1
|
Positive allosteric modulation of the mu-opioid receptor produces analgesia with reduced side effects. Proc Natl Acad Sci U S A 2021; 118:2000017118. [PMID: 33846240 DOI: 10.1073/pnas.2000017118] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than β-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.
Collapse
|
2
|
Abstract
Since the discovery of the NOP receptor and N/OFQ as the endogenous ligand, evidence has appeared demonstrating the involvement of this receptor system in pain. This was not surprising for members of the opioid receptor and peptide families, particularly since both the receptor and N/OFQ are highly expressed in brain regions involved in pain, spinal cord, and dorsal root ganglia. What has been surprising is the complicated picture that has emerged from 25 years of research. The original finding that N/OFQ decreased tail flick and hotplate latency, when administered i.c.v., led to the hypothesis that NOP receptor antagonists could have analgesic activity without abuse liability. However, as data accumulated, it became clear that not only the potency but the activity per se was different when N/OFQ or small molecule NOP agonists were administered in the brain versus the spinal cord and it also depended upon the pain assay used. When administered systemically, NOP receptor agonists are generally ineffective in attenuating heat pain but are antinociceptive in an acute inflammatory pain model. Most antagonists administered systemically have no antinociceptive activity of their own, even though selective peptide NOP antagonists have potent antinociceptive activity when administered i.c.v. Chronic pain models provide different results as well, as small molecule NOP receptor agonists have potent anti-allodynic and anti-hyperalgesic activity after systemic administration. A considerable number of electrophysiological and anatomical experiments, in particular with NOP-eGFP mice, have been conducted in an attempt to explain the complicated profile resulting from NOP receptor modulation, to examine receptor plasticity, and to elucidate mechanisms by which selective NOP agonists, bifunctional NOP/mu agonists, or NOP receptor antagonists modulate acute and chronic pain.
Collapse
Affiliation(s)
- Lawrence Toll
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| | - Akihiko Ozawa
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Andrea Cippitelli
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
3
|
Zhang Y, Schalo I, Durand C, Standifer KM. Sex Differences in Nociceptin/Orphanin FQ Peptide Receptor-Mediated Pain and Anxiety Symptoms in a Preclinical Model of Post-traumatic Stress Disorder. Front Psychiatry 2018; 9:731. [PMID: 30670988 PMCID: PMC6331409 DOI: 10.3389/fpsyt.2018.00731] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Nociceptin/Orphanin FQ (N/OFQ) is a neuropeptide that modulates pain transmission, learning/memory, stress, anxiety, and fear responses via activation of the N/OFQ peptide (NOP or ORL1) receptor. Post-traumatic stress disorder (PTSD) is an anxiety disorder that may arise after exposure to a traumatic or fearful event, and often is co-morbid with chronic pain. Using an established animal model of PTSD, single-prolonged stress (SPS), we were the first to report that NOP receptor antagonist treatment reversed traumatic stress-induced allodynia, thermal hyperalgesia, and anxiety-like behaviors in male Sprague-Dawley rats. NOP antagonist treatment also reversed SPS-induced serum and CSF N/OFQ increase and circulating corticosterone decrease. The objective of this study was to examine the role of the NOP receptor in male and female rats subjected to traumatic stress using Wistar wild type (WT) and NOP receptor knockout (KO) rats. The severity of co-morbid allodynia was assessed as change in paw withdrawal threshold (PWT) to von Frey and paw withdrawal latency (PWL) to radiant heat stimuli, respectively. PWT and PWL decreased in male and female WT rats within 7 days after SPS, and remained decreased through day 28. Baseline sensitivity did not differ between genotypes. However, while male NOP receptor KO rats were protected from SPS-induced allodynia and thermal hypersensitivity, female NOP receptor KO rats exhibited tactile allodynia and thermal hypersensitivity to the same extent as WT rats. Male NOP receptor KO rats had a lower anxiety index (AI) than WT, but SPS did not increase AI in WT males. In contrast, SPS significantly increased AI in WT and NOP receptor KO female rats. SPS increased circulating N/OFQ levels in male WT, but not in male NOP receptor KO, or WT or KO female rats. These results indicate that the absence of the NOP receptor protects males from traumatic-stress-induced allodynia and hyperalgesia, consistent with our previous findings utilizing a NOP receptor antagonist. However, female NOP receptor KO rats experience allodynia, hyperalgesia and anxiety-like symptoms to the same extent as WT females following SPS. This suggests that endogenous N/OFQ-NOP receptor signaling plays an important, but distinct, role in males and females following exposure to traumatic stress.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ian Schalo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Cindy Durand
