1
|
Chatziefstathiou A, Canaslan S, Kanata E, Vekrellis K, Constantinides VC, Paraskevas GP, Kapaki E, Schmitz M, Zerr I, Xanthopoulos K, Sklaviadis T, Dafou D. SIMOA Diagnostics on Alzheimer's Disease and Frontotemporal Dementia. Biomedicines 2024; 12:1253. [PMID: 38927460 PMCID: PMC11201638 DOI: 10.3390/biomedicines12061253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Accurate diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) represents a health issue due to the absence of disease traits. We assessed the performance of a SIMOA panel in cerebrospinal fluid (CSF) from 43 AD and 33 FTD patients with 60 matching Control subjects in combination with demographic-clinical characteristics. METHODS 136 subjects (AD: n = 43, FTD: n = 33, Controls: n = 60) participated. Single-molecule array (SIMOA), glial fibrillary acidic protein (GFAP), neurofilament light (NfL), TAU, and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) in CSF were analyzed with a multiplex neuro 4plex kit. Receiver operating characteristic (ROC) curve analysis compared area under the curve (AUC), while the principal of the sparse partial least squares discriminant analysis (sPLS-DA) was used with the intent to strengthen the identification of confident disease clusters. RESULTS CSF exhibited increased levels of all SIMOA biomarkers in AD compared to Controls (AUCs: 0.71, 0.86, 0.92, and 0.94, respectively). Similar patterns were observed in FTD with NfL, TAU, and UCH-L1 (AUCs: 0.85, 0.72, and 0.91). sPLS-DA revealed two components explaining 19% and 9% of dataset variation. CONCLUSIONS CSF data provide high diagnostic accuracy among AD, FTD, and Control discrimination. Subgroups of demographic-clinical characteristics and biomarker concentration highlighted the potential of combining different kinds of data for successful and more efficient cohort clustering.
Collapse
Affiliation(s)
- Athanasia Chatziefstathiou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Sezgi Canaslan
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medicine Göttingen, 37075 Göttingen, Germany; (S.C.); (M.S.); (I.Z.)
| | - Eirini Kanata
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| | - Kostas Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Vasilios C. Constantinides
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (V.C.C.); (E.K.)
| | - George P. Paraskevas
- Second Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” University General Hospital, 12462 Athens, Greece;
| | - Elisabeth Kapaki
- Neurochemistry and Biological Markers Unit, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (V.C.C.); (E.K.)
| | - Matthias Schmitz
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medicine Göttingen, 37075 Göttingen, Germany; (S.C.); (M.S.); (I.Z.)
| | - Inga Zerr
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medicine Göttingen, 37075 Göttingen, Germany; (S.C.); (M.S.); (I.Z.)
| | - Konstantinos Xanthopoulos
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| | - Theodoros Sklaviadis
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Pradeepkiran JA, Baig J, Islam MA, Kshirsagar S, Reddy PH. Amyloid-β and Phosphorylated Tau are the Key Biomarkers and Predictors of Alzheimer's Disease. Aging Dis 2024; 16:658-682. [PMID: 38739937 PMCID: PMC11964437 DOI: 10.14336/ad.2024.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Alzheimer's disease (AD) is a age-related neurodegenerative disease and is a major public health concern both in Texas, US and Worldwide. This neurodegenerative disease is mainly characterized by amyloid-beta (Aβ) and phosphorylated Tau (p-Tau) accumulation in the brains of patients with AD and increasing evidence suggests that these are key biomarkers in AD. Both Aβ and p-tau can be detected through various imaging techniques (such as positron emission tomography, PET) and cerebrospinal fluid (CSF) analysis. The presence of these biomarkers in individuals, who are asymptomatic or have mild cognitive impairment can indicate an increased risk of developing AD in the future. Furthermore, the combination of Aβ and p-tau biomarkers is often used for more accurate diagnosis and prediction of AD progression. Along with AD being a neurodegenerative disease, it is associated with other chronic conditions such as cardiovascular disease, obesity, depression, and diabetes because studies have shown that these comorbid conditions make people more vulnerable to AD. In the first part of this review, we discuss that biofluid-based biomarkers such as Aβ, p-Tau in cerebrospinal fluid (CSF) and Aβ & p-Tau in plasma could be used as an alternative sensitive technique to diagnose AD. In the second part, we discuss the underlying molecular mechanisms of chronic conditions linked with AD and how they affect the patients in clinical care.
Collapse
Affiliation(s)
| | - Javaria Baig
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Md Ariful Islam
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Public Health Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Lantero-Rodriguez J, Salvadó G, Snellman A, Montoliu-Gaya L, Brum WS, Benedet AL, Mattsson-Carlgren N, Tideman P, Janelidze S, Palmqvist S, Stomrud E, Ashton NJ, Zetterberg H, Blennow K, Hansson O. Plasma N-terminal containing tau fragments (NTA-tau): a biomarker of tau deposition in Alzheimer's Disease. Mol Neurodegener 2024; 19:19. [PMID: 38365825 PMCID: PMC10874032 DOI: 10.1186/s13024-024-00707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Novel phosphorylated-tau (p-tau) blood biomarkers (e.g., p-tau181, p-tau217 or p-tau231), are highly specific for Alzheimer's disease (AD), and can track amyloid-β (Aβ) and tau pathology. However, because these biomarkers are strongly associated with the emergence of Aβ pathology, it is difficult to determine the contribution of insoluble tau aggregates to the plasma p-tau signal in blood. Therefore, there remains a need for a biomarker capable of specifically tracking insoluble tau accumulation in brain. METHODS NTA is a novel ultrasensitive assay targeting N-terminal containing tau fragments (NTA-tau) in cerebrospinal fluid (CSF) and plasma, which is elevated in AD. Using two well-characterized research cohorts (BioFINDER-2, n = 1,294, and BioFINDER-1, n = 932), we investigated the association between plasma NTA-tau levels and disease progression in AD, including tau accumulation, brain atrophy and cognitive decline. RESULTS We demonstrate that plasma NTA-tau increases across the AD continuum¸ especially during late stages, and displays a moderate-to-strong association with tau-PET (β = 0.54, p < 0.001) in Aβ-positive participants, while weak with Aβ-PET (β = 0.28, p < 0.001). Unlike plasma p-tau181, GFAP, NfL and t-tau, tau pathology determined with tau-PET is the most prominent contributor to NTA-tau variance (52.5% of total R2), while having very low contribution from Aβ pathology measured with CSF Aβ42/40 (4.3%). High baseline NTA-tau levels are predictive of tau-PET accumulation (R2 = 0.27), steeper atrophy (R2 ≥ 0.18) and steeper cognitive decline (R2 ≥ 0.27) in participants within the AD continuum. Plasma NTA-tau levels significantly increase over time in Aβ positive cognitively unimpaired (βstd = 0.16) and impaired (βstd = 0.18) at baseline compared to their Aβ negative counterparts. Finally, longitudinal increases in plasma NTA-tau levels were associated with steeper longitudinal decreases in cortical thickness (R2 = 0.21) and cognition (R2 = 0.20). CONCLUSION Our results indicate that plasma NTA-tau levels increase across the AD continuum, especially during mid-to-late AD stages, and it is closely associated with in vivo tau tangle deposition in AD and its downstream effects. Moreover, this novel biomarker has potential as a cost-effective and easily accessible tool for monitoring disease progression and cognitive decline in clinical settings, and as an outcome measure in clinical trials which also need to assess the downstream effects of successful Aβ removal.
Collapse
Affiliation(s)
- Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden.
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Turku PET Centre, University of Turku, Turku University Hospital, Turku, Finland
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, House V3/SU, 43180, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden.
| |
Collapse
|
4
|
Gobom J, Brinkmalm A, Brinkmalm G, Blennow K, Zetterberg H. Alzheimer's Disease Biomarker Analysis Using Targeted Mass Spectrometry. Mol Cell Proteomics 2024; 23:100721. [PMID: 38246483 PMCID: PMC10926085 DOI: 10.1016/j.mcpro.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.
Collapse
Affiliation(s)
- Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
5
|
Papaliagkas V, Kalinderi K, Vareltzis P, Moraitou D, Papamitsou T, Chatzidimitriou M. CSF Biomarkers in the Early Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24108976. [PMID: 37240322 DOI: 10.3390/ijms24108976] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a rapidly growing disease that affects millions of people worldwide, therefore there is an urgent need for its early diagnosis and treatment. A huge amount of research studies are performed on possible accurate and reliable diagnostic biomarkers of AD. Due to its direct contact with extracellular space of the brain, cerebrospinal fluid (CSF) is the most useful biological fluid reflecting molecular events in the brain. Proteins and molecules that reflect the pathogenesis of the disease, e.g., neurodegeneration, accumulation of Abeta, hyperphosphorylation of tau protein and apoptosis may be used as biomarkers. The aim of the current manuscript is to present the most commonly used CSF biomarkers for AD as well as novel biomarkers. Three CSF biomarkers, namely total tau, phospho-tau and Abeta42, are believed to have the highest diagnostic accuracy for early AD diagnosis and the ability to predict AD development in mild cognitive impairment (MCI) patients. Moreover, other biomarkers such as soluble amyloid precursor protein (APP), apoptotic proteins, secretases and inflammatory and oxidation markers are believed to have increased future prospects.
