1
|
Moghadam FF, Gutierrez Guzman BE, Zheng X, Parsa M, Hozyen LM, Dannenberg H. Cholinergic dynamics in the septo-hippocampal system provide phasic multiplexed signals for spatial novelty and correlate with behavioral states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634097. [PMID: 39896475 PMCID: PMC11785060 DOI: 10.1101/2025.01.21.634097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In the hippocampal formation, cholinergic modulation from the medial septum/diagonal band of Broca (MSDB) is known to correlate with the speed of an animal's movements at sub-second timescales and also supports spatial memory formation. Yet, the extent to which sub-second cholinergic dynamics, if at all, align with transient behavioral and cognitive states supporting the encoding of novel spatial information remains unknown. In this study, we used fiber photometry to record the temporal dynamics in the population activity of septo-hippocampal cholinergic neurons at sub-second resolution during a hippocampus-dependent object location memory task using ChAT-Cre mice. Using a general linear model, we quantified the extent to which cholinergic dynamics were explained by changes in movement speed, behavioral states such as locomotion, grooming, and rearing, and hippocampus-dependent cognitive states such as recognizing a novel location of a familiar object. The data show that cholinergic dynamics contain a multiplexed code of fast and slow signals i) coding for the logarithm of movement speed at sub-second timescales, ii) providing a phasic spatial novelty signal during the brief periods of exploring a novel object location, and iii) coding for environmental novelty at a seconds-long timescale. Furthermore, behavioral event-related phasic cholinergic activity around the onset and offset of the behavior demonstrates that fast cholinergic transients help facilitate a switch in cognitive and behavioral state before and during the onset of behavior. These findings enhance understanding of the mechanisms by which cholinergic modulation contributes to the coding of movement speed and encoding of novel spatial information.
Collapse
Affiliation(s)
| | | | - Xihui Zheng
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Mina Parsa
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Lojy M. Hozyen
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
| | - Holger Dannenberg
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| |
Collapse
|
2
|
Noftz WA, Echols EE, Beebe NL, Mellott JG, Schofield BR. Differential cholinergic innervation of lemniscal versus non-lemniscal regions of the inferior colliculus. J Chem Neuroanat 2024; 139:102443. [PMID: 38914378 PMCID: PMC11827475 DOI: 10.1016/j.jchemneu.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
The inferior colliculus (IC), a midbrain hub for integration of auditory information, receives dense cholinergic input that could modulate nearly all aspects of hearing. A key step in understanding cholinergic modulation is to identify the source(s) and termination patterns of cholinergic input. These issues have not been addressed for the IC in mice, an increasingly important model for study of hearing. We examined cholinergic inputs to the IC in adult male and female mice. We used retrograde tracing and immunochemistry to identify three sources of cholinergic innervation of the mouse IC: the pedunculopontine tegmental nucleus (PPT), the laterodorsal tegmental nucleus (LDT) and the lateral paragigantocellular nucleus (LPGi). We then used Cre-dependent labeling of cholinergic neurons in normal-hearing ChAT-Cre mice to selectively label the cholinergic projections to the IC from each of the cholinergic sources. Labeling of cholinergic projections from the PPT and LDT revealed cholinergic axons and boutons terminating throughout the IC, with the ipsilateral projection being denser. Electron microscopic examination showed that these cholinergic axons can form traditional synaptic junctions with IC neurons. In separate experiments, selective labeling of cholinergic projections from the LPGi revealed bilateral projections to the IC. The LPGi axons exhibited relatively equal densities on ipsilateral and contralateral sides, but on both sides the terminations were largely restricted to the non-lemniscal regions of the IC (i.e., the dorsal cortex, lateral cortex and intercollicular tegmentum). We conclude first that cholinergic axons can form traditional synapses in the IC. In addition, lemniscal and non-lemniscal regions of the IC receive different patterns of cholinergic innervation. The lemniscal IC (IC central nucleus) is innervated by cholinergic neurons in the PPT and the LDT whereas the non-lemniscal "shell" areas of the IC are innervated by the PPT and LDT and by cholinergic neurons in the LPGi. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- William A Noftz
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Emily E Echols
- Department of Biology, University of Akron, Akron, OH 44325, USA
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
3
|
Matsumoto A, Yonehara K. Emerging computational motifs: Lessons from the retina. Neurosci Res 2023; 196:11-22. [PMID: 37352934 DOI: 10.1016/j.neures.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The retinal neuronal circuit is the first stage of visual processing in the central nervous system. The efforts of scientists over the last few decades indicate that the retina is not merely an array of photosensitive cells, but also a processor that performs various computations. Within a thickness of only ∼200 µm, the retina consists of diverse forms of neuronal circuits, each of which encodes different visual features. Since the discovery of direction-selective cells by Horace Barlow and Richard Hill, the mechanisms that generate direction selectivity in the retina have remained a fascinating research topic. This review provides an overview of recent advances in our understanding of direction-selectivity circuits. Beyond the conventional wisdom of direction selectivity, emerging findings indicate that the retina utilizes complicated and sophisticated mechanisms in which excitatory and inhibitory pathways are involved in the efficient encoding of motion information. As will become evident, the discovery of computational motifs in the retina facilitates an understanding of how sensory systems establish feature selectivity.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
4
|
Kwapiszewski JT, Rivera-Perez LM, Roberts MT. Cholinergic Boutons are Distributed Along the Dendrites and Somata of VIP Neurons in the Inferior Colliculus. J Assoc Res Otolaryngol 2023; 24:181-196. [PMID: 36627519 PMCID: PMC10121979 DOI: 10.1007/s10162-022-00885-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Cholinergic signaling shapes sound processing and plasticity in the inferior colliculus (IC), the midbrain hub of the central auditory system, but how cholinergic terminals contact and influence individual neuron types in the IC remains largely unknown. Using pharmacology and electrophysiology, we recently found that acetylcholine strongly excites VIP neurons, a class of glutamatergic principal neurons in the IC, by activating α3β4* nicotinic acetylcholine receptors (nAChRs). Here, we confirm and extend these results using tissue from mice of both sexes. First, we show that mRNA encoding α3 and β4 nAChR subunits is expressed in many neurons throughout the IC, including most VIP neurons, suggesting that these subunits, which are rare in the brain, are important mediators of cholinergic signaling in the IC. Next, by combining fluorescent labeling of VIP neurons and immunofluorescence against the vesicular acetylcholine transporter (VAChT), we show that individual VIP neurons in the central nucleus of the IC (ICc) are contacted by a large number of cholinergic boutons. Cholinergic boutons were distributed adjacent to the somata and along the full length of the dendritic arbors of VIP neurons, positioning cholinergic signaling to affect synaptic computations arising throughout the somatodendritic compartments of VIP neurons. In addition, cholinergic boutons were occasionally observed in close apposition to dendritic spines on VIP neurons, raising the possibility that cholinergic signaling also modulates presynaptic release onto VIP neurons. Together, these results strengthen the evidence that cholinergic signaling exerts widespread influence on auditory computations performed by VIP neurons and other neurons in the IC.
