1
|
Prophylactic Zinc and Therapeutic Selenium Administration Increases the Antioxidant Enzyme Activity in the Rat Temporoparietal Cortex and Improves Memory after a Transient Hypoxia-Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9416432. [PMID: 30258527 PMCID: PMC6146673 DOI: 10.1155/2018/9416432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022]
Abstract
In the cerebral hypoxia-ischemia rat model, the prophylactic administration of zinc can cause either cytotoxicity or preconditioning effect, whereas the therapeutic administration of selenium decreases the ischemic damage. Herein, we aimed to explore whether supplementation of low doses of prophylactic zinc and therapeutic selenium could protect from a transient hypoxic-ischemic event. We administrated zinc (0.2 mg/kg of body weight; ip) daily for 14 days before a 10 min common carotid artery occlusion (CCAO). After CCAO, we administrated sodium selenite (6 μg/kg of body weight; ip) daily for 7 days. In the temporoparietal cerebral cortex, we determined nitrites by the Griess method and lipid peroxidation by the Gerard-Monnier assay. qPCR was used to measure mRNA of nitric oxide synthases, antioxidant enzymes, chemokines, and their receptors. We measured the enzymatic activity of SOD and GPx and protein levels of chemokines and their receptors by ELISA. We evaluated long-term memory using the Morris-Water maze test. Our results showed that prophylactic administration of zinc caused a preconditioning effect, decreasing nitrosative/oxidative stress and increasing GPx and SOD expression and activity, as well as eNOS expression. The therapeutic administration of selenium maintained this preconditioning effect up to the late phase of hypoxia-ischemia. Ccl2, Ccr2, Cxcl12, and Cxcr4 were upregulated, and long-term memory was improved. Pyknotic cells were decreased suggesting prevention of neuronal cell death. Our results show that the prophylactic zinc and therapeutic selenium administration induces effective neuroprotection in the early and late phases after CCAO.
Collapse
|
2
|
Zhao X, Liu J, Yang S, Song D, Wang C, Chen C, Li X, Wang Q, Ge S, Yang R, Liu X, Lin Y, Cai D. Ling-Yang-Gou-Teng-decoction prevents vascular dementia through inhibiting oxidative stress induced neurovascular coupling dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:229-238. [PMID: 29545211 DOI: 10.1016/j.jep.2018.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vascular dementia (VaD) is the common cognitive disorder derived mainly from lacunar stroke (LS). The oxidative stress induced neurovascular coupling (NVC) dysfunction involves in the pathogenesis of VaD. Currently, there is no specific drug for VaD. Ling-Yang-Gou-Teng -Decoction (LG), a well-known traditional Chinese formula, has been used for preventing VaD in clinic. AIM OF THE STUDY In this study, we aimed to investigate the underlying mechanism of LG on VaD in rats. MATERIALS AND METHOD VaD was replicated with autologous micro-thrombi against the background of hypercholesterolemia induced with high fatty diet. PTX (68.90 mg/kg/day), LG with three dosages (2.58, 8.14, 25.80 g/kg/day) was orally administrated to VaD rats, respectively. The NVC sensitivity was defined as the ratio of the microcirculative cerebral blood velocity (CBV) to the electroencephalograph (EEG) before and after penicillin stimulation. Behavioral performance, pathological changes of brain and oxidation related molecules were detected to assess the effects of LG on VaD. RESULTS LG exhibited beneficial effects on the VaD, which was demonstrated as improved exploratory, learning and memory abilities, relieved vascular or neural pathological changes in cerebral cortex or hippocampus. LG maintained NVC sensitivity, which was confirmed as significantly increased ΔCBV and the elevated ratio of ΔCBV/ΔqEEG. The underlying mechanisms of LG was associated with antioxidant effects, which was confirmed as significantly decreased nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression, and increased superoxide dismutase 3 (SOD3) expression. LG also reduced iNOS, increased nNOS and eNOS expression to restore NO bioavailability. CONCLUSIONS The results suggested that LG prevented VaD may associate with inhibiting oxidative stress, protecting NO bioavailability, and then maintaining NVC sensitivity.
Collapse
Affiliation(s)
- Xin Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jinyu Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shijun Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Dandan Song
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Wang
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaoya Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Qiuting Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shasha Ge
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Runmei Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yulin Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Dayong Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
3
|
Markus T, Ley D, Hansson SR, Wieloch T, Ruscher K. Neuroprotective dobutamine treatment upregulates superoxide dismutase 3, anti-oxidant and survival genes and attenuates genes mediating inflammation. BMC Neurosci 2018. [PMID: 29523072 PMCID: PMC5845293 DOI: 10.1186/s12868-018-0415-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Labor subjects the fetus to an hypoxic episode and concomitant adrenomodullary catecholamine surge that may provide protection against the hypoxic insult. The beta1-adrenergic agonist dobutamine protects against hypoxia/aglycemia induced neuronal damage. We aimed to identify the associated protective biological processes involved. Results Hippocampal slices from 6 days old mice showed significant changes of gene expression comparing slices with or without dobutamine (50 mM) in the following two experimental paradigms: (1) control conditions versus lipopolysacharide (LPS) stimulation and (2) oxygen–glucose deprivation (OGD), versus combined LPS/OGD. Dobutamine depressed the inflammatory response by modifying the toll-like receptor-4 signalling pathways, including interferon regulatory factors and nuclear factor κ B activation in experimental paradigm 1. The anti-oxidant defense genes superoxide dismutase 3 showed an upregulation in the OGD paradigm while thioredoxin reductase was upregulated in LPS paradigm. The survival genes Bag-3, Tinf2, and TMBIM-1, were up-regulated in paradigm 1. Moreover, increased levels of SOD3 were verified on the protein level 24 h after OGD and control stimulation in cultures with or without preconditioning with LPS and dobutamine, respectively. Conclusions Neuroprotective treatment with dobutamine depresses expression of inflammatory mediators and promotes the defense against oxidative stress and depresses apoptotic genes in a model of neonatal brain hypoxia/ischemia interpreted as pharmacological preconditioning. We conclude that beta1-adrenoceptor activation might be an efficient strategy for identifying novel pharmacological targets for protection of the neonatal brain. Electronic supplementary material The online version of this article (10.1186/s12868-018-0415-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tina Markus
- Department of Pediatrics, Lund University, Lund, Sweden
| | - David Ley
- Department of Pediatrics, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, 22184, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
4
|
Singh V, Krishan P, Singh N, Kumar A, Shri R. Amelioration of ischemia-reperfusion induced functional and biochemical deficit in mice by Ocimum kilimandscharicum leaf extract. Biomed Pharmacother 2017; 85:556-563. [DOI: 10.1016/j.biopha.2016.11.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/29/2023] Open
|
5
|
Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem Int 2016; 107:23-32. [PMID: 28043837 DOI: 10.1016/j.neuint.2016.12.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/05/2016] [Accepted: 12/17/2016] [Indexed: 11/24/2022]
Abstract
During ischemic stroke, neurons and glia are subjected to damage during the acute and neuroinflammatory phases of injury. Production of reactive oxygen species (ROS) from calcium dysregulation in neural cells and the invasion of activated immune cells are responsible for stroke-induced neurodegeneration. Scientists have failed thus far to identify antioxidant-based drugs that can enhance neural cell survival and improve recovery after stroke. However, several groups have demonstrated success in protecting against stroke by increasing expression of antioxidant enzymes in neural cells. These enzymes, which include but are not limited to enzymes in the glutathione peroxidase, catalase, and superoxide dismutase families, degrade ROS that otherwise damage cellular components such as DNA, proteins, and lipids. Several groups have identified cellular therapies including neural stem cells and human umbilical cord blood cells, which exert neuroprotective and oligoprotective effects through the release of pro-survival factors that activate PI3K/Akt signaling to upregulation of antioxidant enzymes. Other studies demonstrate that treatment with soluble factors released by these cells yield similar changes in enzyme expression after stroke. Treatment with the cytokine leukemia inhibitory factor increases the expression of peroxiredoxin IV and metallothionein III in glia and boosts expression of superoxide dismutase 3 in neurons. Through cell-specific upregulation of these enzymes, LIF and other Akt-inducing factors have the potential to protect multiple cell types against damage from ROS during the early and late phases of ischemic damage.
Collapse
|
6
|
The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol Res 2016; 116:57-69. [PMID: 27988384 DOI: 10.1016/j.phrs.2016.12.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/15/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) plays a pivotal role in the maintenance of cardiovascular homeostasis. A reduction in the bioavailability of endogenous NO, manifest as a decrease in the production and/or impaired signaling, is associated with many cardiovascular diseases including hypertension, atherosclerosis, stroke and heart failure. There is substantial evidence that reactive oxygen species (ROS), generated predominantly from NADPH oxidases (Nox), are responsible for the reduced NO bioavailability in vascular and cardiac pathologies. ROS can compromise NO function via a direct inactivation of NO, together with a reduction in NO synthesis and oxidation of its receptor, soluble guanylyl cyclase. Whilst nitrovasodilators are administered to compensate for the ROS-mediated loss in NO bioactivity, their clinical utility is limited due to the development of tolerance and resistance and systemic hypotension. Moreover, efforts to directly scavenge ROS with antioxidants has had limited clinical efficacy. This review outlines the therapeutic utility of NO-based therapeutics in cardiovascular diseases and describes the source and impact of ROS in these pathologies, with particular focus on the interaction with NO. Future therapeutic approaches in the treatment of cardiovascular diseases are highlighted with a focus on nitroxyl (HNO) donors as an alternative to traditional NO donors and the development of novel Nox inhibitors.