Collapse
Affiliation(s)
- Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Alexandrion University Campus, 57400 Sindos, Greece
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Patroklos Vareltzis
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Moraitou
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Papamitsou
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Alexandrion University Campus, 57400 Sindos, Greece
| |
Collapse
|
6
|
Shah AJ, Mohi-Ud-Din R, Sabreen S, Wani TU, Jan R, Javed MN, Mir PA, Mir RH, Masoodi MH. Clinical Biomarkers and Novel Drug Targets to Cut Gordian Knots of Alzheimer's Disease. Curr Mol Pharmacol 2023; 16:254-279. [PMID: 36056834 DOI: 10.2174/1874467215666220903095837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), the primary cause of dementia, escalating worldwide, has no proper diagnosis or effective treatment. Neuronal cell death and impairment of cognitive abilities, possibly triggered by several brain mechanisms, are the most significant characteristic of this disorder. METHODS A multitude of pharmacological targets have been identified for potential drug design against AD. Although many advances in treatment strategies have been made to correct various abnormalities, these often exhibit limited clinical significance because this disease aggressively progresses into different regions of the brain, causing severe deterioration. RESULTS These biomarkers can be game-changers for early detection and timely monitoring of such disorders. CONCLUSION This review covers clinically significant biomarkers of AD for precise and early monitoring of risk factors and stages of this disease, the potential site of action and novel targets for drugs, and pharmacological approaches to clinical management.
Collapse
Affiliation(s)
- Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar- 190011, Jammu and Kashmir, India
| | - Saba Sabreen
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Taha Umair Wani
- Department of Pharmaceutical Sciences, Pharmaceutics Lab, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir India
| | - Rafia Jan
- Defence Research and Development Organization (DRDO), Hospital, Khonmoh, Srinagar 190001, Jammu & Kashmir, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, KR Mangalam University, Gurugram, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Mohali, Punjab 140307, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| |
Collapse
|
7
|
Gobom J, Benedet AL, Mattsson-Carlgren N, Montoliu-Gaya L, Schultz N, Ashton NJ, Janelidze S, Servaes S, Sauer M, Pascoal TA, Karikari TK, Lantero-Rodriguez J, Brinkmalm G, Zetterberg H, Hansson O, Rosa-Neto P, Blennow K. Antibody-free measurement of cerebrospinal fluid tau phosphorylation across the Alzheimer's disease continuum. Mol Neurodegener 2022; 17:81. [PMID: 36510321 PMCID: PMC9743664 DOI: 10.1186/s13024-022-00586-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alzheimer's disease is characterized by an abnormal increase of phosphorylated tau (pTau) species in the CSF. It has been suggested that emergence of different pTau forms may parallel disease progression. Therefore, targeting multiple specific pTau forms may allow for a deeper understanding of disease evolution and underlying pathophysiology. Current immunoassays measure pTau epitopes separately and may capture phosphorylated tau fragments of different length depending on the non-pTau antibody used in the assay sandwich pair, which bias the measurement. METHODS We developed the first antibody-free mass spectrometric method to simultaneously measure multiple phosphorylated epitopes in CSF tau: pT181, pS199, pS202, pT205, pT217, pT231, and pS396. The method was first evaluated in biochemically defined Alzheimer's disease and control CSF samples (n = 38). All seven pTau epitopes clearly separated Alzheimer's disease from non-AD (p < 0.001, AUC = 0.84-0.98). We proceeded with clinical validation of the method in the TRIAD (n = 165) and BioFINDER-2 cohorts (n = 563), consisting of patients across the full Alzheimer's disease continuum, including also young controls (< 40 years), as well as patients with frontotemporal dementia and other neurodegenerative disorders. RESULTS Increased levels of all phosphorylated epitopes were found in Alzheimer's disease dementia and Aβ positron emission tomography-positive patients with mild cognitive impairment compared with Aβ-negative controls. For Alzheimer's disease dementia compared with Aβ-negative controls, the best biomarker performance was observed for pT231 (TRIAD: AUC = 98.73%, fold change = 7.64; BioFINDER-2: AUC = 91.89%, fold change = 10.65), pT217 (TRIAD: AUC = 99.71%, fold change = 6.33; BioFINDER-2: AUC = 98.12%, fold change = 8.83) and pT205 (TRIAD: AUC = 99.07%, fold change = 5.34; BioFINDER-2: AUC = 93.51%, fold change = 3.92). These phospho-epitopes also discriminated between Aβ-positive and Aβ-negative cognitively unimpaired individuals: pT217 (TRIAD: AUC = 83.26, fold change = 2.39; BioFINDER-2: AUC = 91.05%, fold change = 3.29), pT231 (TRIAD: AUC = 86.25, fold change = 3.80; BioFINDER-2: AUC = 78.69%, fold change = 3.65) and pT205 (TRIAD: AUC = 71.58, fold change = 1.51; BioFINDER-2: AUC = 71.11%, fold change = 1.70). CONCLUSIONS While an increase was found for all pTau species examined, the highest fold change in Alzheimer's disease was found for pT231, pT217 and pT205. Simultaneous antibody-free measurement of pTau epitopes by mass spectrometry avoids possible bias caused by differences in antibody affinity for modified or processed forms of tau, provides insights into tau pathophysiology and may facilitate clinical trials on tau-based drug candidates.
Collapse
Affiliation(s)
- Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Andréa L. Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nina Schultz
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Mathias Sauer
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tharick A. Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Thomas K. Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund University, Lund, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
8
|
Gong X, Zhang H, Liu X, Liu Y, Liu J, Fapohunda FO, Lü P, Wang K, Tang M. Is liquid biopsy mature enough for the diagnosis of Alzheimer's disease? Front Aging Neurosci 2022; 14:977999. [PMID: 35992602 PMCID: PMC9389010 DOI: 10.3389/fnagi.2022.977999] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
Abstract
The preclinical diagnosis and clinical practice for Alzheimer's disease (AD) based on liquid biopsy have made great progress in recent years. As liquid biopsy is a fast, low-cost, and easy way to get the phase of AD, continual efforts from intense multidisciplinary studies have been made to move the research tools to routine clinical diagnostics. On one hand, technological breakthroughs have brought new detection methods to the outputs of liquid biopsy to stratify AD cases, resulting in higher accuracy and efficiency of diagnosis. On the other hand, diversiform biofluid biomarkers derived from cerebrospinal fluid (CSF), blood, urine, Saliva, and exosome were screened out and biologically verified. As a result, more detailed knowledge about the molecular pathogenesis of AD was discovered and elucidated. However, to date, how to weigh the reports derived from liquid biopsy for preclinical AD diagnosis is an ongoing question. In this review, we briefly introduce liquid biopsy and the role it plays in research and clinical practice. Then, we summarize the established fluid-based assays of the current state for AD diagnostic such as ELISA, single-molecule array (Simoa), Immunoprecipitation-Mass Spectrometry (IP-MS), liquid chromatography-MS, immunomagnetic reduction (IMR), multimer detection system (MDS). In addition, we give an updated list of fluid biomarkers in the AD research field. Lastly, the current outstanding challenges and the feasibility to use a stand-alone biomarker in the joint diagnostic strategy are discussed.
Collapse
Affiliation(s)
- Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Kun Wang
- Children’s Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Ashton NJ, Benedet AL, Pascoal TA, Karikari TK, Lantero-Rodriguez J, Brum WS, Mathotaarachchi S, Therriault J, Savard M, Chamoun M, Stoops E, Francois C, Vanmechelen E, Gauthier S, Zimmer ER, Zetterberg H, Blennow K, Rosa-Neto P. Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer's disease. EBioMedicine 2022; 76:103836. [PMID: 35158308 PMCID: PMC8850760 DOI: 10.1016/j.ebiom.2022.103836] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Phosphorylated tau (p-tau) epitopes in cerebrospinal fluid (CSF) are accurate biomarkers for a pathological and clinical diagnosis of Alzheimer's disease (AD) and are seen to be increased in preclinical stage of the disease. However, it is unknown if these increases transpire earlier, prior to amyloid-beta (Aβ) positivity as determined by position emission tomography (PET), and if an ordinal sequence of p-tau epitopes occurs at this incipient phase METHODS: We measured CSF concentrations of p-tau181, p-tau217 and p-tau231 in 171 participants across the AD continuum who had undergone Aβ ([18F]AZD4694) and tau ([18F]MK6240) position emission tomography (PET) and clinical assessment FINDINGS: All CSF p-tau biomarkers were accurate predictors of cognitive impairment but CSF p-tau217 demonstrated the largest fold-changes in AD patients in comparison to non-AD dementias and cognitively unimpaired individuals. CSF p-tau231 and p-tau217 predicted Aβ and tau to a similar degree but p-tau231 attained abnormal levels first. P-tau231 was sensitive to the earliest changes of Aβ in the medial orbitofrontal, precuneus and posterior cingulate before global Aβ PET positivity was reached INTERPRETATION: We demonstrate that CSF p-tau231 increases early in development of AD pathology and is a principal candidate for detecting incipient Aβ pathology for therapeutic trial application FUNDING: Canadian Institutes of Health Research (CIHR), Canadian Consortium of Neurodegeneration and Aging, Weston Brain Institute, Brain Canada Foundation, the Fonds de Recherche du Québec.
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada; Department of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, Ghent 9052, Belgium
| | - Cindy Francois
- ADx NeuroSciences, Technologiepark 94, Ghent 9052, Belgium
| | | | - Serge Gauthier
- McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre intégré universitaire de santé et de services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada; Department of Neurology and Neurosurgery, Director of the McGill University Research Centre for Studies in Aging, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Director of the McGill University Research Centre for Studies in Aging, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, Montreal, QC, Canada.
| |
Collapse
|
10
|
Lantero‐Rodriguez J, Snellman A, Benedet AL, Milà‐Alomà M, Camporesi E, Montoliu‐Gaya L, Ashton NJ, Vrillon A, Karikari TK, Gispert JD, Salvadó G, Shekari M, Toomey CE, Lashley TL, Zetterberg H, Suárez‐Calvet M, Brinkmalm G, Rosa Neto P, Blennow K. P-tau235: a novel biomarker for staging preclinical Alzheimer's disease. EMBO Mol Med 2021; 13:e15098. [PMID: 34725927 PMCID: PMC8649868 DOI: 10.15252/emmm.202115098] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by a long preclinical phase. Although phosphorylated tau (p-tau) species such as p-tau217 and p-tau231 provide accurate detection of early pathological changes, other biomarkers capable of staging disease progression during preclinical AD are still needed. Combining exploratory and targeted mass spectrometry methods in neuropathologically confirmed brain tissue, we observed that p-tau235 is a prominent feature of AD pathology. In addition, p-tau235 seemed to be preceded by p-tau231, in what appeared to be a sequential phosphorylation event. To exploit its biomarker potential in cerebrospinal fluid (CSF), we developed and validated a new p-tau235 Simoa assay. Using three clinical cohorts, we demonstrated that (i) CSF p-235 increases early in AD continuum, and (ii) changes in CSF p-tau235 and p-tau231 levels during preclinical AD are consistent with the sequential phosphorylation evidence in AD brain. In conclusion, CSF p-tau235 appears to be not only a highly specific biomarker of AD but also a promising staging biomarker for the preclinical phase. Thus, it could prove useful tracking disease progression and help enriching clinical trial recruitment.