Collapse
Affiliation(s)
- Julia T Kwapiszewski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA
| | - Luis M Rivera-Perez
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA.
- Department of Molecular and Integrative Pharmacology, University of Michigan, MI, Ann Arbor, 48109, USA.
| |
Collapse
|
5
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Mäki-Marttunen T, Mäki-Marttunen V. Excitatory and inhibitory effects of HCN channel modulation on excitability of layer V pyramidal cells. PLoS Comput Biol 2022; 18:e1010506. [PMID: 36099307 PMCID: PMC9506642 DOI: 10.1371/journal.pcbi.1010506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/23/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Dendrites of cortical pyramidal cells are densely populated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, a.k.a. Ih channels. Ih channels are targeted by multiple neuromodulatory pathways, and thus are one of the key ion-channel populations regulating the pyramidal cell activity. Previous observations and theories attribute opposing effects of the Ih channels on neuronal excitability due to their mildly hyperpolarized reversal potential. These effects are difficult to measure experimentally due to the fine spatiotemporal landscape of the Ih activity in the dendrites, but computational models provide an efficient tool for studying this question in a reduced but generalizable setting. In this work, we build upon existing biophysically detailed models of thick-tufted layer V pyramidal cells and model the effects of over- and under-expression of Ih channels as well as their neuromodulation. We show that Ih channels facilitate the action potentials of layer V pyramidal cells in response to proximal dendritic stimulus while they hinder the action potentials in response to distal dendritic stimulus at the apical dendrite. We also show that the inhibitory action of the Ih channels in layer V pyramidal cells is due to the interactions between Ih channels and a hot zone of low voltage-activated Ca2+ channels at the apical dendrite. Our simulations suggest that a combination of Ih-enhancing neuromodulation at the proximal part of the apical dendrite and Ih-inhibiting modulation at the distal part of the apical dendrite can increase the layer V pyramidal excitability more than either of the two alone. Our analyses uncover the effects of Ih-channel neuromodulation of layer V pyramidal cells at a single-cell level and shed light on how these neurons integrate information and enable higher-order functions of the brain.
Collapse
Affiliation(s)
- Tuomo Mäki-Marttunen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Biosciences, University of Oslo, Oslo, Norway
- Simula Research Laboratory, Oslo, Norway
- * E-mail:
| | - Verónica Mäki-Marttunen
- Cognitive Psychology Unit, Faculty of Social Sciences, University of Leiden, Leiden, Netherlands
| |
Collapse
|
7
|
Meneghini S, Modena D, Colombo G, Coatti A, Milani N, Madaschi L, Amadeo A, Becchetti A. The β2V287L nicotinic subunit linked to sleep-related epilepsy differently affects fast-spiking and regular spiking somatostatin-expressing neurons in murine prefrontal cortex. Prog Neurobiol 2022; 214:102279. [DOI: 10.1016/j.pneurobio.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/02/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022]
|
8
|
Qi G, Feldmeyer D. Cell-Type Specific Neuromodulation of Excitatory and Inhibitory Neurons via Muscarinic Acetylcholine Receptors in Layer 4 of Rat Barrel Cortex. Front Neural Circuits 2022; 16:843025. [PMID: 35250496 PMCID: PMC8894850 DOI: 10.3389/fncir.2022.843025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
The neuromodulator acetylcholine (ACh) plays an important role in arousal, attention, vigilance, learning and memory. ACh is released during different behavioural states and affects the brain microcircuit by regulating neuronal and synaptic properties. Here, we investigated how a low concentration of ACh (30 μM) affects the intrinsic properties of electrophysiologically and morphologically identified excitatory and inhibitory neurons in layer 4 (L4) of rat barrel cortex. ACh altered the membrane potential of L4 neurons in a heterogeneous manner. Nearly all L4 regular spiking (RS) excitatory neurons responded to bath-application of ACh with a M4 muscarinic ACh receptor-mediated hyperpolarisation. In contrast, in the majority of L4 fast spiking (FS) and non-fast spiking (nFS) interneurons 30 μM ACh induced a depolarisation while the remainder showed a hyperpolarisation or no response. The ACh-induced depolarisation of L4 FS interneurons was much weaker than that in L4 nFS interneurons. There was no clear difference in the response to ACh for three morphological subtypes of L4 FS interneurons. However, in four morpho-electrophysiological subtypes of L4 nFS interneurons, VIP+-like interneurons showed the strongest ACh-induced depolarisation; occasionally, even action potential firing was elicited. The ACh-induced depolarisation in L4 FS interneurons was exclusively mediated by M1 muscarinic ACh receptors; in L4 nFS interneurons it was mainly mediated by M1 and/or M3/5 muscarinic ACh receptors. In a subset of L4 nFS interneurons, a co-operative activation of muscarinic and nicotinic ACh receptors was also observed. The present study demonstrates that low-concentrations of ACh affect different L4 neuron types in a cell-type specific way. These effects result from a specific expression of different muscarinic and/or nicotinic ACh receptors on the somatodendritic compartments of L4 neurons. This suggests that even at low concentrations ACh may tune the excitability of L4 excitatory and inhibitory neurons and their synaptic microcircuits differentially depending on the behavioural state during which ACh is released.