Collapse
|
7
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Leukemia Inhibitory Factor Protects Neurons from Ischemic Damage via Upregulation of Superoxide Dismutase 3. Mol Neurobiol 2016; 54:608-622. [PMID: 26746670 PMCID: PMC5026633 DOI: 10.1007/s12035-015-9587-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
Abstract
Leukemia inhibitory factor (LIF) has been shown to protect oligodendrocytes from ischemia by upregulating endogenous antioxidants. The goal of this study was to determine whether LIF protects neurons during stroke by upregulating superoxide dismutase 3 (SOD3). Animals were administered phosphate-buffered saline (PBS) or 125 μg/kg LIF at 6, 24, and 48 h after middle cerebral artery occlusion or sham surgery. Neurons were isolated from rat pups on embryonic day 18 and used between 7 and 15 days in culture. Cells were treated with LIF and/or 10 μM Akt inhibitor IV with PBS and 0.1 % DMSO acting as vehicle controls. Neurons transfected with scrambled or SOD3 small interfering RNA (siRNA) were subjected to 24-h ischemia after PBS or LIF treatment. LIF significantly increased superoxide dismutase activity and SOD3 expression in ipsilateral brain tissue compared to PBS. Following 24-h ischemia, LIF reduced cell death and increased SOD3 messenger RNA (mRNA) in vitro compared to PBS. Adding Akt inhibitor IV with LIF counteracted the decrease in cell death. Partially silencing the expression of SOD3 using siRNA prior to LIF treatment counteracted the protective effect of LIF-alone PBS treatment. These results indicate that LIF protects neurons in vivo and in vitro via upregulation of SOD3.
Collapse
|
9
|
Truiti MT, Soares L, Longhini R, Milani H, Nakamura CV, Mello JCP, de Oliveira RMW. Trichilia catigua ethyl-acetate fraction protects against cognitive impairments and hippocampal cell death induced by bilateral common carotid occlusion in mice. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:232-237. [PMID: 26099636 DOI: 10.1016/j.jep.2015.05.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/26/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trichilia catigua preparations have antinociceptive, antiinflammatory, and neuroprotective activity. Recently, a neuroprotective role for T. catigua was proposed using an in vitro model of ischemia-reperfusion in rat hippocampal slices. The aim of the present study was to evaluate the effects of an ethyl-acetate fraction (EAF) of T. catigua, which has potent antioxidant activity, in mice subjected to an in vivo model of cerebral ischemia. MATERIAL AND METHODS Male Swiss mice were subject to the bilateral common carotid occlusion (BCCAO) model of cerebral ischemia. The animals were orally administered the T. catigua EAF (200, 400, or 800 mg/kg) 30 min before and once per day for 7 days after BCCAO. Histological and behavioral outcomes were assessed using Nissl staining and the Morris water maze test of cognition, respectively. RESULTS Mice that were subjected to BCCAO exhibited cognitive impairments in the Morris water maze. The spatial cognitive deficits were counteracted by T. catigua EAF administration (200-800 mg/kg). The T. catigua EAF significantly increased the number of intact-appearing Nissl-stained cells in the hippocampus in BCCAO mice. CONCLUSIONS These results show that the T. catigua EAF promoted functional recovery, decreased the delayed hippocampal cell loss, and mitigated the ongoing neurodegenerative processes induced by BCCAO in mice.
Collapse
Affiliation(s)
- Manuela Torrado Truiti
- Laboratory of Neuropsychopharmacology, Department of Pharmacology and Therapeutics, Maringá 87020-900, Paraná, Brazil
| | - LígiaMendes Soares
- Laboratory of Neuropsychopharmacology, Department of Pharmacology and Therapeutics, Maringá 87020-900, Paraná, Brazil
| | - Renata Longhini
- Laboratory of Pharmaceutical Biology, Palafito, Maringá, Brazil
| | - Humberto Milani
- Laboratory of Neuropsychopharmacology, Department of Pharmacology and Therapeutics, Maringá 87020-900, Paraná, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Microbiology, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| | | | | |
Collapse
|
10
|
Mohammedi K, Bellili-Muñoz N, Marklund SL, Driss F, Le Nagard H, Patente TA, Fumeron F, Roussel R, Hadjadj S, Marre M, Velho G. Plasma extracellular superoxide dismutase concentration, allelic variations in the SOD3 gene and risk of myocardial infarction and all-cause mortality in people with type 1 and type 2 diabetes. Cardiovasc Diabetol 2015; 14:845. [PMID: 25855220 PMCID: PMC4324771 DOI: 10.1186/s12933-014-0163-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/10/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oxidative stress is involved in development of diabetes complications. Extracellular superoxide dismutase (EC-SOD, SOD3) is a major extracellular antioxidant enzyme and is highly expressed in arterial walls. Advanced oxidation protein products (AOPP) and 8-iso-prostaglandin (isoprostane) are markers of oxidative stress. We investigated association of SOD3 gene variants, plasma concentrations of EC-SOD, AOPP and isoprostane with myocardial infarction and mortality in diabetic patients. METHODS We studied three cohorts designed to evaluate the vascular complications of diabetes: the GENEDIAB study (469 participants with type 1 diabetes at baseline; follow-up data for 259 participants), the GENESIS study (603 participants with type 1 diabetes at baseline; follow-up data for 525 participants) and the DIABHYCAR study (3137 participants with type 2 diabetes at baseline and follow-up). Duration of follow-up was 9, 5, and 5 years, respectively. Main outcome measures were incidence of myocardial infarction, and cardiovascular and total mortality during follow-up. Six single nucleotide polymorphisms in the SOD3 locus were genotyped in the three cohorts. Plasma concentrations of EC-SOD, AOPP, and isoprostane were measured in baseline samples of GENEDIAB participants. RESULTS In GENEDIAB/GENESIS pooled cohorts, the minor T-allele of rs2284659 variant was inversely associated with the prevalence at baseline (Odds Ratio 0.48, 95% CI 0.29-0.78, p = 0.004) and the incidence during follow-up of myocardial infarction (Hazard Ratio 0.58, 95% CI 0.40-0.83, p = 0.003) and with cardiovascular (HR 0.33, 95% CI 0.08-0.74, p = 0.004) and all-cause mortality (HR 0.44, 95% CI 0.21-0.73, p = 0.0006). The protective allele was associated with higher plasma EC-SOD and lower plasma AOPP concentrations in GENEDIAB. It was also inversely associated with incidence of myocardial infarction (HR 0.75, 95% CI 0.59-0.94, p = 0.01) and all-cause mortality (HR 0.87, 95% CI 0.79-0.97, p = 0.008) in DIABHYCAR. CONCLUSIONS The T-allele of rs2284659 in the promoter of SOD3 was associated with a more favorable plasma redox status and with better cardiovascular outcomes in diabetic patients. Our results suggest that EC-SOD plays an important role in the mechanisms of vascular protection against diabetes-related oxidative stress.
Collapse
|
11
|
Dani C, Poggi C. The role of genetic polymorphisms in antioxidant enzymes and potential antioxidant therapies in neonatal lung disease. Antioxid Redox Signal 2014; 21:1863-80. [PMID: 24382101 PMCID: PMC4203110 DOI: 10.1089/ars.2013.5811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Oxidative stress is involved in the development of newborn lung diseases, such as bronchopulmonary dysplasia and persistent pulmonary hypertension of the newborn. The activity of antioxidant enzymes (AOEs), which is impaired as a result of prematurity and oxidative injury, may be further affected by specific genetic polymorphisms or an unfavorable combination of more of them. RECENT ADVANCES Genetic polymorphisms of superoxide dismutase and catalase were recently demonstrated to be protective or risk factors for the main complications of prematurity. A lot of research focused on the potential of different antioxidant strategies in the prevention and treatment of lung diseases of the newborn, providing promising results in experimental models. CRITICAL ISSUES The effect of different genetic polymorphisms on protein synthesis and activity has been poorly detailed in the newborn, hindering to derive conclusive results from the observed associations with adverse outcomes. Therapeutic strategies that aimed at enhancing the activity of AOEs were poorly studied in clinical settings and partially failed to produce clinical benefits. FUTURE DIRECTIONS The clarification of the effects of genetic polymorphisms on the proteomics of the newborn is mandatory, as well as the assessment of a larger number of polymorphisms with a possible correlation with adverse outcome. Moreover, antioxidant treatments should be carefully translated to clinical settings, after further details on optimal doses, administration techniques, and adverse effects are provided. Finally, the study of genetic polymorphisms could help select a specific high-risk population, who may particularly benefit from targeted antioxidant strategies.
Collapse
Affiliation(s)
- Carlo Dani
- Section of Neonatology, Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University Hospital , Florence, Italy
| | | |
Collapse
|
12
|
Zaghloul N, Patel H, Codipilly C, Marambaud P, Dewey S, Frattini S, Huerta PT, Nasim M, Miller EJ, Ahmed M. Overexpression of extracellular superoxide dismutase protects against brain injury induced by chronic hypoxia. PLoS One 2014; 9:e108168. [PMID: 25268361 PMCID: PMC4182464 DOI: 10.1371/journal.pone.0108168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/19/2014] [Indexed: 12/14/2022] Open
Abstract
Extracellular superoxide dismutase (EC-SOD) is an isoform of SOD normally found both intra- and extra-cellularly and accounting for most SOD activity in blood vessels. Here we explored the role of EC-SOD in protecting against brain damage induced by chronic hypoxia. EC-SOD Transgenic mice, were exposed to hypoxia (FiO2.1%) for 10 days (H-KI) and compared to transgenic animals housed in room air (RA-KI), wild type animals exposed to hypoxia (H-WT or wild type mice housed in room air (RA-WT). Overall brain metabolism evaluated by positron emission tomography (PET) showed that H-WT mice had significantly higher uptake of 18FDG in the brain particularly the hippocampus, hypothalamus, and cerebellum. H-KI mice had comparable uptake to the RA-KI and RA-WT groups. To investigate the functional state of the hippocampus, electrophysiological techniques in ex vivo hippocampal slices were performed and showed that H-KI had normal synaptic plasticity, whereas H-WT were severely affected. Markers of oxidative stress, GFAP, IBA1, MIF, and pAMPK showed similar values in the H-KI and RA-WT groups, but were significantly increased in the H-WT group. Caspase-3 assay and histopathological studies showed significant apoptosis/cell damage in the H-WT group, but no significant difference in the H-KI group compared to the RA groups. The data suggest that EC-SOD has potential prophylactic and therapeutic roles in diseases with compromised brain oxygenation.
