1
|
Ahmed B, Reiche CF, Magda JJ, Solzbacher F, Körner J. Smart Hydrogel Swelling State Detection Based on a Power-Transfer Transduction Principle. ACS APPLIED POLYMER MATERIALS 2024; 6:5544-5554. [PMID: 38752016 PMCID: PMC11091848 DOI: 10.1021/acsapm.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Stimulus-responsive (smart) hydrogels are a promising sensing material for biomedical contexts due to their reversible swelling change in response to target analytes. The design of application-specific sensors that utilize this behavior requires the development of suitable transduction concepts. The presented study investigates a power-transfer-based readout approach that is sensitive to small volumetric changes of the smart hydrogel. The concept employs two thin film polyimide substrates with embedded conductive strip lines, which are shielded from each other except at the tip region, where the smart hydrogel is sandwiched in between. The hydrogel's volume change in response to a target analyte alters the distance and orientation of the thin films, affecting the amount of transferred power between the two transducer parts and, consequently, the measured sensor output voltage. With proper calibration, the output signal can be used to determine the swelling change of the hydrogel and, consequently, to quantify the stimulus. In proof-of-principle experiments with glucose- and pH-sensitive smart hydrogels, high sensitivity to small analyte concentration changes was found along with very good reproducibility and stability. The concept was tested with two exemplary hydrogels, but the transduction principle in general is independent of the specific hydrogel material, as long as it exhibits a stimulus-dependent volume change. The application vision of the presented research is to integrate in situ blood analyte monitoring capabilities into standard (micro)catheters. The developed sensor is designed to fit into a catheter without obstructing its normal use and, therefore, offers great potential for providing a universally applicable transducer platform for smart catheter-based sensing.
Collapse
Affiliation(s)
- Benozir Ahmed
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Christopher F. Reiche
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Jules J. Magda
- Department
of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Florian Solzbacher
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Julia Körner
- Faculty
of
Electrical Engineering & Computer Science, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
2
|
Sturm A, Jóźwiak G, Verge MP, Munch L, Cathomen G, Vocat A, Luraschi-Eggemann A, Orlando C, Fromm K, Delarze E, Świątkowski M, Wielgoszewski G, Totu RM, García-Castillo M, Delfino A, Tagini F, Kasas S, Lass-Flörl C, Gstir R, Cantón R, Greub G, Cichocka D. Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform. Nat Commun 2024; 15:2037. [PMID: 38499536 PMCID: PMC10948838 DOI: 10.1038/s41467-024-46213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major public health threat, reducing treatment options for infected patients. AMR is promoted by a lack of access to rapid antibiotic susceptibility tests (ASTs). Accelerated ASTs can identify effective antibiotics for treatment in a timely and informed manner. We describe a rapid growth-independent phenotypic AST that uses a nanomotion technology platform to measure bacterial vibrations. Machine learning techniques are applied to analyze a large dataset encompassing 2762 individual nanomotion recordings from 1180 spiked positive blood culture samples covering 364 Escherichia coli and Klebsiella pneumoniae isolates exposed to cephalosporins and fluoroquinolones. The training performances of the different classification models achieve between 90.5 and 100% accuracy. Independent testing of the AST on 223 strains, including in clinical setting, correctly predict susceptibility and resistance with accuracies between 89.5% and 98.9%. The study shows the potential of this nanomotion platform for future bacterial phenotype delineation.
Collapse
Affiliation(s)
- Alexander Sturm
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland.
| | | | - Marta Pla Verge
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Laura Munch
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Gino Cathomen
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Anthony Vocat
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | | | - Clara Orlando
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Katja Fromm
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - Eric Delarze
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | | | | | - Roxana M Totu
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| | - María García-Castillo
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain
| | - Alexandre Delfino
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Florian Tagini
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy (LBEM), École Polytechnique Fédérale de Lausanne (EPFL) and University of Lausanne (UNIL), 1015, Lausanne, Switzerland
- Centre Universitaire Romand de Médecine Légale (UFAM) & Université de Lausanne (UNIL), 1015, Lausanne, Switzerland
| | - Cornelia Lass-Flörl
- Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Ronald Gstir
- Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Universität Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Rafael Cantón
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Sinesio Delgado 4, 28029, Madrid, Spain
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital (CHUV) & University of Lausanne (UNIL), 1011, Lausanne, Switzerland
| | - Danuta Cichocka
- Resistell AG, Hofackerstrasse 40, 4132, Muttenz, Switzerland
| |
Collapse
|
3
|
Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation. Biosens Bioelectron 2023; 225:115100. [PMID: 36709589 DOI: 10.1016/j.bios.2023.115100] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Because of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS). Defining the system's qualifying parameters may improve the BoC for the next generation of in vitro platforms. These parameters show how well a given platform solves the problems unique to in vitro CNS modeling (like recreating the brain's microenvironment and including essential parts like the blood-brain barrier (BBB)) and how much more value it offers than traditional cell culture systems. This review provides an overview of the practical concerns of creating and deploying BoC systems and elaborates on how these technologies might be used. Not only how advanced biosensing technologies could be integrated with BoC system but also how novel approaches will automate assays and improve point-of-care (PoC) diagnostics and accurate quantitative analyses are discussed. Key challenges providing opportunities for clinical translation of BoC in neurodegenerative disorders are also addressed.
Collapse
|
4
|
A Low Spring Constant Piezoresistive Microcantilever for Biological Reagent Detection. MICROMACHINES 2020; 11:mi11111001. [PMID: 33198100 PMCID: PMC7697630 DOI: 10.3390/mi11111001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022]
Abstract
This paper introduces a piezoresistive microcantilever with a low spring constant. The microcantilever was fabricated with titanium (Ti) as the piezoresistor, a low spring constant polyimide (PI) layer, and a thin silicon oxide (SiO2) layer as the top and bottom passive layers, respectively. Excellent mechanical performances with the spring constant of 0.02128 N/m and the deflection sensitivity (∆V/V)/∆z of 1.03 × 10−7 nm−1 were obtained. The output voltage fluctuation of a Wheatstone bridge, which consists of four piezoresistive microcantilevers, is less than 3 μV@3 V in a phosphate buffered saline (PBS) environment. A microcantilever aptasensor was then developed through functionalizing the microcantilevers with a ricin aptamer probe, and detections on ricin with concentrations of 10, 20, 50 and 100 ng/mL were successfully realized. A good specificity was also confirmed by using bovine serum albumin (BSA) as a blank control. The experiment results show that the Ti and PI-based microcantilever has great prospects for ultrasensitive biochemical molecule detections with high reliability and specificity.