Collapse
Affiliation(s)
- Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-10, Reseach Centre Jülich, Jülich, Germany
- *Correspondence: Guanxiao Qi,
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-10, Reseach Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Jülich-Aachen Research Alliance-Brain, Translational Brain Medicine, Aachen, Germany
- Dirk Feldmeyer,
| |
Collapse
|
9
|
Venkatesan S, Jeoung HS, Chen T, Power SK, Liu Y, Lambe EK. Endogenous Acetylcholine and Its Modulation of Cortical Microcircuits to Enhance Cognition. Curr Top Behav Neurosci 2020; 45:47-69. [PMID: 32601996 DOI: 10.1007/7854_2020_138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acetylcholine regulates the cerebral cortex to sharpen sensory perception and enhance attentional focus. The cellular and circuit mechanisms of this cholinergic modulation are under active investigation in sensory and prefrontal cortex, but the universality of these mechanisms across the cerebral cortex is not clear. Anatomical maps suggest that the sensory and prefrontal cortices receive distinct cholinergic projections and have subtle differences in the expression of cholinergic receptors and the metabolic enzyme acetylcholinesterase. First, we briefly review this anatomical literature and the recent progress in the field. Next, we discuss in detail the electrophysiological effects of cholinergic receptor subtypes and the cell and circuit consequences of their stimulation by endogenous acetylcholine as established by recent optogenetic work. Finally, we explore the behavioral ramifications of in vivo manipulations of endogenous acetylcholine. We find broader similarities than we expected between the cholinergic regulation of sensory and prefrontal cortex, but there are some differences and some gaps in knowledge. In visual, auditory, and somatosensory cortex, the cell and circuit mechanisms of cholinergic sharpening of sensory perception have been probed in vivo with calcium imaging and optogenetic experiments to simultaneously test mechanism and measure the consequences of manipulation. By contrast, ascertaining the links between attentional performance and cholinergic modulation of specific prefrontal microcircuits is more complicated due to the nature of the required tasks. However, ex vivo optogenetic manipulations point to differences in the cholinergic modulation of sensory and prefrontal cortex. Understanding how and where acetylcholine acts within the cerebral cortex to shape cognition is essential to pinpoint novel treatment targets for the perceptual and attention deficits found in multiple psychiatric and neurological disorders.
Collapse
Affiliation(s)
| | - Ha-Seul Jeoung
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Tianhui Chen
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Saige K Power
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yupeng Liu
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Forebrain Cholinergic Signaling: Wired and Phasic, Not Tonic, and Causing Behavior. J Neurosci 2020; 40:712-719. [PMID: 31969489 DOI: 10.1523/jneurosci.1305-19.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Conceptualizations of cholinergic signaling as primarily spatially diffuse and slow-acting are based largely on measures of extracellular brain ACh levels that require several minutes to generate a single data point. In addition, most such studies inhibited the highly potent catalytic enzyme for ACh, AChE, to facilitate measurement of ACh. Absent such inhibition, AChE limits the presence of ambient ACh and thus renders it unlikely that ACh influences target regions via slow changes in extracellular ACh concentrations. We describe an alternative view by which forebrain signaling in cortex driving cognition is largely phasic (milliseconds to perhaps seconds), and unlikely to be volume-transmitted. This alternative is supported by new evidence from real-time amperometric recordings of cholinergic signaling indicating a specific function of rapid, phasic, transient cholinergic signaling in attentional contexts. Previous neurochemical evidence may be reinterpreted in terms of integrated phasic cholinergic activity that mediates specific behavioral and cognitive operations; this reinterpretation fits well with recent computational models. Optogenetic studies support a causal relationship between cholinergic transients and behavior. This occurs in part via transient-evoked muscarinic receptor-mediated high-frequency oscillations in cortical regions. Such oscillations outlast cholinergic transients and thus link transient ACh signaling with more sustained postsynaptic activity patterns to support relatively persistent attentional biases. Reconceptualizing cholinergic function as spatially specific, phasic, and modulating specific cognitive operations is theoretically powerful and may lead to pharmacologic treatments more effective than those based on traditional views.Dual Perspectives Companion Paper: Diverse Spatiotemporal Scales of Cholinergic Signaling in the Neocortex, by Anita A. Disney and Michael J. Higley.
Collapse
|
11
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
12
|
White D, de Sousa Abreu RP, Blake A, Murphy J, Showell S, Kitamoto T, Lawal HO. Deficits in the vesicular acetylcholine transporter alter lifespan and behavior in adult Drosophila melanogaster. Neurochem Int 2020; 137:104744. [PMID: 32315665 DOI: 10.1016/j.neuint.2020.104744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
The neurotransmitter acetylcholine (ACh) is involved in critical organismal functions that include locomotion and cognition. Importantly, alterations in the cholinergic system are a key underlying factor in cognitive defects associated with aging. One essential component of cholinergic synaptic transmission is the vesicular ACh transporter (VAChT), which regulates the packaging of ACh into synaptic vesicles for extracellular release. Mutations that cause a reduction in either protein level or activity lead to diminished locomotion ability whereas complete loss of function of VAChT is lethal. While much is known about the function of VAChT, the direct role of altered ACh release and its association with either an impairment or an enhancement of cognitive function are still not fully understood. We hypothesize that point mutations in Vacht cause age-related deficits in cholinergic-mediated behaviors such as locomotion, and learning and memory. Using Drosophila melanogaster as a model system, we have studied several mutations within Vacht and observed their effect on survivability and locomotive behavior. Here we report for the first time a weak hypomorphic Vacht allele that shows a differential effect on ACh-linked behaviors. We also demonstrate that partially rescued Vacht point mutations cause an allele-dependent deficit in lifespan and defects in locomotion ability. Moreover, using a thorough data analytics strategy to identify exploratory behavioral patterns, we introduce new paradigms for measuring locomotion-related activities that could not be revealed or detected by a simple measure of the average speed alone. Together, our data indicate a role for VAChT in the maintenance of longevity and locomotion abilities in Drosophila and we provide additional measurements of locomotion that can be useful in determining subtle changes in Vacht function on locomotion-related behaviors.