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
4
|
Ferdousi M, Finn DP. Stress-induced modulation of pain: Role of the endogenous opioid system. PROGRESS IN BRAIN RESEARCH 2018; 239:121-177. [DOI: 10.1016/bs.pbr.2018.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
McDonald J, Lambert DG. Opioid mechanisms and opioid drugs. ANAESTHESIA AND INTENSIVE CARE MEDICINE 2016. [DOI: 10.1016/j.mpaic.2016.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
McDonald J, Lambert DG. Opioid mechanisms and opioid drugs. ANAESTHESIA AND INTENSIVE CARE MEDICINE 2013. [DOI: 10.1016/j.mpaic.2013.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Tariq S, Nurulain SM, Tekes K, Adeghate E. Deciphering intracellular localization and physiological role of nociceptin and nocistatin. Peptides 2013; 43:174-83. [PMID: 23454174 DOI: 10.1016/j.peptides.2013.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 01/16/2023]
Abstract
Nociceptin and nocistatin are endogenous ligands of G protein coupled receptor family. Numerous techniques have been used to study the diverse parameters including, localization, distribution and ultrastructure of these peptides. The majority of the study parameters are based on their physiological roles in different organ systems. The present study presents an overview of the different methods used for the study of nociceptin, nocistatin and their receptors. Nociceptin has been implicated in many physiological functions including, nociception, locomotion, stressed-induced analgesia, learning and memory, neurotransmitter and hormone release, renal function, neuronal differentiation, sexual and reproductive behavior, uterine contraction, feeding, anxiety, gastrointestinal motility, cardiovascular function, micturition, cough, hypoxic-ischemic brain injury, diuresis and sodium balance, temperature regulation, vestibular function, and mucosal transport. It has been noted that the use of light and electron microscopy was less frequent, though it may be one of the most promising tools to study the intracellular localization of these neuropeptides. In addition, more studies on the level of circulating nociceptin and nocistatin are also necessary for investigating their clinical roles in health and disease. A variety of modern tools including physiological, light and electron microscopy (EM) are needed to decipher the extent of intracellular localization, tissue distribution and function of these peptides. The intracellular localization of nociceptin and nocistatin will require a high resolution transmission EM capable of identifying these peptides and other supporting molecules that co-localize with them. A tracing technique could also elucidate a possible migratory ability of nociceptin and nocistatin from one cellular compartment to the other.
Collapse
Affiliation(s)
- Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
8
|
McDonald J, Lambert DG. Opioid mechanisms and opioid drugs. ANAESTHESIA AND INTENSIVE CARE MEDICINE 2011. [DOI: 10.1016/j.mpaic.2010.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Claiborne JA, Nag S, Mokha SS. Estrogen-dependent, sex-specific modulation of mustard oil-induced secondary thermal hyperalgesia by orphanin FQ in the rat. Neurosci Lett 2009; 456:59-63. [PMID: 19429134 PMCID: PMC2692664 DOI: 10.1016/j.neulet.2009.03.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
Activation of opioid receptor-like 1 receptor (ORL(1)) by intrathecal administration of orphanin FQ (OFQ), an endogenous ligand for the ORL(1) receptor, has been shown to produce antinociception. In addition, we have recently shown gonadal hormone-dependent, sex-specific modulation of acute spinal nociception such that estrogen attenuated OFQ-induced antinociception in the female whereas testosterone was required for the expression of antinociception in the male. However, sex-related differences in the role of OFQ under hyperalgesic conditions are unknown. Hence, we investigated whether OFQ produces sex-specific modulation of mustard oil-induced secondary thermal hyperalgesia in the rat. Mustard oil application to the hind limb significantly reduced the tail-flick latencies (TFL) in male, and ovariectomized (OVX), estradiol treated ovariectomized (OVX+E), proestrous (ProE) and diestrous (DiE) females. Intrathecal administration of OFQ not only attenuated mustard oil-induced decrease in TFLs, i.e. reversed hyperalgesia, but also led to a significant increase in TFLs above the baseline, i.e. produced antinociception in male, OVX, and diestrous rats. However, OFQ failed to alter TFLs in proestrous or OVX+E females, thus these two groups with elevated estrogen levels remained hyperalgesic following mustard oil treatment. These findings demonstrate that OFQ modulates mustard oil-induced secondary hyperalgesia in an estrogen-dependent, sex-specific manner.