Collapse
Affiliation(s)
- Nahla Zaghloul
- Division of Neonatal-Perinatal Medicine, The Ohio State University and Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Hardik Patel
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center of New York and Lilling Family Research laboratory, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Champa Codipilly
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center of New York and Lilling Family Research laboratory, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Philippe Marambaud
- Laboratory of Memory Disorders, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Stephen Dewey
- Neuroimaging Department, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Stephen Frattini
- Laboratory of Immune & Neural Networks, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Patricio T. Huerta
- Laboratory of Immune & Neural Networks, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Department of Molecular Medicine, Hofstra North Shore LIJ School of Medicine, New York, United States of America
| | - Mansoor Nasim
- Department of Pathology, NSL-IJ, Manhasset, New York, United States of America
| | - Edmund J. Miller
- Department of Molecular Medicine, Hofstra North Shore LIJ School of Medicine, New York, United States of America
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center of New York and Lilling Family Research laboratory, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mohamed Ahmed
- Division of Neonatal-Perinatal Medicine, The Ohio State University and Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center of New York and Lilling Family Research laboratory, Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Pan Q, Qin X, Ma S, Wang H, Cheng K, Song X, Gao H, Wang Q, Tao R, Wang Y, Li X, Xiong L, Cao F. Myocardial protective effect of extracellular superoxide dismutase gene modified bone marrow mesenchymal stromal cells on infarcted mice hearts. Am J Cancer Res 2014; 4:475-86. [PMID: 24669277 PMCID: PMC3964442 DOI: 10.7150/thno.7729] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/04/2013] [Indexed: 11/30/2022] Open
Abstract
Aim: Extracellular superoxide dismutase (ecSOD) is a unique scavenger of superoxide anions and a promising target of gene therapy for ischemia/reperfusion injury (I/R). However, conventional gene therapies have limitation in effectiveness and efficiency. This study aimed to investigate the protective effects of ecSOD gene modified bone marrow mesenchymal stromal cells (BMSCs) on cardiac function improvement in mice infarcted heart. METHODS & RESULTS: BMSCs were isolated from Fluc+ transgenic mice (Tg FVB[Fluc+]) and transfected by adenovirus combined with human ecSOD gene. ELISA was performed to determine ecSOD protein level. Female syngeneic FVB mice were randomized into 5 groups: (1) Sham group (sham); (2) MI group (MI); (3) MI+BMSCs group (BMSC); (4) MI+BMSCs-vector group (BMSC-vector); (5) MI+ BMSCs-ecSOD group (BMSC-ecSOD). MI was accomplished by ligation of the left anterior descending artery. BMSCs (2x106) were injected into the border zone of infarction. In vivo bioluminescence imaging (BLI) was performed to monitor transplanted BMSCs viability. Echocardiography and histological staining revealed that BMSCs-ecSOD significantly reduced myocardial infarction size and improved cardiac function. Lucigenin chemiluminescence, DHE and TUNEL staining demonstrated that BMSCs-ecSOD delivery reduced ROS level and cell apoptosis both in vivo and in vitro. Western blot assay revealed that ecSOD supplementation increased FoxO3a phosphorylation in cardiomyocytes. Moreover, quantitative real-time PCR showed that pro-apoptotic factors (bim and bax) were decreased while the anti-apoptotic factor mir-21 expression was increased after ecSOD intervention. CONCLUSION: Intra-myocardial transplantation of adenovirus-ecSOD transfected BMSCs could exert potential cardiac protection against MI, which may be partly through reduction of oxidative stress and improvement of BMSCs survival.
Collapse
|
14
|
McCann SK, Roulston CL. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives. Brain Sci 2013; 3:561-98. [PMID: 24961415 PMCID: PMC4061864 DOI: 10.3390/brainsci3020561] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress caused by an excess of reactive oxygen species (ROS) is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation.
Collapse
Affiliation(s)
- Sarah K McCann
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital, 42 Fitzroy St, Fitzroy, Melbourne 3065, Australia.
| | - Carli L Roulston
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital, 42 Fitzroy St, Fitzroy, Melbourne 3065, Australia.
| |
Collapse
|
15
|
Armogida M, Nisticò R, Mercuri NB. Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia. Br J Pharmacol 2012; 166:1211-24. [PMID: 22352897 DOI: 10.1111/j.1476-5381.2012.01912.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
For many years after its discovery, hydrogen peroxide (H₂O₂) was viewed as a toxic molecule to human tissues; however, in light of recent findings, it is being recognized as an ubiquitous endogenous molecule of life as its biological role has been better elucidated. Indeed, increasing evidence suggests that H₂O₂ may act as a second messenger with a pro-survival role in several physiological processes. In addition, our group has recently demonstrated neuroprotective effects of H₂O₂ on in vitro and in vivo ischaemic models through a catalase (CAT) enzyme-mediated mechanism. Therefore, the present review summarizes experimental data supporting a neuroprotective potential of H₂O₂ in ischaemic stroke that has been principally achieved by means of pharmacological and genetic strategies that modify either the activity or the expression of the superoxide dismutase (SOD), glutathione peroxidase (GPx) and CAT enzymes, which are key regulators of H₂O₂ metabolism. It also critically discusses a translational impact concerning the role played by H₂O₂ in ischaemic stroke. Based on these data, we hope that further research will be done in order to better understand the mechanisms underlying H₂O₂ functions and to promote successful H₂O₂ signalling based therapy in ischaemic stroke.
Collapse
Affiliation(s)
- Marta Armogida
- Laboratory of Experimental Neurology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | |
Collapse
|
16
|
Takano K, Tanaka N, Kawabe K, Moriyama M, Nakamura Y. Extracellular superoxide dismutase induced by dopamine in cultured astrocytes. Neurochem Res 2012; 38:32-41. [PMID: 22983620 DOI: 10.1007/s11064-012-0882-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/31/2012] [Indexed: 11/24/2022]
Abstract
Under some pathological conditions in brain, a large amount of superoxide anion (O(2)(-)) is produced, causing various cellular damages. Among three isozymes of superoxide dismutase (SOD), extracellular (EC)-SOD should play a role to detoxify O(2)(-) in extracellular space; however, a little is known about EC-SOD in brain. Although dopamine (DA) stored in the synaptic vesicle is stable, the excess leaked DA is spontaneously oxidized to yield O(2)(-) and reactive DA quinones, causing damages of dopaminergic neurons. In the present study, we examined the effects of DA on SOD expression in cultured rat cortical astrocytes. By means of RT-PCR, all mRNA of three isozymes of SOD could be detected; however, only EC-SOD was increased by DA exposure for 24 h, dose-dependently. The expression of EC-SOD protein and the cell-surface SOD activity in astrocytes also increased with 100 μM DA exposure. The increase of EC-SOD mRNA by DA was inhibited by a DA transporter inhibitor, GBR12909, whereas it was not changed by DA receptor antagonists, SKF-83566 (D1) and haloperidol (D2). Furthermore, a monoamine oxidase inhibitor, pargyline, and antioxidants, N-acetyl-L-cysteine and glutathione, also did not affect the DA-induced expression of EC-SOD mRNA. On the other hand, an inhibitor of nuclear factor kappaB (NF-κB), ammonium pyrrolidine-1-carbodithioate, suppressed the DA-induced expression of EC-SOD mRNA. These results suggest that DA incorporated into the cells caused the induction of EC-SOD mRNA followed by the enhancements of EC-SOD protein level and the enzyme activity, and that NF-κB activation is involved in the mechanisms of the EC-SOD induction. The regulation of EC-SOD in astrocytes surrounding dopaminergic neurons may contribute to the defensive mechanism against oxidative stress in brain.
Collapse
Affiliation(s)
- Katsura Takano
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58, Rinku-Ourai Kita, Izumisano, Osaka 598-8531, Japan.
| | | | | | | | | |
Collapse
|
17
|
Giusti B, Vestrini A, Poggi C, Magi A, Pasquini E, Abbate R, Dani C. Genetic polymorphisms of antioxidant enzymes as risk factors for oxidative stress-associated complications in preterm infants. Free Radic Res 2012; 46:1130-9. [PMID: 22574884 DOI: 10.3109/10715762.2012.692787] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We aimed to identify specific polymorphisms of genes encoding for superoxide dismutase (SOD) 1 (cytoplasmic Cu/ZnSOD), SOD2 (mitochondrial MnSOD), SOD3 (extracellular Cu/ZnSOD) and CAT in a cohort of preterm infants and correlate their presence to the development of respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), intraventricular haemorrhage (IVH) and retinopathy of prematurity (ROP). We carried out a retrospective study to evaluate the allele frequency and the genotype distribution of polymorphisms of SODs and CAT in a population of preterm neonates (n = 152) with a gestational age ≤ 28 weeks according to the presence or absence of RDS, BPD, IVH and ROP. Moreover, we evaluated through the haplotype reconstruction analysis whether combinations of the selected polymorphisms are related to the occurrence of RDS, BPD, IVH and ROP. We found that rs8192287 SOD3 polymorphism is an independent protective factor for all grade IVH, while rs4880 and rs5746136 SOD2 polymorphisms are associated with a lower gestational age (rs4880, rs5746136) and birth weight (rs4880). Haplotypes reconstruction showed that SOD1 (GG) decreased the risk of RDS, IVH and ROP; SOD2 (GT) increased the risk of BPD and decreased the risk of RDS, IVH and ROP; SOD3 (TGC) decreased the risk of BPD and IVH; and 4) CAT (CTC) decreased the risk of RDS. The rs8192287 SOD3 polymorphism is per se an independent predictor of a decreased risk of developing IVH. Different SOD2 polymorphisms are associated per se with a lower gestational age and/or birth weight, and haplotypes of SOD1, SOD3 and CAT genes may be independent protecting or risk markers for prematurity complications.