Collapse
|
11
|
Korecka M, Shaw LM. Mass spectrometry-based methods for robust measurement of Alzheimer's disease biomarkers in biological fluids. J Neurochem 2021; 159:211-233. [PMID: 34244999 PMCID: PMC9057379 DOI: 10.1111/jnc.15465] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting 60%-70% of people afflicted with this disease. Accurate antemortem diagnosis is urgently needed for early detection of AD to enable reliable estimation of prognosis, intervention, and monitoring of the disease. The National Institute on Aging/Alzheimer's Association sponsored the 'Research Framework: towards a biological definition of AD', which recommends using different biomarkers in living persons for a biomarker-based definition of AD regardless of clinical status. Fluid biomarkers represent one of key groups of them. Since cerebrospinal fluid (CSF) is in direct contact with brain and many proteins present in the brain can be detected in CSF, this fluid has been regarded as the best biofluid in which to measure AD biomarkers. Recently, technological advancements in protein detection made possible the effective study of plasma AD biomarkers despite their significantly lower concentrations versus to that in CSF. This and other challenges that face plasma-based biomarker measurements can be overcome by using mass spectrometry. In this review, we discuss AD biomarkers which can be reliably measured in CSF and plasma using targeted mass spectrometry coupled to liquid chromatography (LC/MS/MS). We describe progress in LC/MS/MS methods' development, emphasize the challenges, and summarize major findings. We also highlight the role of mass spectrometry and progress made in the process of global standardization of the measurement of Aβ42/Aβ40. Finally, we briefly describe exploratory proteomics which seek to identify new biomarkers that can contribute to detection of co-pathological processes that are common in sporadic AD.
Collapse
Affiliation(s)
- Magdalena Korecka
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
12
|
Koutsodendris N, Nelson MR, Rao A, Huang Y. Apolipoprotein E and Alzheimer's Disease: Findings, Hypotheses, and Potential Mechanisms. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:73-99. [PMID: 34460318 DOI: 10.1146/annurev-pathmechdis-030421-112756] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves dysregulation of many cellular and molecular processes. It is notoriously difficult to develop therapeutics for AD due to its complex nature. Nevertheless, recent advancements in imaging technology and the development of innovative experimental techniques have allowed researchers to perform in-depth analyses to uncover the pathogenic mechanisms of AD. An important consideration when studying late-onset AD is its major genetic risk factor, apolipoprotein E4 (apoE4). Although the exact mechanisms underlying apoE4 effects on AD initiation and progression are not fully understood, recent studies have revealed critical insights into the apoE4-induced deficits that occur in AD. In this review, we highlight notable studies that detail apoE4 effects on prominent AD pathologies, including amyloid-β, tau pathology, neuroinflammation, and neural network dysfunction. We also discuss evidence that defines the physiological functions of apoE and outlines how these functions are disrupted in apoE4-related AD. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nicole Koutsodendris
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA
| | - Maxine R Nelson
- Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA
| | - Antara Rao
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA
| | - Yadong Huang
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA.,Department of Neurology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
13
|
Arbaciauskaite M, Lei Y, Cho YK. High-specificity antibodies and detection methods for quantifying phosphorylated tau from clinical samples. Antib Ther 2021; 4:34-44. [PMID: 33928234 PMCID: PMC7944500 DOI: 10.1093/abt/tbab004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
The ability to measure total and phosphorylated tau levels in clinical samples is transforming the detection of Alzheimer’s disease (AD) and other neurodegenerative diseases. In particular, recent reports indicate that accurate detection of low levels of phosphorylated tau (p-tau) in plasma provides a reliable biomarker of AD long before sensing memory loss. Therefore, the diagnosis and monitoring of neurodegenerative diseases progression using blood samples is becoming a reality. These major advances were achieved by using antibodies specific to p-tau as well as sophisticated high-sensitivity immunoassay platforms. This review focuses on these enabling advances in high-specificity antibody development, engineering, and novel signal detection methods. We will draw insights from structural studies on p-tau antibodies, engineering efforts to improve their binding properties, and efforts to validate their specificity. A comprehensive survey of high-sensitivity p-tau immunoassay platforms along with sensitivity limits will be provided. We conclude that although robust approaches for detecting certain p-tau species have been established, systematic efforts to validate antibodies for assay development is still needed for the recognition of biomarkers for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Monika Arbaciauskaite
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yong Ku Cho
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Suárez-Calvet M, Karikari TK, Ashton NJ, Lantero Rodríguez J, Milà-Alomà M, Gispert JD, Salvadó G, Minguillon C, Fauria K, Shekari M, Grau-Rivera O, Arenaza-Urquijo EM, Sala-Vila A, Sánchez-Benavides G, González-de-Echávarri JM, Kollmorgen G, Stoops E, Vanmechelen E, Zetterberg H, Blennow K, Molinuevo JL. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer's continuum when only subtle changes in Aβ pathology are detected. EMBO Mol Med 2020; 12:e12921. [PMID: 33169916 PMCID: PMC7721364 DOI: 10.15252/emmm.202012921] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023] Open
Abstract
In Alzheimer's disease (AD), tau phosphorylation in the brain and its subsequent release into cerebrospinal fluid (CSF) and blood is a dynamic process that changes during disease evolution. The main aim of our study was to characterize the pattern of changes in phosphorylated tau (p-tau) in the preclinical stage of the Alzheimer's continuum. We measured three novel CSF p-tau biomarkers, phosphorylated at threonine-181 and threonine-217 with an N-terminal partner antibody and at threonine-231 with a mid-region partner antibody. These were compared with an automated mid-region p-tau181 assay (Elecsys) as the gold standard p-tau measure. We demonstrate that these novel p-tau biomarkers increase more prominently in preclinical Alzheimer, when only subtle changes of amyloid-β (Aβ) pathology are detected, and can accurately differentiate Aβ-positive from Aβ-negative cognitively unimpaired individuals. Moreover, we show that the novel plasma N-terminal p-tau181 biomarker is mildly but significantly increased in the preclinical stage. Our results support the idea that early changes in neuronal tau metabolism in preclinical Alzheimer, likely in response to Aβ exposure, can be detected with these novel p-tau assays.
Collapse
Affiliation(s)
- Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.,Centro de Investigación Biomédica en Red de sFragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Wallenberg Centre for Molecular and Translational Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Juan Lantero Rodríguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de sFragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de sFragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de sFragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.,Centro de Investigación Biomédica en Red de sFragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de sFragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Aleix Sala-Vila
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de sFragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - José Maria González-de-Echávarri
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de sFragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
15
|
Blennow K, Chen C, Cicognola C, Wildsmith KR, Manser PT, Bohorquez SMS, Zhang Z, Xie B, Peng J, Hansson O, Kvartsberg H, Portelius E, Zetterberg H, Lashley T, Brinkmalm G, Kerchner GA, Weimer RM, Ye K, Höglund K. Cerebrospinal fluid tau fragment correlates with tau PET: a candidate biomarker for tangle pathology. Brain 2020; 143:650-660. [PMID: 31834365 DOI: 10.1093/brain/awz346] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/23/2019] [Accepted: 09/11/2019] [Indexed: 11/12/2022] Open
Abstract
To date, there is no validated fluid biomarker for tau pathology in Alzheimer's disease, with contradictory results from studies evaluating the correlation between phosphorylated tau in CSF with tau PET imaging. Tau protein is subjected to proteolytic processing into fragments before being secreted to the CSF. A recent study suggested that tau cleavage after amino acid 368 by asparagine endopeptidase (AEP) is upregulated in Alzheimer's disease. We used immunoprecipitation followed by mass spectrometric analyses to evaluate the presence of tau368 species in CSF. A novel Simoa® assay for quantification of tau368 in CSF was developed, while total tau (t-tau) was measured by ELISA and the presence of tau368 in tangles was evaluated using immunohistochemistry. The diagnostic utility of tau368 was first evaluated in a pilot study (Alzheimer's disease = 20, control = 20), then in a second cohort where the IWG-2 biomarker criteria were applied (Alzheimer's disease = 37, control = 45), and finally in a third cohort where the correlation with 18F-GTP1 tau PET was evaluated (Alzheimer's disease = 38, control = 11). The tau368/t-tau ratio was significantly decreased in Alzheimer's disease (P < 0.001) in all cohorts. Immunohistochemical staining demonstrated that tau fragments ending at 368 are present in tangles. There was a strong negative correlation between the CSF tau368/t-tau ratio and 18F-GTP1 retention. Our data suggest that tau368 is a tangle-enriched fragment and that the CSF ratio tau368/t-tau reflects tangle pathology. This novel tau biomarker could be used to improve diagnosis of Alzheimer's disease and to facilitate the development of drug candidates targeting tau pathology. Furthermore, future longitudinal studies will increase our understanding of tau pathophysiology in Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Chun Chen
- Pathology and Laboratory Medicine, Experimental Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claudia Cicognola
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kristin R Wildsmith
- Research and Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Paul T Manser
- Research and Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | | | - Zhentao Zhang
- Pathology and Laboratory Medicine, Experimental Pathology, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Boer Xie
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 39105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 39105, USA.,Department of Development Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 39105, USA.,St. Jude Proteomics Facility, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 39105, USA
| | - Oskar Hansson
- Memory Clinic, Skåne University Hospital, Skåne, Sweden.,Clinical Memory Research Unit, Lund University, Sweden
| | - Hlin Kvartsberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London WC1N 3BG, UK
| | | | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Geoffrey A Kerchner
- Research and Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Robby M Weimer
- Research and Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Keqiang Ye
- Pathology and Laboratory Medicine, Experimental Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kina Höglund
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Disease Research, Neurogeriatrics Division, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden
| |
Collapse
|
16
|
Lewczuk P, Łukaszewicz-Zając M, Mroczko P, Kornhuber J. Clinical significance of fluid biomarkers in Alzheimer's Disease. Pharmacol Rep 2020; 72:528-542. [PMID: 32385624 PMCID: PMC7329803 DOI: 10.1007/s43440-020-00107-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/23/2022]
Abstract
The number of patients with Alzheimer's Disease (AD) and other types of dementia disorders has drastically increased over the last decades. AD is a complex progressive neurodegenerative disease affecting about 14 million patients in Europe and the United States. The hallmarks of this disease are neurotic plaques consist of the Amyloid-β peptide (Aβ) and neurofibrillary tangles (NFTs) formed of hyperphosphorylated Tau protein (pTau). Currently, four CSF biomarkers: Amyloid beta 42 (Aβ42), Aβ42/40 ratio, Tau protein, and Tau phosphorylated at threonine 181 (pTau181) have been indicated as core neurochemical AD biomarkers. However, the identification of additional fluid biomarkers, useful in the prognosis, risk stratification, and monitoring of drug response is sorely needed to better understand the complex heterogeneity of AD pathology as well as to improve diagnosis of patients with the disease. Several novel biomarkers have been extensively investigated, and their utility must be proved and eventually integrated into guidelines for use in clinical practice. This paper presents the research and development of CSF and blood biomarkers for AD as well as their potential clinical significance. Upper panel: Aβ peptides are released from transmembrane Amyloid Precursor Protein (APP) under physiological conditions (blue arrow). In AD, however, pathologic accumulation of Aβ monomers leads to their accumulation in plaques (red arrow). This is reflected in decreased concentration of Aβ1-42 and decreased Aβ42/40 concentration ratio in the CSF. Lower panel: Phosphorylated Tau molecules maintain axonal structures; hyperphosphorylation of Tau (red arrow) in AD leads to degeneration of axons, and release of pTau molecules, which then accumulate in neurofibrillary tangles. This process is reflected by increased concentrations of Tau and pTau in the CSF.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland.
| | | | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Białystok, Białystok, Poland
| | - Johannes Kornhuber
- Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
17
|
Validation of a prototype tau Thr231 phosphorylation CSF ELISA as a potential biomarker for Alzheimer's disease. J Neural Transm (Vienna) 2019; 126:339-348. [PMID: 30767082 DOI: 10.1007/s00702-019-01982-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of extracellular amyloid plaques (senile plaques) and intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein. This process leads to neuronal degradation and neuronal death. Phosphorylation of tau protein at threonine 231 (p-tau231) has been shown to be characteristic in post-mortem brain tissue of patients with AD and it can be sensitively detected in cerebrospinal fluid (CSF). Therefore, it may serve as a biomarker to support the diagnosis of AD. In this study, we analysed how well p-tau231 could differentiate between patients suffering from dementia either due or not due to AD by a sandwich enzyme immunoassay. CSF p-tau231 was significantly higher in patients with dementia due to AD than in those with dementia due to other causes. In addition, we studied different factors affecting p-tau231 levels in CSF. We found that apolipoprotein E genotype influences p-tau231 CSF levels. Gender and age did not affect p-tau231 levels in CSF. Our findings indicate that p-tau231 levels in CSF can be a valuable marker for the clinical diagnosis of AD.
Collapse
|
18
|
Schöll M, Maass A, Mattsson N, Ashton NJ, Blennow K, Zetterberg H, Jagust W. Biomarkers for tau pathology. Mol Cell Neurosci 2018; 97:18-33. [PMID: 30529601 PMCID: PMC6584358 DOI: 10.1016/j.mcn.2018.12.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022] Open
Abstract
The aggregation of fibrils of hyperphosphorylated and C-terminally truncated microtubule-associated tau protein characterizes 80% of all dementia disorders, the most common neurodegenerative disorders. These so-called tauopathies are hitherto not curable and their diagnosis, especially at early disease stages, has traditionally proven difficult. A keystone in the diagnosis of tauopathies was the development of methods to assess levels of tau protein in vivo in cerebrospinal fluid, which has significantly improved our knowledge about these conditions. Tau proteins have also been measured in blood, but the importance of tau-related changes in blood is still unclear. The recent addition of positron emission tomography ligands to visualize, map and quantify tau pathology has further contributed with information about the temporal and spatial characteristics of tau accumulation in the living brain. Together, the measurement of tau with fluid biomarkers and positron emission tomography constitutes the basis for a highly active field of research. This review describes the current state of biomarkers for tau biomarkers derived from neuroimaging and from the analysis of bodily fluids and their roles in the detection, diagnosis and prognosis of tau-associated neurodegenerative disorders, as well as their associations with neuropathological findings, and aims to provide a perspective on how these biomarkers might be employed prospectively in research and clinical settings. Biomarkers for tau pathology are now essential to the research framework in the diagnosis of Alzheimer's disease (AD) Measurement of t- and p-tau has been possible in cerebrospinal fluid (CSF) for some time, the recent development of positron emission tomography (PET) ligands binding to tau has added the possibility to map and quantify tau in the living brain First-generation tau PET ligands bind predominantly to AD-typical 3R/4R tau isoforms and exhibit off-target binding that can limit accurate ligand uptake quantification Second-generation tau PET ligands appear to bind to comparable binding sites but exhibit fewer issues with brain off-target binding Biomarkers for tau derived from CSF analysis and PET could provide complementary information about disease state and stage At this time, T-tau, but not p-tau, can be reliably measured in plasma using ultra-sensitive immunoassays.
Collapse
Affiliation(s)
- Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden; Clinical Memory Research Unit, Lund University, Malmö, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Niklas Mattsson
- Clinical Memory Research Unit, Lund University, Malmö, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden; King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
19
|
Blennow K, Zetterberg H. Biomarkers for Alzheimer's disease: current status and prospects for the future. J Intern Med 2018; 284:643-663. [PMID: 30051512 DOI: 10.1111/joim.12816] [Citation(s) in RCA: 569] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Accumulating data from the clinical research support that the core Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers amyloid-β (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau) reflect key elements of AD pathophysiology. Importantly, a large number of clinical studies very consistently show that these biomarkers contribute with diagnostically relevant information, also in the early disease stages. Recent technical developments have made it possible to measure these biomarkers using fully automated assays with high precision and stability. Standardization efforts have given certified reference materials for CSF Aβ42, with the aim to harmonize results between assay formats that would allow for uniform global reference limits and cut-off values. These encouraging developments have led to that the core AD CSF biomarkers have a central position in the novel diagnostic criteria for the disease and in the recent National Institute on Aging and Alzheimer's Association biological definition of AD. Taken together, this progress will likely serve as the basis for a more general introduction of these diagnostic tests in clinical routine practice. However, the heterogeneity of pathology in late-onset AD calls for an expansion of the AD CSF biomarker toolbox with additional biomarkers reflecting additional aspects of AD pathophysiology. One promising candidate is the synaptic protein neurogranin that seems specific for AD and predicts future rate of cognitive deterioration. Further, recent studies bring hope for easily accessible and cost-effective screening tools in the early diagnostic evaluation of patients with cognitive problems (and suspected AD) in primary care. In this respect, technical developments with ultrasensitive immunoassays and novel mass spectrometry techniques give promise of biomarkers to monitor brain amyloidosis (the Aβ42/40 or APP669-711/Aβ42 ratios) and neurodegeneration (tau and neurofilament light proteins) in plasma samples, but future studies are warranted to validate these promising results further.
Collapse
Affiliation(s)
- K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
20
|
Subramaniam NS, Bawden CS, Waldvogel H, Faull RML, Howarth GS, Snell RG. Emergence of breath testing as a new non-invasive diagnostic modality for neurodegenerative diseases. Brain Res 2018; 1691:75-86. [PMID: 29684335 DOI: 10.1016/j.brainres.2018.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDDs) are incapacitating disorders that result in progressive motor and cognitive impairment. These diseases include Alzheimer's disease, the most common cause of dementia, frontotemporal dementia, amyotrophic lateral sclerosis, dementia with Lewy bodies, Parkinson's, Huntington's, Friedreich's ataxia, and prion disease. Dementia causing NDDs impose a high social and economic burden on communities around the world. Rapid growth in knowledge regarding the pathogenic mechanisms and disease-associated biomarkers of these diseases in the past few decades have accelerated the development of new diagnostic methods and therapeutic opportunities. Continuous effort is being applied to the development of more advanced, easy-to-apply and reliable methods of diagnosis, that are able to identify disease manifestation at its earliest stages and before clinical symptoms become apparent. Development of these diagnostic tools are essential in aiding effective disease management through accurate monitoring of disease progression, timely application of therapeutics and evaluation of treatment efficacy. Recently, several studies have identified novel biomarkers based on compounds in exhaled breath associated with specific NDDs. The use of breath testing, as a means of monitoring neurodegenerative disease onset and progression, has the potential to have a significant impact on augmenting the diagnosis of NDDs as the approach is non-invasive, relatively cost effective and straight forward to implement. This review highlights key features of current diagnostic methods utilised to identify NDDs, and describes the potential application and limitations associated with the use of breath analysis for disease diagnosis and progression monitoring.