Collapse
Affiliation(s)
- Daniel White
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA
| | - Raquel P de Sousa Abreu
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Andrew Blake
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA
| | - Jeremy Murphy
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA
| | - Shardae Showell
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA
| | - Toshihiro Kitamoto
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Hakeem O Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA.
| |
Collapse
|
13
|
Overexpression of the vesicular acetylcholine transporter disrupts cognitive performance and causes age-dependent locomotion decline in Drosophila. Mol Cell Neurosci 2020; 105:103483. [PMID: 32217162 DOI: 10.1016/j.mcn.2020.103483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 03/14/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022] Open
Abstract
Acetylcholinergic (ACh) neurotransmission is essential for key organismal functions such as locomotion and cognition. However, the mechanism through which ACh is regulated in the central nervous system is not fully understood. The vesicular acetylcholine transporter (VAChT) mediates the packaging and transport of ACh for exocytotic release and is a critical component of the ACh release machinery. Yet its precise role in the maintenance of cholinergic tone remains a subject of active investigation. Here we use the overexpression of VAChT as a tool to investigate the role of changes in ACh exocytosis on the regulation of synaptic activity and its downstream consequences. We measured the effect of an increase in VAChT expression on locomotion and cognitive performance as well as on organismal survival across the lifespan. We report the surprising finding that increased VAChT expression results in a significantly shorter lifespan in comparison to control flies. Moreover, constructs overexpressing VAChT demonstrate an age-dependent decrease in locomotion performance. Importantly, we report clear deficits in learning and memory which we measured through a courtship conditioning assay. Together, these data provide evidence for the adverse effects of overexpression of the vesicular acetylcholine transporter in the maintenance of normal behavioral abilities in Drosophila and demonstrates for the first time a role for ACh in the regulation of organismal survival.
Collapse
|
14
|
Disney AA, Higley MJ. Diverse Spatiotemporal Scales of Cholinergic Signaling in the Neocortex. J Neurosci 2020; 40:720-725. [PMID: 31969490 PMCID: PMC6975298 DOI: 10.1523/jneurosci.1306-19.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
ACh is a signaling molecule in the mammalian CNS, with well-documented influence over cognition and behavior. However, the nature of cholinergic signaling in the brain remains controversial, with ongoing debates focused on the spatial and temporal resolution of ACh activity. Generally, opposing views have embraced a dichotomy between transmission as slow and volume-mediated versus fast and synaptic. Here, we provide the perspective that ACh, like most other neurotransmitters, exhibits both fast and slow modes that are strongly determined by the anatomy of cholinergic fibers, the distribution and the signaling mechanisms of receptor subtypes, and the dynamics of ACh hydrolysis. Current methodological approaches remain limited in their ability to provide detailed analyses of these underlying factors. However, we believe that the continued development of novel technologies in combination with a more nuanced view of cholinergic activity will open critical new avenues to a better understanding of ACh in the brain.Dual Perspectives Companion Paper: Forebrain Cholinergic Signaling: Wired and Phasic, Not Tonic, and Causing Behavior, by Martin Sarter and Cindy Lustig.
Collapse
Affiliation(s)
- Anita A Disney
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, and
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
15
|
Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front Neural Circuits 2019; 13:24. [PMID: 31031601 PMCID: PMC6473068 DOI: 10.3389/fncir.2019.00024] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
The neocortex is densely innervated by basal forebrain (BF) cholinergic neurons. Long-range axons of cholinergic neurons regulate higher-order cognitive function and dysfunction in the neocortex by releasing acetylcholine (ACh). ACh release dynamically reconfigures neocortical microcircuitry through differential spatiotemporal actions on cell-types and their synaptic connections. At the cellular level, ACh release controls neuronal excitability and firing rate, by hyperpolarizing or depolarizing target neurons. At the synaptic level, ACh impacts transmission dynamics not only by altering the presynaptic probability of release, but also the magnitude of the postsynaptic response. Despite the crucial role of ACh release in physiology and pathophysiology, a comprehensive understanding of the way it regulates the activity of diverse neocortical cell-types and synaptic connections has remained elusive. This review aims to summarize the state-of-the-art anatomical and physiological data to develop a functional map of the cellular, synaptic and microcircuit effects of ACh in the neocortex of rodents and non-human primates, and to serve as a quantitative reference for those intending to build data-driven computational models on the role of ACh in governing brain states.
Collapse
Affiliation(s)
- Cristina Colangelo
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | - Srikanth Ramaswamy
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
16
|
Krueger J, Disney AA. Structure and function of dual-source cholinergic modulation in early vision. J Comp Neurol 2018; 527:738-750. [PMID: 30520037 DOI: 10.1002/cne.24590] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Behavioral states such as arousal and attention have profound effects on sensory processing, determining how-even whether-a stimulus is perceived. This state-dependence is believed to arise, at least in part, in response to inputs from subcortical structures that release neuromodulators such as acetylcholine, often nonsynaptically. The mechanisms that underlie the interaction between these nonsynaptic signals and the more point-to-point synaptic cortical circuitry are not well understood. This review highlights the state of the field, with a focus on cholinergic action in early visual processing. Key anatomical and physiological features of both the cholinergic and the visual systems are discussed. Furthermore, presenting evidence of cholinergic modulation in visual thalamus and primary visual cortex, we explore potential functional roles of acetylcholine and its effects on the processing of visual input over the sleep-wake cycle, sensory gain control during wakefulness, and consider evidence for cholinergic support of visual attention.