Collapse
Affiliation(s)
- Betti Giusti
- Department of Medical and Surgical Critical Care, University of Florence, Atherothrombotic Diseases Centre, Careggi University Hospital of Florence, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Raber J, Villasana L, Rosenberg J, Zou Y, Huang TT, Fike JR. Irradiation enhances hippocampus-dependent cognition in mice deficient in extracellular superoxide dismutase. Hippocampus 2011; 21:72-80. [PMID: 20020436 PMCID: PMC2891276 DOI: 10.1002/hipo.20724] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of ionizing irradiation on the brain are associated with oxidative stress. While oxidative stress following irradiation is generally viewed as detrimental for hippocampal function, it might have beneficial effects as part of an adaptive or preconditioning response to a subsequent challenge. Here we show that in contrast to what is seen in wild-type mice, irradiation enhances hippocampus- dependent cognitive measures in mice lacking extracellular superoxide dismutase. These outcomes were associated with genotype-dependent effects on measures of oxidative stress. When cortices and hippocampi were analyzed for nitrotyrosine formation as an index of oxidative stress, the levels were chronically elevated in mice lacking extracellular superoxide dismutase. However, irradiation caused a greater increase in nitrotyrosine levels in wild-type mice than mice lacking extracellular superoxide dismutase. These paradoxical genotype-dependent effects of irradiation on measures of oxidative stress and cognitive function underscore potential beneficial effects associated with chronic oxidative stress if it exists prior to a secondary insult such as irradiation.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Imai N, Okabe T. Kinetics differ between copper-zinc and manganese superoxide dismutase activity with acute ischemic stroke. J Stroke Cerebrovasc Dis 2010; 20:75-78. [PMID: 20598578 DOI: 10.1016/j.jstrokecerebrovasdis.2009.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/10/2009] [Accepted: 11/15/2009] [Indexed: 11/19/2022] Open
Abstract
This study aimed to clarify the kinetics of copper-zinc (CuZn) and manganese (Mn) superoxide dismutase (SOD) activity in acute ischemic stroke victims. Using the nitrite method, we investigated sequential changes in CuZn and Mn SOD activity in the cerebrospinal fluid (CSF) of 8 patients with acute ischemic stroke. SOD activity in each patient was measured at 36 hours and 3, 7, 14, and 28 days after stroke. CuZn SOD activity in CSF peaked 3 days after stroke, with values gradually decreasing after 7 days. In contrast, Mn SOD activity remained significantly lower in the stroke group than in controls throughout the study. These findings may reflect differences between the 2 isoenzymes in terms of the distribution, role, and method of synthesis in brain tissue.
Collapse
Affiliation(s)
- Noboru Imai
- Department of Neurology, Shizuoka Red Cross Hospital, Shizuoka, Japan.
| | - Takashi Okabe
- Department of Neurology, Shizuoka Red Cross Hospital, Shizuoka, Japan
| |
Collapse
|
20
|
Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, Chan PH. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta Mol Basis Dis 2009; 1802:92-9. [PMID: 19751828 DOI: 10.1016/j.bbadis.2009.09.002] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/26/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
Mitochondria play important roles as the powerhouse of the cell. After cerebral ischemia, mitochondria overproduce reactive oxygen species (ROS), which have been thoroughly studied with the use of superoxide dismutase transgenic or knockout animals. ROS directly damage lipids, proteins, and nucleic acids in the cell. Moreover, ROS activate various molecular signaling pathways. Apoptosis-related signals return to mitochondria, then mitochondria induce cell death through the release of pro-apoptotic proteins such as cytochrome c or apoptosis-inducing factor. Although the mechanisms of cell death after cerebral ischemia remain unclear, mitochondria obviously play a role by activating signaling pathways through ROS production and by regulating mitochondria-dependent apoptosis pathways.
Collapse
Affiliation(s)
- Kuniyasu Niizuma
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Usui S, Komeima K, Lee SY, Jo YJ, Ueno S, Rogers BS, Wu Z, Shen J, Lu L, Oveson BC, Rabinovitch PS, Campochiaro PA. Increased expression of catalase and superoxide dismutase 2 reduces cone cell death in retinitis pigmentosa. Mol Ther 2009; 17:778-86. [PMID: 19293779 PMCID: PMC2803613 DOI: 10.1038/mt.2009.47] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/11/2009] [Indexed: 01/10/2023] Open
Abstract
Oxidative and nitrosative damage are major contributors to cone cell death in retinitis pigmentosa (RP). In this study, we explored the effects of augmenting components of the endogenous antioxidant defense system in models of RP, rd1, and rd10 mice. Unexpectedly, overexpression of superoxide dismutase 1 (SOD1) in rd1 mice increased oxidative damage and accelerated cone cell death. With an elaborate mating scheme, genetically engineered rd10 mice with either inducible expression of SOD2, Catalase, or both in photoreceptor mitochondria were generated. Littermates with the same genetic background that did not have increased expression of SOD2 nor Catalase provided ideal controls. Coexpression of SOD2 and Catalase, but not either alone, significantly reduced oxidative damage in the retinas of postnatal day (P) 50 rd10 mice as measured by protein carbonyl content. Cone density was significantly greater in P50 rd10 mice with coexpression of SOD2 and Catalase together than rd10 mice that expressed SOD2 or Catalase alone, or expressed neither. Coexpression of SOD2 and Catalase in rd10 mice did not slow rod cell death. These data support the concept of bolstering the endogenous antioxidant defense system as a gene-based treatment strategy for RP, and also indicate that coexpression of multiple components may be needed.
Collapse
Affiliation(s)
- Shinichi Usui
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9277, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lund DD, Chu Y, Miller JD, Heistad DD. Protective effect of extracellular superoxide dismutase on endothelial function during aging. Am J Physiol Heart Circ Physiol 2009; 296:H1920-5. [PMID: 19376805 DOI: 10.1152/ajpheart.01342.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial vasomotor function decreases with increasing age. Extracellular superoxide dismutase (ecSOD) protects against vascular dysfunction in several disease states. The purpose of this study was to determine whether endogenous ecSOD protects against endothelial dysfunction in old mice. Vasomotor function of the aorta was studied ex vivo in wild-type (ecSOD(+/+)) and ecSOD-deficient (ecSOD(-/-)) mice at 11 (adult) and 29 (old) mo of age. Maximal relaxation to acetylcholine (10(-4) M) was impaired in vessels from adult ecSOD(-/-) mice [75 +/- 3% (mean +/- SE)] compared with wild-type mice (89 +/- 2%, P < 0.05). Maximal relaxation to acetylcholine (10(-4) M) was profoundly impaired in aorta from old ecSOD(-/-) mice (45 +/- 5%) compared with wild-type mice (75 +/- 4%, P < 0.05). There was a significant correlation between expression of ecSOD and maximal relaxation to acetylcholine in adult and old mice. Tempol (1 mM), a scavenger of superoxide, improved relaxation in response to acetylcholine (63 +/- 8%) in old ecSOD(-/-) mice (P < 0.05), but not wild-type mice (75 +/- 4%). Maximal relaxation to sodium nitroprusside was similar in aorta from adult and old wild-type and ecSOD(-/-) mice. Quantitative RT-PCR showed a decrease in mRNA levels of ecSOD and catalase in aorta of old mice and an increase in levels of TNFalpha and Nox-4 in aorta of old mice compared with adult mice. The findings support the hypothesis that impaired antioxidant mechanisms may contribute to cumulative increases in oxidative stress and impaired endothelial function in old mice. In conclusion, endogenous ecSOD plays an important role in protection against endothelial dysfunction during aging.
Collapse
Affiliation(s)
- Donald D Lund
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242-1081, USA
| | | | | | | |
Collapse
|
23
|
Overexpression of manganese superoxide dismutase in human dermal fibroblasts enhances the contraction of free floating collagen lattice: implications for ageing and hyperplastic scar formation. Arch Dermatol Res 2009; 301:273-87. [PMID: 19306099 DOI: 10.1007/s00403-009-0935-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 02/24/2009] [Accepted: 02/27/2009] [Indexed: 01/14/2023]
Abstract
Cell-matrix interactions are of significant importance for tissue homeostasis of the skin and, if disturbed, may lead to ageing and hyperplastic scar formation. We have studied fibroblasts stably overexpressing manganese superoxide dismutase (MnSOD) with a defined capacity for the removal of superoxide anions and concomitant accumulation of hydrogen peroxide to evaluate the role of enhanced MnSOD activity on the dynamics of cell-matrix interactions in the three-dimensional collagen lattice contraction assay. MnSOD overexpressing fibroblast populated collagen lattices revealed a significantly enhanced contraction compared to collagen lattices populated with vector control cells. The enhanced collagen lattice contraction was in part due to an increase in active TGF-beta1 and the accumulation of H2O2 in MnSOD overexpressing fibroblasts populated collagen lattices. Inhibition of TGF-beta1 signalling by the ALK4,5,7 kinases' inhibitor SB431542 at least partly inhibited the enhanced collagen lattice contraction of MnSOD overexpressing fibroblasts populated lattices. In addition, supplementation of vector control fibroblast populated collagen lattices with recombinant TGF-beta1 concentration dependently enhanced the collagen lattice contraction. In the presence of the antioxidant Ebselen, a mimic of H2O2 and other hydroperoxides/peroxynitrite-detoxifying glutathione peroxidase, collagen lattice contraction and the activation of TGF-beta1 were significantly reduced in collagen lattices populated with MnSOD overexpressing fibroblasts. Collectively, these data suggest that H2O2 or other hydroperoxides or peroxynitrite or a combination thereof may function as important second messengers in collagen lattice contraction and act at least in part via TGF-beta1 activation.
