.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/15/2019] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is known to mediate activity-dependent changes in the developing auditory system. Its expression in the brainstem auditory nuclei, auditory cortex and hippocampus of neonatal chicks (Gallus gallus domesticus) in response to in ovo high intensity sound exposure at 110 dB (arrhythmic sound: recorded traffic noise, 30-3000 Hz with peak at 2700 Hz, rhythmic sound: sitar music, 100-4000 Hz) was examined to understand the previously reported altered volume and neuronal number in these regions. In the brainstem auditory nuclei, no mature BDNF, but proBDNF at the protein level was detected, and no change in its levels was observed after in ovo sound stimulation (music and noise). Increased ProBDNF protein levels were found in the auditory cortex in response to arrhythmic sound, along with decreased levels of one of the BDNF mRNA transcripts, in response to both rhythmic and arrhythmic sound stimulation. In the hippocampus, increased levels of mature BDNF were found in response to music. Expression microarray analysis was performed to understand changes in gene expression in the hippocampus in response to music and noise, followed by gene ontology analysis showing enrichment of probable signaling pathways. Differentially expressed genes like CAMK1 and STAT1 were found to be involved in downstream signaling on comparing music versus noise-exposed chicks. In conclusion, we report that BDNF is differentially regulated in the auditory cortex at the transcriptional and post-translational level, and in the hippocampus at the post-translational level in response to in ovo sound stimulation.
Collapse
Affiliation(s)
- Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | | | - Arundhati Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Muzaffer Ahmed Bhat
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India; Department of Anatomy, North Delhi Municipal Medical College, New Delhi, India
| |
Collapse
|
14
|
BDNF/TrkB Pathway Mediates the Antidepressant-Like Role of H 2S in CUMS-Exposed Rats by Inhibition of Hippocampal ER Stress. Neuromolecular Med 2018; 20:252-261. [PMID: 29704115 DOI: 10.1007/s12017-018-8489-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
Our previous works have shown that hydrogen sulfide (H2S) significantly attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors and hippocampal endoplasmic reticulum (ER) stress. Brain-derived neurotrophic factor (BDNF) generates an antidepressant-like effect by its receptor tyrosine protein kinase B (TrkB). We have previously found that H2S upregulates the expressions of BDNF and p-TrkB in the hippocampus of CUMS-exposed rats. Therefore, the present work was to explore whether BDNF/TrkB pathway mediates the antidepressant-like role of H2S by blocking hippocampal ER stress. We found that treatment with K252a (an inhibitor of BDNF/TrkB pathway) significantly increased the immobility time in the forced swim test and tail suspension test and increased the latency to feed in the novelty-suppressed feeding test in the rats cotreated with sodium hydrosulfide (NaHS, a donor of H2S) and CUMS. Similarly, K252a reversed the protective effect of NaHS against CUMS-induced hippocampal ER stress, as evidenced by increases in the levels of ER stress-related proteins, glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein and cleaved caspase-12. Taken together, our results suggest that BDNF/TrkB pathway plays an important mediatory role in the antidepressant-like action of H2S in CUMS-exposed rats, which is by suppression of hippocampal ER stress. These data provide a novel mechanism underlying the protection of H2S against CUMS-induced depressive-like behaviors.
Collapse
|
15
|
BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 2018; 373:729-741. [DOI: 10.1007/s00441-017-2782-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
|
16
|
|
17
|
Shapiro LP, Parsons RG, Koleske AJ, Gourley SL. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res 2017; 95:1123-1143. [PMID: 27735056 PMCID: PMC5352542 DOI: 10.1002/jnr.23960] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/04/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
The prevalence of depression, anxiety, schizophrenia, and drug and alcohol use disorders peaks during adolescence. Further, up to 50% of "adult" mental health disorders emerge in adolescence. During adolescence, the prefrontal cortex (PFC) undergoes dramatic structural reorganization, in which dendritic spines and synapses are refined, pruned, and stabilized. Understanding the molecular mechanisms that underlie these processes should help to identify factors that influence the development of psychiatric illness. Here we briefly discuss the anatomical connections of the medial and orbital prefrontal cortex (mPFC and OFC, respectively). We then present original findings suggesting that dendritic spines on deep-layer excitatory neurons in the mouse mPFC and OFC prune at different adolescent ages, with later pruning in the OFC. In parallel, we used Western blotting to define levels of several cytoskeletal regulatory proteins during early, mid-, and late adolescence, focusing on tropomyosin-related kinase receptor B (TrkB) and β1-integrin-containing receptors and select signaling partners. We identified regional differences in the levels of several proteins in early and midadolescence that then converged in early adulthood. We also observed age-related differences in TrkB levels, both full-length and truncated isoforms, Rho-kinase 2, and synaptophysin in both PFC subregions. Finally, we identified changes in protein levels in the dorsal and ventral hippocampus that were distinct from those in the PFC. We conclude with a general review of the manner in which TrkB- and β1-integrin-mediated signaling influences neuronal structure in the postnatal brain. Elucidating the role of cytoskeletal regulatory factors throughout adolescence may identify critical mechanisms of PFC development. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lauren P Shapiro
- Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Ryan G Parsons
- Department of Psychology and Neuroscience Institute, Graduate Program in Integrative Neuroscience, Program in Neuroscience, Stony Brook University, Stony Brook, New York
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Department of Neurobiology, Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia
| |
Collapse
|
18
|
Dincheva I, Lynch NB, Lee FS. The Role of BDNF in the Development of Fear Learning. Depress Anxiety 2016; 33:907-916. [PMID: 27699937 PMCID: PMC5089164 DOI: 10.1002/da.22497] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/22/2016] [Indexed: 01/15/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that is dynamically expressed in the brain across postnatal development, regulating neuronal differentiation and synaptic plasticity. The neurotrophic hypothesis of psychiatric mood disorders postulates that in the adult brain, decreased BDNF levels leads to altered neural plasticity, contributing to disease. Although BDNF has been established as a key factor regulating the critical period plasticity in the developing visual system, it has recently been shown to also play a role in fear circuitry maturation, which has implications for the emergence of fear-related mood disorders. This review provides a detailed overview of developmental changes in expression of BDNF isoforms, as well as their receptors across postnatal life. In addition, recent developmental studies utilizing a genetic BDNF single nucleotide polymorphism (Val66Met) knock-in mouse highlight the impact of BDNF on fear learning during a sensitive period spanning the transition into adolescent time frame. We hypothesize that BDNF in the developing brain regulates fear circuit plasticity during a sensitive period in early adolescence, and alterations in BDNF expression (genetic or environmental) have a persistent impact on fear behavior and fear-related disorders.