Collapse
|
5
|
Pollok NE, Rabin C, Smith L, Crooks RM. Orientation-Controlled Bioconjugation of Antibodies to Silver Nanoparticles. Bioconjug Chem 2019; 30:3078-3086. [PMID: 31730333 PMCID: PMC6920564 DOI: 10.1021/acs.bioconjchem.9b00737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report on the use of heterobifunctional cross-linkers (HBCLs) to control the number, orientation, and activity of immunoglobulin G antibodies (Abs) conjugated to silver nanoparticles (AgNPs). A hydrazone conjugation method resulted in exclusive modification of the polysaccharide chains present on the fragment crystallizable region of the Abs, leaving the antigen-binding regions accessible. Two HBCLs, each having a hydrazide terminal group, were synthesized and tested for effectiveness. The two HBCLs differed in two respects, however: (1) either a thiol or a dithiolane group was used for attachment to the AgNP; and (2) the spacer arm was either a PEG chain or an alkyl chain. Both cross-linkers immobilized 5 ± 1 Abs on the surface of each 20-nm-diameter AgNP. Electrochemical results, obtained using a half-metalloimmunoassay, proved that Abs conjugated to AgNPs via either of the two HBCLs were 4 times more active than those conjugated by the more common physisorption technique. This finding confirmed that the HBCLs exerted orientational control over the Abs. We also demonstrated that the AgNP-HBCL-Ab conjugates were stable and active for at least 2 weeks. Finally, we found that the stability of the HBCLs themselves was related to the nature of their spacer arms. Specifically, the results showed that the HBCL having the alkyl chain is chemically stable for at least 90 days, making it the preferred cross-linker for bioassays.
Collapse
Affiliation(s)
| | | | - Leilani Smith
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, TX, 78712-1224, U.S.A
| | - Richard M. Crooks
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, TX, 78712-1224, U.S.A
| |
Collapse
|
6
|
MacKay S, Abdelrasoul GN, Tamura M, Lin D, Yan Z, Chen J. Using Impedance Measurements to Characterize Surface Modified with Gold Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2141. [PMID: 29358569 PMCID: PMC5620498 DOI: 10.3390/s17092141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/01/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
Abstract
With the increased practice of preventative healthcare to help reduce costs worldwide, sensor technology improvement is vital to patient care. Point-of-care (POC) diagnostics can reduce time and lower labor in testing, and can effectively avoid transporting costs because of portable designs. Label-free detection allows for greater versatility in the detection of biological molecules. Here, we describe the use of an impedance-based POC biosensor that can detect changes in the surface modification of a micro-fabricated chip using impedance spectroscopy. Gold nanoparticles (GNPs) have been employed to evaluate the sensing ability of our new chip using impedance measurements. Furthermore, we used impedance measurements to monitor surface functionalization progress on the sensor's interdigitated electrodes (IDEs). Electrodes made from aluminum and gold were employed and the results were analyzed to compare the impact of electrode material. GNPs coated with mercaptoundecanoic acid were also used as a model of biomolecules to greatly enhance chemical affinity to the silicon substrate. The portable sensor can be used as an alternative technology to ELISA (enzyme-linked immunosorbent assays) and polymerase chain reaction (PCR)-based techniques. This system has advantages over PCR and ELISA both in the amount of time required for testing and the ease of use of our sensor. With other techniques, larger, expensive equipment must be utilized in a lab environment, and procedures have to be carried out by trained professionals. The simplicity of our sensor system can lead to an automated and portable sensing system.
Collapse
Affiliation(s)
- Scott MacKay
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Gaser N Abdelrasoul
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Marcus Tamura
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Donghai Lin
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Zhimin Yan
- National Institute for Nanotechnology, National Research Council, Edmonton, AB T6G 2M9, Canada.
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
- National Institute for Nanotechnology, National Research Council, Edmonton, AB T6G 2M9, Canada.
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada.
| |
Collapse
|
7
|
Nano-Integrated Suspended Polymeric Microfluidics (SPMF) Platform for Ultra-Sensitive Bio-Molecular Recognition of Bovine Growth Hormones. Sci Rep 2017; 7:10969. [PMID: 28887532 PMCID: PMC5591301 DOI: 10.1038/s41598-017-11300-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/21/2017] [Indexed: 11/23/2022] Open
Abstract
The development of sensitive platforms for the detection of biomolecules recognition is an extremely important problem in clinical diagnostics. In microcantilever (MC) transducers, surface-stress is induced upon bimolecular interaction which is translated into MC deflection. This paper presents a cost-effective and ultra-sensitive MC-based biosensing platform. To address these goals, the need for costly high-resolution read-out system has been eliminated by reducing the cantilever compliance through developing a polymer-based cantilever. Furthermore a microfluidic system has been integrated with the MC in order to enhance sensitivity and response time and to reduce analytes consumption. Gold nanoparticles (AuNPs) are synthesized on the surface of suspended microfluidics as the selective layer for biomolecule immobilization. The biosensing results show significant improvement in the sensitivity of the proposed platform compared with available silicon MC biosensor. A detection limit of 2 ng/ml (100pM) is obtained for the detection of bovine growth hormones. The results validated successful application of suspended polymeric microfluidics (SPMF) as the next generation of biosensing platforms which could enable femtomolar (fM) biomolecular recognition detection.
Collapse
|
8
|
|
9
|
Hassan SHA, Van Ginkel SW, Hussein MAM, Abskharon R, Oh SE. Toxicity assessment using different bioassays and microbial biosensors. ENVIRONMENT INTERNATIONAL 2016; 92-93:106-18. [PMID: 27071051 DOI: 10.1016/j.envint.2016.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 03/05/2016] [Accepted: 03/05/2016] [Indexed: 05/23/2023]
Abstract
Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized.