Collapse
|
24
|
Naganuma T, Nakayama T, Sato N, Fu Z, Soma M, Aoi N, Hinohara S, Doba N, Usami R. Association of extracellular superoxide dismutase gene with cerebral infarction in women: a haplotype-based case-control study. Hereditas 2008; 145:283-92. [PMID: 19200140 DOI: 10.1111/j.1601-5223.2008.02086.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Dawson J, Walters M. Uric acid and xanthine oxidase: future therapeutic targets in the prevention of cardiovascular disease? Br J Clin Pharmacol 2006; 62:633-44. [PMID: 21894646 PMCID: PMC1885190 DOI: 10.1111/j.1365-2125.2006.02785.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 07/17/2006] [Indexed: 12/22/2022] Open
Abstract
Serum uric acid may be an independent risk factor for cardiovascular disease. This review examines this association, potential mechanisms, and explores whether strategies to reduce uric acid will improve outcomes. The recent studies of xanthine oxidase inhibition are given particular focus. Epidemiological evidence supports the theory that uric acid is an independent risk factor for cardiovascular disease. Recent studies of losartan, atorvastatin and fenofibrate suggest that uric acid reduction contributes to the risk reduction offered by these therapies. Several small studies of xanthine oxidase inhibition have shown improvements in measures of cardiovascular function of a similar magnitude to that of other proven preventative treatments. These trial data and the convincing epidemiological evidence mandate that large clinical trials of uric acid-lowering strategies are performed in patients with or at high risk of cardiovascular disease. If such approaches are shown to be effective in reducing cardiovascular events, they would represent a novel and cost-effective preventative approach.
Collapse
Affiliation(s)
- Jesse Dawson
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Western Infirmary Hospital, Glasgow, UK.
| | | |
Collapse
|
26
|
Kitayama J, Yi C, Faraci FM, Heistad DD. Modulation of Dilator Responses of Cerebral Arterioles by Extracellular Superoxide Dismutase. Stroke 2006; 37:2802-6. [PMID: 17008608 DOI: 10.1161/01.str.0000245134.12145.ae] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background and Purpose—
Extracellular superoxide dismutase (ECSOD) is highly expressed in the wall of blood vessels and plays an important role in modulation of vascular function in extracranial arteries. Expression of ECSOD appears to affect cerebral vascular responses during disease states. Effects of ECSOD on dilator function in cerebral arterioles, however, have not been fully elucidated. In the present study, we examined effects of ECSOD deficiency on cerebrovascular reactivity under control conditions and during oxidative stress.
Methods—
Dilator responses of cerebral arterioles were examined in cranial windows in vivo in anesthetized ECSOD-deficient (−/−) and wild-type (+/+) mice under normal conditions and during oxidative stress induced by angiotensin II.
Results—
Total SOD activity in the aorta in ECSOD−/− mice (176±24 [mean±SEM] U/mg) was approximately 30% lower than in ECSOD+/+ mice (270±38,
P
=0.051). Dilator responses to acetylcholine (10 μmol/L) in cerebral arterioles were similar under control conditions in ECSOD+/+ (34±5% changes in diameter) and −/− mice (32±4%). Angiotensin II (500 nmol/L for 30 minutes) tended to reduce responses to acetylcholine in ECSOD+/+ mice (not significant) and significantly impaired responses in ECSOD−/− mice (42% reduction,
P
<0.05). Tempol (1 mmol/L), a scavenger of superoxide, restored the impaired dilator responses in ECSOD−/− mice. Responses to nitroprusside in cerebral arterioles were similar in ECSOD+/+ and −/− mice and were not affected by angiotensin II nor by tempol.
Conclusions—
ECSOD deficiency has little effect on cerebrovascular reactivity in control conditions but plays an important role in the regulation of vascular tone during oxidative stress produced by angiotensin II.
Collapse
Affiliation(s)
- Jiro Kitayama
- Cardiovascular Center and Department of Internal Medicine, University of Iowa Carver College of Medicine and VA Medical Center, Iowa City, Iowa 52242-1081, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Focal permanent or transient cerebral artery occlusion produces massive cell death in the central core of the infarction, whereas in the peripheral zone (penumbra) nerve cells are subjected to various determining survival and death signals. Cell death in the core of the infarction and in the adult brain is usually considered a passive phenomenon, although events largely depend on the partial or complete disruption of crucial metabolic pathways. Cell death in the penumbra is currently considered an active process largely dependent on the activation of cell death programs leading to apoptosis. Yet cell death in the penumbra includes apoptosis, necrosis, intermediate and other forms of cell death. A rather simplistic view implies poor prospects regarding cell survival in the core of the infarction and therapeutic expectations in the control of cell death and cell survival in the penumbra. However, the capacity for neuroprotection depends on multiple factors, primarily the use of the appropriate agent, at the appropriate time and during the appropriate interval. Understanding the mechanisms commanding cell death and survival area is as important as delimiting the therapeutic time window and the facility of a drug to effectively impact on specific targets. Moreover, the detrimental effects of homeostasis and the activation of multiple pathways with opposing signals following ischemic stroke indicate that better outcome probably does not depend on a single compound but on several drugs acting in combination at the optimal time in a particular patient.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Hospitalet de Llobregat, Spain.
| |
Collapse
|
28
|
Potts MB, Koh SE, Whetstone WD, Walker BA, Yoneyama T, Claus CP, Manvelyan HM, Noble-Haeusslein LJ. Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx 2006; 3:143-53. [PMID: 16554253 PMCID: PMC3593438 DOI: 10.1016/j.nurx.2006.01.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of morbidity and mortality among children and both clinical and experimental data reveal that the immature brain is unique in its response and vulnerability to TBI compared to the adult brain. Current therapies for pediatric TBI focus on physiologic derangements and are based primarily on adult data. However, it is now evident that secondary biochemical perturbations play an important role in the pathobiology of pediatric TBI and may provide specific therapeutic targets for the treatment of the head-injured child. In this review, we discuss three specific components of the secondary pathogenesis of pediatric TBI-- inflammation, oxidative injury, and iron-induced damage-- and potential therapeutic strategies associated with each. The inflammatory response in the immature brain is more robust than in the adult and characterized by greater disruption of the blood-brain barrier and elaboration of cytokines. The immature brain also has a muted response to oxidative stress compared to the adult due to inadequate expression of certain antioxidant molecules. In addition, the developing brain is less able to detoxify free iron after TBI-induced hemorrhage and cell death. These processes thus provide potential therapeutic targets that may be tailored to pediatric TBI, including anti-inflammatory agents such as minocycline, antioxidants such as glutathione peroxidase, and the iron chelator deferoxamine.
Collapse
Affiliation(s)
- Mathew B. Potts
- />Department of Neurological Surgery, University of California, 94143 San Francisco, California
| | - Seong-Eun Koh
- />Department of Neurological Surgery, University of California, 94143 San Francisco, California
| | - William D. Whetstone
- />Department of Medicine (Division of Emergency Medicine), University of California, 94143 San Francisco, California
| | - Breset A. Walker
- />Department of Medicine (Division of Emergency Medicine), University of California, 94143 San Francisco, California
| | - Tomoko Yoneyama
- />Department of Neurological Surgery, University of California, 94143 San Francisco, California
| | - Catherine P. Claus
- />Department of Neurological Surgery, University of California, 94143 San Francisco, California
| | - Hovhannes M. Manvelyan
- />Department of Neurological Surgery, University of California, 94143 San Francisco, California
| | | |
Collapse
|
29
|
Peluffo H, Acarin L, Arís A, González P, Villaverde A, Castellano B, González B. Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector. BMC Neurosci 2006; 7:35. [PMID: 16638118 PMCID: PMC1462999 DOI: 10.1186/1471-2202-7-35] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 04/25/2006] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Superoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD) after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn SOD or the control GFP transgenes 2 hours after intracortical N-methyl-D-aspartate (NMDA) administration, and daily functional evaluation was performed. Moreover, 3 days after, lesion volume, neuronal degeneration and nitrotyrosine immunoreactivity were evaluated. RESULTS Overexpression of Cu/Zn SOD transgene after NMDA administration showed improved functional outcome and a reduced lesion volume at 3 days post lesion. In secondary degenerative areas, increased neuronal survival as well as decreased numbers of degenerating neurons and nitrotyrosine immunoreactivity was seen. Interestingly, injection of the NLSCt vector carrying the control GFP transgene also displayed a significant neuroprotective effect but less pronounced. CONCLUSION When the appropriate levels of Cu/Zn SOD are expressed transiently after injury using the non-viral modular protein vector NLSCt a neuroprotective effect is seen. Thus recombinant modular protein vectors may be suitable for in vivo gene therapy, and Cu/Zn SOD should be considered as an interesting therapeutic transgene.