Collapse
Affiliation(s)
- Iva Dincheva
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York.
| | - Niccola B. Lynch
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York,Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, New York,Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, New York, New York
| |
Collapse
|
19
|
Lee S, Yang M, Kim J, Son Y, Kim J, Kang S, Ahn W, Kim SH, Kim JC, Shin T, Wang H, Moon C. Involvement of BDNF/ERK signaling in spontaneous recovery from trimethyltin-induced hippocampal neurotoxicity in mice. Brain Res Bull 2016; 121:48-58. [PMID: 26772626 DOI: 10.1016/j.brainresbull.2016.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 11/17/2022]
Abstract
Trimethyltin (TMT) toxicity causes histopathological damage in the hippocampus and induces seizure behaviors in mice. The lesions and symptoms recover spontaneously over time; however, little is known about the precise mechanisms underlying this recovery from TMT toxicity. We investigated changes in the brain-derived neurotrophic factor/extracellular signal-regulated kinases (BDNF/ERK) signaling pathways in the mouse hippocampus following TMT toxicity. Mice (7 weeks old, C57BL/6) administered TMT (2.6 mg/kg intraperitoneally) showed acute and severe neurodegeneration with increased TUNEL-positive cells in the dentate gyrus (DG) of the hippocampus. The mRNA and protein levels of BDNF in the hippocampus were elevated by TMT treatment. Immunohistochemical analysis showed that TMT treatment markedly increased phosphorylated ERK1/2 expression in the mouse hippocampus 1-4 days after TMT treatment, although the intensity of ERK immunoreactivity in mossy fiber decreased at 1-8 days post-treatment. In addition, ERK-immunopositive cells were localized predominantly in doublecortin-positive immature progenitor neurons in the DG. In primary cultured immature hippocampal neurons (4 days in vitro), BDNF treatment alleviated TMT-induced neurotoxicity, via activation of the ERK signaling pathway. Thus, we suggest that BDNF/ERK signaling pathways may be associated with cell differentiation and survival of immature progenitor neurons, and will eventually lead to spontaneous recovery in TMT-induced hippocampal neurodegeneration.
Collapse
Affiliation(s)
- Sueun Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Miyoung Yang
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-740, South Korea
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Juhwan Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Yeonghoon Son
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Jinwook Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Sohi Kang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Wooseok Ahn
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Sung-Ho Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| | - Taekyun Shin
- College of Veterinary Medicine, Jeju National University, Jeju 690-756, South Korea
| | - Hongbing Wang
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Changjong Moon
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 500-757, South Korea
| |
Collapse
|
20
|
Saenen ND, Plusquin M, Bijnens E, Janssen BG, Gyselaers W, Cox B, Fierens F, Molenberghs G, Penders J, Vrijens K, De Boever P, Nawrot TS. In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:834-40. [PMID: 25816123 PMCID: PMC4529006 DOI: 10.1289/ehp.1408549] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Developmental processes in the placenta and the fetal brain are shaped by the same biological signals. Recent evidence suggests that adaptive responses of the placenta to the maternal environment may influence central nervous system development. OBJECTIVES We studied the association between in utero exposure to fine particle air pollution with a diameter ≤ 2.5 μm (PM2.5) and placental expression of genes implicated in neural development. METHODS Expression of 10 target genes in the brain-derived neurotrophic factor (BDNF) signaling pathway were quantified in placental tissue of 90 mother-infant pairs from the ENVIRONAGE birth cohort using quantitative real-time polymerase chain reaction. Trimester-specific PM2.5 exposure levels were estimated for each mother's home address using a spatiotemporal model. Mixed-effects models were used to evaluate the association between the target genes and PM2.5 exposure measured in different time windows of pregnancy. RESULTS A 5-μg/m3 increase in residential PM2.5 exposure during the first trimester of pregnancy was associated with a 15.9% decrease [95% confidence interval (CI): -28.7, -3.2%, p = 0.015] in expression of placental BDNF at birth. The corresponding estimate for synapsin 1 (SYN1) was a 24.3% decrease (95% CI: -42.8, -5.8%, p = 0.011). CONCLUSIONS Placental expression of BDNF and SYN1, two genes implicated in normal neurodevelopmental trajectories, decreased with increasing in utero exposure to PM2.5. Future studies are needed to confirm our findings and evaluate the potential relevance of associations between PM2.5 and placental expression of BDNF and SYN1 on neurodevelopment. We provide the first molecular epidemiological evidence concerning associations between in utero fine particle air pollution exposure and the expression of genes that may influence neurodevelopmental processes.