Collapse
Affiliation(s)
- Juliane Krueger
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Anita A Disney
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
17
|
Synaptic Release of Acetylcholine Rapidly Suppresses Cortical Activity by Recruiting Muscarinic Receptors in Layer 4. J Neurosci 2018; 38:5338-5350. [PMID: 29739869 DOI: 10.1523/jneurosci.0566-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022] Open
Abstract
Cholinergic afferents from the basal forebrain (BF) can influence cortical activity on rapid time scales, enabling sensory information processing and exploratory behavior. However, our understanding of how synaptically released acetylcholine (ACh) influences cellular targets in distinct cortical layers remains incomplete. Previous studies have shown that rapid changes in cortical dynamics induced by phasic BF activity can be mediated by the activation of nicotinic ACh receptors (nAChRs) expressed in distinct types of GABAergic interneurons. In contrast, muscarinic ACh receptors (mAChRs) are assumed to be involved in slower and more diffuse ACh signaling following sustained increases in afferent activity. Here, we examined the mechanisms underlying fast cholinergic control of cortical circuit dynamics by pairing optical stimulation of cholinergic afferents with evoked activity in somatosensory cortical slices of mice of either sex. ACh release evoked by single stimuli led to a rapid and persistent suppression of cortical activity, mediated by mAChRs expressed in layer 4 and to a lesser extent, by nAChRs in layers 1-3. In agreement, we found that cholinergic inputs to layer 4 evoked short-latency and long-lasting mAChR-dependent inhibition of the large majority of excitatory neurons, whereas inputs to layers 1-3 primarily evoked nAChR-dependent excitation of different classes of interneurons. Our results indicate that the rapid cholinergic control of cortical network dynamics is mediated by both nAChRs and mAChRs-dependent mechanisms, which are expressed in distinct cortical layers and cell types.SIGNIFICANCE STATEMENT Acetylcholine (ACh) release from basal forebrain (BF) afferents to cortex influences a variety of cognitive functions including attention, sensory processing, and learning. Cholinergic control occurs on the time scale of seconds and is mediated by BF neurons that generate action potentials at low rates, indicating that ACh acts as a point-to-point neurotransmitter. Our findings highlight that even brief activation of cholinergic afferents can recruit both nicotinic and muscarinic ACh receptors expressed in several cell types, leading to modulation of cortical activity on distinct time scales. Furthermore, they indicate that the initial stages of cortical sensory processing are under direct cholinergic control.
Collapse
|
18
|
Radnikow G, Feldmeyer D. Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex. Front Neuroanat 2018; 12:1. [PMID: 29440997 PMCID: PMC5797542 DOI: 10.3389/fnana.2018.00001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
From an anatomical point of view the neocortex is subdivided into up to six layers depending on the cortical area. This subdivision has been described already by Meynert and Brodmann in the late 19/early 20. century and is mainly based on cytoarchitectonic features such as the size and location of the pyramidal cell bodies. Hence, cortical lamination is originally an anatomical concept based on the distribution of excitatory neuron. However, it has become apparent in recent years that apart from the layer-specific differences in morphological features, many functional properties of neurons are also dependent on cortical layer or cell type. Such functional differences include changes in neuronal excitability and synaptic activity by neuromodulatory transmitters. Many of these neuromodulators are released from axonal afferents from subcortical brain regions while others are released intrinsically. In this review we aim to describe layer- and cell-type specific differences in the effects of neuromodulator receptors in excitatory neurons in layers 2–6 of different cortical areas. We will focus on the neuromodulator systems using adenosine, acetylcholine, dopamine, and orexin/hypocretin as examples because these neuromodulator systems show important differences in receptor type and distribution, mode of release and functional mechanisms and effects. We try to summarize how layer- and cell type-specific neuromodulation may affect synaptic signaling in cortical microcircuits.
Collapse
Affiliation(s)
- Gabriele Radnikow
- Research Centre Jülich, Institute of Neuroscience and Medicine, INM-10, Jülich, Germany
| | - Dirk Feldmeyer
- Research Centre Jülich, Institute of Neuroscience and Medicine, INM-10, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance - Translational Brain Medicine, Jülich, Germany
| |
Collapse
|
19
|
Coppola JJ, Disney AA. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems. Front Neural Circuits 2018; 12:8. [PMID: 29440996 PMCID: PMC5797555 DOI: 10.3389/fncir.2018.00008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.
Collapse
Affiliation(s)
- Jennifer J. Coppola
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Anita A. Disney
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
20
|
Dunant Y, Gisiger V. Ultrafast and Slow Cholinergic Transmission. Different Involvement of Acetylcholinesterase Molecular Forms. Molecules 2017; 22:E1300. [PMID: 28777299 PMCID: PMC6152031 DOI: 10.3390/molecules22081300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023] Open
Abstract
Acetylcholine (ACh), an ubiquitous mediator substance broadly expressed in nature, acts as neurotransmitter in cholinergic synapses, generating specific communications with different time-courses. (1) Ultrafast transmission. Vertebrate neuromuscular junctions (NMJs) and nerve-electroplaque junctions (NEJs) are the fastest cholinergic synapses; able to transmit brief impulses (1-4 ms) at high frequencies. The collagen-tailed A12 acetylcholinesterase is concentrated in the synaptic cleft of NMJs and NEJs, were it curtails the postsynaptic response by ultrafast ACh hydrolysis. Here, additional processes contribute to make transmission so rapid. (2) Rapid transmission. At peripheral and central cholinergic neuro-neuronal synapses, transmission involves an initial, relatively rapid (10-50 ms) nicotinic response, followed by various muscarinic or nicotinic effects. Acetylcholinesterase (AChE) being not concentrated within these synapses, it does not curtail the initial rapid response. In contrast, the late responses are controlled by a globular form of AChE (mainly G4-AChE), which is membrane-bound and/or secreted. (3) SlowAChsignalling. In non-neuronal systems, in muscarinic domains, and in most regions of the central nervous system (CNS), many ACh-releasing structures (cells, axon terminals, varicosities, boutons) do not form true synaptic contacts, most muscarinic and also part of nicotinic receptors are extra-synaptic, often situated relatively far from ACh releasing spots. A12-AChE being virtually absent in CNS, G4-AChE is the most abundant form, whose function appears to modulate the "volume" transmission, keeping ACh concentration within limits in time and space.