Collapse
Affiliation(s)
- Hugo Peluffo
- Unitat d'Histologia, Torre M5, Facultat de Medicina, Departament de Biologia Cel.lular, Fisiologia i Immunologia, and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Spain
| | - Laia Acarin
- Unitat d'Histologia, Torre M5, Facultat de Medicina, Departament de Biologia Cel.lular, Fisiologia i Immunologia, and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Spain
| | - Anna Arís
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Spain
| | - Pau González
- Unitat d'Histologia, Torre M5, Facultat de Medicina, Departament de Biologia Cel.lular, Fisiologia i Immunologia, and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Spain
| | - Antoni Villaverde
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Spain
| | - Bernardo Castellano
- Unitat d'Histologia, Torre M5, Facultat de Medicina, Departament de Biologia Cel.lular, Fisiologia i Immunologia, and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Spain
| | - Berta González
- Unitat d'Histologia, Torre M5, Facultat de Medicina, Departament de Biologia Cel.lular, Fisiologia i Immunologia, and Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Spain
| |
Collapse
|
30
|
Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee YS, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, González M, Chan PH. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 2006; 31:105-16. [PMID: 15953815 DOI: 10.1385/mn:31:1-3:105] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 11/11/2022]
Abstract
It has been demonstrated by numerous studies that apoptotic cell death pathways are implicated in ischemic cerebral injury in ischemia models in vivo. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides oxygen as a substrate for numerous enzymatic oxidation reactions and for mitochondrial oxidative phosphorylation to produce adenosine triphosphate. Oxygen radicals, the products of these biochemical and physiological reactions, are known to damage cellular lipids, proteins, and nucleic acids and to initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways could provide novel therapeutic strategies in clinical stroke.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dong A, Shen J, Krause M, Akiyama H, Hackett SF, Lai H, Campochiaro PA. Superoxide dismutase 1 protects retinal cells from oxidative damage. J Cell Physiol 2006; 208:516-26. [PMID: 16741961 DOI: 10.1002/jcp.20683] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bolstering the endogenous oxidative damage defense system is a good strategy for development of treatments to combat neurodegenerative diseases in which oxidative damage plays a role. A first step in such treatment development is to determine the role of various components of the defense system in cells that degenerate. In this study, we sought to determine the role of superoxide dismutase 1 (SOD1) in two models of oxidative damage-induced retinal degeneration. In one model, paraquat is injected into the vitreous cavity and then enters retinal cells and generates reactive oxygen species (ROS) that cause progressive retinal damage. Assessment of retinal function with serial electroretinograms (ERGs) showed that sod1 -/- mice were much more sensitive than sod1 +/+ mice to the damaging effects of paraquat, while sod1 +/- mice showed intermediate sensitivity. Compared to sod1 +/+ mice, sod1 -/- mice showed greater paraquat-induced oxidative damage and apoptosis. In the second model, mice were exposed to hyperoxia for several weeks, and sod1 -/- mice showed significantly greater reductions in ERG amplitudes than sod1 +/+ mice. In both of these models, transgenic mice carrying a sod1 transgene driven by a beta-actin promoter showed less oxidative stress-induced reduction in ERG amplitudes. These data demonstrate that SOD1 protects retinal cells against paraquat- and hyperoxia-induced oxidative damage and suggest that overexpression of SOD1 should be considered as one component of ocular gene therapy to prevent oxidative damage-induced retinal degeneration.
Collapse
Affiliation(s)
- Aling Dong
- Department of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9277, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Levin ED, Christopher NC, Crapo JD. Memory decline of aging reduced by extracellular superoxide dismutase overexpression. Behav Genet 2005; 35:447-53. [PMID: 15971025 DOI: 10.1007/s10519-004-1510-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 11/19/2004] [Indexed: 11/29/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) plays an important role in controlling oxidative stress as well as intercellular signaling. In the current study, we tested the effect of EC-SOD overexpression over the lifespan of a set of mice and their wild-type controls to determine the time scale over which EC-SOD overexpression might attenuate aging-induced memory impairment. Mice with overexpression of EC-SOD and wild-type controls were initially trained on the radial-arm maze as young adults (3-5 months) and then retrained during middle age (12-14 months) and retested in old age at 27 and 30 months. There was little EC-SOD effect during the young adult middle age periods. EC-SOD overexpression prevented the decline in choice accuracy when the mice were 27-30 months of age. The EC-SOD overexpressing mice maintained their performance, while the wild-type mice declined to naïve levels of performance by 30 months of age. Enhancement of EC-SOD activity appears to improve memory performance specifically in aging mice. EC-SOD mimetic treatment during the course of aging may hold promise for aging-induced cognitive impairment.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA.
| | | | | |
Collapse
|
33
|
Fujimura M, Tominaga T, Chan PH. Neuroprotective effect of an antioxidant in ischemic brain injury: involvement of neuronal apoptosis. Neurocrit Care 2005; 2:59-66. [PMID: 16174972 DOI: 10.1385/ncc:2:1:059] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The production of reactive oxygen species (ROS) has been implicated in reperfusion injury after cerebral ischemia, and antioxidant enzymes are believed to be among the major mechanisms by which the cells counteract the deleterious effect of ROS after cerebral ischemia. ROS also mediate the mitochondrial signaling pathway that may lead to apoptosis following cerebral ischemia. The recent development and availability of transgenic and knockout mutant rodents that either overexpress or are deficient in antioxidant genes have provided powerful tools for dissecting the molecular and cellular mechanisms of signaling pathways, direct oxidative damage, or both that are involved in ischemic brain injury. This article focuses on the contribution of ROS or an antioxidant system to the molecular pathway of postischemic apoptosis following transient focal cerebral ischemia by using transgenic mice that overexpress the cytosolic antioxidant copper/zinc superoxide dismutase.
Collapse
Affiliation(s)
- Miki Fujimura
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | |
Collapse
|
34
|
Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radic Biol Med 2005; 39:429-43. [PMID: 16043015 DOI: 10.1016/j.freeradbiomed.2005.05.003] [Citation(s) in RCA: 310] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 04/19/2005] [Accepted: 05/04/2005] [Indexed: 11/22/2022]
Abstract
Excessive production of free radicals is known to lead to cell injury in a variety of diseases, such as cerebral ischemia. In this review, we describe some of the numerous studies that have examined this oxidative stress and the efficiency of antioxidant strategies in focal cerebral ischemia. Besides using genetically modified mice, these strategies can be divided into three groups: (1) inhibition of free radical production, (2) scavenging of free radicals, and (3) increase of free radical degradation by using agents mimicking the enzymatic activity of endogenous antioxidants. Finally, the clinical trials that have tested or are currently testing the efficiency of antioxidants in patients suffering from stroke are reviewed. The results presented here lead us to consider that antioxidants are very promising drugs for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Isabelle Margaill
- Faculté des Sciences Pharmaceutiques et Biologiques, Laboratoire de Pharmacologie (UPRES EA 2510), Université René Descartes, 4 avenue de l'Observatoire, 75006 Paris, France.
| | | | | |
Collapse
|
35
|
Endogenous free radicals and antioxidants in the brain. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Peluffo H, Acarin L, Faiz M, Castellano B, Gonzalez B. Cu/Zn superoxide dismutase expression in the postnatal rat brain following an excitotoxic injury. J Neuroinflammation 2005; 2:12. [PMID: 15929797 PMCID: PMC1164430 DOI: 10.1186/1742-2094-2-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 06/01/2005] [Indexed: 01/11/2023] Open
Abstract
Background In the nervous system, as in other organs, Cu/Zn superoxide dismutase (Cu/Zn SOD) is a key antioxidant enzyme involved in superoxide detoxification in normal cellular metabolism and after cell injury. Although it has been suggested that immature brain has a different susceptibility to oxidative damage than adult brain, the distribution and cell-specific expression of this enzyme in immature brain and after postnatal brain damage has not been documented. Methods In this study, we used immunohistochemistry and western blot to analyze the expression of Cu/Zn SOD in intact immature rat brain and in immature rat brain after an NMDA-induced excitotoxic cortical injury performed at postnatal day 9. Double immunofluorescence labelling was used to identify Cu/Zn SOD-expressing cell populations. Results In intact immature brain, Cu/Zn SOD enzyme was widely expressed at high levels in neurons mainly located in cortical layers II, III and V, in the sub-plate, in the pyriform cortex, in the hippocampus, and in the hypothalamus. Glial fibrillary acidic protein-positive cells only showed Cu/Zn SOD expression in the glia limitans and in scattered cells of the ventricle walls. No expression was detected in interfascicular oligodendroglia, microglia or endothelial cells. Following excitotoxic damage, neuronal Cu/Zn SOD was rapidly downregulated (over 2–4 hours) at the injection site before neurodegeneration signals and TUNEL staining were observed. Later, from 1 day post-lesion onward, an upregulation of Cu/Zn SOD was found due to increased expression in astroglia. A further increase was observed at 3, 5 and 7 days that corresponded to extensive induction of Cu/Zn SOD in highly reactive astrocytes and in the astroglial scar. Conclusion We show here that, in the intact immature brain, the expression of Cu/Zn SOD was mainly found in neurons. When damage occurs, a strong and very rapid downregulation of this enzyme precedes neuronal degeneration, and is followed by an upregulation of Cu/Zn SOD in astroglial cells.
Collapse
Affiliation(s)
- Hugo Peluffo
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Laia Acarin
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Maryam Faiz
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Bernardo Castellano
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| | - Berta Gonzalez
- Unit of Histology, Department Of Cell Biology, Physiology, and Immunology; Autonomous University of Barcelona, 08193, Spain
- Institute of Neuroscience, Autonomous University of Barcelona, 08193, Spain
| |
Collapse
|
37
|
Park JW, Qi WN, Cai Y, Zelko I, Liu JQ, Chen LE, Urbaniak JR, Folz RJ. Skeletal muscle reperfusion injury is enhanced in extracellular superoxide dismutase knockout mouse. Am J Physiol Heart Circ Physiol 2005; 289:H181-7. [PMID: 15778274 DOI: 10.1152/ajpheart.00458.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigates the role of extracellular SOD (EC-SOD), the major extracellular antioxidant enzyme, in skeletal muscle ischemia and reperfusion (I/R) injury. Pedicled cremaster muscle flaps from homozygous EC-SOD knockout (EC-SOD-/-) and wild-type (WT) mice were subjected to 4.5-h ischemia and 90-min reperfusion followed by functional and molecular analyses. Our results revealed that EC-SOD-/- mice showed significantly profound I/R injury compared with WT littermates. In particular, there was a delayed and incomplete recovery of arterial spasm and blood flow during reperfusion, and more severe acute inflammatory reaction and muscle damage were noted in EC-SOD-/- mice. After 90-min reperfusion, intracellular SOD [copper- and zinc-containing SOD (CuZn-SOD) and manganese-containing (Mn-SOD)] mRNA levels decreased similarly in both groups. EC-SOD mRNA levels increased in WT mice, whereas EC-SOD mRNA was undetectable, as expected, in EC-SOD-/- mice. In both groups of animals, CuZn-SOD protein levels decreased and Mn-SOD protein levels remained unchanged. EC-SOD protein levels decreased in WT mice. Histological analysis showed diffuse edema and inflammation around muscle fibers, which was more pronounced in EC-SOD-/- mice. In conclusion, our data suggest that EC-SOD plays an important role in the protection from skeletal muscle I/R injury caused by excessive generation of reactive oxygen species.