Collapse
Affiliation(s)
- Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Limburg, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ren J, Zhou X, Wang J, Zhao J, Zhang P. Poxue Huayu and Tianjing Busui Decoction for cerebral hemorrhage (Upregulation of neurotrophic factor expression): Upregulation of neurotrophic factor expression. Neural Regen Res 2014; 8:2039-49. [PMID: 25206512 PMCID: PMC4146063 DOI: 10.3969/j.issn.1673-5374.2013.22.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022] Open
Abstract
This study established a rat model of cerebral hemorrhage by injecting autologous anticoagulated blood. Rat models were intragastrically administered 5, 10, 20 g/kg Poxue Huayu and Tianjing Busui Decoction, supplemented with Hirudo, raw rhubarb, raw Pollen Typhae, gadfly, Fructrs Trichosanthis, Radix Notoginseng, Rhizoma Acori Talarinowii, and glue of tortoise plastron, once a day, for 14 consecutive days. Results demonstrated that brain water content significantly reduced in rats with cerebral hemorrhage, and intracerebral hematoma volume markedly reduced after treatment. Immunohistochemical staining revealed that brain-derived neurotrophic factor, tyrosine kinase B and vascular endothelial growth factor expression noticeably increased around the surrounding hematoma. Reverse transcription-PCR revealed that brain-derived neurotrophic factor and tyrosine kinase B mRNA expression significantly increased around the surrounding hematoma. Neurologic impairment obviously reduced. These results indicated that Poxue Huayu and Tianjing Busui Decoction exert therapeutic effects on cerebral hemorrhage by upregulating the expression of brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Jixiang Ren
- Department of Encephalopathy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Xiangyu Zhou
- Grade 2010 Clinical Medicine Major, School of Clinical Medicine, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jian Wang
- Department of Encephalopathy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Jianjun Zhao
- Department of Encephalopathy, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Pengguo Zhang
- Department of Imaging, School of Second Clinical Medicine, Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
22
|
Developmental and degenerative modulation of brain-derived neurotrophic factor transcript variants in the mouse hippocampus. Int J Dev Neurosci 2014; 38:68-73. [PMID: 25124374 DOI: 10.1016/j.ijdevneu.2014.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 02/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is regarded as an important factor for neurogenesis, synaptic plasticity, and neuronal network organization in brain circuits. However, little is known about the regulation of BDNF transcript variants in the hippocampus during postnatal development and following chemically induced neurotoxicity. In the present study, we examined the expression of individual BDNF transcript variants in the mouse hippocampus on postnatal day (PD) 3, 7, 14, 21, and 56, as well as in the adult hippocampus 1, 2, 4, and 8 days after trimethyltin (TMT) treatment. During postnatal development, the expression levels of common BDNF-coding transcripts and BDNF transcript variants increased gradually in the hippocampus, but the temporal patterns of each exon transcript showed significant differences. In the TMT-treated hippocampus, the levels of common BDNF-coding transcripts and exon I, IIC, III, VII, VIII, and IXA transcripts were significantly increased 1 day post-treatment. These observations suggest that the differential regulation of BDNF exon transcripts may be associated with neuronal and synaptic maturation during postnatal development, and neuronal survival and synaptic plasticity in chemically induced neurodegeneration.
Collapse
|
23
|
Effects of eye-acupuncture on the expression of brain-derived neurotrophic factor in the brain of rats with cerebral ischemia reperfusion. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2013. [DOI: 10.1016/s1003-5257(14)60006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
ZHANG LD, WANG Z, LI L, GAO Y, WANG Y, ZHAO JR, WANG SY, WANG J, GUAN HQ. Effect of eye acupuncture on the expression of brain-derived neurotrophic factor in hippocampus in rats with cerebral ischemia-reperfusion injury. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2012. [DOI: 10.1016/s1003-5257(12)60026-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Zhou X, Xiao H, Wang H. Developmental changes of TrkB signaling in response to exogenous brain-derived neurotrophic factor in primary cortical neurons. J Neurochem 2011; 119:1205-16. [PMID: 21988201 DOI: 10.1111/j.1471-4159.2011.07528.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neocortical circuits are most sensitive to sensory experience during a critical period of early development. Previous studies implicate that brain-derived neurotrophic factor (BDNF) and GABAergic inhibition may control the timing of the critical period. By using an in vitro maturation model, we found that neurons at DIV (day in vitro) 7, around a period when functional synapses start to form and GABAergic inhibition emerges, displayed the most dynamic activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB by exogenous BDNF. The BDNF-stimulated transcriptional up-regulation of CREB target genes was also the highest in DIV 7 neurons. The basal level of ERK1/2 and CREB activity, as well as the expression of CREB target genes, increased along with maturation, and neurons at DIV 13 and 22 displayed less dynamic responses to BDNF. Furthermore, we found that the developmentally regulated GABAergic inhibition correlated with the decline of BDNF-mediated signaling during maturation. BDNF stimulation along with suppression of GABAergic inhibition enhanced the activation of ERK1/2-CREB signaling and gene transcription in mature neurons. Conversely, BDNF stimulation along with enhancement of GABAergic inhibition reduced the overall induction of intracellular signaling in younger neurons. We propose that the less dynamic molecular changes may play a certain role in the loss of plasticity during maturation.
Collapse
Affiliation(s)
- Xianju Zhou
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
26
|
Rodrigues BC, Cavalcante JC, Elias CF. Expression of cocaine- and amphetamine-regulated transcript in the rat forebrain during postnatal development. Neuroscience 2011; 195:201-14. [PMID: 21903152 DOI: 10.1016/j.neuroscience.2011.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 12/19/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is widespread in the rodent brain. CART has been implicated in many different functions including reward, feeding, stress responses, sensory processing, learning and memory formation. Recent studies have suggested that CART may also play a role in neural development. Therefore, in the present study we compared the distribution pattern and levels of CART mRNA expression in the forebrain of male and female rats at different stages of postnatal development: P06, P26 and P66. At 6 days of age (P06), male and female rats showed increased CART expression in the somatosensory and piriform cortices, indusium griseum, dentate gyrus, nucleus accumbens, and ventral premammillary nucleus. Interestingly, we found a striking expression of CART mRNA in the ventral posteromedial and ventral posterolateral thalamic nuclei. This thalamic expression was absent at P26 and P66. Contrastingly, at P06 CART mRNA expression was decreased in the arcuate nucleus. Comparing sexes, we found increased CART mRNA expression in the anteroventral periventricular nucleus of adult females. In other regions including the CA1, the lateral hypothalamic area and the dorsomedial nucleus of the hypothalamus, CART expression was not different comparing postnatal ages and sexes. Our findings indicate that CART gene expression is induced in a distinct temporal and spatial manner in forebrain sites of male and female rats. They also suggest that CART peptide participate in the development of neural pathways related to selective functions including sensory processing, reward and memory formation.
Collapse
Affiliation(s)
- B C Rodrigues
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | | | | |
Collapse
|
27
|
Ludwig A, Uvarov P, Pellegrino C, Thomas-Crusells J, Schuchmann S, Saarma M, Airaksinen MS, Rivera C. Neurturin evokes MAPK-dependent upregulation of Egr4 and KCC2 in developing neurons. Neural Plast 2011; 2011:1-8. [PMID: 21837281 PMCID: PMC3151499 DOI: 10.1155/2011/641248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/03/2011] [Indexed: 12/21/2022] Open
Abstract
The K-Cl cotransporter KCC2 plays a crucial role in the functional development of GABA(A)-mediated responses rendering GABA hyperpolarizing in adult neurons. We have previously shown that BDNF upregulates KCC2 in immature neurons through the transcription factor Egr4. The effect of BDNF on Egr4 and KCC2 was shown to be dependent on the activation of ERK1/2. Here we demonstrate that the trophic factor neurturin can also trigger Egr4 expression and upregulate KCC2 in an ERK1/2-dependent manner. These results show that Egr4 is an important component in the mechanism for trophic factor-mediated upregulation of KCC2 in immature neurons involving the activation of specific intracellular pathways common to BDNF and Neurturin.
