1
|
Acosta-Zaldívar M, Qi W, Mishra A, Roy U, King WR, Li Y, Patton-Vogt J, Anderson MZ, Köhler JR. Candida albicans' inorganic phosphate transport and evolutionary adaptation to phosphate scarcity. PLoS Genet 2024; 20:e1011156. [PMID: 39137212 PMCID: PMC11343460 DOI: 10.1371/journal.pgen.1011156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/23/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Phosphorus is essential in all cells' structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogen Candida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling, oxidative stress resistance and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. Initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity eventually resolved, as populations gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations' fitness recovery in Pi scarcity, while severity of others like membrane stress responses diverged from Pi scarcity fitness. Among preliminary candidate genes for contributors to fitness recovery, those with links to TORC1 were overrepresented. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth, stress resistance and virulence.
Collapse
Affiliation(s)
- Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abhishek Mishra
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Udita Roy
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Yuping Li
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Matthew Z. Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Julia R. Köhler
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Acosta-Zaldívar M, Qi W, Mishra A, Roy U, King WR, Patton-Vogt J, Anderson MZ, Köhler JR. Candida albicans' inorganic phosphate transport and evolutionary adaptation to phosphate scarcity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577887. [PMID: 38352318 PMCID: PMC10862840 DOI: 10.1101/2024.01.29.577887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Phosphorus is essential in all cells' structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogen Candida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. In this process, initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity were eventually lost as populations presumably gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations' fitness recovery in Pi scarcity, while that of others like membrane stress responses diverged from these fitness phenotypes. C. albicans therefore has diverse options to reconfigure Pi management during prolonged scarcity. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth and virulence.
Collapse
Affiliation(s)
- Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
- Current affiliation: Planasa, Valladolid, Spain
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Abhishek Mishra
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
| | - Udita Roy
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Matthew Z. Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| | - Julia R. Köhler
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Matsui H, Harada H, Maeda K, Sugiyama T, Fukuchi Y, Kimura N, Nawaly H, Tsuji Y, Matsuda Y. Coordinated phosphate uptake by extracellular alkaline phosphatase and solute carrier transporters in marine diatoms. THE NEW PHYTOLOGIST 2024; 241:1210-1221. [PMID: 38013640 DOI: 10.1111/nph.19410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Marine diatoms express genes encoding potential phosphate transporter and alkaline phosphatase (APase) under phosphate-limited (-P) condition. This indicates that diatoms use high-affinity phosphate uptake system with organic phosphate hydration. The function of molecules playing roles for Pi uptake was determined in this study. Pi uptake and APase activity of two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, were monitored during acclimation to -P condition. The transcript levels of Pi transporter were analyzed, and Pi transporters were localized with GFP tagging in diatom cells. KO mutants of plasma membrane solute carrier proteins (SLC34s) or APase were established, and their phenotype was evaluated. Some Na+ /Pi transporter candidates, SLC34s in P. tricornutum and T. pseudonana, increased transcript under -P condition. Whole-cell Pi transport was specifically stimulated by sodium ion but independent of potassium, lithium, or proton. Genome-editing KO of PtSLC34-5 and APase (Pt49678) in P. tricornutum was highly inhibitory for Pi uptake, and KO of TpSLC34-2 was also highly inhibitory for Pi uptake in T. pseudonana. SLC34s and APase were co-expressed under -P conditions in marine diatoms. SLC34s play a major role in the initial acclimation stage of diatom cells to -P condition and APase plays an increasing role in the prolonged Pi-starved condition.
Collapse
Affiliation(s)
- Hiroaki Matsui
- Department of Bioscience, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Hyogo, Japan
| | - Hisashi Harada
- Department of Chemistry and Biotechnology, Tottori University, Tottori, 680-8550, Japan
| | - Kanako Maeda
- Department of Bioscience, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Hyogo, Japan
| | - Toshiki Sugiyama
- Department of Bioscience, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Hyogo, Japan
| | - Yohei Fukuchi
- Department of Bioscience, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Hyogo, Japan
| | - Nanae Kimura
- Department of Bioscience, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Hyogo, Japan
| | - Hermanus Nawaly
- Department of Bioscience, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Hyogo, Japan
| | - Yoshinori Tsuji
- Department of Bioscience, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Hyogo, Japan
| | - Yusuke Matsuda
- Department of Bioscience, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, 669-1330, Hyogo, Japan
| |
Collapse
|
4
|
Martín JF. Interaction of calcium responsive proteins and transcriptional factors with the PHO regulon in yeasts and fungi. Front Cell Dev Biol 2023; 11:1225774. [PMID: 37601111 PMCID: PMC10437122 DOI: 10.3389/fcell.2023.1225774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Phosphate and calcium ions are nutrients that play key roles in growth, differentiation and the production of bioactive secondary metabolites in filamentous fungi. Phosphate concentration regulates the biosynthesis of hundreds of fungal metabolites. The central mechanisms of phosphate transport and regulation, mediated by the master Pho4 transcriptional factor are known, but many aspects of the control of gene expression need further research. High ATP concentration in the cells leads to inositol pyrophosphate molecules formation, such as IP3 and IP7, that act as phosphorylation status reporters. Calcium ions are intracellular messengers in eukaryotic organisms and calcium homeostasis follows elaborated patterns in response to different nutritional and environmental factors, including cross-talking with phosphate concentrations. A large part of the intracellular calcium is stored in vacuoles and other organelles forming complexes with polyphosphate. The free cytosolic calcium concentration is maintained by transport from the external medium or by release from the store organelles through calcium permeable transient receptor potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium levels, control the biosynthesis of fungal metabolites by two mechanisms, 1) direct interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes, and 2) by the calmodulin-calcineurin signaling cascade. Control of very different secondary metabolites, including pathogenicity determinants, are mediated by calcium through the Crz1 factor. Several interactions between calcium homeostasis and phosphate have been demonstrated in the last decade: 1) The inositol pyrophosphate IP3 triggers the release of calcium ions from internal stores into the cytosol, 2) Expression of the high affinity phosphate transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also, mutants defective in the calcium permeable TRPCa7-like of Saccharomyces cerevisiae shown impaired expression of Pho89. This information suggests that CrzA and Pho89 play key roles in the interaction of phosphate and calcium regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in mycorrhiza and in some melanin producing fungi that show similar characteristics as protozoa calcisomes. In these organelles there is a close interaction between orthophosphate, pyrophosphate and polyphosphate and calcium ions that are absorbed in the polyanionic polyphosphate matrix. These advances open new perspectives for the control of fungal metabolism.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain
| |
Collapse
|
5
|
Carvalho-de-Araújo AD, Carvalho-Kelly LF, Dick CF, Meyer-Fernandes JR. Inorganic phosphate transporter in Giardia duodenalis and its possible role in ATP synthesis. Mol Biochem Parasitol 2022; 251:111504. [PMID: 35843419 DOI: 10.1016/j.molbiopara.2022.111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/14/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Giardia duodenalis is a flagellated protozoan that inhabits vertebrate host intestines, causing the disease known as giardiasis. Similar to other parasites, G. duodenalis must take advantage of environmental resources to survive, such as inorganic phosphate (Pi) availability. Pi is an anionic molecule and an essential nutrient for all organisms because it participates in the biosynthesis of biomolecules, energy storage, and cellular structure formation. The first step in Pi metabolism is its uptake through specific transporters on the plasma membrane. We identified a symporter H+:Pi-type ORF sequence in the G. duodenalis genome (GenBank ID: GL50803_5164), named GdPho84, which is homologous to Saccharomyces cerevisiae PHO84. In trophozoites, Pi transport was linear for up to 15 min, and the cell density was 3 × 107 cells/ml. Physiological variations in pH (6.4-8.0) did not influence Pi uptake. This Pi transporter had a high affinity, with K0.5 = 67.7 ± 7.1 µM Pi. SCH28080 (inhibitor of H+, K+-ATPase), bafilomycin A1 (inhibitor of vacuolar H+-ATPase), and FCCP (H+ ionophore) were able to inhibit Pi transport, indicating that an H+ gradient in the cell powered uphill Pi movement. PAA, an H+-dependent Pi transport inhibitor, reduced cell proliferation, Pi transport activity, and GdPHO48 mRNA levels. Pi starvation stimulated membrane potential-sensitive Pi uptake coupled to H+ fluxes, increased GdPho84 expression, and reduced intracellular ATP levels. These events indicate that these cells had an increased capacity to internalize Pi as a compensatory mechanism compared to cells maintained in control medium conditions. Internalized Pi can be used in glycolytic metabolism once iodoacetamide (GAPDH inhibitor) inhibits Pi influx. Together, these results reinforce the hypothesis that Pi is a crucial nutrient for G. duodenalis energy metabolism.