Collapse
Affiliation(s)
- Sedky H A Hassan
- Botany Department, Faculty of Science, Assiut University, New Valley Branch, 72511 Al-Kharja, Egypt
| | - Steven W Van Ginkel
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Romany Abskharon
- National Institute of Oceanography and Fisheries (NIFO), 11516 Cairo, Egypt
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 200-701 Chuncheon, Kangwon-do, South Korea.
| |
Collapse
|
10
|
Shiba K, Imamura G, Yoshikawa G. Nanomechanical Sensors. BIOMATERIALS NANOARCHITECTONICS 2016. [PMCID: PMC7152471 DOI: 10.1016/b978-0-323-37127-8.00011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This chapter introduces nanomechanical sensors and their applications. All molecules have “volume” and “mass.” Direct measurement of these fundamental parameters can realize label-free and real-time measurements. Nanomechanical sensors have been emerging as a key device for such label-free and real-time measurements with their multiple operation modes; static and dynamic modes for detecting volume- and mass-related features, respectively. A cantilever array sensor is a representative example among various geometries, while structural optimization can enhance the scope of nanomechanical sensors in both academic and industrial applications. One of the most advanced sensing platforms is a membrane-type surface stress sensor (MSS), which realizes both high sensitivity and compact system at the same time. The MSS is also expected to contribute to addressing nanomechanical behavior of living cells and their network.
Collapse
|
11
|
Peppas NA, Van Blarcom DS. Hydrogel-based biosensors and sensing devices for drug delivery. J Control Release 2015; 240:142-150. [PMID: 26611939 DOI: 10.1016/j.jconrel.2015.11.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/14/2015] [Accepted: 11/19/2015] [Indexed: 11/19/2022]
Abstract
In the past 15years drug delivery devices have received added attention, not only as passive systems of drug delivery that respond to the needs of the health care provider or the patient but have an added advantage or an added characteristic of being triggered by an external process of recognition of a cause, a disease or an analyte that leads to a triggering mechanism for specific drug delivery. In this review, we will examine some of the pioneering work in this field, and speak on the use of biodegradable, environmentally-responsive hydrogels as sensing components in novel microscale devices.
Collapse
Affiliation(s)
- Nicholas A Peppas
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, McKetta Department of Chemical Engineering, Department of Biomedical Engineering, and Division of Pharmaceutics, The University of Texas at Austin, Austin, TX 78712-1062, United States.
| | - Diana Snelling Van Blarcom
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, McKetta Department of Chemical Engineering, Department of Biomedical Engineering, and Division of Pharmaceutics, The University of Texas at Austin, Austin, TX 78712-1062, United States
| |
Collapse
|
12
|
Waggoner NW, Bohnsack AM, Humphrey SM. Metal-Organic Frameworks as Chemical Sensors. FUNCTIONAL METALLOSUPRAMOLECULAR MATERIALS 2015. [DOI: 10.1039/9781782622673-00192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chemical sensing is of critical importance in today's society in a variety of applications from medicine to environmental pollution control, and from food safety monitoring to the detection of illicit substances and chemical weapons. Metal–organic frameworks (MOFs) have shown tremendous promise as a new class of chemical sensor materials that could be integrated into future devices. MOFs are microporous crystalline materials with infinite, periodic structures composed of organic ‘linkers’ connected to metal ‘nodes’. Their architectures can be fine-tuned by synthetic design for task-specific purposes: as chemical sensors, MOFs can be designed to interact with specific target analytes. Interest in MOFs as chemical sensors has grown significantly over the last decade, particularly given the increasing number of examples of luminescent lanthanide-based MOFs, and MOFs that display mechanochemical responses to external stimuli. In this chapter, we discuss some of the fundamental properties required to prepare MOFs for chemical sensing. We then present an extensive review of recent research in this area, showing how MOFs have been applied in a wide range of applications, including sensing of anions, cations, small organic molecules, biomolecules, as well as changes in physical conditions such as temperature and pH.
Collapse
Affiliation(s)
- Nolan W. Waggoner
- Department of Chemistry, The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712-1224 USA
| | - Alisha M. Bohnsack
- Department of Chemistry, The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712-1224 USA
| | - Simon M. Humphrey
- Department of Chemistry, The University of Texas at Austin 105 E. 24th Street A5300 Austin TX 78712-1224 USA
| |
Collapse
|
13
|
Chartuprayoon N, Zhang M, Bosze W, Choa YH, Myung NV. One-dimensional nanostructures based bio-detection. Biosens Bioelectron 2015; 63:432-443. [DOI: 10.1016/j.bios.2014.07.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/05/2014] [Accepted: 07/17/2014] [Indexed: 11/17/2022]
|
14
|
Lee HJ, Yook JG. Recent research trends of radio-frequency biosensors for biomolecular detection. Biosens Bioelectron 2014; 61:448-59. [DOI: 10.1016/j.bios.2014.05.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
|
15
|
Bache M, Bosco FG, Brøgger AL, Frøhling KB, Alstrøm TS, Hwu ET, Chen CH, Eugen-Olsen J, Hwang IS, Boisen A. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology. NANOTECHNOLOGY 2013; 24:444011. [PMID: 24113286 DOI: 10.1088/0957-4484/24/44/444011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.
Collapse
Affiliation(s)
- Michael Bache
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, DK-2800, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hernandez C, Bernard Y, Razek A. Design and manufacturing of a piezoelectric traveling-wave pumping device. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1949-1956. [PMID: 24658725 DOI: 10.1109/tuffc.2013.2779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this article, we present the design and construction of a micropump exhibiting a nontraditional pumping principle whose design is achievable at very low scales. The operation is based on the action of a mechanical traveling wave deforming the bottom wall of a flexible channel containing a fluid. The paper treats for the first time the influence of the traveling wave parameters on the performance of the pump with the help of finite element simulations. The results obtained from the simulation are subsequently used for the dimensioning of the linear ultrasonic traveling wave actuator that drives the device. Finally, a very simple channel-reservoirs structure was conceived to test the device. At this point, several measurements of flow rate and back pressure were carried out to estimate the performance of the prototype for different values of wave amplitude. The article finishes with a comparison between the numerical and experimental results and a brief section of discussion and conclusions.
Collapse
|
17
|
Sang S, Zhao Y, Zhang W, Li P, Hu J, Li G. Surface stress-based biosensors. Biosens Bioelectron 2013; 51:124-35. [PMID: 23948243 DOI: 10.1016/j.bios.2013.07.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/27/2013] [Accepted: 07/12/2013] [Indexed: 01/13/2023]
Abstract
Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed.