Collapse
Affiliation(s)
- Anastasia Ludwig
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Viikki Campus, Viikinkaari 9, 00014 Helsinki, Finland
| | - Pavel Uvarov
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
| | - Christophe Pellegrino
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
- Inserm Unité 901, 13009 Marseille, France
- UMR S901 Aix-Marseille 2, Université de la Méditerranée, 13009 Marseille, France
- INMED/INSERM u901, 13009 Marseille, France
| | - Judith Thomas-Crusells
- Institute of Biotechnology, University of Helsinki, Viikki Campus, Viikinkaari 9, 00014 Helsinki, Finland
| | - Sebastian Schuchmann
- Neuroscience Research Center, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Viikki Campus, Viikinkaari 9, 00014 Helsinki, Finland
| | - Matti S. Airaksinen
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
- Experimental Animal Center, University of Helsinki, 00014 Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Viikki Campus, Viikinkaari 9, 00014 Helsinki, Finland
- UMR S901 Aix-Marseille 2, Université de la Méditerranée, 13009 Marseille, France
- INMED/INSERM u901, 13009 Marseille, France
| |
Collapse
|
28
|
Abstract
Biological development is driven by a complex dance between nurture and nature, determined not only by the specific features of the interacting genetic and environmental influences but also by the timing of their rendezvous. The initiation of large-scale longitudinal studies, ever-expanding knowledge of genetics, and increasing availability of neuroimaging data to provide endophenotypic bridges between molecules and behavior are beginning to provide some insight into interactions of developmental stage, genes, and the environment, although daunting challenges remain. Prominent amongst these challenges are difficulties in identifying and quantifying relevant environmental factors, discerning the relative contributions to multiply determined outcomes, and the likelihood that brain development is a non-linear dynamic process in which small initial differences may yield large later effects. Age-sensitive mechanisms include developmental changes in gene expression, epigenetic modifications, synaptic arborization/pruning, and maturational improvements in our capacity to seek out environments of our choosing. Greater understanding of how genetic and environmental factors interact differently across ages is an important step toward elucidating the mechanisms by which phenotypes are created - and how they may differ in health and disease. This knowledge may also provide clues to guide the type and timing of interventions to maximize outcomes.
Collapse
Affiliation(s)
- Rhoshel K. Lenroot
- University of New South Wales and Neuroscience Research Australia, Randwick, NSW, Australia
| | - Jay N. Giedd
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Ludwig A, Uvarov P, Soni S, Thomas-Crusells J, Airaksinen MS, Rivera C. Early growth response 4 mediates BDNF induction of potassium chloride cotransporter 2 transcription. J Neurosci 2011; 31:644-9. [PMID: 21228173 PMCID: PMC6623457 DOI: 10.1523/jneurosci.2006-10.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 10/13/2010] [Accepted: 11/03/2010] [Indexed: 11/21/2022] Open
Abstract
A major event in the maturation of CNS GABAergic transmission is the qualitative change in GABA(A)-mediated responses from depolarizing to hyperpolarizing. In cortical regions, this is attributed to the increased expression of potassium chloride cotransporter 2b (KCC2b), the main isoform of the neuron-specific K-Cl cotransporter KCC2. We have previously shown that transcription factor early growth response 4 (Egr4) can activate the KCC2b promoter. Here we demonstrate that in immature hippocampal neurons BDNF robustly induces ERK1/2 (extracellular signal-regulated kinase 1/2)-dependent Egr4 expression and rapid Egr4-dependent activation of the KCC2b promoter. The subsequent increase in KCC2b mRNA contributes to the expression of total KCC2 protein levels. These results indicate that Egr4 is an important component in the mechanism of BDNF-dependent KCC2 gene regulation via the ERK1/2 pathway in immature neurons.
Collapse
Affiliation(s)
- Anastasia Ludwig
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Viikinkaari 9, FIN-00014, Helsinki, Finland, and
| | - Pavel Uvarov
- Neuroscience Center, University of Helsinki, Viikinkaari 4, FIN-00014, Helsinki, Finland
| | - Shetal Soni
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Viikinkaari 9, FIN-00014, Helsinki, Finland, and
| | - Judith Thomas-Crusells
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Viikinkaari 9, FIN-00014, Helsinki, Finland, and
| | - Matti S. Airaksinen
- Neuroscience Center, University of Helsinki, Viikinkaari 4, FIN-00014, Helsinki, Finland
| | - Claudio Rivera
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Viikinkaari 9, FIN-00014, Helsinki, Finland, and
| |
Collapse
|
30
|
Casey BJ, Soliman F, Bath KG, Glatt CE. Imaging genetics and development: challenges and promises. Hum Brain Mapp 2010; 31:838-51. [PMID: 20496375 PMCID: PMC3081635 DOI: 10.1002/hbm.21047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/29/2022] Open
Abstract
Excitement with the publication of the human genome has served as catalyst for scientists to uncover the functions of specific genes. The main avenues for understanding gene function have been in behavioral genetics on one end and on the other end, molecular mouse models. Attempts to bridge these approaches have used brain imaging to conveniently link anatomical abnormalities seen in knockout/transgenic mouse models and abnormal patterns of brain activity seen in humans. Although a convenient approach, this article provides examples of challenges for imaging genetics, its application to developmental questions, and promises for future directions. Attempts to link genes, brain, and behavior using behavioral genetics, imaging genetics, and mouse models of behavior are described. Each of these approaches alone, provide limited information on gene function in complex human behavior, but together, they are forming bridges between animal models and human psychiatric disorders.