Collapse
Affiliation(s)
| | - Luiz Fernando Carvalho-Kelly
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Claudia F Dick
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - José Roberto Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Coordination of Phosphate and Magnesium Metabolism in Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:135-150. [PMID: 35288878 DOI: 10.1007/978-3-030-91623-7_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The majority of cellular phosphate (PO4-3; Pi) exists as nucleoside triphosphates, mainly adenosine triphosphate (ATP), and ribosomal RNA (rRNA). ATP and rRNA are also the largest cytoplasmic reservoirs of magnesium (Mg2+), the most abundant divalent cation in living cells. The co-occurrence of these ionic species in the cytoplasm is not coincidental. Decades of work in the Pi and Mg2+ starvation responses of two model enteric bacteria, Escherichia coli and Salmonella enterica, have led to the realization that the metabolisms of Pi and Mg2+ are interconnected. Bacteria must acquire these nutrients in a coordinated manner to achieve balanced growth and avoid loss of viability. In this chapter, we will review how bacteria sense and respond to fluctuations in environmental and intracellular Pi and Mg2+ levels. We will also discuss how these two compounds are functionally linked, and how cells elicit physiological responses to maintain their homeostasis.
Collapse
|
7
|
Liu J, Ling Z, Wang J, Xiang T, Xu L, Gu C, Liu R, Xu J, Xu C, Zhou W, Liu Y, Jin Z, Wan Y. In vitro transcriptomes analysis identifies some special genes involved in pathogenicity difference of the Beauveria bassiana against different insect hosts. Microb Pathog 2021; 154:104824. [PMID: 33691180 DOI: 10.1016/j.micpath.2021.104824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
Typical entomopathogenic filamentous fungi such as Beauveria bassiana infect susceptible hosts via penetration of insect cuticle. The pathogenicity of B. bassiana strain to diverse insect hosts is different. While the molecular mechanisms of B. bassiana adapt to different insects are not well clear. B. bassiana GXsk1011 is a hyper-virulent strain from silkworm, which was investigated on the metabolic responses to three cuticle extracts of Bombyx mori, Helicoverpa armigera and Clanis bilineata at 24 h by RNA-seq method. A total of 638 up- and 400 down-regulated differentially expressed genes (DEGs) were identified in B. bassiana grown on H. armigera compared with B. mori, and 910 up- and 401 down-regulated genes for C. bilineata compared with B. mori. Functional categorization showed that DEGs are mainly involved in metabolic processes, localization, catalytic activity and transporter activity. Analysis of 20 highest fold change genes in DEGs showed that when B. bassiana transferred to non-original hosts as H. armigera and C. bilineata, the adhesion (Mad1), protease (Pr2) and cell surface protein (BBA_09174), etc. were down-regulated. While the class III chitinase ChiA2 (BBA_05353, Bbchi-17), major allergen Asp f 2-like protein (BBA_05395, Bb-f2) and nonribosomal peptide synthase, etc. were up-regulated. The secretory lipase that responded to H. armigera and the phosphate permease responded to C. bilineata were also up-regulated in the Top 20 DEGs. These special expressed genes indicate when the B. bassiana transferred to non-original hosts (or called as non-natural hosts), the strain appeared the changes of metabolic response and infection strategies to adapt to new hosts, and implied the key actions of infected adaptation were to break the barrier of different cuticle chitin component and against the immune stress of hosts. This study provided an insight into the B. bassiana that with wide host ranges how to adapt to infect different insect hosts, which will help us to further understand the pathogenesis of B. bassiana infection.
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Ziqi Ling
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Jingjie Wang
- Department of Medical Microbiology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Tingting Xiang
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Liang Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Caixia Gu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Rui Liu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Jing Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Cailing Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Wei Zhou
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yu Liu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Zhixiong Jin
- Department of Medical Microbiology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yongji Wan
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Biotechnology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
8
|
Asady B, Dick CF, Ehrenman K, Sahu T, Romano JD, Coppens I. A single Na+-Pi cotransporter in Toxoplasma plays key roles in phosphate import and control of parasite osmoregulation. PLoS Pathog 2021; 16:e1009067. [PMID: 33383579 PMCID: PMC7817038 DOI: 10.1371/journal.ppat.1009067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 01/20/2021] [Accepted: 10/14/2020] [Indexed: 11/22/2022] Open
Abstract
Inorganic ions such as phosphate, are essential nutrients required for a broad spectrum of cellular functions and regulation. During infection, pathogens must obtain inorganic phosphate (Pi) from the host. Despite the essentiality of phosphate for all forms of life, how the intracellular parasite Toxoplasma gondii acquires Pi from the host cell is still unknown. In this study, we demonstrated that Toxoplasma actively internalizes exogenous Pi by exploiting a gradient of Na+ ions to drive Pi uptake across the plasma membrane. The Na+-dependent phosphate transport mechanism is electrogenic and functionally coupled to a cipargarmin sensitive Na+-H+-ATPase. Toxoplasma expresses one transmembrane Pi transporter harboring PHO4 binding domains that typify the PiT Family. This transporter named TgPiT, localizes to the plasma membrane, the inward buds of the endosomal organelles termed VAC, and many cytoplasmic vesicles. Upon Pi limitation in the medium, TgPiT is more abundant at the plasma membrane. We genetically ablated the PiT gene, and ΔTgPiT parasites are impaired in importing Pi and synthesizing polyphosphates. Interestingly, ΔTgPiT parasites accumulate 4-times more acidocalcisomes, storage organelles for phosphate molecules, as compared to parental parasites. In addition, these mutants have a reduced cell volume, enlarged VAC organelles, defects in calcium storage and a slightly alkaline pH. Overall, these mutants exhibit severe growth defects and have reduced acute virulence in mice. In survival mode, ΔTgPiT parasites upregulate several genes, including those encoding enzymes that cleave or transfer phosphate groups from phosphometabolites, transporters and ions exchangers localized to VAC or acidocalcisomes. Taken together, these findings point to a critical role of TgPiT for Pi supply for Toxoplasma and also for protection against osmotic stresses. Inorganic phosphate (Pi) is indispensable for the biosynthesis of key cellular components, and is involved in many metabolic and signaling pathways. Transport across the plasma membrane is the first step in the utilization of Pi. The import mechanism of Pi by the intracellular parasite Toxoplasma is unknown. We characterized a transmembrane, high-affinity Na+-Pi cotransporter, named TgPiT, expressed by the parasite at the plasma membrane for Pi uptake. Interestingly, TgPiT is also localized to inward buds of the endosomal VAC organelles and some cytoplasmic vesicles. Loss of TgPiT results in a severe reduction in Pi internalization and polyphosphate levels, but stimulation of the biogenesis of phosphate-enriched acidocalcisomes. ΔTgPiT parasites have a shrunken cell body, enlarged VAC organelles, poor release of stored calcium and a mildly alkaline pH, suggesting a role for TgPiT in the maintenance of overall ionic homeostasis. ΔTgPiT parasites are poorly infectious in vitro and in mice. The mutant appears to partially cope with the absence of TgPiT by up-regulating genes coding for ion transporters and enzymes catalyzing phosphate group transfer. Our data highlight a scenario in which the role of TgPiT in Pi and Na+ transport is functionally coupled with osmoregulation activities central to sustain Toxoplasma survival.