Collapse
Affiliation(s)
- Shengbo Sang
- MicroNano System Research Center, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Jung N, Yun M, Jeon S. Phase transitions between the rotator phases of paraffin investigated using silicon microcantilevers. J Chem Phys 2012; 136:104903. [PMID: 22423857 DOI: 10.1063/1.3692296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nanogram amounts of paraffin were coated onto a silicon cantilever, and the resonance frequency and deflection of the cantilever were measured as a function of temperature. Changes in the cantilever resonance frequency were used to determine the temperatures at which phase transitions between the rotator phases of tricosane, tetracosane, and pentacosane occurred. The phase transition measured using the cantilever was found to be more apparent than that obtained using conventional methods. The thermal hysteresis in the resonance frequency of a tetracosane-coated cantilever differed from that of the tricosane- and pentacosane-coated cantilevers, which was attributed to the even-odd effect on the crystal structures of paraffin. The even-odd effect was also observed in the temperature dependent deflection measurements. Further, the overshoot at the transition R(V) → crystal in the deflection measurement was observed and attributed to the steep increase in the modulus of paraffin during the transition.
Collapse
Affiliation(s)
- Namchul Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | | | | |
Collapse
|
19
|
Pan H, Xu Y, Wu S, Zhang B, Tang J. Molecular interactions in self-assembly monolayers on gold-coated microcantilever electrodes. NANOTECHNOLOGY 2011; 22:225503. [PMID: 21454929 DOI: 10.1088/0957-4484/22/22/225503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An electrochemical microcantilever (EMC) was used to study the intermolecular interaction of self-assembly monolayers (SAMs) with different n-alkanethiols chain lengths (n = 0, 4, 6, 8, 12, 16) on a Au-coated microcantilever surface. Comparing potential cycling and steps in NaClO(4) solution within the same potential range, the deflection rate of bare microcantilevers is much smaller for the former which revealed that potential excitation, i.e. the surface charge, played the dominant role in driving the instant and large deflection of the bare microcantilever, while the smaller deflection amplitude of the former implied that adsorption of ClO(4)( - ) had an adverse effect on the potential-induced stress. Upon adsorption of SAMs, the deflection amplitude of the microcantilever under the potential step was much smaller than that of a bare microcantilever, and linearly decreased with the chain length increasing for n ≤ 8 (the linear correlation coefficient and the slope are 0.98 and about - 10.4 nm per CH(2) unit, respectively), following a transition (8 ≤ n ≤ 12) to a stable state (n ≥ 12). The decrease of deflection amplitude and faster decay of deflection rate of the SAMs modified microcantilever under the potential step implyed increasing compactness of the SAMs with longer chains.
Collapse
Affiliation(s)
- Hongqing Pan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
VanBlarcom DS, Peppas NA. Microcantilever sensing arrays from biodegradable, pH-responsive hydrogels. Biomed Microdevices 2011; 13:829-36. [DOI: 10.1007/s10544-011-9553-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Buchapudi KR, Huang X, Yang X, Ji HF, Thundat T. Microcantilever biosensors for chemicals and bioorganisms. Analyst 2011; 136:1539-56. [PMID: 21394347 DOI: 10.1039/c0an01007c] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the last fifteen years, microcantilevers (MCLs) have been emerging as a sensitive tool for the detection of chemicals and bioorganisms. Because of their small size, lightweight, and high surface-to-volume ratio, MCL-based sensors improve our capability to detect and identify biological agents by orders of magnitude. A biosensor is a device for the detection of an analyte that combines a biological component with a physicochemical detector component. The MCL biosensors have recently been reviewed in several papers. All of these papers were organized based on the sensing biological elements (antibody, enzyme, proteins, etc.) for recognition of analytes. In this review, we intend to summarize the microcantilever biosensors in a format of each specific chemical and bioorganism species to make information on individual biosensors easily accessible. We did this to aid researchers to locate relevant references.
Collapse
Affiliation(s)
- Koutilya R Buchapudi
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| | | | | | | | | |
Collapse
|
22
|
Hilt JZ, Gupta AK, Bashir R, Peppas NA. A Microsensor Based on a Microcantilever Patterned with an Environmentally Sensitive Hydrogel. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-729-u4.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractA process was developed for patterning thin films of environmentally sensitive hydrogels onto silicon microcantilevers. Microcantilevers have been shown to be ultra-sensitive transducers for chemical, physical, and biological microsensors. By patterning environmentally sensitive hydrogels onto silicon microcantilevers, novel microsensors were prepared for MEMS and BioMEMS applications. Specifically, a cross-linked poly(methacrylic acid) (PMAA) network containing significant amounts of poly(ethylene glycol) dimethacrylate (PEGDMA) was studied. This hydrogel exhibits a swelling dependence on pH. By increasing the environmental pH above the pKa of PMAA to cause ionization of the carboxylic acid groups, electrostatic repulsion is produced along the main polymer chain causing the polymer network to expand and swell. Therefore, a pH change induces swelling or shrinking of the polymer network and creates stress on the microcantilever surface causing it to bend. In this study, silicon microcantilevers were fabricated on p-type (100) SOI wafers. Covalent adhesion was gained between the polymer and the silicon surface through the modification of the silicon surface with γ-methacryloxypropyl trimethoxysilane. Hydrogels were patterned onto the silicon microcantilevers utilizing a mask aligner to allow for precise positioning. The micropatterned hydrogels were analyzed using optical microscopy and profilometry. The bending response of patterned cantilevers with a change in environmental pH was observed, providing proof-of-concept for a MEMS/BioMEMS sensor based on microcantilevers patterned with environmentally sensitive hydrogels.
Collapse
|
23
|
Simultaneous topographic and amperometric membrane mapping using an AFM probe integrated biosensor. Biosens Bioelectron 2011; 26:2911-6. [DOI: 10.1016/j.bios.2010.11.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/26/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022]
|
24
|
Ricciardi C, Canavese G, Castagna R, Ferrante I, Ricci A, Marasso SL, Napione L, Bussolino F. Integration of microfluidic and cantilever technology for biosensing application in liquid environment. Biosens Bioelectron 2010; 26:1565-70. [DOI: 10.1016/j.bios.2010.07.114] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/09/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
25
|
Tark SH, Das A, Sligar S, Dravid VP. Nanomechanical detection of cholera toxin using microcantilevers functionalized with ganglioside nanodiscs. NANOTECHNOLOGY 2010; 21:435502. [PMID: 20890017 PMCID: PMC3868204 DOI: 10.1088/0957-4484/21/43/435502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The label-free detection of cholera toxin is demonstrated using microcantilevers functionalized with ganglioside nanodiscs. The cholera toxin molecules bind specifically to the active membrane protein encased in nanodiscs, nanoscale lipid bilayers surrounded by an amphipathic protein belt, immobilized on the cantilever surface. The specific molecular binding results in cantilever deflection via the formation of a surface stress-induced bending moment. The nanomechanical cantilever response is quantitatively monitored by optical interference. The consistent and reproducible nanomechanical detection of cholera toxin in nanomolar range concentrations is demonstrated. The results validated with such a model system suggest that the combination of a microcantilever platform with receptor nanodiscs is a promising approach for monitoring invasive pathogens and other types of biomolecular detection relevant to drug discovery.