Collapse
Affiliation(s)
- B J Casey
- Department of Psychiatry, Sackler Institute, Weill Cornell Medical College, New York, New York, USA.
| | | | | | | |
Collapse
|
31
|
Casey BJ, Glatt CE, Tottenham N, Soliman F, Bath K, Amso D, Altemus M, Pattwell S, Jones R, Levita L, McEwen B, Magariños AM, Gunnar M, Thomas KM, Mezey J, Clark AG, Hempstead BL, Lee FS. Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development. Neuroscience 2009; 164:108-20. [PMID: 19358879 PMCID: PMC2760671 DOI: 10.1016/j.neuroscience.2009.03.081] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/23/2009] [Accepted: 03/30/2009] [Indexed: 01/14/2023]
Abstract
There has been a dramatic rise in gene x environment studies of human behavior over the past decade that have moved the field beyond simple nature versus nurture debates. These studies offer promise in accounting for more variability in behavioral and biological phenotypes than studies that focus on genetic or experiential factors alone. They also provide clues into mechanisms of modifying genetic risk or resilience in neurodevelopmental disorders. Yet, it is rare that these studies consider how these interactions change over the course of development. In this paper, we describe research that focuses on the impact of a polymorphism in a brain-derived neurotrophic factor (BDNF) gene, known to be involved in learning and development. Specifically we present findings that assess the effects of genotypic and environmental loadings on neuroanatomic and behavioral phenotypes across development. The findings illustrate the use of a genetic mouse model that mimics the human polymorphism, to constrain the interpretation of gene-environment interactions across development in humans.
Collapse
Affiliation(s)
- B J Casey
- Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Norkute A, Hieble A, Braun A, Johann S, Clarner T, Baumgartner W, Beyer C, Kipp M. Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. J Neurosci Res 2009; 87:1343-55. [PMID: 19021291 DOI: 10.1002/jnr.21946] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Memory impairment is outstanding within the spectrum of cognitive deficits in multiple sclerosis (MS) patients. Demyelination has been reported in the hippocampus formation of MS patients. The degree of hippocampus lesions in MS strongly correlates with progression of cognitive dysfunction. Because no appropriate animal model for the study of hippocampus demyelination has been established, we used the cuprizone mouse model to investigated demyelination in young adult and aged mice. The myelin status was analyzed by classical histological staining, immunocytochemistry for proteolipoprotein, and electron microscopy. Oligodendrocyte, astroglial, and microglia markers were studied. Cuprizone intoxication induced an almost complete demyelination of distinct hippocampus subregions to a similar extent in young adult and aged male mice. Demyelination was pronounced in a subset of white and gray matter areas, i.e., the stratum lacunosum moleculare containing the perforant path, medial alveus, stratum pyramidale in the cornu ammonis 2/3 region, and hilus region. Besides demyelination, affected areas displayed hypertrophic and hyperplastic astrocytosis. No significant effect on microglia invasion was detected at any investigated time point (0, 3, 5, and 7 weeks). We conclude that cuprizone-induced demyelination provides an adequate animal model to investigate appropriate therapy strategies for the prevention of hippocampus demyelination.
Collapse
Affiliation(s)
- Akvile Norkute
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. ACTA ACUST UNITED AC 2008; 59:201-20. [PMID: 18708092 DOI: 10.1016/j.brainresrev.2008.07.007] [Citation(s) in RCA: 429] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 01/13/2023]
Abstract
The decline observed during aging involves multiple factors that influence several systems. It is the case for learning and memory processes which are severely reduced with aging. It is admitted that these cognitive effects result from impaired neuronal plasticity, which is altered in normal aging but mainly in Alzheimer disease. Neurotrophins and their receptors, notably BDNF, are expressed in brain areas exhibiting a high degree of plasticity (i.e. the hippocampus, cerebral cortex) and are considered as genuine molecular mediators of functional and morphological synaptic plasticity. Modification of BDNF and/or the expression of its receptors (TrkB.FL, TrkB.T1 and TrkB.T2) have been described during normal aging and Alzheimer disease. Interestingly, recent findings show that some physiologic or pathologic age-associated changes in the central nervous system could be offset by administration of exogenous BDNF and/or by stimulating its receptor expression. These molecules may thus represent a physiological reserve which could determine physiological or pathological aging. These data suggest that boosting the expression or activity of these endogenous protective systems may be a promising therapeutic alternative to enhance healthy aging.
Collapse
|
34
|
Wu B, Hu S, Yang M, Pan H, Zhu S. CART peptide promotes the survival of hippocampal neurons by upregulating brain-derived neurotrophic factor. Biochem Biophys Res Commun 2006; 347:656-61. [PMID: 16842741 DOI: 10.1016/j.bbrc.2006.06.117] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Accepted: 06/21/2006] [Indexed: 11/29/2022]
Abstract
The neuropeptide cocaine- and amphetamine-regulated transcript (CARTp) plays a role in various physiological processes. CARTp is highly expressed in rat hippocampus and can promote the survival and differentiation of neurons in primary hippocampal cell cultures. However, little is known about the neurotrophic mechanism of CARTp on the hippocampal neuron. We show that CARTp fragment 55-102 promoted the survival of cultured hippocampal neurons by increasing the number of surviving neurons and their viability. The tyrosine kinase B (TrkB) antibody, known to inhibit the activity of brain-derived neurotrophic factor (BDNF), blocked the survival-promoting effect of CARTp on hippocampal neurons. Further study by reverse-transcription PCR showed that BDNF mRNA expression significantly increased after CARTp treatment. The prepro BDNF and mature BDNF protein also increased in level as seen on Western blot analysis. Thus, the neurotrophic effects of CARTp on cultured hippocampal neurons are mediated through the upregulation of BDNF mRNA expression and protein synthesis. The results of the present study suggest the therapeutic efficacy of CARTp in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bin Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Echeverria V, Greenberg DL, Doré S. Expression of prostaglandin E2 synthases in mouse postnatal cortical neurons. Ann N Y Acad Sci 2006; 1053:460-71. [PMID: 16179554 DOI: 10.1111/j.1749-6632.2005.tb00056.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eicosanoids and the enzymes associated with their metabolism play an active role in the neuroinflammatory process that is often a hallmark of neurodegenerative disorders. Cerebral cortical neurons constitute a highly affected cell population in neurologic disorders. To obtain a cellular model to analyze prostaglandin action and metabolism in cortical neurons, we developed postnatal neuronal cultures from mouse cortex in a serum-free medium. Cultured cortical cells were highly enriched in neurons containing only 5 +/- 2% glial cells. The cultures were assayed for expression of several protein markers of neuronal maturity: synaptic markers (synapsin I and synaptophysin) and glutamate receptor subunits (NMDA receptor 1 and glutamate receptor 1). The protein expression of eicosanoid-metabolizing enzymes, including cyclooxygenase-2 and microsomal and cytosolic PGE2 synthases, was investigated as well. Postnatal neurons successfully survived for a long term (up to 40 days) in vitro in serum-free media, as characterized by the expression of synapsin I, synaptophysin, and microtubule-associated protein 2. Glutamate receptor subunit expression increased over time in cultures, with the highest levels at 15 days. Enzymes involved in the eicosanoid metabolism followed a distinct pattern of expression, suggesting potential regulation of PGE2 synthesis with time in cultures under basal conditions. Use of postnatal brain cultures offers several advantages, especially regarding degree of neuronal maturation, use of postnatal pups instead of pregnant mice, and potentially increased clinical relevance in models of neuroinflammation processes and prostanoid cellular neurobiology.