Collapse
Affiliation(s)
- Beejan Asady
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Claudia F. Dick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Karen Ehrenman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Tejram Sahu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Carvalho-Kelly LF, Pralon CF, Rocco-Machado N, Nascimento MT, Carvalho-de-Araújo AD, Meyer-Fernandes JR. Acanthamoeba castellanii phosphate transporter (AcPHS) is important to maintain inorganic phosphate influx and is related to trophozoite metabolic processes. J Bioenerg Biomembr 2020; 52:93-102. [PMID: 31965457 DOI: 10.1007/s10863-020-09822-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
Acanthamoeba castellanii is a free-living amoeba and the etiological agent of granulomatous amoebic encephalitis and amoebic keratitis. A. castellanii can be present as trophozoites or cysts. The trophozoite is the vegetative form of the cell and has great infective capacity compared to the cysts, which are the dormant form that protect the cell from environmental changes. Phosphate transporters are a group of proteins that are able to internalize inorganic phosphate from the extracellular to intracellular medium. Plasma membrane phosphate transporters are responsible for maintaining phosphate homeostasis, and in some organisms, regulating cellular growth. The aim of this work was to biochemically characterize the plasma membrane phosphate transporter in A. castellanii and its role in cellular growth and metabolism. To measure inorganic phosphate (Pi) uptake, trophozoites were grown in liquid PYG medium at 28 °C for 2 days. The phosphate uptake was measured by the rapid filtration of intact cells incubated with 0.5 μCi of 32Pi for 1 h. The Pi transport was linear as a function of time and exhibited Michaelis-Menten kinetics with a Km = 88.78 ± 6.86 μM Pi and Vmax = 547.5 ± 16.9 Pi × h-1 × 10-6 cells. A. castellanii presented linear phosphate uptake up to 1 h with a cell density ranging from 1 × 105 to 2 × 106 amoeba × ml-1. The Pi uptake was higher in the acidic pH range than in the alkaline range. The oxygen consumption of living trophozoites increased according to Pi addition to the extracellular medium. When the cells were treated with FCCP, no effect from Pi on the oxygen flow was observed. The addition of increasing Pi concentrations not only increased oxygen consumption but also increased the intracellular ATP pool. These phenomena were abolished when the cells were treated with FCCP or exposed to hypoxia. Together, these results reinforce the hypothesis that Pi is a key nutrient for Acanthamoeba castellanii metabolism.
Collapse
Affiliation(s)
- Luiz Fernando Carvalho-Kelly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Clara Ferreira Pralon
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Nathalia Rocco-Machado
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | | | - Ayra Diandra Carvalho-de-Araújo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil. .,Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
10
|
Thompson ED, Hogstrand C, Glover CN. From sea squirts to squirrelfish: facultative trace element hyperaccumulation in animals. Metallomics 2018; 10:777-793. [PMID: 29850752 DOI: 10.1039/c8mt00078f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The hyperaccumulation of trace elements is a widely characterized phenomenon in plants, bacteria, and fungi, but has received little attention in animals. However, there are numerous examples of animals that specifically and facultatively accumulate trace elements in the absence of elevated environmental concentrations. Metal hyperaccumulating animals are usually marine invertebrates, likely owing to environmental (e.g. constant exposure via the water) and physiological (e.g. osmoconforming and reduced integument permeability) factors. However, there are examples of terrestrial animals (insect larvae) and marine vertebrates (e.g. squirrelfish) that accumulate high body and/or tissue metal burdens. This review examines examples of animal hyperaccumulation of the elements arsenic, copper, iron, titanium, vanadium and zinc, describing mechanisms by which accumulation occurs and, where possible, hypothesizing functional roles. Groups such as the ascidians (sea squirts), molluscs (gastropods, bivalves and cephalopods) and polychaete annelids feature prominently as animals with hyperaccumulating capacity. Many of these species are potential model organisms offering insight into fundamental processes underlying metal handling, with relevance to human disease and aquatic metal toxicity, and some offer promise in applied fields such as bioremediation.
Collapse
Affiliation(s)
- E David Thompson
- Department of Biological Sciences, Northern Kentucky University, SC 245 Nunn Dr Highland Heights, KY 41099, USA.
| | | | | |
Collapse
|
11
|
Sindhu KJ, Kureel AK, Saini S, Kumari S, Verma P, Rai AK. Characterization of phosphate transporter(s) and understanding their role in Leishmania donovani parasite. Acta Parasitol 2018; 63:75-88. [PMID: 29351081 DOI: 10.1515/ap-2018-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/12/2017] [Indexed: 11/15/2022]
Abstract
Inorganic phosphate (Pi) is shown to be involved in excretion of methylglyoxal (MG) in the promastigote form of Leishmania donovani parasite. Absence of Pi leads to its accumulation inside the parasite. Accumulation of MG is toxic to the parasite and utilizes glyoxylase as well as excretory pathways for its detoxification. In addition, Pi is also reported to regulate activities of ectoenzymes and energy metabolism (glucose to pyruvate) etc. Thus, it is known to cumulatively affect the growth of Leishmania parasite. Hence the transporters, which allow the movement of Pi across the membrane, can prove to be a crucial drug target. Therefore, we characterized two phosphate transporters in Leishmania (i) H+ dependent myo-inositol transporter (LdPHO84), and (ii) Na+ dependent transporter (LdPHO89), based on similar studies done previously on other lower organisms and trypanosomatids. We tried to understand the secondary structure of these two proteins and confirm modulation in their expression with the change in Pi concentration outside. Moreover, their modes of action were also measured in the presence of specific inhibitors (LiF, CCCP). Further analysis on the physiological role of these transporters in various stages of the parasite life cycle needs to be entrenched.
Collapse
Affiliation(s)
- K J Sindhu
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Smita Kumari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Pankaj Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| |
Collapse
|
12
|
Russo-Abrahão T, Koeller CM, Steinmann ME, Silva-Rito S, Marins-Lucena T, Alves-Bezerra M, Lima-Giarola NL, de-Paula IF, Gonzalez-Salgado A, Sigel E, Bütikofer P, Gondim KC, Heise N, Meyer-Fernandes JR. H +-dependent inorganic phosphate uptake in Trypanosoma brucei is influenced by myo-inositol transporter. J Bioenerg Biomembr 2017; 49:183-194. [PMID: 28185085 DOI: 10.1007/s10863-017-9695-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
Abstract
Trypanosoma brucei is an extracellular protozoan parasite that causes human African trypanosomiasis or "sleeping sickness". During the different phases of its life cycle, T. brucei depends on exogenous inorganic phosphate (Pi), but little is known about the transport of Pi in this organism. In the present study, we showed that the transport of 32Pi across the plasma membrane follows Michaelis-Menten kinetics and is modulated by pH variation, with higher activity at acidic pH. Bloodstream forms presented lower Pi transport in comparison to procyclic forms, that displayed an apparent K0.5 = 0.093 ± 0.008 mM. Additionally, FCCP (H+-ionophore), valinomycin (K+-ionophore) and SCH28080 (H+, K+-ATPase inhibitor) inhibited the Pi transport. Gene Tb11.02.3020, previously described to encode the parasite H+:myo-inositol transporter (TbHMIT), was hypothesized to be potentially involved in the H+:Pi cotransport because of its similarity with the Pho84 transporter described in S. cerevisiae and other trypanosomatids. Indeed, the RNAi mediated knockdown remarkably reduced TbHMIT gene expression, compromised cell growth and decreased Pi transport by half. In addition, Pi transport was inhibited when parasites were incubated in the presence of concentrations of myo-inositol that are above 300 μM. However, when expressed in Xenopus laevis oocytes, two-electrode voltage clamp experiments provided direct electrophysiological evidence that the protein encoded by TbHMIT is definitely a myo-inositol transporter that may be only marginally affected by the presence of Pi. These results confirmed the presence of a Pi carrier in T. brucei, similar to the H+-dependent inorganic phosphate system described in S. cerevisiae and other trypanosomatids. This transport system contributes to the acquisition of Pi and may be involved in the growth and survival of procyclic forms. In summary, this work presents the first description of a Pi transport system in T. brucei.