Collapse
Affiliation(s)
- N Siva Subramaniam
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia.
| | - C S Bawden
- Livestock and Farming Systems, South Australian Research and Development Institute, Roseworthy, South Australia 5371, Australia.
| | - H Waldvogel
- Centre for Brain Research and Department of Anatomy and Medical Imaging, The University of Auckland, Auckland 1142, New Zealand.
| | - R M L Faull
- Centre for Brain Research and School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand.
| | - G S Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia.
| | - R G Snell
- Centre for Brain Research and Department of Anatomy and Medical Imaging, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
21
|
Guix FX, Corbett GT, Cha DJ, Mustapic M, Liu W, Mengel D, Chen Z, Aikawa E, Young-Pearse T, Kapogiannis D, Selkoe DJ, Walsh DM. Detection of Aggregation-Competent Tau in Neuron-Derived Extracellular Vesicles. Int J Mol Sci 2018; 19:E663. [PMID: 29495441 PMCID: PMC5877524 DOI: 10.3390/ijms19030663] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/10/2018] [Accepted: 02/20/2018] [Indexed: 11/17/2022] Open
Abstract
Progressive cerebral accumulation of tau aggregates is a defining feature of Alzheimer's disease (AD). A popular theory that seeks to explain the apparent spread of neurofibrillary tangle pathology proposes that aggregated tau is passed from neuron to neuron. Such a templated seeding process requires that the transferred tau contains the microtubule binding repeat domains that are necessary for aggregation. While it is not clear how a protein such as tau can move from cell to cell, previous reports have suggested that this may involve extracellular vesicles (EVs). Thus, measurement of tau in EVs may both provide insights on the molecular pathology of AD and facilitate biomarker development. Here, we report the use of sensitive immunoassays specific for full-length (FL) tau and mid-region tau, which we applied to analyze EVs from human induced pluripotent stem cell (iPSC)-derived neuron (iN) conditioned media, cerebrospinal fluid (CSF), and plasma. In each case, most tau was free-floating with a small component inside EVs. The majority of free-floating tau detected by the mid-region assay was not detected by our FL assays, indicating that most free-floating tau is truncated. Inside EVs, the mid-region assay also detected more tau than the FL assay, but the ratio of FL-positive to mid-region-positive tau was higher inside exosomes than in free solution. These studies demonstrate the presence of minute amounts of free-floating and exosome-contained FL tau in human biofluids. Given the potential for FL tau to aggregate, we conclude that further investigation of these pools of extracellular tau and how they change during disease is merited.
Collapse
Affiliation(s)
- Francesc X. Guix
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Grant T. Corbett
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Diana J. Cha
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Maja Mustapic
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (M.M.); (D.K.)
| | - Wen Liu
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - David Mengel
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Zhicheng Chen
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Tracy Young-Pearse
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (M.M.); (D.K.)
| | - Dennis J. Selkoe
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (F.X.G.); (G.T.C.); (D.J.C.); (W.L.); (D.M.); (Z.C.); (T.Y.-P.); (D.J.S.)
| |
Collapse
|
22
|
Yang CC, Chiu MJ, Chen TF, Chang HL, Liu BH, Yang SY. Assay of Plasma Phosphorylated Tau Protein (Threonine 181) and Total Tau Protein in Early-Stage Alzheimer’s Disease. J Alzheimers Dis 2018; 61:1323-1332. [DOI: 10.3233/jad-170810] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Che-Chuan Yang
- MagQu Co., Ltd., Xindian District, New Taipei City, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Ling Chang
- MagQu Co., Ltd., Xindian District, New Taipei City, Taiwan
| | - Bing-Hsien Liu
- MagQu Co., Ltd., Xindian District, New Taipei City, Taiwan
| | | |
Collapse
|
23
|
Immunological memory to hyperphosphorylated tau in asymptomatic individuals. Acta Neuropathol 2017; 133:767-783. [PMID: 28341999 PMCID: PMC5390017 DOI: 10.1007/s00401-017-1705-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/02/2017] [Accepted: 03/19/2017] [Indexed: 12/21/2022]
Abstract
Several reports have described the presence of antibodies against Alzheimer’s disease-associated hyperphosphorylated forms of tau in serum of healthy individuals. To characterize the specificities that can be found, we interrogated peripheral IgG+ memory B cells from asymptomatic blood donors for reactivity to a panel of phosphorylated tau peptides using a single-cell screening assay. Antibody sequences were recovered, cloned, and expressed as full-length IgGs. In total, 52 somatically mutated tau-binding antibodies were identified, corresponding to 35 unique clonal families. Forty-one of these antibodies recognize epitopes in the proline-rich and C-terminal domains, and binding of 26 of these antibodies is strictly phosphorylation dependent. Thirteen antibodies showed inhibitory activity in a P301S lysate seeded in vitro tau aggregation assay. Two such antibodies, CBTAU-7.1 and CBTAU-22.1, which bind to the proline-rich and C-terminal regions of tau, respectively, were characterized in more detail. CBTAU-7.1 recognizes an epitope that is similar to that of murine anti-PHF antibody AT8, but has different phospho requirements. Both CBTAU-7.1 and CBTAU-22.1 detect pathological tau deposits in post-mortem brain tissue. CBTAU-7.1 reveals a similar IHC distribution pattern as AT8, immunostaining (pre)tangles, threads, and neuritic plaques. CBTAU-22.1 shows selective detection of neurofibrillary changes by IHC. Taken together, these results suggest the presence of an ongoing antigen-driven immune response against tau in healthy individuals. The wide range of specificities to tau suggests that the human immune repertoire may contain antibodies that can serve as biomarkers or be exploited for therapy.
Collapse
|
24
|
Wilke C, Gillardon F, Deuschle C, Hobert MA, Jansen IE, Metzger FG, Heutink P, Gasser T, Maetzler W, Blauwendraat C, Synofzik M. Cerebrospinal Fluid Progranulin, but Not Serum Progranulin, Is Reduced in GRN-Negative Frontotemporal Dementia. NEURODEGENER DIS 2016; 17:83-88. [PMID: 27760429 DOI: 10.1159/000448896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Reduced progranulin levels are a hallmark of frontotemporal dementia (FTD) caused by loss-of-function (LoF) mutations in the progranulin gene (GRN). However, alterations of central nervous progranulin expression also occur in neurodegenerative disorders unrelated to GRN mutations, such as Alzheimer's disease. We hypothesised that central nervous progranulin levels are also reduced in GRN-negative FTD. METHODS Progranulin levels were determined in both cerebrospinal fluid (CSF) and serum in 75 subjects (37 FTD patients and 38 controls). All FTD patients were assessed by whole-exome sequencing for GRN mutations, yielding a target cohort of 34 patients without pathogenic mutations in GRN (GRN-negative cohort) and 3 GRN mutation carriers (2 LoF variants and 1 novel missense variant). RESULTS Not only the GRN mutation carriers but also the GRN-negative patients showed decreased CSF levels of progranulin (serum levels in GRN-negative patients were normal). The decreased CSF progranulin levels were unrelated to patients' increased CSF levels of total tau, possibly indicating different destructive neuronal processes within FTD neurodegeneration. The patient with the novel GRN missense variant (c.1117C>T, p.P373S) showed substantially decreased CSF levels of progranulin, comparable to the 2 patients with GRN LoF mutations, suggesting a pathogenic effect of this missense variant. CONCLUSIONS Our results indicate that central nervous progranulin reduction is not restricted to the relatively rare cases of FTD caused by GRN LoF mutations, but also contributes to the more common GRN-negative forms of FTD. Central nervous progranulin reduction might reflect a partially distinct pathogenic mechanism underlying FTD neurodegeneration and is not directly linked to tau alterations.
Collapse
Affiliation(s)
- Carlo Wilke
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wagshal D, Sankaranarayanan S, Guss V, Hall T, Berisha F, Lobach I, Karydas A, Voltarelli L, Scherling C, Heuer H, Tartaglia MC, Miller Z, Coppola G, Ahlijanian M, Soares H, Kramer JH, Rabinovici GD, Rosen HJ, Miller BL, Meredith J, Boxer AL. Divergent CSF τ alterations in two common tauopathies: Alzheimer's disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2015; 86:244-50. [PMID: 24899730 PMCID: PMC4256124 DOI: 10.1136/jnnp-2014-308004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Elevated CSF τ is considered a biomarker of neuronal injury in newly developed Alzheimer's disease (AD) and mild cognitive impairment (MCI) criteria. However, previous studies have failed to detect alterations of τ species in other primary tauopathies. We assessed CSF τ protein abnormalities in AD, a tauopathy with prominent Aβ pathology, and progressive supranuclear palsy (PSP), a primary tauopathy characterised by deposition of four microtubule-binding repeat (4R) τ with minimal Aβ pathology. METHODS 26 normal control (NC), 37 AD, and 24 patients with PSP participated in the study. AD and PSP were matched for severity using the clinical dementia rating sum of boxes (CDR-sb) scores. The INNO BIA AlzBio3 multiplex immunoassay was used to measure CSF Aβ, total τ, and ptau181. Additional, novel ELISAs targeting different N-terminal and central τ epitopes were developed to examine CSF τ components and to investigate interactions between diagnostic group, demographics and genetic variables. RESULTS PSP had lower CSF N-terminal and C-terminal τ concentrations than NC and AD measured with the novel τ ELISAs and the standard AlzBio3 τ and ptau assays. AD had higher total τ and ptau levels than NC and PSP. There was a gender by diagnosis interaction in AD and PSP for most τ species, with lower concentrations for male compared to female patients. CONCLUSIONS CSF τ fragment concentrations are different in PSP compared with AD despite the presence of severe τ pathology and neuronal injury in both disorders. CSF τ concentration likely reflects multiple factors in addition to the degree of neuronal injury.