Collapse
Affiliation(s)
- Jong Woong Park
- Department of Orthopaedic Surgery, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Patel M, Li QY, Chang LY, Crapo J, Liang LP. Activation of NADPH oxidase and extracellular superoxide production in seizure-induced hippocampal damage. J Neurochem 2005; 92:123-31. [PMID: 15606902 DOI: 10.1111/j.1471-4159.2004.02838.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We sought to determine whether the extracellular compartment contributed to seizure-induced superoxide (O2*-) production and to determine the role of the NADPH oxidase complex as a source of this O2*- production. The translocation of NADPH oxidase subunits (p47phox, p67phox and rac1) was assessed by immunoblot analysis and NADPH-driven O2*- production was measured using 2-(4-hydroxybenzyl)-6-(4-hydroxyphenyl)-8-benzyl-3,7-dihydroimidazo [1,2-alpha] pyrazin-3-one-enhanced chemiluminescence. Kainate-induced status epilepticus resulted in a time-dependent translocation of NADPH oxidase subunits (p47phox, p67phox and rac-1) from hippocampal cytosol to membrane fractions. Hippocampal membrane fractions from kainate-injected rats showed increased NADPH-driven and diphenylene iodonium-sensitive O2*- production in comparison to vehicle-treated rats. The time-course of kainate-induced NADPH oxidase activation coincided with microglial activation in the rat hippocampus. Finally, kainate-induced neuronal damage and membrane oxygen consumption were inhibited in mice overexpressing extracellular superoxide dismutase. These results suggest that seizure activity activates the membrane NADPH oxidase complex resulting in increased formation of O2*-.
Collapse
Affiliation(s)
- Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
39
|
Warner DS, Sheng H, Batinić-Haberle I. Oxidants, antioxidants and the ischemic brain. ACTA ACUST UNITED AC 2004; 207:3221-31. [PMID: 15299043 DOI: 10.1242/jeb.01022] [Citation(s) in RCA: 421] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite numerous defenses, the brain is vulnerable to oxidative stress resulting from ischemia/reperfusion. Excitotoxic stimulation of superoxide and nitric oxide production leads to formation of highly reactive products, including peroxynitrite and hydroxyl radical, which are capable of damaging lipids, proteins and DNA. Use of transgenic mutants and selective pharmacological antioxidants has greatly increased understanding of the complex interplay between substrate deprivation and ischemic outcome. Recent evidence that reactive oxygen/nitrogen species play a critical role in initiation of apoptosis, mitochondrial permeability transition and poly(ADP-ribose) polymerase activation provides additional mechanisms for oxidative damage and new targets for post-ischemic therapeutic intervention. Because oxidative stress involves multiple post-ischemic cascades leading to cell death, effective prevention/treatment of ischemic brain injury is likely to require intervention at multiple effect sites.
Collapse
Affiliation(s)
- David S Warner
- Department of Anesthesiology, The Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
40
|
Bémeur C, Ste-Marie L, Desjardins P, Butterworth RF, Vachon L, Montgomery J, Hazell AS. Expression of superoxide dismutase in hyperglycemic focal cerebral ischemia in the rat. Neurochem Int 2004; 45:1167-74. [PMID: 15380626 DOI: 10.1016/j.neuint.2004.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 06/21/2004] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
This study investigated the possibility that hyperglycemia induces early expression of various superoxide dismutases (SOD) and nitric oxide synthases (NOS) following focal cerebral ischemia in the rat. MnSOD, CuZnSOD, nNOS and eNOS mRNA and protein expression were examined 3 h after permanent middle cerebral artery occlusion under acute hyperglycemic or normoglycemic conditions. 2,3,5-triphenyltetrazolium chloride (TTC) treatment post-mortem revealed a significant area at risk of infarction following ischemia in hyperglycemic compared to normoglycemic rats. Although no changes in MnSOD, CuZnSOD, nNOS and eNOS mRNA expression were detected, Western blots of ischemic cortex revealed an increase in MnSOD and CuZnSOD protein expression in hyperglycemic compared to normoglycemic rats. Pre-treatment of hyperglycemic rats with the NOS inhibitors L-nitroarginine methyl ester (L-NAME) and 7-nitroindazole (7-NI) or dehydroascorbic acid (DHA), a superoxide scavenger, significantly reduced the TTC delineated zone. The hyperglycemia-induced post-transcriptional upregulation of MnSOD and CuZnSOD levels suggest a response to increased superoxide production which, in the presence of increased nitric oxide production, may play a major role in the increased risk of damage following hyperglycemic stroke.
Collapse
Affiliation(s)
- Chantal Bémeur
- Laboratoire de Neurobiologie, Centre de Recherche du CHUM, Hôpital St-Luc, A-466, 1058 St-Denis St, Montréal, Québec, Canada H2X 3J4.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ross AD, Banda NK, Muggli M, Arend WP. Enhancement of collagen-induced arthritis in mice genetically deficient in extracellular superoxide dismutase. ACTA ACUST UNITED AC 2004; 50:3702-11. [PMID: 15529385 DOI: 10.1002/art.20593] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To examine the influence of superoxide on the severity of collagen-induced arthritis (CIA) in mice. METHODS CIA was induced in DBA/1J mice lacking the extracellular superoxide dismutase (EC-SOD) gene (knockout [KO]) and in normal DBA/1J mice (wild-type [WT]). RESULTS The clinical disease activity score was significantly higher in EC-SOD-KO mice than in WT mice between days 36 and 53, and the histologic scores for joint damage on day 53 increased 2-fold or more in the EC-SOD-KO mice. There were no significant differences between the 2 groups of mice in proliferation indices of spleen or lymph node cells in vitro after stimulation with type II collagen. Although both IgG1 and IgG2a anticollagen antibody levels increased in both groups of mice between days 21 and 53, there were no significant differences between the 2 groups. Lipopolysaccharide-stimulated spleen cells from EC-SOD-KO mice produced greater levels of tumor necrosis factor alpha (TNFalpha) over 48 hours in culture compared with cells from WT mice. Increased steady-state levels of messenger RNA (mRNA) for interferon-gamma (IFNgamma), TNFalpha, and interleukin-1beta (IL-1beta), and lower levels of IL-1 receptor antagonist (IL-1Ra) mRNA were present in the joints of the EC-SOD-KO mice compared with the WT mice. CONCLUSION The absence of EC-SOD leads to more severe CIA, which may be accompanied by enhanced production of the proinflammatory cytokines IFNgamma, TNFalpha, and IL-1beta, and decreased production of the antiinflammatory cytokine IL-1Ra in the joints.
Collapse
Affiliation(s)
- Aron D Ross
- National Jewish Medical and Research Center, Denver, Colorado, USA
| | | | | | | |
Collapse
|
42
|
Bowler RP, Nicks M, Tran K, Tanner G, Chang LY, Young SK, Worthen GS. Extracellular superoxide dismutase attenuates lipopolysaccharide-induced neutrophilic inflammation. Am J Respir Cell Mol Biol 2004; 31:432-9. [PMID: 15256385 DOI: 10.1165/rcmb.2004-0057oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Extracellular superoxide dismutase (EC-SOD) is an abundant antioxidant in the lung and vascular walls. Previous studies have shown that EC-SOD attenuates lung injury in a diverse variety of lung injury models. In this study, we examined the role of EC-SOD in mediating lipopolysaccharide (LPS)-induced lung inflammation. We found that LPS-induced neutrophilic lung inflammation was exaggerated in EC-SOD-deficient mice and diminished in mice that overexpressed EC-SOD specifically in the lung. Similar patterns were seen for bronchoalveolar lavage cytokines, such as tumor necrosis factor-alpha, keratinocyte-derived chemokines, and macrophage inflammatory protein-2 as well as expression of lung intercellular adhesion molecule-1, vascular cell adhesion molecule-1, endothelial cell selectin, and platelet selectin. In a macrophage cell line, EC-SOD inhibited LPS-induced macrophage cytokine release, but did not alter expression of intercellular adhesion molecules in endothelial cells. These results suggest that EC-SOD plays an important role in attenuating the inflammatory response in the lung most likely by decreasing release of proinflammatory cytokines from phagocytes.
Collapse
Affiliation(s)
- Russell P Bowler
- National Jewish Medical and Research Center, K736a, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Dhodda VK, Sailor KA, Bowen KK, Vemuganti R. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem 2004; 89:73-89. [PMID: 15030391 DOI: 10.1111/j.1471-4159.2004.02316.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In brain, a brief ischemic episode induces protection against a subsequent severe ischemic insult. This phenomenon is known as preconditioning-induced neural ischemic tolerance. An understanding of the molecular mechanisms leading to preconditioning helps in identifying potential therapeutic targets for preventing the post-stroke brain damage. The present study conducted the genomic and proteomic analysis of adult rat brain as a function of time following preconditioning induced by a 10-min transient middle cerebral artery (MCA) occlusion. GeneChip analysis showed induction of 40 putative neuroprotective transcripts between 3 to 72 h after preconditioning. These included heat-shock proteins, heme oxygenases, metallothioneins, signal transduction mediators, transcription factors, ion channels and apoptosis/plasticity-related transcripts. Real-time PCR confirmed the GeneChip data for the transcripts up-regulated after preconditioning. Two-dimensional gel electrophoresis combined with MALDI-TOF analysis showed increased expression of HSP70, HSP27, HSP90, guanylyl cyclase, muskelin, platelet activating factor receptor and beta-actin at 24 h after preconditioning. HSP70 protein induction after preconditioning was localized in the cortical pyramidal neurons. The infarct volume induced by focal ischemia (1-h MCA occlusion) was significantly smaller (by 38 +/- 7%, p < 0.05) in rats subjected to preconditioning 3 days before the insult. Preconditioning also prevented several gene expression changes induced by focal ischemia.