Collapse
Affiliation(s)
- Thais Russo-Abrahão
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Carolina Macedo Koeller
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Michael E Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Stephanie Silva-Rito
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Thaissa Marins-Lucena
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Naira Ligia Lima-Giarola
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Iron Francisco de-Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Amaia Gonzalez-Salgado
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Katia Calp Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Ortiz CS, Bell AA, Magill CW, Liu J. Specific PCR Detection of Fusarium oxysporum f. sp. vasinfectum California Race 4 Based on a Unique Tfo1 Insertion Event in the PHO Gene. PLANT DISEASE 2017; 101:34-44. [PMID: 30682321 DOI: 10.1094/pdis-03-16-0332-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A highly virulent race 4 (Cal race 4) of Fusarium oxysporum f. sp. vasinfectum was identified in California cotton fields in 2001, and has since been found in increasing numbers of fields. Cal race 4 isolates contain a unique Tfo1 transposon insertion in the PHO gene that was not found in other F. oxysporum f. sp. vasinfectum genotypes. Based on this insertion, a multiplex polymerase chain reaction method was developed to detect the Cal race 4 pathogen. A panel of F. oxysporum f. sp. vasinfectum isolates representing different vegetative compatibility groups (VCG) and DNA sequence types was assembled to test the specificity of the detection method. In all, 16 of 17 Cal race 4 isolates produced a 583-bp amplicon; the other isolate produced a 396-bp amplicon reflecting the absence of the Tfo1 insertion. This isolate was a moderately virulent pathogen among Cal race 4 isolates. In total, 80 other F. oxysporum isolates associated with cotton and 11 other formae speciales of F. oxysporum produced only the 396-bp amplicon. The method also distinguished Cal race 4 isolates from India race 4 isolates and China race 7 isolates, which did not possess the unique Tfo1 insertion but otherwise had identical DNA sequences, and all belong to VCG0114. The method is capable of detecting the pathogen directly from infected stem tissues even before external symptom appears and, thus, provides an effective tool for timely identification of infested fields and seed lots, and should help reduce dissemination of Cal race 4 in the U.S. Cotton Belt.
Collapse
Affiliation(s)
- Carlos S Ortiz
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77845
| | - Alois A Bell
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, TX 77845
| | - Clint W Magill
- Department of Plant Pathology and Microbiology, Texas A&M University
| | - Jinggao Liu
- Southern Plains Agricultural Research Center, USDA-ARS
| |
Collapse
|
14
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Interactions Between Monovalent Cations and Nutrient Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:271-289. [PMID: 26721278 DOI: 10.1007/978-3-319-25304-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maintenance of appropriate fluxes of monovalent cation is a requirement for growth and survival. In the budding yeast Saccharomyces cerevisiae an electrochemical gradient of H(+) is fundamental for the uptake of diverse cations, such as K(+), and of many other nutrients. In spite of early work suggesting that alterations in monovalent cation fluxes impact on the uptake and utilization of nutrients, such as phosphate anions, only recently this important aspect of the yeast physiology has been addressed and characterized in some detail. This chapter provides a historical background and summarizes the latest findings.
Collapse
|
16
|
Samyn DR, Persson BL. Inorganic Phosphate and Sulfate Transport in S. cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:253-269. [PMID: 26721277 DOI: 10.1007/978-3-319-25304-6_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inorganic ions such as phosphate and sulfate are essential macronutrients required for a broad spectrum of cellular functions and their regulation. In a constantly fluctuating environment microorganisms have for their survival developed specific nutrient sensing and transport systems ensuring that the cellular nutrient needs are met. This chapter focuses on the S. cerevisiae plasma membrane localized transporters, of which some are strongly induced under conditions of nutrient scarcity and facilitate the active uptake of inorganic phosphate and sulfate. Recent advances in studying the properties of the high-affinity phosphate and sulfate transporters by means of site-directed mutagenesis have provided further insight into the molecular mechanisms contributing to substrate selectivity and transporter functionality of this important class of membrane transporters.
Collapse
Affiliation(s)
- D R Samyn
- Department of Chemistry and Biomedical Sciences, Centre for Biomaterials Chemistry, Linnaeus University, 391 82, Kalmar, Sweden.
| | - B L Persson
- Department of Chemistry and Biomedical Sciences, Centre for Biomaterials Chemistry, Linnaeus University, 391 82, Kalmar, Sweden
| |
Collapse
|
17
|
Abstract
Fungi contribute extensively to a wide range of ecosystem processes, including decomposition of organic carbon, deposition of recalcitrant carbon, and transformations of nitrogen and phosphorus. In this review, we discuss the current knowledge about physiological and morphological traits of fungi that directly influence these processes, and we describe the functional genes that encode these traits. In addition, we synthesize information from 157 whole fungal genomes in order to determine relationships among selected functional genes within fungal taxa. Ecosystem-related traits varied most at relatively coarse taxonomic levels. For example, we found that the maximum amount of variance for traits associated with carbon mineralization, nitrogen and phosphorus cycling, and stress tolerance could be explained at the levels of order to phylum. Moreover, suites of traits tended to co-occur within taxa. Specifically, the genetic capacities for traits that improve stress tolerance-β-glucan synthesis, trehalose production, and cold-induced RNA helicases-were positively related to one another, and they were more evident in yeasts. Traits that regulate the decomposition of complex organic matter-lignin peroxidases, cellobiohydrolases, and crystalline cellulases-were also positively related, but they were more strongly associated with free-living filamentous fungi. Altogether, these relationships provide evidence for two functional groups: stress tolerators, which may contribute to soil carbon accumulation via the production of recalcitrant compounds; and decomposers, which may reduce soil carbon stocks. It is possible that ecosystem functions, such as soil carbon storage, may be mediated by shifts in the fungal community between stress tolerators and decomposers in response to environmental changes, such as drought and warming.
Collapse
Affiliation(s)
- Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
18
|
Serra-Cardona A, Canadell D, Ariño J. Coordinate responses to alkaline pH stress in budding yeast. MICROBIAL CELL 2015; 2:182-196. [PMID: 28357292 PMCID: PMC5349140 DOI: 10.15698/mic2015.06.205] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alkalinization of the medium represents a stress condition for the budding yeast Saccharomyces cerevisiae to which this organism responds with profound remodeling of gene expression. This is the result of the modulation of a substantial number of signaling pathways whose participation in the alkaline response has been elucidated within the last ten years. These regulatory inputs involve not only the conserved Rim101/PacC pathway, but also the calcium-activated phosphatase calcineurin, the Wsc1-Pkc1-Slt2 MAP kinase, the Snf1 and PKA kinases and oxidative stress-response pathways. The uptake of many nutrients is perturbed by alkalinization of the environment and, consequently, an impact on phosphate, iron/copper and glucose homeostatic mechanisms can also be observed. The analysis of available data highlights cases in which diverse signaling pathways are integrated in the gene promoter to shape the appropriate response pattern. Thus, the expression of different genes sharing the same signaling network can be coordinated, allowing functional coupling of their gene products.
Collapse
Affiliation(s)
- Albert Serra-Cardona
- Departament de Bioquímica i Biologia Molecular & Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - David Canadell
- Departament de Bioquímica i Biologia Molecular & Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular & Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
19
|
Abstract
In budding yeast, Saccharomyces cerevisiae, the phosphate signalling and response pathway, known as PHO pathway, monitors phosphate cytoplasmic levels by controlling genes involved in scavenging, uptake and utilization of phosphate. Recent attempts to understand the phosphate starvation response in other ascomycetes have suggested the existence of both common and novel components of the budding yeast PHO pathway in these ascomycetes. In this review, we discuss the components of PHO pathway, their roles in maintaining phosphate homeostasis in yeast and their conservation across ascomycetes. The role of high-affinity transporter, Pho84, in sensing and signalling of phosphate has also been discussed.