Collapse
Affiliation(s)
- Soo-Hyun Tark
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Aditi Das
- Department of Biochemistry and Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen Sligar
- Department of Biochemistry and Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vinayak P. Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
26
|
Volcke C, Gandhiraman RP, Gubala V, Doyle C, Fonder G, Thiry PA, Cafolla AA, James B, Williams DE. Plasma functionalization of AFM tips for measurement of chemical interactions. J Colloid Interface Sci 2010; 348:322-8. [DOI: 10.1016/j.jcis.2010.04.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/08/2010] [Accepted: 04/19/2010] [Indexed: 11/16/2022]
|
27
|
Yoshimoto K, Nishio M, Sugasawa H, Nagasaki Y. Direct Observation of Adsorption-Induced Inactivation of Antibody Fragments Surrounded by Mixed-PEG Layer on a Gold Surface. J Am Chem Soc 2010; 132:7982-9. [DOI: 10.1021/ja910372e] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keitaro Yoshimoto
- Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan, Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan, Asylum Technology Company, Ltd, Yushima 3-20-12, Bunkyo-ku, Tokyo 113-0034, Japan, Master’s School of Medical Science,
| | - Motohiko Nishio
- Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan, Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan, Asylum Technology Company, Ltd, Yushima 3-20-12, Bunkyo-ku, Tokyo 113-0034, Japan, Master’s School of Medical Science,
| | - Hiroaki Sugasawa
- Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan, Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan, Asylum Technology Company, Ltd, Yushima 3-20-12, Bunkyo-ku, Tokyo 113-0034, Japan, Master’s School of Medical Science,
| | - Yukio Nagasaki
- Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan, Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan, Asylum Technology Company, Ltd, Yushima 3-20-12, Bunkyo-ku, Tokyo 113-0034, Japan, Master’s School of Medical Science,
| |
Collapse
|
28
|
Carrascosa LG, Martínez L, Huttel Y, Román E, Lechuga LM. Understanding the role of thiol and disulfide self-assembled DNA receptor monolayers for biosensing applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1433-44. [PMID: 20358368 DOI: 10.1007/s00249-010-0599-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/27/2010] [Accepted: 03/03/2010] [Indexed: 11/29/2022]
Abstract
A detailed study of the immobilization of three differently sulfur-modified DNA receptors for biosensing applications is presented. The three receptors are DNA-(CH)n-SH-, DNA-(CH)n-SS-(CH)n-DNA, and DNA-(CH)n-SS-DMTO. Nanomechanical and surface plasmon resonance biosensors and fluorescence and radiolabelling techniques were used for the experimental evaluation. The results highlight the critical role of sulfur linker type in DNA self-assembly, affecting the kinetic adsorption and spatial distribution of DNA chains within the monolayer and the extent of chemisorption and physisorption. A spacer (mercaptohexanol, MCH) is used to evaluate the relative efficiencies of chemisorption of the three receptors by analysing the extent to which MCH can remove physisorbed molecules from each type of monolayer. It is demonstrated that -SH derivatization is the most suitable for biosensing purposes as it results in densely packed monolayers with the lowest ratio of physisorbed probes.
Collapse
Affiliation(s)
- Laura G Carrascosa
- Grupo de Nanobiosensores y Aplicaciones Bioanalíticas (nanoB2A), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
29
|
Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev 2010; 39:1805-34. [PMID: 20419220 DOI: 10.1039/b907301a] [Citation(s) in RCA: 805] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled monolayers (SAMs) of alkanethiols and dialkanethiols on gold are key elements for building many systems and devices with applications in the wide field of nanotechnology. Despite the progress made in the knowledge of these fascinating two-dimensional molecular systems, there are still several "hot topics" that deserve special attention in order to understand and to control their physical and chemistry properties at the molecular level. This critical review focuses on some of these topics, including the nature of the molecule-gold interface, whose chemistry and structure remain elusive, the self-assembly process on planar and irregular surfaces, and on nanometre-sized objects, and the chemical reactivity and thermal stability of these systems in ambient and aqueous solutions, an issue which seriously limits their technological applications (375 references).
Collapse
Affiliation(s)
- C Vericat
- Instituto de Investigaciones Fisicoquímicas Teóricasy Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16, (1900) La Plata, Argentina
| | | | | | | | | |
Collapse
|
30
|
Abstract
Microfabricated cantilever sensors have attracted much interest in recent years as devices for the fast and reliable detection of small concentrations of molecules in air and solution. In addition to application of such sensors for gas and chemical-vapor sensing, for example as an artificial nose, they have also been employed to measure physical properties of tiny amounts of materials in miniaturized versions of conventional standard techniques such as calorimetry, thermogravimetry, weighing, photothermal spectroscopy, as well as for monitoring chemical reactions such as catalysis on small surfaces. In the past few years, the cantilever-sensor concept has been extended to biochemical applications and as an analytical device for measurements of biomaterials. Because of the label-free detection principle of cantilever sensors, their small size and scalability, this kind of device is advantageous for diagnostic applications and disease monitoring, as well as for genomics or proteomics purposes. The use of microcantilever arrays enables detection of several analytes simultaneously and solves the inherent problem of thermal drift often present when using single microcantilever sensors, as some of the cantilevers can be used as sensor cantilevers for detection, and other cantilevers serve as passivated reference cantilevers that do not exhibit affinity to the molecules to be detected.
Collapse
Affiliation(s)
- Bharat Bhushan
- Ohio State University, Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2), 201 W. 19th Avenue, 43210-1142 Columbus, OH USA
| | | | | |
Collapse
|
31
|
|
32
|
Hu W, Anderson R, Qian Y, Song J, Noh JW, Kim S, Nordin GP. Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:085101. [PMID: 19725675 DOI: 10.1063/1.3186735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We demonstrate a microcantilever array with an in-plane photonic transduction method for simultaneous readout of each microcantilever. The array is fabricated on a silicon-on-insulator substrate. Rib waveguides in conjunction with a compact waveguide splitter network comprised of trench-based splitters and trench-based bends route light from a single optical input to each microcantilever on the chip. Light propagates down a rib waveguide integrated into the microcantilever and, at the free end of the microcantilever, crosses a small gap. Light is captured in static asymmetric multimode waveguides that terminate in Y-branches, the outputs of which are imaged onto an InGaAs line scan camera. A differential signal for each microcantilever is simultaneously formed from the two outputs of the corresponding Y-branch. We demonstrate that reasonable signal uniformity is obtained with a scaled differential signal for seven out of nine surviving microcantilevers in an array.