Collapse
Affiliation(s)
- Jomo A Claiborne
- Department of Neurobiology & Neurotoxicology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | |
Collapse
|
10
|
Mandillo S, Tucci V, Hölter SM, Meziane H, Banchaabouchi MA, Kallnik M, Lad HV, Nolan PM, Ouagazzal AM, Coghill EL, Gale K, Golini E, Jacquot S, Krezel W, Parker A, Riet F, Schneider I, Marazziti D, Auwerx J, Brown SDM, Chambon P, Rosenthal N, Tocchini-Valentini G, Wurst W. Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiol Genomics 2008; 34:243-55. [PMID: 18505770 PMCID: PMC2519962 DOI: 10.1152/physiolgenomics.90207.2008] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 05/23/2008] [Indexed: 11/22/2022] Open
Abstract
Establishing standard operating procedures (SOPs) as tools for the analysis of behavioral phenotypes is fundamental to mouse functional genomics. It is essential that the tests designed provide reliable measures of the process under investigation but most importantly that these are reproducible across both time and laboratories. For this reason, we devised and tested a set of SOPs to investigate mouse behavior. Five research centers were involved across France, Germany, Italy, and the UK in this study, as part of the EUMORPHIA program. All the procedures underwent a cross-validation experimental study to investigate the robustness of the designed protocols. Four inbred reference strains (C57BL/6J, C3HeB/FeJ, BALB/cByJ, 129S2/SvPas), reflecting their use as common background strains in mutagenesis programs, were analyzed to validate these tests. We demonstrate that the operating procedures employed, which includes open field, SHIRPA, grip-strength, rotarod, Y-maze, prepulse inhibition of acoustic startle response, and tail flick tests, generated reproducible results between laboratories for a number of the test output parameters. However, we also identified several uncontrolled variables that constitute confounding factors in behavioral phenotyping. The EUMORPHIA SOPs described here are an important start-point for the ongoing development of increasingly robust phenotyping platforms and their application in large-scale, multicentre mouse phenotyping programs.
Collapse
Affiliation(s)
- Silvia Mandillo
- Gesellschaft für Strahlenforschungdagger-National Research Center for Environment and Health, Institute of Developmental Genetics, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
McDonald J, Lambert DG. Opioid mechanisms and opioid drugs. ANAESTHESIA AND INTENSIVE CARE MEDICINE 2008. [DOI: 10.1016/j.mpaic.2007.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Shoblock JR. The pharmacology of Ro 64-6198, a systemically active, nonpeptide NOP receptor (opiate receptor-like 1, ORL-1) agonist with diverse preclinical therapeutic activity. CNS DRUG REVIEWS 2007; 13:107-36. [PMID: 17461893 PMCID: PMC6494153 DOI: 10.1111/j.1527-3458.2007.00007.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The NOP receptor (formerly referred to as opiate receptor-like 1, ORL-1, LC132, OP(4), or NOP(1)) is a G protein-coupled receptor that shares high homology to the classic opioid MOP, DOP, and KOP (mu, delta, and kappa, respectively) receptors and was first cloned in 1994 by several groups. The NOP receptor remained an orphan receptor until 1995, when the endogenous neuropeptide agonist, known as nociceptin or orphanin FQ (N/OFQ) was isolated. Five years later, a group at Hoffmann-La Roche reported on the selective, nonpeptide NOP agonist Ro 64-6198, which became the most extensively published nonpeptide NOP agonist and a valuable pharmacological tool in determining the potential of the NOP receptor as a therapeutic target. Ro 64-6198 is systemically active and achieves high brain penetration. It has subnanomolar affinity for the NOP receptor and is at least 100 times more selective for the NOP receptor over the classic opioid receptors. Ro 64-6198 ranges from partial to full agonist, depending on the assay. Preclinical data indicate that Ro 64-6198 may have broad clinical uses, such as in treating stress and anxiety, addiction, neuropathic pain, cough, and anorexia. This review summarizes the pharmacology and preclinical data of Ro 64-6198.