Collapse
Affiliation(s)
- Valentina Echeverria
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Dept. ACCM, 720 Rutland Avenue, Ross Research Building 364-365, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
36
|
Elmariah SB, Oh EJ, Hughes EG, Balice-Gordon RJ. Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J Neurosci 2006; 25:3638-50. [PMID: 15814795 PMCID: PMC6725365 DOI: 10.1523/jneurosci.3980-04.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Astrocytes promote the formation and function of excitatory synapses in the CNS. However, whether and how astrocytes modulate inhibitory synaptogenesis are essentially unknown. We asked whether astrocytes regulate the formation of inhibitory synapses between hippocampal neurons during maturation in vitro. Neuronal coculture with astrocytes or treatment with astrocyte-conditioned medium (ACM) increased the number of inhibitory presynaptic terminals, the frequency of miniature IPSCs, and the number and synaptic localization of GABA(A) receptor (GABA(A)R) clusters during the first 10 d in vitro. We asked whether neurotrophins, which are potent modulators of inhibitory synaptic structure and function, mediate the effects of astrocytes on inhibitory synapses. ACM from BDNF- or tyrosine receptor kinase B (TrkB)-deficient astrocytes increased inhibitory presynaptic terminals and postsynaptic GABA(A)R clusters in wild-type neurons, suggesting that BDNF and TrkB expression in astrocytes is not required for these effects. In contrast, although the increase in the number of inhibitory presynaptic terminals persisted, no increase was observed in postsynaptic GABA(A)R clusters after ACM treatment of hippocampal neurons lacking BDNF or TrkB. These results suggest that neurons, not astrocytes, are the relevant source of BDNF and are the site of TrkB activation required for postsynaptic GABA(A)R modulation. These data also suggest that astrocytes may modulate postsynaptic development indirectly by stimulating Trk signaling between neurons. Together, these data show that astrocytes modulate inhibitory synapse formation via distinct presynaptic and postsynaptic mechanisms.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/physiology
- Biotinylation/methods
- Blotting, Western/methods
- Brain-Derived Neurotrophic Factor/physiology
- Cell Count/methods
- Cells, Cultured
- Coculture Techniques/methods
- Culture Media, Conditioned/pharmacology
- Electric Stimulation/methods
- Embryo, Mammalian
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Excitatory Postsynaptic Potentials/radiation effects
- Gene Expression Regulation/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Hippocampus/cytology
- Immunoglobulin G/pharmacology
- Immunohistochemistry/methods
- In Situ Nick-End Labeling/methods
- Mice
- Mice, Knockout
- Microtubule-Associated Proteins/metabolism
- Nerve Growth Factors/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neurons/cytology
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, trkA/deficiency
- Receptor, trkA/immunology
- Receptor, trkA/metabolism
- Receptors, GABA-A/physiology
- Synapses/drug effects
- Synapses/physiology
- Synaptophysin/metabolism
- Time Factors
- Vesicular Glutamate Transport Protein 1/metabolism
- Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
Collapse
Affiliation(s)
- Sarina B Elmariah
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA
| | | | | | | |
Collapse
|
37
|
Willis L, Bickford P, Zaman V, Moore A, Granholm AC. Blueberry extract enhances survival of intraocular hippocampal transplants. Cell Transplant 2005; 14:213-23. [PMID: 15929556 DOI: 10.3727/000000005783983142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of neural tissue has been explored as a potential therapy to replace dead or dying cells in the brain, such as after brain injury or neurodegenerative disease. However, survival of transplanted tissue is poor, especially when the transplant recipient is of advanced age. Recent studies have demonstrated improvement of neuronal deficits in aged animals given a diet supplemented with blueberry extract. The present study focuses on the survival of fetal hippocampal transplants to young (4 months) or middle-aged (16 months) animals with or without dietary supplementation with blueberry extract. Results indicate that fetal hippocampus transplanted to middle-aged host animals exhibits poor survival characterized by reduced growth and compromised tissue organization. However, when middle-aged animals were maintained on a diet supplemented with 2% blueberry extract, hippocampal graft growth was significantly improved and cellular organization of grafts was comparable to that seen in tissue grafted to young host animals. Thus, the data suggest that factor(s) in blueberries may have significant effects on development and organization of this important brain region.
Collapse
Affiliation(s)
- Lauren Willis
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
38
|
Adlard PA, Perreau VM, Cotman CW. The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiol Aging 2005; 26:511-20. [PMID: 15653179 DOI: 10.1016/j.neurobiolaging.2004.05.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 03/29/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Voluntary exercise increases hippocampal brain-derived neurotrophic factor (BDNF) expression in young animals. In this investigation we examined the induction of BDNF protein in the hippocampus of young (2 months), late middle-aged (15 months) and old (24 months) animals over 4 weeks of exercise. Average running distances decreased with age, with the old animals also maintaining a constant level of activity over time, whereas the other groups tended to increase their average running distance. All animals demonstrated a biphasic profile of BDNF protein induction, with a significant (P<0.05) increase after 1 week of exercise followed by a decrease to near sedentary levels at 2 weeks. After this, BDNF protein levels increased significantly (P<0.05), as compared to baseline, primarily only in the young animals. In whole hippocampal homogenates, only particular BDNF mRNA exons were significantly (P<0.05) changed as a result of exercise, with the largest induction occurring in young animals. BDNF protein induction may, therefore, not be directly correlated with significant mRNA changes. Exercise may represent a therapeutic tool for disorders which involve a decrease in BDNF.