Collapse
Affiliation(s)
- Dana Wagshal
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | | | - Valerie Guss
- Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Tracey Hall
- Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Flora Berisha
- Kyowa Hakko Kirin Pharma, Inc., Princeton, New Jersey, USA
| | - Iryna Lobach
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Anna Karydas
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Lisa Voltarelli
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Carole Scherling
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Hilary Heuer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Maria Carmela Tartaglia
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA Tanz Center for Research in Neurodegenerative disease, University of Toronto, Toronto, Canada
| | - Zachary Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Giovanni Coppola
- Department of Psychiatry, Semel Institute, University of California, Los Angeles, Los Angeles, California, USA
| | | | - Holly Soares
- Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Gil D Rabinovici
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | | | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Höglund K, Fourier A, Perret-Liaudet A, Zetterberg H, Blennow K, Portelius E. Alzheimer's disease--Recent biomarker developments in relation to updated diagnostic criteria. Clin Chim Acta 2015; 449:3-8. [PMID: 25668231 DOI: 10.1016/j.cca.2015.01.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by neuroaxonal and synaptic degeneration accompanied by intraneuronal neurofibrillary tangles and accumulation of extracellular plaques in specific brain regions. These features are reflected in the AD cerebrospinal fluid (CSF) by increased concentrations of total tau (t-tau) and phosphorylated tau (p-tau), together with decreased concentrations of β-amyloid (Aβ42), respectively. In combination, Aβ42, p-tau and t-tau are 85-95% sensitive and specific for AD in both prodromal and dementia stages of the disease and they are now included in the diagnostic research criteria for AD. However, to fully implement these biomarkers into clinical practice, harmonization of data is needed. This work is ongoing through the standardization of analytical procedures between clinical laboratories and the production of reference materials for CSF Aβ42, p-tau and t-tau. To monitor other aspects of AD neuropathology, e.g., synaptic dysfunction and/or to develop markers of progression, identifying novel candidate biomarkers is of great importance. Based on knowledge from the established biomarkers, exemplified by Aβ and its many variants, and emerging data on neurogranin fragments as biomarker candidate(s), a thorough protein characterization in order to fully understand the diagnostic value of a protein is a suggested approach for successful biomarker discovery.
Collapse
Affiliation(s)
- Kina Höglund
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Anthony Fourier
- Neurobiology Department, Hospices Civils de Lyon, Lyon, France; BIORAN team INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France
| | - Armand Perret-Liaudet
- Neurobiology Department, Hospices Civils de Lyon, Lyon, France; BIORAN team INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| |
Collapse
|
27
|
Wilke C, Deuschle C, Rattay TW, Maetzler W, Synofzik M. Total tau is increased, but phosphorylated tau not decreased, in cerebrospinal fluid in amyotrophic lateral sclerosis. Neurobiol Aging 2015; 36:1072-4. [DOI: 10.1016/j.neurobiolaging.2014.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/03/2014] [Accepted: 10/14/2014] [Indexed: 11/25/2022]
|
28
|
Inoue H, Hiradate Y, Shirakata Y, Kanai K, Kosaka K, Gotoh A, Fukuda Y, Nakai Y, Uchida T, Sato E, Tanemura K. Site-specific phosphorylation of Tau protein is associated with deacetylation of microtubules in mouse spermatogenic cells during meiosis. FEBS Lett 2014; 588:2003-8. [DOI: 10.1016/j.febslet.2014.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/26/2014] [Accepted: 04/10/2014] [Indexed: 11/26/2022]
|
29
|
Schmidt O, Schulenborg T, Meyer HE, Marcus K, Hamacher M. How proteomics reveals potential biomarkers in brain diseases. Expert Rev Proteomics 2014; 2:901-13. [PMID: 16307519 DOI: 10.1586/14789450.2.6.901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The brain is complex, and so are the proteomics studies of brain tissue and its diseases, including Alzheimer's Disease, Parkinson's Disease and schizophrenia. In this review, general considerations and strategies of proteomics technologies, the advantages and challenges as well as the special needs for brain tissue are described and summarized. In addition, the results of the first studies are presented including a quality evaluation of the candidate proteins for these diseases. A paragraph is dedicated to the efforts of standardization in this field.
Collapse
Affiliation(s)
- Oliver Schmidt
- Ruhr-Universitaet Bochum, Medizinisches Proteom-Center, ZKF E.141, Universitaetsstrasse 150, D-44801 Bochum, Germany.
| | | | | | | | | |
Collapse
|
30
|
Characterization of novel CSF Tau and ptau biomarkers for Alzheimer's disease. PLoS One 2013; 8:e76523. [PMID: 24116116 PMCID: PMC3792042 DOI: 10.1371/journal.pone.0076523] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 08/31/2013] [Indexed: 12/02/2022] Open
Abstract
Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases.
Collapse
|
31
|
Kandimalla RJL, Prabhakar S, Wani WY, Kaushal A, Gupta N, Sharma DR, Grover VK, Bhardwaj N, Jain K, Gill KD. CSF p-Tau levels in the prediction of Alzheimer's disease. Biol Open 2013; 2:1119-24. [PMID: 24244848 PMCID: PMC3828758 DOI: 10.1242/bio.20135447] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/09/2013] [Indexed: 11/20/2022] Open
Abstract
The two hallmarks of Alzheimer's disease (AD) are neurofibrillary tangles and amyloid plaques. Neurofibrillary tangles are formed due to the hyperphosphorylation of tau protein. There is an urgent need to develop a reliable biomarker for the diagnosis of AD. Cerebrospinal fluid (CSF) is surrounding the brain and reflects the major neuropathological features in the AD brain. Diagnosis, disease progression and drug actions rely on the AD biomarkers. Mainly CSF tau and phosphorylated tau (p-Tau) have been observed to serve the purpose for early AD. Keeping in view the early appearance of p-Tau in CSF, we analyzed p-Tau levels in 23 AD, 23 Non AD type dementia (NAD), 23 Neurological control (NC) and 23 Healthy control (HC) North Indian patients. The levels of p-Tau were found to be increased in AD patients (67.87±18.05 pg/ml, SEM 3.76) compared with NAD (47.55±7.85 pg/ml, SEM 1.64), NC (34.42±4.51 pg/ml, SEM 0.94) and HC (27.09±7.18 pg/ml, SEM 1.50). The resulting sensitivity for AD with NAD was 80.27% whereas with respect to the NAD, NC and HC was 85.40%. Therefore elevated levels of p-Tau in AD can be exploited as a predictive biomarker in North Indian AD patients.
Collapse
Affiliation(s)
- Ramesh J L Kandimalla
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research , Chandigarh , India 160 012
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Richter M, Hoffmann R, Singer D. T-cell epitope-dependent immune response in inbred (C57BL/6J, SJL/J, and C3H/HeN) and transgenic P301S and Tg2576 mice. J Pept Sci 2013; 19:441-51. [PMID: 23728915 DOI: 10.1002/psc.2518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease is characterized by two pathological hallmarks, the intracellular deposition of hyperphosphorylated Tau protein and the extracellular deposition of Aβ1-40/42 , both being targets for immunotherapy. This study evaluates the immunogenic properties of three AD-specific B-cell epitopes (Tau229-237 [pT231/pS235], pyroGluAβ3-8 , and Aβ37/38-42/43 ) linked to five foreign T-cell epitopes (MVFP, TT, TBC Ag85B, PvT19, and PvT53) by immunizing inbred C57BL/6J (H-2(b) ), SJL/J (H-2(s2) ), and C3H/HeN (H-2(k) ) mice. Two promising candidates with respect to MHC II restriction were selected, and two transgenic mouse models of AD, P301S (H-2(b/) (k) ) and Tg2576 (H-2(b/) (s) ) animals, were immunized with one B-cell epitope in combination with two T-cell epitopes. Responders displayed an enhanced immune response compared with wild-type animals, which supports the vaccine design and the vaccination strategy. The immune response was also characterized by specific IgG subtype titers, which revealed a strong polarization toward the humoral pathway for immunization of phospho-Tau, whereas for both Aβ vaccines, a mixed cellular/humoral pathway response was observed. Despite the diversity and unpredictability of the immunogenicity of the peptide vaccines, all three peptide vaccine formulations appear to be promising constructs for future evaluation of their therapeutic properties.
Collapse
Affiliation(s)
- Monique Richter
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | | | | |
Collapse
|
33
|
Ikeda M, Yonemura K, Kakuda S, Tashiro Y, Fujita Y, Takai E, Hashimoto Y, Makioka K, Furuta N, Ishiguro K, Maruki R, Yoshida J, Miyaguchi O, Tsukie T, Kuwano R, Yamazaki T, Yamaguchi H, Amari M, Takatama M, Harigaya Y, Okamoto K. Cerebrospinal fluid levels of phosphorylated tau and Aβ1-38/Aβ1-40/Aβ1-42 in Alzheimer's disease with PS1 mutations. Amyloid 2013; 20:107-12. [PMID: 23638752 DOI: 10.3109/13506129.2013.790810] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We studied seven cases of Alzheimer's disease (AD). Six of the patients had presenilin 1 (PS1) mutations (PS1AD). Three novel PS1 mutations (T99A, H131R and L219R) and three other missense mutations (M233L, H163R and V272A) were found in the PS1AD group. We measured the levels of phosphorylated tau (ptau-181, ptau-199) and Aβ (Aβ1-42, Aβ1-40 and Aβ1-38) in the cerebrospinal fluid (CSF) of PS1AD patients, early-onset sporadic AD (EOSAD), late-onset sporadic AD (LOSAD) and non-demented subjects (ND). The CSF levels of Aβ1-42 in the three AD groups were significantly lower than those of the ND group (p < 0.0001). CSF levels of Aβ1-42 in the PS1AD group were significantly lower than those in the two sporadic AD groups. The Aβ1-40 and Aβ1-38 levels in the CSF of the PS1AD group were significantly lower than those of the three other groups (p < 0.0001, respectively). The levels of Aβ1-40, Aβ1-38 and Aβ1-42 in the CSF of the PS1AD group remained lower than those of the ND group for 4 years. Not only CSF Aβ1-42, but also Aβ1-40 and Aβ1-38 decreased in the advanced stages of PS1AD.