Collapse
Affiliation(s)
- James R Shoblock
- Johnson and Johnson Pharmaceutical Research and Development, LLC, San Diego, California 92121, USA.
| |
Collapse
|
13
|
Croissandeau G, Wahnon F, Yashpal K, Seidah NG, Coderre TJ, Chrétien M, Mbikay M. Increased stress-induced analgesia in mice lacking the proneuropeptide convertase PC2. Neurosci Lett 2006; 406:71-5. [PMID: 16905251 DOI: 10.1016/j.neulet.2006.07.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/04/2006] [Accepted: 07/06/2006] [Indexed: 11/20/2022]
Abstract
Many neuropeptides involved in pain perception are generated by endoproteolytic cleavages of their precursor proteins by the proprotein convertases PC1 and PC2. To investigate the role of PC2 in nociception and analgesia, we tested wild-type and PC2-null mice for their responses to mechanical and thermal nociceptive stimuli, before and after a short swim in cold or warm water. Basal responses and responses after a cold swim were similar between the two groups. However, after a short forced swim in warm water, PC2-null mice were significantly less responsive to the stimuli than wild-type mice, an indication of increased opioid-mediated stress-induced analgesia. The enhanced analgesia in PC2-null mice may be caused by an accumulation of opioid precursor processing intermediates with potent analgesic effects, or by loss of anti-opioid peptides.
Collapse
Affiliation(s)
- Gilles Croissandeau
- Ottawa Health Research Institute, The Ottawa Hospital, 725 Parkdale Avenue, University of Ottawa, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Arvidsson S, Larsson M, Larsson H, Lindström E, Martinez V. Assessment of visceral pain-related pseudo-affective responses to colorectal distension in mice by intracolonic manometric recordings. THE JOURNAL OF PAIN 2006; 7:108-18. [PMID: 16459276 DOI: 10.1016/j.jpain.2005.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 09/09/2005] [Accepted: 09/13/2005] [Indexed: 12/22/2022]
Abstract
UNLABELLED Recently, a new manometric method has been proposed to quantify visceromotor responses (VMR) to colorectal distension (CRD) in rats. This method is based on monitoring pressure changes within the distending balloon during CRD. This study assesses the applicability of such a technique to the quantification of VMRs to CRD in mice. Electrical activity of the abdominal muscles and pressure changes within the distending balloon (mechanical response) were simultaneously recorded in conscious mice during CRD (phasic ascending, 10-80 mm Hg, or repetitive, 55 mm Hg). There was a clear stimulus-response relationship with a strong correlation between electrical and mechanical responses during the ascending (r(2) = 0.899, n = 7) or repetitive phasic CRD (r(2) = 0.926, n = 8). Repetitive phasic distensions (55 mm Hg) increased the mechanical and electrical responses by 71 +/- 20% and 42 +/- 16%, respectively (pulses 10-12 vs. 1-3; n = 8, both P < .01). Atropine (0.5 or 1 mg/kg, subcutaneously) did not affect the mechanical response to CRD. The mu-opioid agonist, fentanyl (0.05 mg/kg, subcutaneously), completely prevented the sensitizing response associated to repetitive distensions. These results show that noninvasive, surgery-free manometry of intracolonic pressure is a reliable method to assess VMRs to CRD in mice. The analgesic effect of compounds could be determined, indicating that the method can be used in pharmacologic studies. PERSPECTIVE The model presented to assess visceral pain in mice allows a broad use of this species in pharmacological studies and will be of use in the characterization of potential targets and new drugs for the treatment of human pathologies with visceral pain arising from the gut as a significant component.
Collapse
Affiliation(s)
- Susanne Arvidsson
- Integrative Pharmacology-Gastrointestinal Biology, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | | | | | | | |
Collapse
|
15
|
Gavioli EC, Calo' G. Antidepressant- and anxiolytic-like effects of nociceptin/orphanin FQ receptor ligands. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2006; 372:319-30. [PMID: 16491387 DOI: 10.1007/s00210-006-0035-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 01/09/2006] [Indexed: 01/31/2023]
Abstract
Many studies point toward the nociceptin/orphanin FQ (N/OFQ) and the N/OFQ peptide receptor (NOP) as targets for the development of innovative drugs for treating affective disorders. It has been reported that the activation of NOP receptors produces anxiolytic-like effects in rodents in a large series of behavioral assays, i.e., elevated plus maze, light-dark aversion, operant conflict, fear-potentiated startle, pup ultrasonic vocalizations, and hole board tests. In contrast, the blockade of N/OFQ signaling obtained with NOP-selective antagonists promotes antidepressant-like effects in the forced swimming and tail suspension tests. In these assays, N/OFQ is inactive per se, but reverses the antidepressant-like effects of NOP antagonists. NOP receptor knockout mice show an antidepressant-like phenotype, and NOP antagonists are inactive in these animals. Thus, the activation of the NOP receptor seems to evoke anxiolytic-like effects while its blockade antidepressant-like effects. This appears to be a rather unique behavioral profile since the activation or the blockade of a given neuropeptide receptor produces, in most of the cases, both antidepressant- and anxiolytic-like effects. This particular behavioral profile, the possible mechanisms of action, and the therapeutic potential of NOP receptor ligands for the treatment of depression and anxiety disorders are discussed in this review article.