Collapse
Affiliation(s)
- Weisheng Hu
- Electrical and Computer Engineering, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Torun H, Finkler O, Degertekin FL. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:076103. [PMID: 19655988 PMCID: PMC2721764 DOI: 10.1063/1.3167276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 06/09/2009] [Indexed: 05/28/2023]
Abstract
The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.
Collapse
Affiliation(s)
- H Torun
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
34
|
Knowles TPJ, Shu W, Huber F, Lang HP, Gerber C, Dobson CM, Welland ME. Label-free detection of amyloid growth with microcantilever sensors. NANOTECHNOLOGY 2008; 19:384007. [PMID: 21832567 DOI: 10.1088/0957-4484/19/38/384007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present an approach for sensing protein aggregation using microcantilever systems. Results from both single cantilever experiments with internal reference and multicantilever array measurements with dedicated reference cantilevers are discussed. We show that in both cases protein aggregation on the sensor can be detected through associated changes in surface stress.
Collapse
Affiliation(s)
- Tuomas P J Knowles
- Nanoscience Centre, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0FF, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Hill K, Dutta P, Zareba A, Eldridge ML, Sepaniak MJ. Morphological and chemical optimization of microcantilever surfaces for thyroid system biosensing and beyond. Anal Chim Acta 2008; 625:55-62. [DOI: 10.1016/j.aca.2008.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/25/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
|
36
|
Smetanin M, Viswanath RN, Kramer D, Beckmann D, Koch T, Kibler LA, Kolb DM, Weissmüller J. Surface stress-charge response of a (111)-textured gold electrode under conditions of weak ion adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8561-8567. [PMID: 18616224 DOI: 10.1021/la704067z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report a cantilever bending investigation into the variation of surface stress, f, with surface charge density, q, for (111)-textured thin films of gold in aqueous NaF and HClO 4. The graphs of f(q) are highly linear, and the surface stress-charge coefficients, d f/d q, are -1.95 V for 7 mM NaF and -2.0 V for 10 mM HClO 4 near the potential of zero charge. These values exceed some previously published experimental data by a factor of 2, but they agree with recent ab initio calculations of the surface stress-charge response of gold in vacuum.
Collapse
Affiliation(s)
- M Smetanin
- Forschungszentrum Karlsruhe, Institut fur Nanotechnologie, Karlsruhe, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Noh JW, Anderson R, Kim S, Cardenas J, Nordin GP. In-plane photonic transduction of silicon-on-insulator microcantilevers. OPTICS EXPRESS 2008; 16:12114-12123. [PMID: 18679487 DOI: 10.1364/oe.16.012114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We demonstrate an in-plane photonic transduction method for microcantilevers, which have been widely investigated for sensor applications. In our approach the microcantilever is etched to form a single mode rib waveguide. Light propagates down the microcantilever and crosses a small gap at the free end of the microcantilever, some of which is captured by an asymmetrical multimode waveguide that terminates in a Y-branch. The Y-branch outputs are used to form a differential signal that is monotonically dependent on microcantilever deflection. The measured differential signal matches simulation when microcantilever rotation is properly accounted for. The measured differential signal sensitivity is 1.4 x 10(-4) nm(-1) and the minimum detectable deflection is 0.35 nm.
Collapse
Affiliation(s)
- Jong Wook Noh
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | |
Collapse
|
38
|
Cinar MO, Koçum IC, Ayhan H, Pişkin E. HIgG detection by histidine carrying AFM tips (cantilevers). ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 2008; 36:340-51. [PMID: 18649169 DOI: 10.1080/10731190802239024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
"Atomic Force Microscope" (AFM) tips (cantilevers) carrying a pseudo-specific ligand, i.e., histidine were prepared and investigated for detection of Human Immunoglobulin-G (HIgG) in aqueous media. The AFM tips (cantilevers) were first treated with HNO(3) and silanized to create amino groups; then glutaraldehyde (GA) was bonded via these surface amino groups; and finally, histidine molecules were immobilized by reaction of the amino groups of histidine with the free aldehyde groups of GA. Optimal immobilization conditions were described. Immobilizations were observed both by optical and confocal laser scanning microscopy. Interactions between the histidine carrying AFM tips (cantilevers) and the aqueous medium containing HIgG with different concentrations were quantified by "the separation distance" measured with the AFM system as the main variable. A quite nice linear correlation between the HIgG concentration and the separation distance was measured with AFM system. Interactions were also followed by an alternative "Modified Lowry" method, in which similar behavior was observed. We were able to measure HIgG concentration in aqueous media down to 0.055 pmol/micro l (8 mg/dl) concentration with this AFM based novel immunosensor.
Collapse
|
39
|
Jiang X, Li D, Xu X, Ying Y, Li Y, Ye Z, Wang J. Immunosensors for detection of pesticide residues. Biosens Bioelectron 2008; 23:1577-87. [DOI: 10.1016/j.bios.2008.01.035] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 01/15/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
|
40
|
Finot E, Passian A, Thundat T. Measurement of Mechanical Properties of Cantilever Shaped Materials. SENSORS 2008; 8:3497-3541. [PMID: 27879891 PMCID: PMC3675557 DOI: 10.3390/s8053497] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/18/2008] [Indexed: 11/16/2022]
Abstract
Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate, we use continuum mechanics, which is justified according to the ratio between the cantilever thickness and the grain size of the materials. We will also address other potential applications such as the ageing process of nuclear materials, building materials, and optical fibers, which can be investigated by monitoring their mechanical changes with time. In summary, by virtue of the dynamic response of a miniaturized cantilever shaped material, we present useful measurements of the associated elastic properties.