Collapse
Affiliation(s)
- Masaki Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kouzuki M, Asaina F, Taniguchi M, Musha T, Urakami K. The relationship between the diagnosis method of neuronal dysfunction (DIMENSION) and brain pathology in the early stages of Alzheimer's disease. Psychogeriatrics 2013; 13:63-70. [PMID: 23909962 DOI: 10.1111/j.1479-8301.2012.00431.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/26/2012] [Accepted: 08/09/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To examine whether the diagnosis method of neuronal dysfunction (DIMENSION), a new electroencephalogram (EEG) analysis method, reflected pathological changes in the early stages of Alzheimer's disease (AD), we conducted a comparative study of cerebrospinal fluid markers and single-photon emission computed tomography. METHODS Subjects cincluded 32 patients in the early stages of AD with a Mini-Mental State Examination score ≥24 (14 men, 18 women; mean age, 77.3 ± 9.2 years). Cerebrospinal fluid samples were collected from AD patients, and cerebrospinal fluid levels of phosphorylated tau protein (p-tau) 181 and amyloid β (Aβ) 42 were measured with sandwich ELISA. EEG recordings were performed for 5 min with the subjects awake in a resting state with their eyes closed. Then, the mean value of the EEG alpha dipolarity (Dα) and the standard deviation of the EEG alpha dipolarity (Dσ) were calculated with DIMENSION. Single-photon emission computed tomography analyses were also performed for comparison with DIMENSION measures. RESULTS Patients with parietal hypoperfusion had significantly increasing p-tau181, decreasing Dα, and increasing Dσ. In addition, there was a negative correlation between Dα and p-tau181, p-tau181/Aβ42, and a positive correlation between Dσ and p-tau181/Aβ42. CONCLUSION Dα and Dσ were related to cerebral hypoperfusion and p-tau181/Aβ42. DIMENSION was able to detect changes in the early-stage Alzheimer's brain, suggesting that it is possibility as a useful examination for early-stage AD with a difficult discrimination in clinical conditions. Moreover, EEG measurement is a quick and easy diagnostic test and is useful for repeated examinations.
Collapse
Affiliation(s)
- Minoru Kouzuki
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | | | | | | | |
Collapse
|
35
|
Jongbloed W, Kester MI, Flier WM, Veerhuis R, Scheltens P, Blankenstein MA, Teunissen CE. Discriminatory and predictive capabilities of enzyme‐linked immunosorbent assay and multiplex platforms in a longitudinal Alzheimer's disease study. Alzheimers Dement 2012; 9:276-83. [DOI: 10.1016/j.jalz.2012.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/02/2011] [Accepted: 01/13/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Wesley Jongbloed
- Department of Clinical Chemistry Neurological LaboratoryVU University Medical CenterAmsterdamThe Netherlands
| | - Maartje I. Kester
- Department of Neurology and Alzheimer CenterVU University Medical CenterAmsterdamThe Netherlands
| | - Wiesje M. Flier
- Department of Neurology and Alzheimer CenterVU University Medical CenterAmsterdamThe Netherlands
- Department of Epidemiology and BiostatisticsVU University Medical CenterAmsterdamThe Netherlands
| | - Robert Veerhuis
- Department of Clinical Chemistry Neurological LaboratoryVU University Medical CenterAmsterdamThe Netherlands
| | - Philip Scheltens
- Department of Neurology and Alzheimer CenterVU University Medical CenterAmsterdamThe Netherlands
| | - Marinus A. Blankenstein
- Department of Clinical Chemistry Neurological LaboratoryVU University Medical CenterAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Department of Clinical Chemistry Neurological LaboratoryVU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
36
|
Hampel H, Blennow K. CSF tau and β-amyloid as biomarkers for mild cognitive impairment. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034251 PMCID: PMC3181816 DOI: 10.31887/dcns.2004.6.4/hhampel] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Early diagnosis of Alzheimer s disease (AD) is relevant in order to initiate symptomatic treatment with antidementia drugs. This will be of greater significance if the drugs aimed at slowing down the degenerative process (secondary prevention) prove to affect AD pathology and are clinically effective, such as γ-secretase inhibitors. However, there is currently no clinical assessment to differentiate the patients with mild cognitive impairment (MCI) who will progress to AD from those with a benign form of memory impairment that is part of the normal aging process. Thus, there is great clinical need for diagnostic and predictive biomarkers, as well as biomarkers for classification purposes, to identify incipient AD in MCI subjects. The most promising cerebrospinal fluid (CSF) biomarker candidates are total tau protein (T-tau), phosphorylated tau protein (P-tau), and the 42-andno acid form offi-amyloid (Aβ42), which may, if used in the right clinical context, prove to have sufficient diagnostic accuracy and predictive power to resolve this diagnostic challenge.
Collapse
Affiliation(s)
- Harald Hampel
- Alzheimer Memorial Center and Geriatric Psychiatry Branch, Department of Psychiatry, Ludwig-Maximilian University, Munich, Germany (Harald Hampel); Department of Clinical Neuroscience, Section of Experimental Neuroscience, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden (Kaj Blennow)
| | | |
Collapse
|
37
|
Golomb J, Kluger A, Ferris SH. Mild cognitive impairment: historical development and summary of research. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034453 PMCID: PMC3181818 DOI: 10.31887/dcns.2004.6.4/jgolomb] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review article broadly traces the historical development, diagnostic criteria, clinical and neuropathological characteristics, and treatment strategies related to mild cognitive impairment (MCI), The concept of MCI is considered in the context of other terms that have been developed to characterize the elderly with varying degrees of cognitive impairment Criteria based on clinical global scale ratings, cognitive test performance, and performance on other domains of functioning are discussed. Approaches employing clinical, neuropsychological, neuroimaging, biological, and molecular genetic methodology used in the validation of MCI are considered, including results from cross-sectional, longitudinal, and postmortem investigations. Results of recent drug treatment studies of MCI and related methodological issues are also addressed.
Collapse
Affiliation(s)
- James Golomb
- Department of Neurology, William & Sylvia Silberstein Institute for Aging and Dementia, New York University Medical Center, New York, NY
| | | | | |
Collapse
|
38
|
Plouffe V, Mohamed NV, Rivest-McGraw J, Bertrand J, Lauzon M, Leclerc N. Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS One 2012; 7:e36873. [PMID: 22615831 PMCID: PMC3352936 DOI: 10.1371/journal.pone.0036873] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/09/2012] [Indexed: 01/07/2023] Open
Abstract
It is well established that tau pathology propagates in a predictable manner in Alzheimer’s disease (AD). Moreover, tau accumulates in the cerebrospinal fluid (CSF) of AD’s patients. The mechanisms underlying the propagation of tau pathology and its accumulation in the CSF remain to be elucidated. Recent studies have reported that human tau was secreted by neurons and non-neuronal cells when it was overexpressed indicating that tau secretion could contribute to the spreading of tau pathology in the brain and could lead to its accumulation in the CSF. In the present study, we showed that the overexpression of human tau resulted in its secretion by Hela cells. The main form of tau secreted by these cells was cleaved at the C-terminal. Surprisingly, secreted tau was dephosphorylated at several sites in comparison to intracellular tau which presented a strong immunoreactivity to all phospho-dependent antibodies tested. Our data also revealed that phosphorylation and cleavage of tau favored its secretion by Hela cells. Indeed, the mimicking of phosphorylation at 12 sites known to be phosphorylated in AD enhanced tau secretion. A mutant form of tau truncated at D421, the preferential cleavage site of caspase-3, was also significantly more secreted than wild-type tau. Taken together, our results indicate that hyperphosphorylation and cleavage of tau by favoring its secretion could contribute to the propagation of tau pathology in the brain and its accumulation in the CSF.
Collapse
Affiliation(s)
- Vanessa Plouffe
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Nguyen-Vi Mohamed
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Jessica Rivest-McGraw
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Johanne Bertrand
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Michel Lauzon
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Nicole Leclerc
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
39
|
Parnell M, Guo L, Abdi M, Cordeiro MF. Ocular manifestations of Alzheimer's disease in animal models. Int J Alzheimers Dis 2012; 2012:786494. [PMID: 22666623 PMCID: PMC3362039 DOI: 10.1155/2012/786494] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/11/2012] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and the pathological changes of senile plaques (SPs) and neurofibrillary tangles (NFTs) in AD brains are well described. Clinically, a diagnosis remains a postmortem one, hampering both accurate and early diagnosis as well as research into potential new treatments. Visual deficits have long been noted in AD patients, and it is becoming increasingly apparent that histopathological changes already noted in the brain also occur in an extension of the brain; the retina. Due to the optically transparent nature of the eye, it is possible to image the retina at a cellular level noninvasively and thus potentially allow an earlier diagnosis as well as a way of monitoring progression and treatment effects. Transgenic animal models expressing amyloid precursor protein (APP) presenilin (PS) and tau mutations have been used successfully to recapitulate the pathological findings of AD in the brain. This paper will cover the ocular abnormalities that have been detected in these transgenic AD animal models.