Collapse
Affiliation(s)
- Yves Dunant
- Département des Neurosciences Fondamentales, Faculté de Médecine, Université de Genève, CH-1211-Genève 4, Switzerland.
| | - Victor Gisiger
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal QC H3C 3J7, Canada.
| |
Collapse
|
21
|
Soares JI, Valente MC, Andrade PA, Maia GH, Lukoyanov NV. Reorganization of the septohippocampal cholinergic fiber system in experimental epilepsy. J Comp Neurol 2017; 525:2690-2705. [PMID: 28472854 DOI: 10.1002/cne.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022]
Abstract
The septohippocampal cholinergic neurotransmission has long been implicated in seizures, but little is known about the structural features of this projection system in epileptic brain. We evaluated the effects of experimental epilepsy on the areal density of cholinergic terminals (fiber varicosities) in the dentate gyrus. For this purpose, we used two distinct post-status epilepticus rat models, in which epilepsy was induced with injections of either kainic acid or pilocarpine. To visualize the cholinergic fibers, we used brain sections immunostained for the vesicular acetylcholine transporter. It was found that the density of cholinergic fiber varicosities was higher in epileptic rats versus control rats in the inner and outer zones of the dentate molecular layer, but it was reduced in the dentate hilus. We further evaluated the effects of kainate treatment on the total number, density, and soma volume of septal cholinergic cells, which were visualized in brain sections stained for either vesicular acetylcholine transporter or choline acetyltransferase (ChAT). Both the number of septal cells with cholinergic phenotype and their density were increased in epileptic rats when compared to control rats. The septal cells stained for vesicular acetylcholine transporter, but not for ChAT, have enlarged perikarya in epileptic rats. These results revealed previously unknown details of structural reorganization of the septohippocampal cholinergic system in experimental epilepsy, involving fiber sprouting into the dentate molecular layer and a parallel fiber retraction from the dentate hilus. We hypothesize that epilepsy-related neuroplasticity of septohippocampal cholinergic neurons is capable of increasing neuronal excitability of the dentate gyrus.
Collapse
Affiliation(s)
- Joana I Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Maria C Valente
- Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Pedro A Andrade
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal.,Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Gisela H Maia
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Nikolai V Lukoyanov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
22
|
Coppola JJ, Ward NJ, Jadi MP, Disney AA. Modulatory compartments in cortex and local regulation of cholinergic tone. ACTA ACUST UNITED AC 2016; 110:3-9. [PMID: 27553093 DOI: 10.1016/j.jphysparis.2016.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/26/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023]
Abstract
Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states.
Collapse
Affiliation(s)
- Jennifer J Coppola
- Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA.
| | - Nicholas J Ward
- Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA.
| | - Monika P Jadi
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, 10610 North Torrey Pines Road, La Jolla, CA 92093, USA.
| | - Anita A Disney
- Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA.
| |
Collapse
|
23
|
Nelson A, Mooney R. The Basal Forebrain and Motor Cortex Provide Convergent yet Distinct Movement-Related Inputs to the Auditory Cortex. Neuron 2016; 90:635-48. [PMID: 27112494 DOI: 10.1016/j.neuron.2016.03.031] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/21/2016] [Accepted: 03/22/2016] [Indexed: 11/17/2022]
Abstract
Cholinergic inputs to the auditory cortex from the basal forebrain (BF) are important to auditory processing and plasticity, but little is known about the organization of these synapses onto different auditory cortical neuron types, how they influence auditory responsiveness, and their activity patterns during various behaviors. Using intersectional tracing, optogenetic circuit mapping, and in vivo calcium imaging, we found that cholinergic axons arising from the caudal BF target major excitatory and inhibitory auditory cortical cell types, rapidly modulate auditory cortical tuning, and display fast movement-related activity. Furthermore, the BF and the motor cortex-another source of movement-related activity-provide convergent input onto some of the same auditory cortical neurons. Cholinergic and motor cortical afferents to the auditory cortex display distinct activity patterns and presynaptic partners, indicating that the auditory cortex integrates bottom-up cholinergic signals related to ongoing movements and arousal with top-down information concerning impending movements and motor planning.
Collapse
Affiliation(s)
- Anders Nelson
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
24
|
Groleau M, Kang JI, Huppé-Gourgues F, Vaucher E. Distribution and effects of the muscarinic receptor subtypes in the primary visual cortex. Front Synaptic Neurosci 2015; 7:10. [PMID: 26150786 PMCID: PMC4472999 DOI: 10.3389/fnsyn.2015.00010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/04/2015] [Indexed: 11/13/2022] Open
Abstract
Muscarinic cholinergic receptors modulate the activity and plasticity of the visual cortex. Muscarinic receptors are divided into five subtypes that are not homogeneously distributed throughout the cortical layers and cells types. This distribution results in complex action of the muscarinic receptors in the integration of visual stimuli. Selective activation of the different subtypes can either strengthen or weaken cortical connectivity (e.g., thalamocortical vs. corticocortical), i.e., it can influence the processing of certain stimuli over others. Moreover, muscarinic receptors differentially modulate some functional properties of neurons during experience-dependent activity and cognitive processes and they contribute to the fine-tuning of visual processing. These functions are involved in the mechanisms of attention, maturation and learning in the visual cortex. This minireview describes the anatomo-functional aspects of muscarinic modulation of the primary visual cortex's (V1) microcircuitry.
Collapse
Affiliation(s)
- Marianne Groleau
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Jun Il Kang
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Frédéric Huppé-Gourgues
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
25
|
Hay YA, Lambolez B, Tricoire L. Nicotinic Transmission onto Layer 6 Cortical Neurons Relies on Synaptic Activation of Non-α7 Receptors. Cereb Cortex 2015; 26:2549-2562. [PMID: 25934969 DOI: 10.1093/cercor/bhv085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nicotinic excitation in neocortex is mediated by low-affinity α7 receptors and by high-affinity α4β2 receptors. There is evidence that α7 receptors are synaptic, but it is unclear whether high-affinity receptors are activated by volume transmission or synaptic transmission. To address this issue, we characterized responses of excitatory layer 6 (L6) neurons to optogenetic release of acetylcholine (ACh) in cortical slices. L6 responses consisted in a slowly decaying α4β2 current and were devoid of α7 component. Evidence that these responses were mediated by synapses was 4-fold. 1) Channelrhodopsin-positive cholinergic varicosities made close appositions onto responsive neurons. 2) Inhibition of ACh degradation failed to alter onset kinetics and amplitude of currents. 3) Quasi-saturation of α4β2 receptors occurred upon ACh release. 4) Response kinetics were unchanged in low release probability conditions. Train stimulations increased amplitude and decay time of responses and these effects appeared to involve recruitment of extrasynaptic receptors. Finally, we found that the α5 subunit, known to be associated with α4β2 in L6, regulates short-term plasticity at L6 synapses. Our results are consistent with previous anatomical observations of widespread cholinergic synapses and suggest that a significant proportion of these small synapses operate via high-affinity nicotinic receptors.