Collapse
Affiliation(s)
- Paul A Adlard
- Institute for Brain Aging and Dementia, University of California, 1125 Gillespie N.R.F, Irvine, CA 92697-4540, USA.
| | | | | |
Collapse
|
39
|
Sathanoori M, Dias BG, Nair AR, Banerjee SB, Tole S, Vaidya VA. Differential regulation of multiple brain-derived neurotrophic factor transcripts in the postnatal and adult rat hippocampus during development, and in response to kainate administration. ACTA ACUST UNITED AC 2005; 130:170-7. [PMID: 15519687 DOI: 10.1016/j.molbrainres.2004.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2004] [Indexed: 11/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is expressed at high levels in the hippocampus, where it has been implicated in physiological functions such as the modulation of synaptic strength as well as in the pathophysiology of epileptic seizures. BDNF expression is highly regulated and the BDNF gene can generate multiple transcript isoforms by alternate splicing of four 5' exons (exons I-IV) to one 3' exon (exon V). To gain insight into the regulation of different BDNF transcripts in specific hippocampal subfields during postnatal development, exon-specific riboprobes were used. Our data shows that BDNF exon I and exon II mRNAs are regulated in hippocampal subfields during postnatal development, in contrast to BDNF exon III and exon IV mRNA, which remain relatively stable through this period. Further, exons I and II show distinct temporal patterns of expression in the hippocampus: BDNF I mRNA peaks in adulthood in contrast to BDNF II mRNA which peaks at postnatal day 14 (P14). Finally, we have addressed whether kainate treatment in postnatal pups and adults regulates BDNF through the recruitment of the same, or distinct, BDNF promoters. Our data indicates that kainate-induced seizures induce strikingly different expression of distinct BDNF transcripts, both in magnitude as well as spatial patterns in the hippocampal subfields, of pups as compared to adults. These results suggest that kainate-mediated seizures differentially recruit BDNF promoters in the developing postnatal hippocampus in contrast to the adult hippocampus to achieve a hippocampal subfield specific regulation of exon-specific BDNF mRNAs.
Collapse
Affiliation(s)
- Malini Sathanoori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | | | | | | | | |
Collapse
|
40
|
Danzer SC, He X, McNamara JO. Ontogeny of seizure-induced increases in BDNF immunoreactivity and TrkB receptor activation in rat hippocampus. Hippocampus 2004; 14:345-55. [PMID: 15132434 DOI: 10.1002/hipo.10190] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present work tested the hypothesis that the anatomic and developmental patterns of status epilepticus-induced increases of brain-derived neurotrophic factor (BDNF) protein coincided with status epilepticus-induced increases of phospho-Trk immunoreactivity, a measure of TrkB receptor activation, in rat hippocampus. In P22 rats, robust increases of phospho-Trk immunoreactivity were detected in the mossy fiber pathway of the hippocampus one day following kainate-induced status epilepticus. Conversely, no change in phospho-Trk immunoreactivity was detected in P8 or P14 rats. In P17 rats, intermediate levels of increased phospho-Trk immunoreactivity were detected, again in the mossy fiber pathway. Like phospho-Trk immunoreactivity, marked increases of BDNF immunoreactivity were detected in the mossy fiber pathway of P22 but not P14 rats. Dissociations were found in P17 rats following status epilepticus in that striking increases of BDNF, but not phospho-Trk immunoreactivity were detected. Immunoprecipitation and Western blot analyses of hippocampal extracts after status epilepticus showed increased phospho-TrkB, but not TrkB immunoreactivity in P22 rats, thereby confirming and extending the immunohistochemical findings. While most of the findings support the hypothesis, important dissociations among individual animals at P17 were identified. Together the findings are consistent with the proposal that status epilepticus-induced increase of BDNF content in the mossy fibers is necessary, but not sufficient, to effect activation of TrkB, as revealed by phospho-Trk immunoreactivity. Furthermore, these results provide the first characterization of seizure-induced increases in BDNF protein and TrkB receptor activation in developing animals.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
41
|
Mousavi K, Parry DJ, Jasmin BJ. BDNF rescues myosin heavy chain IIB muscle fibers after neonatal nerve injury. Am J Physiol Cell Physiol 2004; 287:C22-9. [PMID: 14973145 DOI: 10.1152/ajpcell.00583.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neonatal sciatic nerve injury is known to result in an extensive loss of lumbar motor neurons as well as the disappearance of their respective muscle fibers in the hindlimb musculature. The loss of motor neurons and muscle fibers can be prevented by immediate administration of target-derived neurotrophic factors to the site of injury. In the present study, we investigated the role of ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in the survival and maturation of a subset of motor neurons innervating the extensor digitorum longus (EDL) and tibialis anterior (TA) muscles. We have shown that combined administration of CNTF and BDNF prevented the loss of motor units after neonatal nerve injury and contributed to the maintenance of muscle mass. Importantly, this combined neurotrophin regimen also prevented the disappearance of muscle fibers that express myosin heavy chain IIB (MyHC IIB) in both EDL and TA muscles 3 mo after neonatal sciatic nerve crush. In parallel studies, we observed a higher level of BDNF in EDL muscle during the critical period of development when motor neurons are highly susceptible to target removal. Given our previous findings that combined administration of CNTF with neurotrophin-3 (NT-3) or neurotrophin-4/5 (NT-4/5) did not result in the rescue of MyHC IIB fibers in EDL, the present results show the importance of muscle-derived BDNF in the survival and maturation of a subpopulation of motor neurons and of MyHC IIB muscle fibers during neonatal development of the neuromuscular system.