Collapse
Affiliation(s)
- Elaine C Gavioli
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, Via Fossato di Mortara 19, 44100 Ferrara, Italy.
| | | |
Collapse
|
16
|
Abstract
Nociceptin-immunoreactive cellbodies were detected in the human trigeminal ganglion, while no such fibers were identified in the temporal artery or in dermal tissue from the neck region. In four healthy subjects receiving nociceptin into the temporal muscle in an open labeled design no pain was detected. In 10 healthy subjects who received 200pmol of nociceptin into tender non-dominant trapezius muscles in a placebo-controlled, randomized, balanced, and double-blinded design local tenderness increased (P=0.025) while no pain was noted. Thus, the action of nociceptin should be searched for in the trigeminal ganglion and/or in the central nervous system (CNS).
Collapse
Affiliation(s)
- Hanne Mørk
- Copenhagen Headache Center, Department of Neurology, Glostrup Hospital, University of Copenhagen, DK-2600 Glostrup, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
17
|
Neal CR, Akil H, Watson SJ. Expression of orphanin FQ and the opioid receptor-like (ORL1) receptor in the developing human and rat brain. J Chem Neuroanat 2001; 22:219-49. [PMID: 11719021 DOI: 10.1016/s0891-0618(01)00135-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The orphanin peptide system, although structurally similar to the endogenous opioid family of peptides and receptors, has been established as a distinct neurochemical entity. The distribution of the opioid receptor-like (ORL1) receptor and its endogenous ligand orphanin FQ (OFQ) in the central nervous system of the adult rat has been recently reported, and although diffusely disseminated throughout the brain, this neuropeptide system is particularly expressed within stress and pain circuitry. Little is known concerning the normal expression of the orphanin system during gestation, nor how opiate or stress exposure may influence its development. Using in situ hybridization techniques, the present study was undertaken to determine the normal pattern of expression of ORL1 mRNA in the human and rat brain at various developmental stages. Rat embryos, postnatal rat brains and postmortem human brains were collected, frozen and cut into 15 microm coronal sections. In situ hybridization was performed using riboprobes generated from cDNA containing representative human and rat ORL1 and OFQ sequences. Both ORL1 and OFQ mRNA is detected as early as E12 in the cortical plate, basal forebrain, brainstem and spinal cord. Expression for both ORL1 and OFQ is strongest during the early postnatal period, remaining strong in the spinal cord, brainstem, ventral forebrain, and neocortex into the adult. Human ORL1 and OFQ expression is observed at 16 weeks gestation, remaining relatively unchanged up to 36 weeks. The influence of early orphanin expression on maturation of stress and pain circuitry in the developing brain remains unknown.
Collapse
Affiliation(s)
- C R Neal
- Mental Health Research Institute, University of Michigan, 205 Zina Pitcher Place, 48109-0720, Ann Arbor, MI, USA
| | | | | |
Collapse
|
18
|
Abstract
The increasing popularity of the mouse as a subject in basic science studies of pain can largely be attributed to the development of transgenic "knockout" technology in this species only. To take advantage of this biological technique, many investigators are rushing to adapt to the mouse experimental protocols that were designed for the rat. However, the myriad physiological and behavioral differences between these two rodent species render such adaptations non-trivial and in many cases seriously problematic. In this article we review the basic nociceptive assays used in behavioral pain research (thermal, mechanical, electrical and chemical), and highlight how species differences affect their proper application. In addition, some of the issues specifically pertaining to the interpretation of such data in knockout studies are addressed.