Collapse
Affiliation(s)
- Y Audrey Hay
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| | - Bertrand Lambolez
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| | - Ludovic Tricoire
- Sorbonne Universités, UPMC Univ Paris 06, UM119, Neuroscience Paris Seine, Paris F-75005, France.,Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris F-75005, France
| |
Collapse
|
26
|
Abstract
In addition to innervating the cerebral cortex, basal forebrain cholinergic (BFc) neurons send a dense projection to the basolateral nucleus of the amygdala (BLA). In this study, we investigated the effect of near physiological acetylcholine release on BLA neurons using optogenetic tools and in vitro patch-clamp recordings. Adult transgenic mice expressing cre-recombinase under the choline acetyltransferase promoter were used to selectively transduce BFc neurons with channelrhodopsin-2 and a reporter through the injection of an adeno-associated virus. Light-induced stimulation of BFc axons produced different effects depending on the BLA cell type. In late-firing interneurons, BFc inputs elicited fast nicotinic EPSPs. In contrast, no response could be detected in fast-spiking interneurons. In principal BLA neurons, two different effects were elicited depending on their activity level. When principal BLA neurons were quiescent or made to fire at low rates by depolarizing current injection, light-induced activation of BFc axons elicited muscarinic IPSPs. In contrast, with stronger depolarizing currents, eliciting firing above ∼ 6-8 Hz, these muscarinic IPSPs lost their efficacy because stimulation of BFc inputs prolonged current-evoked afterdepolarizations. All the effects observed in principal neurons were dependent on muscarinic receptors type 1, engaging different intracellular mechanisms in a state-dependent manner. Overall, our results suggest that acetylcholine enhances the signal-to-noise ratio in principal BLA neurons. Moreover, the cholinergic engagement of afterdepolarizations may contribute to the formation of stimulus associations during fear-conditioning tasks where the timing of conditioned and unconditioned stimuli is not optimal for the induction of synaptic plasticity.
Collapse
|
27
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
28
|
Luchicchi A, Bloem B, Viaña JNM, Mansvelder HD, Role LW. Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors. Front Synaptic Neurosci 2014; 6:24. [PMID: 25386136 PMCID: PMC4209819 DOI: 10.3389/fnsyn.2014.00024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/03/2014] [Indexed: 12/05/2022] Open
Abstract
Acetylcholine (ACh) signaling underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. Alterations in ACh signaling are involved in the pathophysiology of multiple neuropsychiatric disorders. In the central nervous system, ACh transmission is mainly guaranteed by dense innervation of select cortical and subcortical regions from disperse groups of cholinergic neurons within the basal forebrain (BF; e.g., diagonal band, medial septal, nucleus basalis) and the pontine-mesencephalic nuclei, respectively. Despite the fundamental role of cholinergic signaling in the CNS and the long standing knowledge of the organization of cholinergic circuitry, remarkably little is known about precisely how ACh release modulates cortical and subcortical neural activity and the behaviors these circuits subserve. Growing interest in cholinergic signaling in the CNS focuses on the mechanism(s) of action by which endogenously released ACh regulates cognitive functions, acting as a neuromodulator and/or as a direct transmitter via nicotinic and muscarinic receptors. The development of optogenetic techniques has provided a valuable toolbox with which we can address these questions, as it allows the selective manipulation of the excitability of cholinergic inputs to the diverse array of cholinergic target fields within cortical and subcortical domains. Here, we review recent papers that use the light-sensitive opsins in the cholinergic system to elucidate the role of ACh in circuits related to attention and emotionally salient behaviors. In particular, we highlight recent optogenetic studies which have tried to disentangle the precise role of ACh in the modulation of cortical-, hippocampal- and striatal-dependent functions.
Collapse
Affiliation(s)
- Antonio Luchicchi
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Netherlands
| | - Bernard Bloem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Netherlands ; McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - John Noel M Viaña
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Netherlands
| | - Lorna W Role
- Department of Neurobiology and Behavior, Stony Brook University Stony Brook, NY, USA
| |
Collapse
|
29
|
McQuiston AR. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1. Front Synaptic Neurosci 2014; 6:20. [PMID: 25278874 PMCID: PMC4165287 DOI: 10.3389/fnsyn.2014.00020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
Acetylcholine release in the central nervous system (CNS) has an important role in attention, recall, and memory formation. One region influenced by acetylcholine is the hippocampus, which receives inputs from the medial septum and diagonal band of Broca complex (MS/DBB). Release of acetylcholine from the MS/DBB can directly affect several elements of the hippocampus including glutamatergic and GABAergic neurons, presynaptic terminals, postsynaptic receptors, and astrocytes. A significant portion of acetylcholine's effect likely results from the modulation of GABAergic inhibitory interneurons, which have crucial roles in controlling excitatory inputs, synaptic integration, rhythmic coordination of principal neurons, and outputs in the hippocampus. Acetylcholine affects interneuron function in large part by altering their membrane potential via muscarinic and nicotinic receptor activation. This minireview describes recent data from mouse hippocampus that investigated changes in CA1 interneuron membrane potentials following acetylcholine release. The interneuron subtypes affected, the receptor subtypes activated, and the potential outcome on hippocampal CA1 network function is discussed.
Collapse
Affiliation(s)
- A Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
30
|
Iulita MF, Cuello AC. Nerve growth factor metabolic dysfunction in Alzheimer's disease and Down syndrome. Trends Pharmacol Sci 2014; 35:338-48. [PMID: 24962069 DOI: 10.1016/j.tips.2014.04.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition and the most common type of amnestic dementia in the elderly. Individuals with Down syndrome (DS) are at increased risk of developing AD in adulthood as a result of chromosome 21 trisomy and triplication of the amyloid precursor protein (APP) gene. In both conditions, the central nervous system (CNS) basal forebrain cholinergic system progressively degenerates, and such changes contribute to the manifestation of cognitive decline and dementia. Given the strong dependency of these neurons on nerve growth factor (NGF), it was hypothesized that their atrophy was caused by NGF deficits. However, in AD, the synthesis of NGF is not affected at the transcript level and there is a marked increase in its precursor, proNGF. This apparent paradox remained elusive for many years. In this review, we discuss the recent evidence supporting a CNS deficit in the extracellular metabolism of NGF, both in AD and in DS brains. We describe the nature of this trophic disconnection and its implication for the atrophy of basal forebrain cholinergic neurons. We further discuss the potential of NGF pathway markers as diagnostic indicators of a CNS trophic disconnection.