Collapse
Affiliation(s)
- Eric Finot
- Institut Carnot de Bourgogne, UMR 5209 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex, France.
| | - Ali Passian
- Nanoscale Science and Devices, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Department of Physics, University of Tennessee, Knoxville, TN 37996, USA.
| | - Thomas Thundat
- Nanoscale Science and Devices, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Department of Physics, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
41
|
Ji HF, Gao H, Buchapudi KR, Yang X, Xu X, Schulte MK. Microcantilever biosensors based on conformational change of proteins. Analyst 2008; 133:434-43. [PMID: 18365110 DOI: 10.1039/b713330h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microcantilevers (MCLs) hold a position as a cost-effective and highly sensitive sensor platform for medical diagnostics, environmental analysis and fast throughput analysis. MCLs are unique in that adsorption of analytes on the microcantilever (MCL) surface changes the surface characteristics of the MCL and results in bending of the MCL. Surface stress due to conformation change of proteins and other polymers has been a recent focus of MCL research. Since conformational changes in proteins can be produced through binding of anylates at specific receptor sites, MCLs that respond to conformational change induced surface stress are promising as transducers of chemical information and are ideal for developing microcantilever-based biosensors. The MCL can also potentially be used to investigate conformational change of proteins induced by non-binding events such as post-translational modification and changes in temperature or pH. This review will provide an overview of MCL biosensors based on conformational change of proteins bound to the MCL surface. The models include conformational change of proteins, proteins on membranes, enzymes, DNA and other polymers.
Collapse
Affiliation(s)
- Hai-Feng Ji
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
This chapter describes the application of nano- and micro-electromechanical systems (NEMs and MEMs), and more specifically microcantilever structures, as transducers for highly sensitive biosensors. In these devices, named as ‘nanomechanical biosensors,’ a biomolecular interaction produces a change in the mechanical behavior of the transducer (a movement at nanometer scale), which can be measured and analyzed in real time. Microcantilevers translate the molecular recognition of biomolecules into a nanomechanical motion that is commonly coupled to an optical read-out system. This chapter discusses the main aspects regarding the physics of microcantilever as well the optical read-out techniques. It reviews the state-of-the-art, and discusses the prospective future directions of this new family of biosensors. Nanomechanical sensors are derived from the microfabricated cantilevers used in atomic force microscopy (AFM) and are based on the bending or resonance change induced in the cantilever when a biomolecular interaction takes place on one of its surfaces. The cantilever response depends on its mechanical properties, which are determined mainly by their spring constant and resonance frequency. Both parameters depend on the cantilever material and its geometry. The increasing number of applications of microcantilevers as biosensors has established these systems as a versatile platform for real-time and in situmeasurements of physical, chemical, and biochemical interactions. Further research is banked upon to provide information for increasing the biosensor sensitivity.
Collapse
|
43
|
Fu L, Li S, Zhang K, Chen IH, Petrenko VA, Cheng Z. Magnetostrictive Microcantilever as an Advanced Transducer for Biosensors. SENSORS 2007; 7:2929-2941. [PMID: 28903270 PMCID: PMC3965225 DOI: 10.3390/s7112929] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 11/21/2007] [Indexed: 11/16/2022]
Abstract
The magnetostrictive microcantilever (MSMC) as a high-performance transducer was introduced for the development of biosensors. The principle and characterization of MSMC are presented. The MSMC is wireless and can be easily actuated and sensed using magnetic field/signal. More importantly, the MSMC exhibits a high Q value and works well in liquid. The resonance behavior of MSMC is characterized in air at different pressures and in different liquids, respectively. It is found that the Q value of the MSMC in water reaches about 40. Although the density and viscosity of the surrounding media affect the resonance frequency and the Q value of MSMC, the density has a stronger influence on the resonance frequency and the viscosity has a stronger influence on the Q value, which result in that, for MSMC in air at pressure of less than 100 Pa, the resonance frequency of MSMC is almost independent of the pressure, while the Q value increases with decreasing pressure. MSMC array was developed and characterized. It is experimentally demonstrated that the characterization of an MSMC array is as simple as the characterization of a single MSMC. A filamentous phage against Salmonella typhimurium was utilized as bio-recognition unit to develop an MSMC based biosensor. The detection of S. typhimurium in water demonstrated that the MSMC works well in liquid.
Collapse
Affiliation(s)
- Liling Fu
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Suiqiong Li
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - Kewei Zhang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA
| | - I-Hsuan Chen
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Valery A Petrenko
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Zhongyang Cheng
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
44
|
Chen IC, Chen LH, Orme CA, Jin S. Control of curvature in highly compliant probe cantilevers during carbon nanotube growth. NANO LETTERS 2007; 7:3035-40. [PMID: 17887798 DOI: 10.1021/nl071490x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Direct growth of a sharp carbon nanotube (CNT) probe on a very thin and highly flexible cantilever by plasma-enhanced chemical vapor deposition (PECVD) is desirable for atomic force microscopy (AFM) of nanoscale features on soft or fragile materials. Plasma-induced surface stresses in such fabrication processes, however, tend to cause serious bending of these cantilevers, which makes the CNT probe unsuitable for AFM measurements. Here, we report a new tunable CNT growth technique that controls cantilever bending during deposition, thereby enabling the creation of either flat or deliberately curved AFM cantilevers containing a CNT probe. By introducing hydrogen gas to the (acetylene + ammonia) feed gas during CNT growth and adjusting the ammonia to hydrogen flow ratio, the cantilever surface stress can be altered from compressive to tensile stress, and in doing so controlling the degree of cantilever bending. The CNT probes grown under these conditions have high aspect ratios and are robust. Contact-mode imaging has been demonstrated using these probe tips. Such CNT probes can be useful for bio-imaging involving DNA and other delicate biological features in a liquid environment.
Collapse
Affiliation(s)
- I-Chen Chen
- Materials Science and Engineering, University of California, San Diego, California 92093-0411, USA
| | | | | | | |
Collapse
|
45
|
Chapman PJ, Long Z, Datskos PG, Archibald R, Sepaniak MJ. Differentially Ligand-Functionalized Microcantilever Arrays for Metal Ion Identification and Sensing. Anal Chem 2007; 79:7062-8. [PMID: 17705449 DOI: 10.1021/ac070754x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microcantilever array sensor with cantilevers differentially functionalized with self-assembled monolayers (SAMs) of thiolated ligands is prepared by simultaneous capillary coating. This array is described for the detection of metal ions including Li+, Cs+, Cu2+, Co2+, Fe3+, and Al3+. Binding of the charged metal cations to the surface of the microcantilever sensors produces surface stress that causes bending of the cantilevers that is detected as tip deflection using an array of vertical cavity surface emitting lasers and a position-sensitive detector. Optimization studies of the nanostructured dealloyed surface were performed for SAMs based on their response to Cu2+ cations. Sensor performance experiments demonstrate good sensitivity toward metal ions, with limits of detection as low as 10(-8) molar. A multiplex capillary coating method for cantilever array creation is demonstrated and validated based on surface-enhanced Raman spectra obtained from adjacent cantilevers that were functionalized with different thiolated SAMs. The cantilever array coated with a range of thiolated ligands was exposed to the group of metal ions. The response characteristics of each metal ion show substantial diversity, varying not only in response magnitude, but response kinetics. A pattern recognition algorithm based on a combination of independent component analysis and support vector machines was able to validate that the sensor array response profiles produced enough information content that metal ions could be reliably classified with probabilities as high as 89%.