Collapse
Affiliation(s)
- S G Wilson
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, 603 E. Daniel Street, Champaign, IL 61820, USA
| | | |
Collapse
|
19
|
Flores CM, Mogil JS. The pharmacogenetics of analgesia: toward a genetically-based approach to pain management. Pharmacogenomics 2001; 2:177-94. [PMID: 11535108 DOI: 10.1517/14622416.2.3.177] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Interindividual differences in the experience of pain have been appreciated clinically for over a century. More recently, there has been a growing body of evidence demonstrating differences in analgesic response to various pharmacotherapies, although the source of this variability largely remains to be explained. To this end, basic science research is beginning to identify the allelic variants that underlie such antinociceptive variability using a multiplicity of animal models, and powerful genetic approaches are being exploited to accelerate this process. Although the vast majority of these studies have focused on the pharmacogenetics of opioids, owing to their prominent status as analgesics, the number of pharmacotherapies evincing genetically-based variability is rapidly expanding. In addition, analogous studies have been undertaken in humans, as a small but growing number of clinical trials have begun to evaluate prospectively the existence, if oftentimes not the origin, of interindividual differences in analgesic drug response. Importantly, with a few notable exceptions, such efforts have primarily identified differences in analgesic efficacy and/or potency between male and female human subjects. Looking toward the future development of one or more widely utilised, pharmacogenetic screens that would lead to modifications in treatment planning, at least with respect to the pharmacologic management of pain, this review will document the breadth of genetically-based variability in drug-mediated antinociception in animals. Specific examples in which the gene or genes underlying such variability have been postulated or identified will be given, while highlighting the effect of sex and its interactions with other genetic backgrounds. Finally, we will summarise and evaluate the literature on pharmacogenetic differences in human analgesic drug response, for which the influence of sex has served as one of the better studied and heuristically insightful examples.
Collapse
Affiliation(s)
- C M Flores
- The University of Texas Health Science Center at San Antonio, Department of Endodontics, MSC 7892, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
20
|
Abstract
Individual differences in sensitivity to pain and analgesia are well appreciated, and increasing evidence has pointed towards a role of inherited genetic factors in explaining some proportion of such variability. It has long been known by practitioners of acupuncture, an ancient modality of analgesia, that some patients are 'responders' and others 'non-responders.' The present research was aimed at defining the inherited genetic influence on acupuncture analgesia in the mouse, using 10 common inbred strains. Two pairs of metallic needles were inserted into acupoints ST 36 and SP 6, fixed in situ and then connected to the output channel of an electric pulse generator. Electroacupuncture (EA) parameters were set as constant current output (intensity: 1.0-1.5-2.0 mA, 10 min each; frequency: 2 or 100 Hz) with alteration of a positive and negative square wave, 0.3 ms in pulse width. Tail-flick latencies evoked by radiant heat were measured before, during and after EA stimulation. Narrow-sense heritability estimates of 2 and 100 Hz EA were 0.37 and 0.16, respectively. We found that the C57BL/10 strain was the most sensitive, and the SM strain was the least sensitive to both 2 and 100 Hz EA. However, the relative sensitivities of other strains to these two EA frequencies suggested some genetic dissociation between them as well. These results demonstrate a role of inherited genetic factors in EA sensitivity in the mouse, although the low-to-moderate heritability estimates suggest that environmental factors may be of greater importance in predicting who will benefit from this analgesic modality.
Collapse
Affiliation(s)
- Y Wan
- Neuroscience Research Institute, Peking University Health Science Center, 100083, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Shirasaka T, Miyahara S, Takasaki M, Kannan H. Nociceptin/orphanin FQ and [Phe(1)psi(CH2-NH)Gly2]nociceptin(1-13)NH2 modulates the activity of hypothalamic paraventricular nucleus neurons in vitro. Brain Res 2001; 890:147-53. [PMID: 11164777 DOI: 10.1016/s0006-8993(00)03160-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nociceptin, also known as orphanin FQ (N/OFQ), an endogenous ligand for the orphan opioid receptor-like(1) (ORL(1)) receptor, is moderately expressed in the hypothalamic paraventricular nucleus (PVN) involved in the integrative control of the function of the endocrine and autonomic nervous systems. Our previous study demonstrated that intracerebroventricular administration of N/OFQ elicits an inhibitory action on the function of the cardiovascular and sympathetic nervous systems in conscious rats. However, the effects of N/OFQ on PVN neurons have not been examined. We investigated the effects of N/OFQ on PVN neurons using a whole-cell patch-clamp recording technique in rat brain slices. N/OFQ (30-1000 nM) hyperpolarized membrane potentials in type 1 and type 2 neurons of the PVN classified by the electrophysiological property. [Phe(1)psi(CH2-NH)Gly2]nociceptin(1-13)NH2 (Phepsi) (1-9 microM), a presumed competitive antagonist of the ORL(1) receptor, also hyperpolarized membrane potential in both types of neurons. In voltage clamp studies, N/OFQ (3-3000 nM) activated a K+ current concentration-dependently in 69.7% of PVN neurons with an EC(50) of 72.4+/-12 nM. Phepsi (100-9000 nM) also activated a K+ current with an EC(50) of 818+/-162 nM in PVN neurons, and significantly reduced the amplitude of the N/OFQ-stimulated current. The N/OFQ-induced current was not antagonized by the classical opioid receptor antagonist naloxone and putative antagonist nocistatin. These findings suggest that N/OFQ may have a functional role in the PVN.