Collapse
Affiliation(s)
- Parul Tomar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India
| | | |
Collapse
|
20
|
Canadell D, González A, Casado C, Ariño J. Functional interactions between potassium and phosphate homeostasis in Saccharomyces cerevisiae. Mol Microbiol 2014; 95:555-72. [PMID: 25425491 DOI: 10.1111/mmi.12886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2014] [Indexed: 12/29/2022]
Abstract
Maintenance of ion homeostatic mechanisms is essential for living cells, including the budding yeast Saccharomyces cerevisiae. Whereas the impact of changes in phosphate metabolism on metal ion homeostasis has been recently examined, the inverse effect is still largely unexplored. We show here that depletion of potassium from the medium or alteration of diverse regulatory pathways controlling potassium uptake, such as the Trk potassium transporters or the Pma1 H(+) -ATPase, triggers a response that mimics that of phosphate (Pi) deprivation, exemplified by accumulation of the high-affinity Pi transporter Pho84. This response is mediated by and requires the integrity of the PHO signaling pathway. Removal of potassium from the medium does not alter the amount of total or free intracellular Pi, but is accompanied by decreased ATP and ADP levels and rapid depletion of cellular polyphosphates. Therefore, our data do not support the notion of Pi being the major signaling molecule triggering phosphate-starvation responses. We also observe that cells with compromised potassium uptake cannot grow under limiting Pi conditions. The link between potassium and phosphate homeostasis reported here could explain the invasive phenotype, characteristic of nutrient deprivation, observed in potassium-deficient yeast cells.
Collapse
Affiliation(s)
- David Canadell
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | | | | |
Collapse
|
21
|
Serra-Cardona A, Petrezsélyová S, Canadell D, Ramos J, Ariño J. Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress. Mol Cell Biol 2014; 34:4420-4435. [PMID: 25266663 PMCID: PMC4248728 DOI: 10.1128/mcb.01089-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has two main high-affinity inorganic phosphate (Pi) transporters, Pho84 and Pho89, that are functionally relevant at acidic/neutral pH and alkaline pH, respectively. Upon Pi starvation, PHO84 and PHO89 are induced by the activation of the PHO regulon by the binding of the Pho4 transcription factor to specific promoter sequences. We show that PHO89 and PHO84 are induced by alkalinization of the medium with different kinetics and that the network controlling Pho89 expression in response to alkaline pH differs from that of other members of the PHO regulon. In addition to Pho4, the PHO89 promoter is regulated by the transcriptional activator Crz1 through the calcium-activated phosphatase calcineurin, and it is under the control of several repressors (Mig2, Nrg1, and Nrg2) coordinately regulated by the Snf1 protein kinase and the Rim101 transcription factor. This network mimics the one regulating expression of the Na(+)-ATPase gene ENA1, encoding a major determinant for Na(+) detoxification. Our data highlight a scenario in which the activities of Pho89 and Ena1 are functionally coordinated to sustain growth in an alkaline environment.
Collapse
Affiliation(s)
- Albert Serra-Cardona
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Silvia Petrezsélyová
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Canadell
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José Ramos
- Departamento de Microbiología, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
22
|
Defects in phosphate acquisition and storage influence virulence of Cryptococcus neoformans. Infect Immun 2014; 82:2697-712. [PMID: 24711572 DOI: 10.1128/iai.01607-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nutrient acquisition and sensing are critical aspects of microbial pathogenesis. Previous transcriptional profiling indicated that the fungal pathogen Cryptococcus neoformans, which causes meningoencephalitis in immunocompromised individuals, encounters phosphate limitation during proliferation in phagocytic cells. We therefore tested the hypothesis that phosphate acquisition and polyphosphate metabolism are important for cryptococcal virulence. Deletion of the high-affinity uptake system interfered with growth on low-phosphate medium, perturbed the formation of virulence factors (capsule and melanin), reduced survival in macrophages, and attenuated virulence in a mouse model of cryptococcosis. Additionally, analysis of nutrient sensing functions for C. neoformans revealed regulatory connections between phosphate acquisition and storage and the iron regulator Cir1, cyclic AMP (cAMP)-dependent protein kinase A (PKA), and the calcium-calmodulin-activated protein phosphatase calcineurin. Deletion of the VTC4 gene encoding a polyphosphate polymerase blocked the ability of C. neoformans to produce polyphosphate. The vtc4 mutant behaved like the wild-type strain in interactions with macrophages and in the mouse infection model. However, the fungal load in the lungs was significantly increased in mice infected with vtc4 deletion mutants. In addition, the mutant was impaired in the ability to trigger blood coagulation in vitro, a trait associated with polyphosphate. Overall, this study reveals that phosphate uptake in C. neoformans is critical for virulence and that its regulation is integrated with key signaling pathways for nutrient sensing.
Collapse
|
23
|
Dick CF, Dos-Santos ALA, Meyer-Fernandes JR. Inorganic phosphate uptake in unicellular eukaryotes. Biochim Biophys Acta Gen Subj 2014; 1840:2123-7. [PMID: 24674820 DOI: 10.1016/j.bbagen.2014.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/27/2014] [Accepted: 03/17/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. SCOPE OF REVIEW Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. MAJOR CONCLUSION Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. GENERAL SIGNIFICANCE Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field.
Collapse
Affiliation(s)
- Claudia F Dick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - André L A Dos-Santos
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - José R Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
24
|
Freitas-Mesquita AL, Meyer-Fernandes JR. Ecto-nucleotidases and Ecto-phosphatases from Leishmania and Trypanosoma parasites. Subcell Biochem 2014; 74:217-252. [PMID: 24264248 DOI: 10.1007/978-94-007-7305-9_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ecto-enzymes can be defined as membrane-bound proteins that have their active site facing the extracellular millieu. In trypanosomatids, the physiological roles of these enzymes remain to be completed elucidated; however, many important events have already been related to them, such as the survival of parasites during their complex life cycle and the successful establishment of host infection. This chapter focuses on two remarkable classes of ecto-enzymes: ecto-nucleotidases and ecto-phosphatases, summarizing their occurrence and possible physiological roles in Leishmania and Trypanosoma genera. Ecto-nucleotidases are characterized by their ability to hydrolyze extracellular nucleotides, playing an important role in purinergic signaling. By the action of these ecto-enzymes, parasites are capable of modulating the host immune system, which leads to a successful parasite infection. Furthermore, ecto-nucleotidases are also involved in the purine salvage pathway, acting in the generation of nucleosides that are able to cross plasma membrane via specialized transporters. Another important ecto-enzyme present in a vast number of pathogenic organisms is the ecto-phosphatase. These enzymes are able to hydrolyze extracellular phosphorylated substrates, releasing free inorganic phosphate that can be internalized by the cell, crossing the plasma membrane through a Pi-transporter. Ecto-phosphatases are also involved in the invasion and survival of parasite in the host cells. Several alternative functions have been suggested for these enzymes in parasites, such as participation in their proliferation, differentiation, nutrition and protection. In this context, the present chapter provides an overview of recent discoveries related to the occurrence of ecto-nucleotidase and ecto-phosphatase activities in Leishmania and Trypanosoma parasites.
Collapse
|
25
|
Stakheev AA, Khaĭrulina DR, Riazantsev DI, Zavriev SK. [Phosphate permease gene as a marker for the specific identification of toxigenic fungus Fusarium cerealis]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 39:175-83. [PMID: 23964517 DOI: 10.1134/s1068162013020131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have developed phosphate permease gene sequence-based PCR detection system of Fusarium cerealis phytopathogenic fungus. Sequencing and analysis revealed that the gene displayed unique polymorphism and could serve to establish phylogenetic relations as well as a marker to design specific primers. The specificity assay has confirmed the absence of cross reactions with DNAs of closely related Fusarium species. The qPCR assay demonstrated the 10 pg detection limit of specific DNA per reaction.