Collapse
Affiliation(s)
- Kambiz Mousavi
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | |
Collapse
|
42
|
Adlard PA, Perreau VM, Engesser-Cesar C, Cotman CW. The timecourse of induction of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus following voluntary exercise. Neurosci Lett 2004; 363:43-8. [PMID: 15157993 DOI: 10.1016/j.neulet.2004.03.058] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/02/2004] [Accepted: 03/16/2004] [Indexed: 11/29/2022]
Abstract
In this study we examined the timecourse of induction of brain-derived neurotrophic factor (BDNF) mRNA and protein after 1, 3, 5, 7, 14 and 28 days of exercise in the rat. To measure the expression of mRNA for individual BDNF exons we utilized a semi-quantitative RT-PCR technique, while BDNF protein was assessed using commercial ELISA kits. We demonstrated that the distance run by animals increased significantly (P<0.05) after 4 weeks. BDNF protein was significantly (P<0.05) increased after 4 weeks of exercise, while the mRNA for individual BDNF exons increased significantly (P<0.05) over the timecourse (exon I after 1 and 28 days and exons II and V after 28 days). The Morris water maze was then utilized to demonstrate that 3 weeks of prior exercise enhanced the rate of learning on this task. Exercise, therefore, was shown to modulate BDNF induction in a time-dependent manner, and this may translate to improvements in neurotrophin-mediated tasks within the CNS.
Collapse
Affiliation(s)
- Paul A Adlard
- Institute for Brain Aging and Dementia, University of California, Irvine, CA 92697-4540, USA.
| | | | | | | |
Collapse
|
43
|
von Bohlen und Halbach O, Minichiello L, Unsicker K. Haploinsufficiency in trkB and/or trkC neurotrophin receptors causes structural alterations in the aged hippocampus and amygdala. Eur J Neurosci 2003; 18:2319-25. [PMID: 14622193 DOI: 10.1046/j.1460-9568.2003.02953.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurotrophins and their cognate trk receptors regulate key events, most notably survival and differentiation of specific neuron populations, during the development of the nervous system. Their functions in the adult and aged CNS are far less well understood. We have analysed mice aged 21-23 months with haploinsufficiencies of the trkB and/or trkC genes with regard to morphological alterations in the hippocampus and amygdala. Neuronal densities and total numbers of neurons in the dentate gyrus were significantly decreased in trkB+/-, trkC+/-, and trkB+/-/C+/- mutants. In the hippocampal area CA2/3, neuronal density and the total number of neurons were only reduced in double-heterozygous mice. Within the amygdala, neuronal densities were not altered. The lateral, basolateral and basomedial nuclei of the amygdala, as well as the dentate gyrus and area CA3, revealed significant increases in the densities of degenerated axonal fragments; the most pronounced changes were found in the double-heterozygous mice. Thus, partial impairment in trkB and/or trkC receptor expression caused region-specific neuron losses in the hippocampus and increased axonal fragmentation in both hippocampus and amygdala, which may result from degeneration of both intrinsic and extrinsic fibre systems. Together, these data indicate that endogenous ligands to the trkB and trkC receptors are essential to maintain neuronal integrity in the aged hippocampus and amygdala.
Collapse
Affiliation(s)
- Oliver von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
44
|
Brain-derived neurotrophic factor modulation of GABAergic synapses by postsynaptic regulation of chloride transport. J Neurosci 2003. [PMID: 14507972 DOI: 10.1523/jneurosci.23-25-08722.2003] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) potentiates excitatory synapses in a variety of systems by promoting presynaptic transmitter release. The existing evidence indicates that BDNF attenuates inhibitory transmission, but reports differ considerably in their characterization of the effect and proposed mechanisms. We examined the effects of exogenously applied BDNF on EPSCs and IPSCs recorded from functionally identified neurons in dissociated rat hippocampal cultures. When recording from glutamatergic neurons, we found that BDNF exerted differential effects at excitatory versus inhibitory synapses: increasing amplitude of EPSCs but slightly decreasing that of IPSCs. Furthermore, when recording from GABAergic neurons, we found that BDNF increased the IPSC amplitude. That these differential BDNF effects reflect distinct presynaptic and postsynaptic mechanisms was suggested by the BDNF-induced changes in miniature EPSCs and IPSCs. An increased mini-frequency was found at all synapses, indicating elevated presynaptic transmitter secretion; a change in the amplitude of mini-IPSCs was found at GABAergic cells, suggesting postsynaptic modulation of GABA responses. Selective postsynaptic mechanisms were further examined by comparing the effect of BDNF on GABA-induced currents recorded from glutamatergic versus GABAergic cells. For GABAergic but not glutamatergic postsynaptic cells, BDNF induced a shift in the reversal potential (EIPSC) toward more positive levels, hence reducing the inhibitory action of IPSCs. This BDNF-induced effect correlates with the existing level of furosemide-sensitive K+-Cl- transport activity in the postsynaptic cell. Thus, BDNF may decrease the efficacy of inhibitory transmission by acute postsynaptic downregulation of Cl- transport, in addition to its well known presynaptic effect.
Collapse
|
45
|
Telomerase mediates the cell survival-promoting actions of brain-derived neurotrophic factor and secreted amyloid precursor protein in developing hippocampal neurons. J Neurosci 2003. [PMID: 12486164 DOI: 10.1523/jneurosci.22-24-10710.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Telomerase, a reverse transcriptase that maintains chromosome ends (telomeres) during successive cell divisions in mitotic cells is present in neuroblasts and early postmitotic embryonic neurons but is absent from adult neurons. The signals that control telomerase levels during development are unknown, as are the functions of telomerase in developing neurons. We now report that telomerase activity and levels of its catalytic subunit telomerase reverse transcriptase (TERT) are increased in embryonic hippocampal neurons by brain-derived neurotrophic factor (BDNF) and a secreted form of beta-amyloid precursor protein (sAPP). BDNF and sAPP promote the survival of the embryonic neurons, and these trophic effects are blocked when TERT production is suppressed using antisense technology. Telomerase is required for the long-term survival of early postmitotic neurons during a time window of approximately 1 week in culture; telomerase is then downregulated and is not required for BDNF and sAPP survival signaling in mature neurons. The increase in telomerase activity and trophic effects of BDNF and sAPP are mediated by phosphatidylinositol-3 kinase and p42/p44 MAP kinases. Our findings demonstrate a requirement for telomerase in the cell survival-promoting actions of BDNF and sAPP in early postmitotic hippocampal neurons, suggesting a previously unknown role for telomerase in mediating the biological actions of neurotrophic factors during brain development.
Collapse
|