Collapse
Affiliation(s)
- T Shirasaka
- Department of Anesthesiology, Miyazaki Medical College, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | |
Collapse
|
22
|
Slowe SJ, Clarke S, Lena I, Goody RJ, Lattanzi R, Negri L, Simonin F, Matthes HW, Filliol D, Kieffer BL, Kitchen I. Autoradiographic mapping of the opioid receptor-like 1 (ORL1) receptor in the brains of mu-, delta- or kappa-opioid receptor knockout mice. Neuroscience 2001; 106:469-80. [PMID: 11591451 DOI: 10.1016/s0306-4522(01)00308-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The opioid receptor-like 1 (ORL1) receptor shares a high degree of sequence homology with the classical mu-, delta- and kappa-opioid receptors and a functional mutual opposition between these receptors has been suggested. To further address this possible interaction we have used mu-, delta- and kappa-opioid receptor knockout mice to determine autoradiographically if there are any changes in the number or distribution of the ORL1 receptor, labelled with [(3)H]nociceptin, in the brains of mice deficient in each of the opioid receptors. An up-regulation of ORL1 expression was observed across all brain regions in delta-knockouts with cortical regions typically showing a 15-30% increase in binding that was most marked in heterozygous mice. In contrast, ORL1 receptor expression was down-regulated in virtually all brain structures in heterozygous kappa-knockouts although the magnitude of this change was not as great as for the delta-knockouts. No significant alterations in ORL1 receptor expression were observed across brain regions in mu-receptor knockout mice and there were no qualitative differences in ORL1 receptor expression in any groups. These data suggest there are interactions between the ORL1 system and the classical opioid receptors and that the interactions are receptor-specific. The greater differences observed in heterozygous mice suggest that these interactions might be most relevant when there is only partial loss of receptor function.
Collapse
MESH Headings
- Animals
- Brain/cytology
- Brain/drug effects
- Brain/metabolism
- Brain Mapping
- Down-Regulation/genetics
- Female
- Male
- Mice
- Mice, Knockout
- Opioid Peptides/antagonists & inhibitors
- Opioid Peptides/metabolism
- Opioid Peptides/pharmacokinetics
- Pain/metabolism
- Pain/physiopathology
- Radioligand Assay
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/deficiency
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, kappa/deficiency
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/genetics
- Reference Values
- Tritium/pharmacokinetics
- Up-Regulation/genetics
- Nociceptin Receptor
- Nociceptin
Collapse
Affiliation(s)
- S J Slowe
- Pharmacology Group, School of Biomedical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
This paper is the twenty-second installment of the annual review of research concerning the opiate system. It summarizes papers published during 1999 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; learning, memory, and reward; eating and drinking; alcohol and other drugs of abuse; sexual activity, pregnancy, and development; mental illness and mood; seizures and other neurologic disorders; electrical-related activity; general activity and locomotion; gastrointestinal, renal, and hepatic function; cardiovascular responses; respiration and thermoregulation; and immunologic responses.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | |
Collapse
|
24
|
Abstract
The first reported behavioral action of the endogenous ligand for the "orphan" opioid receptor was a seemingly paradoxical increased sensitivity to nociception (i.e. hyperalgesia) after supraspinal injection into the cerebral ventricles of mice. In the continuing absence of an appropriate in vivo receptor antagonist, studies attempting to define the role of orphanin FQ/nociceptin (OFQ/N) in pain modulation and other behaviors have also featured central injection of peptide. This article reviews the findings of such studies. There appears to be concordance around the observation of anti-opioid actions of supraspinally injected OFQ/N, whereas the observations of hyperalgesia and/or analgesia are much less clear. A portion of the discrepant data may be explained in terms of methodological issues, stress-induced analgesia accompanying experimental protocols, and genotypic variation among subjects. Clarification of OFQ/N's role in nociception, as with other putative biologic functions, will probably depend upon the availability of a selective receptor antagonist.