Collapse
Affiliation(s)
- Peter J Chapman
- University of Tennessee, Knoxville, Tennessee 37996-1600, USA
| | | | | | | | | |
Collapse
|
46
|
Shu W, Laue ED, Seshia AA. Investigation of biotin–streptavidin binding interactions using microcantilever sensors. Biosens Bioelectron 2007; 22:2003-9. [PMID: 17045792 DOI: 10.1016/j.bios.2006.08.047] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 08/15/2006] [Accepted: 08/25/2006] [Indexed: 11/18/2022]
Abstract
We report the investigation of biotin-streptavidin binding interactions using microcantilever sensors. A symmetric cantilever construction is employed to minimize the effects of thermal drift and the control of surface chemistry on the backside of the cantilever is demonstrated to reduce the effects of non-specific binding interactions on the cantilever. Three structurally different biotin modified cantilever surfaces are used as a model system to study the binding interaction with streptavidin. The cantilever response to the binding of streptavidin on these biotin sensing monolayers is compared. The lowest detection limit of streptavidin using biotin-HPDP is found to be between 1 and 10nM limited by the optical measurement setup. Surface characterization using quartz crystal microbalance (QCM) and high-resolution atomic force microscope (AFM) is used to benchmark the cantilever sensor response. In addition, the QCM and AFM studies reveal that the surface density of bound streptavidin on biotin modified surfaces was low, thereby implying that effects other than steric hindrance are responsible for defining cantilever response.
Collapse
Affiliation(s)
- Wenmiao Shu
- The Nanoscience Centre, University of Cambridge, 11 J.J. Thomson Avenue, Cambridge CB3 0FF, UK
| | | | | |
Collapse
|
47
|
Chapman PJ, Vogt F, Dutta P, Datskos PG, Devault GL, Sepaniak MJ. Facile hyphenation of gas chromatography and a microcantilever array sensor for enhanced selectivity. Anal Chem 2007; 79:364-70. [PMID: 17194162 DOI: 10.1021/ac061389x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The very simple coupling of a standard, packed-column gas chromatograph with a microcantilever array (MCA) is demonstrated for enhanced selectivity and potential analyte identification in the analysis of volatile organic compounds (VOCs). The cantilevers in MCAs are differentially coated on one side with responsive phases (RPs) and produce bending responses of the cantilevers due to analyte-induced surface stresses. Generally, individual components are difficult to elucidate when introduced to MCA systems as mixtures, although pattern recognition techniques are helpful in identifying single components, binary mixtures, or composite responses of distinct mixtures (e.g., fragrances). In the present work, simple test VOC mixtures composed of acetone, ethanol, and trichloroethylene (TCE) in pentane and methanol and acetonitrile in pentane are first separated using a standard gas chromatograph and then introduced into a MCA flow cell. Significant amounts of response diversity to the analytes in the mixtures are demonstrated across the RP-coated cantilevers of the array. Principal component analysis is used to demonstrate that only three components of a four-component VOC mixture could be identified without mixture separation. Calibration studies are performed, demonstrating a good linear response over 2 orders of magnitude for each component in the primary study mixture. Studies of operational parameters including column temperature, column flow rate, and array cell temperature are conducted. Reproducibility studies of VOC peak areas and peak heights are also carried out showing RSDs of less than 4 and 3%, respectively, for intra-assay studies. Of practical significance is the facile manner by which the hyphenation of a mature separation technique and the burgeoning sensing approach is accomplished, and the potential to use pattern recognition techniques with MCAs as a new type of detector for chromatography with analyte-identifying capabilities.
Collapse
Affiliation(s)
- Peter J Chapman
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, USA
| | | | | | | | | | | |
Collapse
|
48
|
BHATTACHARYA SHANTANU, JANG JAESUNG, YANG LIJU, AKIN DEMIR, BASHIR RASHID. BIOMEMS AND NANOTECHNOLOGY-BASED APPROACHES FOR RAPID DETECTION OF BIOLOGICAL ENTITIES. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1745-4581.2007.00073.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Nugaeva N, Gfeller KY, Backmann N, Düggelin M, Lang HP, Güntherodt HJ, Hegner M. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2007; 13:13-7. [PMID: 17234032 DOI: 10.1017/s1431927607070067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Accepted: 09/18/2006] [Indexed: 05/13/2023]
Abstract
We demonstrate a new sensitive biosensor for detection of vital fungal spores of Aspergillus niger. The biosensor is based on silicon microfabricated cantilever arrays operated in dynamic mode. The change in resonance frequency of the sensor is a function of mass binding to the cantilever surface. For specific A. niger spore immobilization on the cantilever, each cantilever was individually coated with anti-Aspergillus niger polyclonal antibodies. We demonstrate the detection of single A. niger spores and their subsequent growth on the functionalized cantilever surface by online measurements of resonance frequency shifts. The new biosensor operating in humid air allows quantitative and qualitative detection of A. niger spores as well as detection of vital, functional spores in situ within approximately 4 h. The detection limit of the sensor is 103 CFU mL-1. Mass sensitivity of the cantilever sensor is approximately 53 pg Hz-1.
Collapse
Affiliation(s)
- Natalia Nugaeva
- Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang C, Wang D, Mao Y, Hu X. Ultrasensitive biochemical sensors based on microcantilevers of atomic force microscope. Anal Biochem 2007; 363:1-11. [PMID: 17276384 DOI: 10.1016/j.ab.2006.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 11/23/2006] [Accepted: 12/05/2006] [Indexed: 11/21/2022]
Affiliation(s)
- Chengyin Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | | | | | | |
Collapse
|