Collapse
Affiliation(s)
- Vinay K Dhodda
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA.
| | | | | | | |
Collapse
|
44
|
Fukui S, Nawashiro H, Ookawara T, Suzuki K, Otani N, Ooigawa H, Shima K. Extracellular superoxide dismutase following cerebral ischemia in mice. ACTA NEUROCHIRURGICA. SUPPLEMENT 2004; 86:83-5. [PMID: 14753411 DOI: 10.1007/978-3-7091-0651-8_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
We describe the changes in extracellular superoxide dismutase (EC-SOD) following cerebral ischemia in mice. Mice were subjected to transient forebrain ischemia and reperfusion. The measurements of EC-SOD using ELISA showed increased brain EC-SOD after 24 h of reperfusion. The immunohistochemical examination showed that EC-SOD immunoreactivity in cortical and striatal capillary wall was conspicuous after 3 h. EC-SOD immunoreactivity was also noted in cortical neurons after 24 h. Northern blot analysis showed an increased EC-SOD mRNA expression in the brain after 24 h. In situ hybridization study demonstrated no mRNA expression of EC-SOD following ischemia and reperfusion in the capillary wall. These findings suggest that serum EC-SOD might accumulate on brain endothelial cells, while cortical neurons produce EC-SOD themselves after cerebral ischemia with reperfusion.
Collapse
Affiliation(s)
- S Fukui
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Horiuchi M, Tsutsui M, Tasaki H, Morishita T, Suda O, Nakata S, Nihei SI, Miyamoto M, Kouzuma R, Okazaki M, Yanagihara N, Adachi T, Nakashima Y. Upregulation of Vascular Extracellular Superoxide Dismutase in Patients With Acute Coronary Syndromes. Arterioscler Thromb Vasc Biol 2004; 24:106-11. [PMID: 14592844 DOI: 10.1161/01.atv.0000104240.56460.ab] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We examined the vascular expression levels of extracellular superoxide dismutase (EC-SOD), a major antioxidant enzyme in the cardiovascular system, in patients with acute coronary syndromes. METHODS AND RESULTS Twenty-one consecutive patients with acute myocardial infarction (AMI), 14 patients with unstable angina, 11 patients with stable angina, and 20 control subjects were studied. The levels of vascular EC-SOD expression were assessed by the difference in plasma EC-SOD concentrations before and after intravenous heparan injection. In the patients with AMI, vascular EC-SOD expression (ng/mL) was significantly higher on day 1 after the onset of AMI (148+/-10) as compared with the control subjects (116+/-6, P<0.05). The vascular EC-SOD expression returned to the normal range on day 7 (104+/-8), and that level persisted thereafter. The vascular EC-SOD expression was also significantly higher in the patients with unstable angina (160+/-13) than in those with stable angina (122+/-10) or in the controls (116+/-6) (P<0.05 each). Moreover, in the patients with AMI, higher levels of vascular EC-SOD expression on day 1 were significantly associated with smaller myocardial infarct size (P<0.05). CONCLUSIONS This is the first clinical demonstration showing that vascular EC-SOD may be upregulated in acute coronary syndromes in humans in vivo. EC-SOD may play an important protective role against increased oxidative stress during acute ischemic coronary events.
Collapse
Affiliation(s)
- Masataka Horiuchi
- Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, Narasimhan P, Maier CM, Chan PH. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 2004; 1:17-25. [PMID: 15717004 PMCID: PMC534909 DOI: 10.1602/neurorx.1.1.17] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cumulative evidence suggests that apoptosis plays a pivotal role in cell death in vitro after hypoxia. Apoptotic cell death pathways have also been implicated in ischemic cerebral injury in in vivo ischemia models. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides a substrate for numerous enzymatic oxidation reactions. Oxygen radicals damage cellular lipids, proteins and nucleic acids, and initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways may provide novel therapeutic strategies in clinical stroke.
Collapse
Affiliation(s)
- Taku Sugawara
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Reactive oxygen species have been implicated in brain injury after cerebral ischemia. These oxidants can damage proteins, lipids, and DNA, and lead to cell injury and necrosis. Oxidants are also initiators in intracellular cell death signaling pathways that may lead to apoptosis. The possible targets of this redox signaling include mitochondria, death membrane receptors, and DNA repair enzymes. Genetic manipulation of intrinsic antioxidants and the factors in the signaling pathways has provided substantial progress in understanding the mechanisms in cell death signaling pathways and involvement of oxygen radicals in ischemic brain injury. Future studies of these pathways may provide novel therapeutic strategies in clinical stroke.
Collapse
Affiliation(s)
- Taku Sugawara
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
48
|
Abstract
Accumulated evidence has shown that reactive oxygen species (ROS) are important mediators of cell signaling events such as inflammatory reactions (superoxide) and the maintenance of vascular tone (nitric oxide). However, overproduction of ROS such as superoxide has been associated with the pathogenesis of a variety of diseases including cardiovascular diseases, neurological disorders, and pulmonary diseases. Antioxidant enzymes are, in part, responsible for maintaining low levels of these oxygen metabolites in tissues and may play key roles in controlling or preventing these conditions. One key antioxidant enzyme implicated in the regulation of ROS-mediated tissue damage is extracellular superoxide dismutase (EC-SOD). EC-SOD is found in the extracellular matrix of tissues and is ideally situated to prevent cell and tissue damage initiated by extracellularly produced ROS. In addition, EC-SOD is likely to play an important role in mediating nitric oxide-induced signaling events, since the reaction of superoxide and nitric oxide can interfere with nitric oxide signaling. This review will discuss the regulation of EC-SOD and its role in a variety of oxidant-mediated diseases.
Collapse
Affiliation(s)
- Cheryl L Fattman
- Medical Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
49
|
Yu F, Sugawara T, Chan PH. Treatment with dihydroethidium reduces infarct size after transient focal cerebral ischemia in mice. Brain Res 2003; 978:223-7. [PMID: 12834917 DOI: 10.1016/s0006-8993(03)02775-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transient focal ischemia model with C57Bl/6 mice was used to investigate whether dihydroethidium is neuroprotective. Different doses (25, 50, 100 mg/kg body weight) were used for pretreatment and the lowest effective dose was used for delayed treatment 1 and 2 h after reperfusion. Our results demonstrate that all the doses used for treatment reduced infarct volume. We conclude that dihydroethidium is neuroprotective by reducing superoxide in mice after stroke.
Collapse
Affiliation(s)
- Fengshan Yu
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS #P304, Stanford, CA 94305-5487, USA
| | | | | |
Collapse
|
50
|
Mollace V, Iannone M, Muscoli C, Palma E, Granato T, Modesti A, Nisticò R, Rotiroti D, Salvemini D. The protective effect of M40401, a superoxide dismutase mimetic, on post-ischemic brain damage in Mongolian gerbils. BMC Pharmacol 2003; 3:8. [PMID: 12809567 PMCID: PMC165580 DOI: 10.1186/1471-2210-3-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 06/16/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Overproduction of free radical species has been shown to occur in brain tissues after ischemia-reperfusion injury. However, most of free radical scavengers known to antagonize oxidative damage (e.g. superoxide dismutase, catalase), are unable to protect against ischemia-reperfusion brain injury when given in vivo, an effect mainly due to their difficulty to gain access to brain tissues. Here we studied the effect of a low molecular weight superoxide dismutase mimetic (M40401) in brain damage subsequent to ischemia-reperfusion injury in Mongolian gerbils. RESULTS In animals undergoing ischemia-reperfusion injury, neuropathological and ultrastructural changes were monitored for 1-7 days either in the presence or in the absence of M40401 after bilateral common carotid artery occlusion (BCCO). Administration of M40401 (1-40 mg/kg, given i.p. 1 h after BCCO) protected against post-ischemic, ultrastructural and neuropathological changes occurring within the hippocampal CA1 area. The protective effect of M40401 was associated with a significant reduction of the levels of malondialdehyde (MDA; a marker of lipid peroxidation) in ischemic brain tissues after ischemia-reperfusion. CONCLUSION Taken together, these results demonstrate that M40401 provides protective effects when given early after the induction of ischemia-reperfusion of brain tissues and suggest the possible use of such compounds in the treatment of neurological dysfunction subsequent to cerebral flow disturbances.
Collapse
Affiliation(s)
- Vincenzo Mollace
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
| | - Michelangelo Iannone
- Institute of Neurological Science ISN – Section of Pharmacology, CNR, Roccelletta di Borgia, Catanzaro, Italy
| | - Carolina Muscoli
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
- Metaphore Pharmaceuticals, 1910 Innerbelt Business Center Dr, St Louis MO 63114, USA
| | - Ernesto Palma
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
| | - Teresa Granato
- Institute of Neurological Science ISN – Section of Pharmacology, CNR, Roccelletta di Borgia, Catanzaro, Italy
| | - Andrea Modesti
- Department of Experimental Medicine and Biochemical Science, University of Rome "Tor Vergata", Rome 00161, Italy
| | - Robert Nisticò
- Faculty of Pharmacy, University of Calabria – Arcavacata di Rende (CS), Italy
| | - Domenicantonio Rotiroti
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
| | - Daniela Salvemini
- Metaphore Pharmaceuticals, 1910 Innerbelt Business Center Dr, St Louis MO 63114, USA
| |
Collapse
|