Collapse
Affiliation(s)
- J E Grisel
- Department of Psychology, Furman University, 29613, Greenville, SC, USA
| | | |
Collapse
|
25
|
Jenck F, Wichmann J, Dautzenberg FM, Moreau JL, Ouagazzal AM, Martin JR, Lundstrom K, Cesura AM, Poli SM, Roever S, Kolczewski S, Adam G, Kilpatrick G. A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc Natl Acad Sci U S A 2000; 97:4938-43. [PMID: 10758169 PMCID: PMC18336 DOI: 10.1073/pnas.090514397] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biochemical and behavioral effects of a nonpeptidic, selective, and brain-penetrant agonist at the ORL1 receptor are reported herein. This low molecular weight compound [(1S,3aS)-8- (2,3,3a,4,5, 6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza- spiro[4. 5]decan-4-one] has high affinity for recombinant human ORL1 receptors and has 100-fold selectivity for ORL1 over other members of the opioid receptor family. It is a full agonist at these receptors and elicits dose-dependent anxiolytic-like effects in a set of validated models of distinct types of anxiety states in the rat (i.e., elevated plus-maze, fear-potentiated startle, and operant conflict). When given systemically, the compound has an efficacy and potency comparable to those of a benzodiazepine anxiolytic such as alprazolam or diazepam. However, this compound is differentiated from a classical benzodiazepine anxiolytic by a lack of efficient anti-panic-like activity, absence of anticonvulsant properties, and lack of effects on motor performance and cognitive function at anxiolytic doses (0.3 to 3 mg/kg i.p.). No significant change in intracranial self-stimulation performance and pain reactivity was observed in this dose range. Higher doses of this compound (>/=10 mg/kg) induced disruption in rat behavior. These data confirm the notable anxiolytic-like effects observed at low doses with the orphanin FQ/nociceptin neuropeptide given locally into the brain and support a role for orphanin FQ/nociceptin in adaptive behavioral fear responses to stress.
Collapse
Affiliation(s)
- F Jenck
- Central Nervous System Research, Roche Pharma Division, CH4070 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Calo' G, Guerrini R, Rizzi A, Salvadori S, Regoli D. Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 2000; 129:1261-83. [PMID: 10742280 PMCID: PMC1571975 DOI: 10.1038/sj.bjp.0703219] [Citation(s) in RCA: 350] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1999] [Revised: 01/05/2000] [Accepted: 01/10/2000] [Indexed: 12/13/2022] Open
Abstract
Nociceptin (NC), alias Orphanin FQ, has been recently identified as the endogenous ligand of the opioid receptor-like 1 receptor (OP(4)). This new NC/OP(4) receptor system belongs to the opioid family and has been characterized pharmacologically with functional and binding assays on native (mouse, rat, guinea-pig) and recombinant (human) receptors, by using specific and selective agonists (NC, NC(1 - 13)NH(2)) and a pure and competitive antagonist, [Nphe(1)]NC(1 - 13)NH(2). The similar order of potency of agonists and affinity values of the antagonist indicate that the same receptor is present in the four species. OP(4) is expressed in neurons, where it reduces activation of adenylyl cyclase and Ca(2+) channels while activating K(+) channels in a manner similar to opioids. In this way, OP(4) mediates inhibitory effects in the autonomic nervous system, but its activities in the central nervous system can be either similar or opposite to those of opioids. In vivo experiments have demonstrated that NC modulates a variety of biological functions ranging from nociception to food intake, from memory processes to cardiovascular and renal functions, from spontaneous locomotor activity to gastrointestinal motility, from anxiety to the control of neurotransmitter release at peripheral and central sites. These actions have been demonstrated using NC and various pharmacological tools, as antisense oligonucleotides targeting OP(4) or the peptide precursor genes, antibodies against NC, an OP(4) receptor selective antagonist and with data obtained from animals in which the receptor or the peptide precursor genes were knocked out. These new advances have contributed to better understanding of the pathophysiological role of the NC/OP(4) system, and ultimately will help to identify the therapeutic potential of new OP(4) receptor ligands.
Collapse
Affiliation(s)
- Girolamo Calo'
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17, 41100 Ferrara, Italy
| | - Remo Guerrini
- Department of Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17, 4100 Ferrara, Italy
| | - Anna Rizzi
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17, 41100 Ferrara, Italy
| | - Severo Salvadori
- Department of Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17, 4100 Ferrara, Italy
| | - Domenico Regoli
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17, 41100 Ferrara, Italy
| |
Collapse
|