Collapse
|
26
|
Characterization of the biochemical and biophysical properties of the Saccharomyces cerevisiae phosphate transporter Pho89. Biochem Biophys Res Commun 2013; 436:551-6. [DOI: 10.1016/j.bbrc.2013.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 11/21/2022]
|
27
|
Dick CF, Dos-Santos ALA, Majerowicz D, Paes LS, Giarola NL, Gondim KC, Vieyra A, Meyer-Fernandes JR. Inorganic phosphate uptake in Trypanosoma cruzi is coupled to K(+) cycling and to active Na(+) extrusion. Biochim Biophys Acta Gen Subj 2013; 1830:4265-73. [PMID: 23643965 DOI: 10.1016/j.bbagen.2013.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/30/2013] [Accepted: 04/26/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Orthophosphate (Pi) is a central compound in the metabolism of all organisms, including parasites. There are no reports regarding the mechanisms of Pi acquisition by Trypanosoma cruzi. METHODS (32)Pi influx was measured in T. cruzi epimastigotes. The expression of Pi transporter genes and the coupling of the uptake to Na(+), H(+) and K(+) fluxes were also investigated. The transport capacities of different evolutive forms were compared. RESULTS Epimastigotes grew significantly more slowly in 2mM than in 50mM Pi. Influx of Pi into parasites grown under low Pi conditions took place in the absence and presence of Na(+). We found that the parasites express TcPho84, a H(+):Pi-symporter, and TcPho89, a Na(+):Pi-symporter. Both Pi influx mechanisms showed Michaelis-Menten kinetics, with a one-order of magnitude higher affinity for the Na(+)-dependent system. Collapsing the membrane potential with carbonylcyanide-p-trifluoromethoxyphenylhydrazone strongly impaired the influx of Pi. Valinomycin (K(+) ionophore) or SCH28028 (inhibitor of (H(+)+K(+))ATPase) significantly inhibited Pi uptake, indicating that an inwardly-directed H(+) gradient energizes uphill Pi entry and that K(+) recycling plays a key role in Pi influx. Furosemide, an inhibitor of the ouabain-insensitive Na(+)-ATPase, decreased only the Na(+)-dependent Pi uptake, indicating that this Na(+) pump generates the Na(+) gradient utilized by the symporter. Trypomastigote forms take up Pi inefficiently. CONCLUSIONS Pi starvation stimulates membrane potential-sensitive Pi uptake through different pathways coupled to Na(+) or H(+)/K(+) fluxes. GENERAL SIGNIFICANCE This study unravels the mechanisms of Pi acquisition by T. cruzi, a key process in epimastigote development and differentiation to trypomastigote forms.
Collapse
Affiliation(s)
- C F Dick
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Russo-Abrahão T, Alves-Bezerra M, Majerowicz D, Freitas-Mesquita AL, Dick CF, Gondim KC, Meyer-Fernandes JR. Transport of inorganic phosphate in Leishmania infantum and compensatory regulation at low inorganic phosphate concentration. Biochim Biophys Acta Gen Subj 2012. [PMID: 23201200 DOI: 10.1016/j.bbagen.2012.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Proliferation of Leishmania infantum depends on exogenous inorganic phosphate (Pi) but little is known about energy metabolism and transport of Pi across the plasma membrane in Leishmania sp. METHODS We investigated the kinetics of 32Pi transport, the influence of H+ and K+ ionophores and inhibitors, and expression of the genes for the Na+:Pi and H+:Pi cotransporters. RESULTS The proton ionophore FCCP, bafilomycin A1 (vacuolar ATPase inhibitor), nigericin (K+ ionophore) and SCH28080 (an inhibitor of H+, K+-ATPase) all inhibited the transport of Pi. This transport showed Michaelis-Menten kinetics with K0.5 and Vmax values of 0.016±0.002mM and 564.9±18.06pmol×h-1×10-7cells, respectively. These values classify the Pi transporter of L. infantum among the high-affinity transporters, a group that includes Pho84 of Saccharomyces cerevisiae. Two sequences were identified in the L. infantum genome that code for phosphate transporters. However, transcription of the PHO84 transporter was 10-fold higher than the PHO89 transporter in this parasite. Accordingly, Pi transport and LiPho84 gene expression were modulated by environmental Pi variations. CONCLUSIONS These findings confirm the presence of a Pi transporter in L. infantum, similar to PHO84 in S. cerevisiae, that contributes to the acquisition of inorganic phosphate and could be involved in growth and survival of the promastigote forms of L. infantum. GENERAL SIGNIFICANCE This work provides the first description of a PHO84-like Pi transporter in a Trypanosomatide parasite of the genus Leishmania, responsible for many infections worldwide.
Collapse
Affiliation(s)
- T Russo-Abrahão
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - M Alves-Bezerra
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - D Majerowicz
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - A L Freitas-Mesquita
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - C F Dick
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - K C Gondim
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - J R Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
29
|
Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways. Biochem J 2012; 445:413-22. [PMID: 22587366 DOI: 10.1042/bj20112086] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Saccharomyces cerevisiae, the Pho84 phosphate transporter acts as the main provider of phosphate to the cell using a proton symport mechanism, but also mediates rapid activation of the PKA (protein kinase A) pathway. These two features led to recognition of Pho84 as a transceptor. Although the physiological role of Pho84 has been studied in depth, the mechanisms underlying the transport and sensor functions are unclear. To obtain more insight into the structure-function relationships of Pho84, we have rationally designed and analysed site-directed mutants. Using a three-dimensional model of Pho84 created on the basis of the GlpT permease, complemented with multiple sequence alignments, we selected Arg(168) and Lys(492), and Asp(178), Asp(358) and Glu(473) as residues potentially involved in phosphate or proton binding respectively, during transport. We found that Asp(358) (helix 7) and Lys(492) (helix 11) are critical for the transport function, and might be part of the putative substrate-binding pocket of Pho84. Moreover, we show that alleles mutated in the putative proton-binding site Asp(358) are still capable of strongly activating PKA pathway targets, despite their severely reduced transport activity. This indicates that signalling does not require transport and suggests that mutagenesis of amino acid residues involved in binding of the co-transported ion may constitute a promising general approach to separate the transport and signalling functions in transceptors.
Collapse
|
30
|
Na+-dependent and Na+-independent mechanisms for inorganic phosphate uptake in Trypanosoma rangeli. Biochim Biophys Acta Gen Subj 2012; 1820:1001-8. [DOI: 10.1016/j.bbagen.2012.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/30/2012] [Accepted: 02/18/2012] [Indexed: 01/26/2023]
|
31
|
Transport routes of metalloids into and out of the cell: A review of the current knowledge. Chem Biol Interact 2012; 197:47-57. [DOI: 10.1016/j.cbi.2012.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/27/2012] [Accepted: 02/14/2012] [Indexed: 11/20/2022]
|
32
|
Martinez-Finley EJ, Chakraborty S, Fretham SJB, Aschner M. Cellular transport and homeostasis of essential and nonessential metals. Metallomics 2012; 4:593-605. [PMID: 22337135 DOI: 10.1039/c2mt00185c] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metals can have a number of detrimental or beneficial effects in the cell, but first they must get in. Organisms have evolved transport mechanisms to get metals that are required, or essential into the cell. Nonessential metals often enter the cell through use of the machinery provided for essential metals. Much work has been done to advance our understanding of how these metals are transported across plasma and organelle membranes. This review provides an overview of essential and nonessential metal transport and homeostatic processes.
Collapse
Affiliation(s)
- Ebany J Martinez-Finley
- Department of Pediatrics, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
33
|
Li SH, Xia BB, Zhang C, Cao J, Bai LH. Cloning and characterization of a phosphate transporter gene in Dunaliella salina. J Basic Microbiol 2011; 52:429-36. [DOI: 10.1002/jobm.201100265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/25/2011] [Indexed: 11/11/2022]
|
34
|
Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri. J Proteomics 2011; 74:2060-70. [DOI: 10.1016/j.jprot.2011.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/03/2011] [Accepted: 05/17/2011] [Indexed: 01/02/2023]
|
35
|
Alberghina L, Mavelli G, Drovandi G, Palumbo P, Pessina S, Tripodi F, Coccetti P, Vanoni M. Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein-protein interaction network. Biotechnol Adv 2011; 30:52-72. [PMID: 21821114 DOI: 10.1016/j.biotechadv.2011.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/23/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
In this review we summarize the major connections between cell growth and cell cycle in the model eukaryote Saccharomyces cerevisiae. In S. cerevisiae regulation of cell cycle progression is achieved predominantly during a narrow interval in the late G1 phase known as START (Pringle and Hartwell, 1981). At START a yeast cell integrates environmental and internal signals (such as nutrient availability, presence of pheromone, attainment of a critical size, status of the metabolic machinery) and decides whether to enter a new cell cycle or to undertake an alternative developmental program. Several signaling pathways, that act to connect the nutritional status to cellular actions, are briefly outlined. A Growth & Cycle interaction network has been manually curated. More than one fifth of the edges within the Growth & Cycle network connect Growth and Cycle proteins, indicating a strong interconnection between the processes of cell growth and cell cycle. The backbone of the Growth & Cycle network is composed of middle-degree nodes suggesting that it shares some properties with HOT networks. The development of multi-scale modeling and simulation analysis will help to elucidate relevant central features of growth and cycle as well as to identify their system-level properties. Confident collaborative efforts involving different expertises will allow to construct consensus, integrated models effectively linking the processes of cell growth and cell cycle, ultimately contributing to shed more light also on diseases in which an altered proliferation ability is observed, such as cancer.