Collapse
Affiliation(s)
- Miles Parnell
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Sutton Eye Unit, Epsom and St. Helier NHS Trust, Cotswold Road, Sutton, Surry, London, UK
| | - Li Guo
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mohamed Abdi
- St. Georges Healthcare NHS Trust, Blackshaw Road, Tooting, London, UK
| | - M. Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
40
|
Liu L, Xia N, Wang J. Potential applications of SPR in early diagnosis and progression of Alzheimer's disease. RSC Adv 2012. [DOI: 10.1039/c2ra00667g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
41
|
Humpel C, Hochstrasser T. Cerebrospinal fluid and blood biomarkers in Alzheimer’s disease. World J Psychiatry 2011; 1:8-18. [PMID: 24175162 PMCID: PMC3782169 DOI: 10.5498/wjp.v1.i1.8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/14/2011] [Accepted: 12/26/2011] [Indexed: 02/05/2023] Open
Abstract
Due to an ever aging society and growing prevalence of Alzheimer’s disease (AD), the challenge to meet social and health care system needs will become increasingly difficult. Unfortunately, a definite ante mortem diagnosis is not possible. Thus, an early diagnosis and identification of AD patients is critical for promising, early pharmacological interventions as well as addressing health care needs. The most advanced and most reliable markers are β-amyloid, total tau and phosphorylated tau in cerebrospinal fluid (CSF). In blood, no single biomarker has been identified despite an intense search over the last decade. The most promising approaches consist of a combination of several blood-based markers increasing the reliability, sensitivity and specificity of the AD diagnosis. However, contradictory data make standardized testing methods in longitudinal and multi-center studies extremely difficult. In this review, we summarize a range of the most promising CSF and blood biomarkers for diagnosing AD.
Collapse
Affiliation(s)
- Christian Humpel
- Christian Humpel, Tanja Hochstrasser, Laboratory for Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | |
Collapse
|
42
|
|
43
|
Fortin MP, Krolak-Salmon P. [Alzheimer's and related diseases: toward earlier and more accurate diagnosis]. Rev Med Interne 2010; 31:846-53. [PMID: 20952104 DOI: 10.1016/j.revmed.2010.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 10/18/2022]
Abstract
Because of population ageing, the prevalence of Alzheimer's disease (AD), the most common cause of dementia, increases progressively. This condition is now considered as a public health priority. New disease modifying therapeutic strategies could be available in the next few years that would necessitate an accurate and early diagnosis of the disease. Recently developed diagnostic tools are being assessed. Development of structural brain imaging allows to measure the hippocampus volume. Metabolic imaging can assess a broad range of functional parameters such as cerebral blood flow and dopaminergic activity with single photon emission computed tomography, cerebral glucose metabolism and cerebral amyloid burden with positron emission tomography. Those imaging methods are under evaluation to appreciate cerebral abnormalities that may occur earlier than structural ones. Cerebrospinal fluid biomarkers, in particular amyloid and tau peptides, allow us to look at in vivo biochemical cerebral changes related to AD, before possible serum biomarkers. Studies are under way to confirm the relevance of these new diagnostic tools. It will help us to improve evaluation of patients with AD or related diseases.
Collapse
Affiliation(s)
- M-P Fortin
- Centre hospitalier affilié universitaire, hôpital de l'Enfant-Jésus, 1401, 18(e) rue, Québec, G1J 1Z4, Canada.
| | | |
Collapse
|
44
|
Zilka N, Korenova M, Kovacech B, Iqbal K, Novak M. CSF phospho-tau correlates with behavioural decline and brain insoluble phospho-tau levels in a rat model of tauopathy. Acta Neuropathol 2010; 119:679-87. [PMID: 20379729 DOI: 10.1007/s00401-010-0680-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to identify the relationship between progressive neurobehavioural decline and phospho-tau levels (p-tau(181)) in the cerebrospinal fluid (CSF) and the brain in transgenic rats expressing human truncated tau protein. Behavioural analyses, as quantified using the NeuroScale scoring method, revealed that the transgenic rats fell into two main groups based on the baseline behavioural functioning: (1) mild neurobehavioural impairment (MNI, score 3.3-26) and (2) severe neurobehavioural impairment (SNI, score 36-44). SNI transgenic rats showed a significant increase in brain sarkosyl insoluble p-tau(181) when compared to their MNI counterparts. In order to determine whether CSF phospho-tau reflects the behavioural decline and increase in sarkosyl insoluble tau in the brain, p-tau(181) was measured in the CSF in a longitudinal study. The study showed a significant increase in CSF p-tau(181) during the progression of the disease from MNI to SNI. Moreover, increased levels of p-tau(181) in CSF correlated with an increase in the sarkosyl insoluble p-tau(181) levels in the brain. The increase in the CSF level of p-tau(181) during progressive behavioural decline suggests that it may represent a useful surrogate biomarker for preclinical drug development and a potential surrogate endpoint for clinical trials of disease-modifying therapy for Alzheimer's disease and related human tauopathies.
Collapse
Affiliation(s)
- Norbert Zilka
- Institute of Neuroimmunology, Centre of Excellence for Alzheimer's Disease and Related Disorders, Slovak Academy of Sciences, Dubravska 9, 84510 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
45
|
An unbiased, staged, multicentre, validation strategy for Alzheimer's disease CSF tau levels. Exp Neurol 2010; 223:432-8. [DOI: 10.1016/j.expneurol.2009.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 11/08/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022]
|
46
|
Abstract
Cerebrospinal fluid (CSF) is the main component of the brain extracellular space and participates in the exchange of many biochemical products in the CNS. Consequently, CSF contains a dynamic and complex mixture of proteins that reflect the physiological or pathological state of the CNS. Changes in the CSF proteome have been described in various neurodegenerative disorders. These alterations are also thought to reflect pathological changes in the brain, and thus understanding them will contribute to a better awareness of the pathophysiology that underlies these disorders. Proteomics offers a new methodology for the analysis of pathological changes and mechanisms occurring in neurodegenerative processes and provides the possibility of novel biomarker discovery in order to supplement faster, earlier and more precise diagnosis. In general, the following criteria have to be applied in order to qualify a protein or a gene as a potential biomarker: the selected parameters have to be sensitive (able to detect the abnormalities at early stage of disease), specific (to allow differential diagnosis), reproducible with a high positive predictive value, and should allow for disease monitoring as well as a potential therapeutic response. In Creutzfeldt–Jakob disease, two major approaches have been followed that aim to detect the pathological form of the prion protein (PrPSc) in various peripheral tissues, while other approaches look for surrogate parameters that are a consequence of the neurodegenerative process. While the amount of abnormal disease-related PrPSc in CSF and blood in human transmissible spongiform encephalopathies appears to be extremely low, the development of a PrPSc-based biomarker was hampered by technical problems and detection limits. However, a variety of other proteins have been investigated in the CSF, and recently a variety of potential biomarkers have been reported that contribute to clinical diagnosis. Already established markers are 14-3-3, β-amyloid, tau-protein and phosphorylated isoforms, S100b, as well as neuron-specific enolase. Since some of these markers display certain limitations, the search continues. This review summarizes current knowledge of biomarker development in prion diseases and discusses perspectives for new approaches.
Collapse
Affiliation(s)
- Joanna Gawinecka
- Department of Neurology, University Medical School, Georg-August University, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical School, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
47
|
Mistur R, Mosconi L, Santi SD, Guzman M, Li Y, Tsui W, de Leon MJ. Current Challenges for the Early Detection of Alzheimer's Disease: Brain Imaging and CSF Studies. J Clin Neurol 2009; 5:153-66. [PMID: 20076796 PMCID: PMC2806537 DOI: 10.3988/jcn.2009.5.4.153] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 12/24/2022] Open
Abstract
The development of prevention therapies for Alzheimer's disease (AD) would greatly benefit from biomarkers that are sensitive to the subtle brain changes that occur in the preclinical stage of the disease. Reductions in the cerebral metabolic rate of glucose (CMRglc), a measure of neuronal function, have proven to be a promising tool in the early diagnosis of AD. In vivo brain 2-[18F]fluoro-2-Deoxy-D-glucose-positron emission tomography (FDG-PET) imaging demonstrates consistent and progressive CMRglc reductions in AD patients, the extent and topography of which correlate with symptom severity. There is increasing evidence that hypometabolism appears during the preclinical stages of AD and can predict decline years before the onset of symptoms. This review will give an overview of FDG-PET results in individuals at risk for developing dementia, including: presymptomatic individuals carrying mutations responsible for early-onset familial AD; patients with Mild Cognitive Impairment (MCI), often a prodrome to late-onset sporadic AD; non-demented carriers of the Apolipoprotein E (ApoE) ε4 allele, a strong genetic risk factor for late-onset AD; cognitively normal subjects with a family history of AD; subjects with subjective memory complaints; and normal elderly followed longitudinally until they expressed the clinical symptoms and received post-mortem confirmation of AD. Finally, we will discuss the potential to combine different PET tracers and CSF markers of pathology to improve the early detection of AD.
Collapse
Affiliation(s)
- Rachel Mistur
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Immuno-PCR-based quantification of multiple phosphorylated tau-epitopes linked to Alzheimer's disease. Anal Bioanal Chem 2009; 395:2263-7. [PMID: 19821112 DOI: 10.1007/s00216-009-3208-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/30/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
Several lines of evidence suggest that quantification of phosphorylated sites in the tau-protein (phospho-tau) might be favorable for early and specific Alzheimer's disease diagnosis. The typical setup to quantify phosphorylated tau-epitopes relies on a sandwich ELISA with a capture antibody (Ab) recognizing tau independent of its phosphorylation status and a detector Ab binding specifically to a certain phosphorylation site. Besides Ab specificities, major challenges arise from the very low tau-concentrations in cerebrospinal fluid (CSF) ranging from 100 to 2,000 pg/ml. Based on the phosphorylation degree of a given position, which can be below 10%, the corresponding phospho-tau-level might be much lower, especially for multiphosphorylated epitopes studied here. Thus, a novel, highly sensitive, and generally applicable immunoassay is described to quantify tau-versions, which are phosphorylated at pThr212/pSer214/pThr231/pSer235, down to tau-concentrations of 2 pg/ml in CSF.
Collapse
|
49
|
Yaka E, Egrilmez MY, Keskinoglu P, Cavdar Z, Genc S, Genc K, İyilikci L, Yener GG. Biological markers in cerebrospinal fluid (CSF) and evaluation ofin vitroeffect of CSF on PC12 cell line viability in Alzheimer's disease. Cell Biochem Funct 2009; 27:395-401. [DOI: 10.1002/cbf.1588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
|