Collapse
Affiliation(s)
- Lilia Alberghina
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res 2011; 2011:356093. [PMID: 21785706 PMCID: PMC3137970 DOI: 10.4061/2011/356093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Acid phosphatases of budding yeast have been studied for more than forty years. This paper covers biochemical characteristics of acid phosphatases and different aspects in expression regulation of eukaryotic genes, which were researched using acid phosphatases model. A special focus is devoted to cyclin-dependent kinase Pho85p, a negative transcriptional regulator, and its role in maintaining mitochondrial genome stability and to pleiotropic effects of pho85 mutations.
Collapse
Affiliation(s)
- Elena V Sambuk
- Genetics and Breeding Department, Biology and Soil Sciences Faculty, Saint Petersburg State University, Universitetskaya emb. 7-9, Saint Petersburg 199034, Russia
| | | | | | | |
Collapse
|
37
|
Comparative proteogenomic analysis of the Leptospira interrogans virulence-attenuated strain IPAV against the pathogenic strain 56601. Cell Res 2011; 21:1210-29. [PMID: 21423275 DOI: 10.1038/cr.2011.46] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The virulence-attenuated Leptospira interrogans serovar Lai strain IPAV was derived by prolonged laboratory passage from a highly virulent ancestral strain isolated in China. We studied the genetic variations of IPAV that render it avirulent via comparative analysis against the pathogenic L. interrogans serovar Lai strain 56601. The complete genome sequence of the IPAV strain was determined and used to compare with, and then rectify and reannotate the genome sequence of strain 56601. Aside from their highly similar genomic structure and gene order, a total of 33 insertions, 53 deletions and 301 single-nucleotide variations (SNVs) were detected throughout the genome of IPAV directly affecting 101 genes, either in their 5' upstream region or within their coding region. Among them, the majority of the 44 functional genes are involved in signal transduction, stress response, transmembrane transport and nitrogen metabolism. Comparative proteomic analysis based on quantitative liquid chromatography (LC)-MS/MS data revealed that among 1 627 selected pairs of orthologs, 174 genes in the IPAV strain were upregulated, with enrichment mainly in classes of energy production and lipid metabolism. In contrast, 228 genes in strain 56601 were upregulated, with the majority enriched in the categories of protein translation and DNA replication/repair. The combination of genomic and proteomic approaches illustrated that altered expression or mutations in critical genes, such as those encoding a Ser/Thr kinase, carbon-starvation protein CstA, glutamine synthetase, GTP-binding protein BipA, ribonucleotide-diphosphate reductase and phosphate transporter, and alterations in the translational profile of lipoproteins or outer membrane proteins are likely to account for the virulence attenuation in strain IPAV.
Collapse
|
38
|
Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem J 2011; 434:243-51. [DOI: 10.1042/bj20101118] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
When starved of Pi, yeast cells activate the PHO signalling pathway, wherein the Pho4 transcription factor mediates expression of genes involved in Pi acquisition, such as PHO84, encoding the high-affinity H+/Pi symporter. In contrast, transcription of PHO87 and PHO90, encoding the low-affinity H+/Pi transport system, is independent of phosphate status. In the present work, we reveal that, upon Pi starvation, these low-affinity Pi transporters are endocytosed and targeted to the vacuole. For Pho87, this process strictly depends on SPL2, another Pho4-dependent gene that encodes a protein known to interact with the N-terminal SPX domain of the transporter. In contrast, the vacuolar targeting of Pho90 upon Pi starvation is independent of both Pho4 and Spl2, although it still requires its SPX domain. Furthermore, both Pho87 and Pho90 are also targeted to the vacuole upon carbon-source starvation or upon treatment with rapamycin, which mimics nitrogen starvation, but although these responses are independent of PHO pathway signalling, they again require the N-terminal SPX domain of the transporters. These observations suggest that other SPX-interacting proteins must be involved. In addition, we show that Pho90 is the most important Pi transporter under high Pi conditions in the absence of a high-affinity Pi-transport system. Taken together, our results illustrate that Pho87 and Pho90 represent non-redundant Pi transporters, which are tuned by the integration of multiple nutrient signalling mechanisms in order to adjust Pi-transport capacity to the general nutritional status of the environment.
Collapse
|
39
|
Wysocki R, Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 2011; 34:925-51. [PMID: 20374295 DOI: 10.1111/j.1574-6976.2010.00217.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.
Collapse
Affiliation(s)
- Robert Wysocki
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
40
|
McIntyre DO, Linton TK. Arsenic. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1546-5098(11)31028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
41
|
Ariño J. Integrative responses to high pH stress in S. cerevisiae. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:517-523. [PMID: 20726779 DOI: 10.1089/omi.2010.0044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The budding yeast Saccharomyces cerevisiae grows far better at acidic than at neutral or alkaline pH. Consequently, even a modest alkalinization of the medium represents a stressful situation for this yeast. In the past few years, data generated by a combination of genome-wide techniques has demonstrated that adaptive responses of S. cerevisiae to high pH stress involves extensive gene remodeling as a result of the fast activation of a number of stress-related signaling pathways, such as the Rim101, the Wsc1-Pkc1-Slt2 MAP kinase, and the calcium-activated calcineurin pathways. Alkalinization of the environment also disturbs nutrient homeostasis, as deduced from its impact on iron/copper, phosphate, and glucose uptake/utilization pathways. In this review we will examine these responses, their possible interactions, and the role that they play in tolerance to high pH stress.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular & Institut de Biotecnologia i Biomedicina, Universitat Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
42
|
Lazard M, Blanquet S, Fisicaro P, Labarraque G, Plateau P. Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. J Biol Chem 2010; 285:32029-37. [PMID: 20688911 DOI: 10.1074/jbc.m110.139865] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the general cytotoxicity of selenite is well established, the mechanism by which this compound crosses cellular membranes is still unknown. Here, we show that in Saccharomyces cerevisiae, the transport system used opportunistically by selenite depends on the phosphate concentration in the growth medium. Both the high and low affinity phosphate transporters are involved in selenite uptake. When cells are grown at low P(i) concentrations, the high affinity phosphate transporter Pho84p is the major contributor to selenite uptake. When phosphate is abundant, selenite is internalized through the low affinity P(i) transporters (Pho87p, Pho90p, and Pho91p). Accordingly, inactivation of the high affinity phosphate transporter Pho84p results in increased resistance to selenite and reduced uptake in low P(i) medium, whereas deletion of SPL2, a negative regulator of low affinity phosphate uptake, results in exacerbated sensitivity to selenite. Measurements of the kinetic parameters for selenite and phosphate uptake demonstrate that there is a competition between phosphate and selenite ions for both P(i) transport systems. In addition, our results indicate that Pho84p is very selective for phosphate as compared with selenite, whereas the low affinity transporters discriminate less efficiently between the two ions. The properties of phosphate and selenite transport enable us to propose an explanation to the paradoxical increase of selenite toxicity when phosphate concentration in the growth medium is raised above 1 mm.
Collapse
Affiliation(s)
- Myriam Lazard
- Laboratoire de Biochimie, Ecole Polytechnique, F-91128 Palaiseau Cedex, France.
| | | | | | | | | |
Collapse
|
43
|
Tsai SL, Singh S, Chen W. Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 2009; 20:659-67. [DOI: 10.1016/j.copbio.2009.09.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 09/17/2009] [Accepted: 09/25/2009] [Indexed: 12/20/2022]
|
44
|
Fizikova AY, Padkina MV, Sambuk EV. The absence of cyclin-dependent protein kinase Pho85 affects stability of mitochondrial DNA in yeast Saccharomyces cerevisiae. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409060039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Involvement of the leucine response transcription factor LeuO in regulation of the genes for sulfa drug efflux. J Bacteriol 2009; 191:4562-71. [PMID: 19429622 DOI: 10.1128/jb.00108-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LeuO, a LysR family transcription factor, exists in a wide variety of bacteria of the family Enterobacteriaceae and is involved in the regulation of as yet unidentified genes affecting the stress response and pathogenesis expression. Using genomic screening by systematic evolution of ligands by exponential enrichment (SELEX) in vitro, a total of 106 DNA sequences were isolated from 12 different regions of the Escherichia coli genome. All of the SELEX fragments formed complexes in vitro with purified LeuO. After Northern blot analysis of the putative target genes located downstream of the respective LeuO-binding sequence, a total of nine genes were found to be activated by LeuO, while three genes were repressed by LeuO. The LeuO target gene collection included several multidrug resistance genes. A phenotype microarray assay was conducted to identify the gene(s) responsible for drug resistance and the drug species that are under the control of the LeuO target gene(s). The results described herein indicate that the yjcRQP operon, one of the LeuO targets, is involved in sensitivity control against sulfa drugs. We propose to rename the yjcRQP genes the sdsRQP genes (sulfa drug sensitivity determinant).
Collapse
|
46
|
Abstract
Arsenic and selenium are metalloids found in the environment. Arsenic is considered to pose the most significant potential threat to human health based on frequency of occurrence, toxicity and human exposure. Selenium, on the other hand, ranks only 147th in toxicity but, in contrast to arsenic, is a required micronutrient. Whether a toxin or micronutrient, their metabolism requires that cells to accumulate these metalloids. In this review we discuss the membrane proteins that transport arsenic and selenium into cells, from bacteria to humans, as well as some of the efflux proteins involved in detoxification.
Collapse
Affiliation(s)
- Barry P. Rosen
- Department of Biochemistry and Molecular Biology Wayne State University, School of Medicine 540 East Canfield Avenue Detroit, MI 48201, USA Phone: (313)577-1512 Fax: (313)577-2765
| | - Zijuan Liu
- Department of Biological Sciences Oakland University Dodge Hall 325 Rochester, MI 48309 Phone: (248) 370-3554
| |
Collapse
|
47
|
The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates. Appl Environ Microbiol 2008; 74:1829-35. [PMID: 18203861 DOI: 10.1128/aem.02101-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans is of great importance in biomining operations. During the bioleaching of ores, microorganisms are subjected to a variety of environmental stresses and to the limitations of some nutrients, such as inorganic phosphate (P(i)), which is an essential component for all living cells. Although the primary source of phosphorus for microorganisms is P(i), some bacteria are also able to metabolize P(i) esters (with a C-O-P bond) and phosphonates (with a very inert C-P bond). By using bioinformatic analysis of genomic sequences of the type strain of A. ferrooxidans (ATCC 23270), we found that as part of a Pho regulon, this bacterium has a complete gene cluster encoding C-P lyase, which is the main bacterial enzyme involved in phosphonate (Pn) degradation in other microorganisms. A. ferrooxidans was able to grow in the presence of methyl-Pn or ethyl-Pn as an alternative phosphorus source. Under these growth conditions, a great reduction in inorganic polyphosphate (polyP) levels was seen compared with the level for cells grown in the presence of P(i). By means of reverse transcription-PCR (RT-PCR), DNA macroarrays, and real-time RT-PCR experiments, it was found that A. ferrooxidans phn genes were cotranscribed and their expression was induced when the microorganism was grown in methyl-Pn as the only phosphorus source. This is the first report of phosphonate utilization in a chemolithoautotrophic microorganism. The existence of a functional C-P lyase system is a clear advantage for the survival under P(i) limitation, a condition that may greatly affect the bioleaching of ores.
Collapse
|
48
|
Allen MD, Kropat J, Tottey S, Del Campo JA, Merchant SS. Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency. PLANT PHYSIOLOGY 2007; 143:263-77. [PMID: 17085511 PMCID: PMC1761973 DOI: 10.1104/pp.106.088609] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
For photoheterotrophic growth, a Chlamydomonas reinhardtii cell requires at least 1.7 x 10(7) manganese ions in the medium. At lower manganese ion concentrations (typically <0.5 microm), cells divide more slowly, accumulate less chlorophyll, and the culture reaches stationary phase at lower cell density. Below 0.1 microm supplemental manganese ion in the medium, the cells are photosynthetically defective. This is accompanied by decreased abundance of D1, which binds the Mn(4)Ca cluster, and release of the OEE proteins from the membrane. Assay of Mn superoxide dismutase (MnSOD) indicates loss of activity of two isozymes in proportion to the Mn deficiency. The expression of MSD3 through MSD5, encoding various isoforms of the MnSODs, is up-regulated severalfold in Mn-deficient cells, but neither expression nor activity of the plastid Fe-containing superoxide dismutase is changed, which contrasts with the dramatically increased MSD3 expression and plastid MnSOD activity in Fe-deficient cells. Mn-deficient cells are selectively sensitive to peroxide but not methyl viologen or Rose Bengal, and GPXs, APX, and MSRA2 genes (encoding glutathione peroxidase, ascorbate peroxidase, and methionine sulfoxide reductase 2) are slightly up-regulated. Elemental analysis indicates that the Mn, Fe, and P contents of cells in the Mn-deficient cultures were reduced in proportion to the deficiency. A natural resistance-associated macrophage protein homolog and one of five metal tolerance proteins were induced in Mn-deficient cells but not in Fe-deficient cells, suggesting that the corresponding gene products may be components of a Mn(2+)-selective assimilation pathway.
Collapse
Affiliation(s)
- Michael D Allen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
49
|
Li Q, Gao X, Sun Y, Zhang Q, Song R, Xu Z. Isolation and characterization of a sodium-dependent phosphate transporter gene in Dunaliella viridis. Biochem Biophys Res Commun 2006; 340:95-104. [PMID: 16359638 DOI: 10.1016/j.bbrc.2005.11.144] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 11/26/2022]
Abstract
A sodium-dependent phosphate transporter gene, DvSPT1, was isolated from a cDNA library using a probe derived from a subtracted cDNA library of Dunaliella viridis. Sequencing analyses revealed a cDNA sequence of 2649 bp long and encoded an open-reading frame consisting of 672 amino acids. The deduced amino acid sequence of DvSPT1 exhibited 31.2% identity to that of TcPHO from Tetraselmis chui. Hydrophobicity and secondary structure prediction revealed 11 conserved transmembrane domains similar to those found in PHO89 from Saccharomyces cerevisiae and PHO4 from Neurospora crassa. Northern blot analysis indicated that the DvSPT1 expression was induced upon NaCl hyperosmotic stress or phosphate depletion. Functional characterization in yeast Na+ export pump mutant G19 suggested that DvSPT1 encoded a Na+ transporter protein. The gene sequence of GDvSPT1 (7922 bp) was isolated from a genomic library of D. viridis. Southern blot analysis indicated that there exist at least two homologous genes in D. viridis.
Collapse
Affiliation(s)
- Qiyun Li
- Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200032, PR China.
| | | | | | | | | | | |
Collapse
|
50
|
Zvyagilskaya RA, Persson BL. A new alkalitolerant Yarrowia lipolytica yeast strain is a promising model for dissecting properties and regulation of Na+-dependent phosphate transport systems. BIOCHEMISTRY (MOSCOW) 2004; 69:1310-7. [PMID: 15627385 DOI: 10.1007/s10541-005-0016-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A newly isolated osmo-, salt-, and alkalitolerant Yarrowia lipolytica yeast strain is distinguished from other yeast species by its capacity to grow vigorously at alkaline pH values (9.7), which makes it a promising model organism for studying Na+-dependent phosphate transport systems in yeasts. Phosphate uptake by Y. lipolytica cells grown at pH 9.7 was mediated by several kinetically discrete Na+-dependent systems specifically activated by Na+. One of these, a low-affinity transporter, operated at high concentrations of extracellular phosphate. The other two, high-affinity systems, maximally active in phosphate-starved cells, were repressed or derepressed depending on the prevailing extracellular phosphate concentration and pH value. The contribution of Na+/P(i)-cotransport systems to the total cellular phosphate uptake progressively increased with increasing pH, reaching its maximum at pH >/= 9.
Collapse
Affiliation(s)
- R A Zvyagilskaya
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
| | | |
Collapse
|