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, H3G1Y6, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, H3G1Y6, Canada.
| |
Collapse
|
31
|
Disney AA, Reynolds JH. Expression of m1-type muscarinic acetylcholine receptors by parvalbumin-immunoreactive neurons in the primary visual cortex: a comparative study of rat, guinea pig, ferret, macaque, and human. J Comp Neurol 2014; 522:986-1003. [PMID: 23983014 PMCID: PMC3945972 DOI: 10.1002/cne.23456] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022]
Abstract
Cholinergic neuromodulation is a candidate mechanism for aspects of arousal and attention in mammals. We have reported previously that cholinergic modulation in the primary visual cortex (V1) of the macaque monkey is strongly targeted toward GABAergic interneurons, and in particular that the vast majority of parvalbumin-immunoreactive (PV) neurons in macaque V1 express the m1-type (pirenzepine-sensitive, Gq-coupled) muscarinic ACh receptor (m1AChR). In contrast, previous physiological data indicates that PV neurons in rats rarely express pirenzepine-sensitive muscarinic AChRs. To examine further this apparent species difference in the cholinergic effectors for the primary visual cortex, we have conducted a comparative study of the expression of m1AChRs by PV neurons in V1 of rats, guinea pigs, ferrets, macaques, and humans. We visualize PV- and mAChR-immunoreactive somata by dual-immunofluorescence confocal microscopy and find that the species differences are profound; the vast majority (>75%) of PV-ir neurons in macaques, humans, and guinea pigs express m1AChRs. In contrast, in rats only ∼25% of the PV population is immunoreactive for m1AChRs. Our data reveal that while they do so much less frequently than in primates, PV neurons in rats do express Gq-coupled muscarinic AChRs, which appear to have gone undetected in the previous in vitro studies. Data such as these are critical in determining the species that represent adequate models for the capacity of the cholinergic system to modulate inhibition in the primate cortex.
Collapse
Affiliation(s)
- Anita A Disney
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, California, 92037
| | | |
Collapse
|
32
|
Arroyo S, Bennett C, Hestrin S. Nicotinic modulation of cortical circuits. Front Neural Circuits 2014; 8:30. [PMID: 24734005 PMCID: PMC3975109 DOI: 10.3389/fncir.2014.00030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/10/2014] [Indexed: 01/09/2023] Open
Abstract
The ascending cholinergic neuromodulatory system sends projections throughout cortex and has been shown to play an important role in a number of cognitive functions including arousal, working memory, and attention. However, despite a wealth of behavioral and anatomical data, understanding how cholinergic synapses modulate cortical function has been limited by the inability to selectively activate cholinergic axons. Now, with the development of optogenetic tools and cell-type specific Cre-driver mouse lines, it has become possible to stimulate cholinergic axons from the basal forebrain (BF) and probe cholinergic synapses in the cortex for the first time. Here we review recent work studying the cell-type specificity of nicotinic signaling in the cortex, synaptic mechanisms mediating cholinergic transmission, and the potential functional role of nicotinic modulation.
Collapse
Affiliation(s)
- Sergio Arroyo
- Department of Comparative Medicine, Stanford University School of Medicine Stanford, CA, USA
| | - Corbett Bennett
- Department of Comparative Medicine, Stanford University School of Medicine Stanford, CA, USA
| | - Shaul Hestrin
- Department of Comparative Medicine, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
33
|
Muñoz W, Rudy B. Spatiotemporal specificity in cholinergic control of neocortical function. Curr Opin Neurobiol 2014; 26:149-60. [PMID: 24637201 DOI: 10.1016/j.conb.2014.02.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/16/2014] [Accepted: 02/19/2014] [Indexed: 01/01/2023]
Abstract
Cholinergic actions are critical for normal cortical cognitive functions. The release of acetylcholine (ACh) in neocortex and the impact of this neuromodulator on cortical computations exhibit remarkable spatiotemporal precision, as required for the regulation of behavioral processes underlying attention and learning. We discuss how the organization of the cholinergic projections to the cortex and their release properties might contribute to this specificity. We also review recent studies suggesting that the modulatory influences of ACh on the properties of cortical neurons can have the necessary temporal dynamic range, emphasizing evidence of powerful interneuron subtype-specific effects. We discuss areas that require further investigation and point to technical advances in molecular and genetic manipulations that promise to make headway in understanding the neural bases of cholinergic modulation of cortical cognitive operations.
Collapse
Affiliation(s)
- William Muñoz
- NYU Neuroscience Institute, NYU School of Medicine, Smilow Research Building Sixth Floor, 522 First Ave, NY, NY, 10016, United States
| | - Bernardo Rudy
- NYU Neuroscience Institute, NYU School of Medicine, Smilow Research Building Sixth Floor, 522 First Ave, NY, NY, 10016, United States.
| |
Collapse
|
34
|
Francis PT, Parsons CG, Jones RW. Rationale for combining glutamatergic and cholinergic approaches in the symptomatic treatment of Alzheimer’s disease. Expert Rev Neurother 2014; 12:1351-65. [DOI: 10.1586/ern.12.124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Differential modulation of spontaneous and evoked thalamocortical network activity by acetylcholine level in vitro. J Neurosci 2013; 33:17951-66. [PMID: 24198382 DOI: 10.1523/jneurosci.1644-13.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Different levels of cholinergic neuromodulatory tone have been hypothesized to set the state of cortical circuits either to one dominated by local cortical recurrent activity (low ACh) or to one dependent on thalamic input (high ACh). High ACh levels depress intracortical but facilitate thalamocortical synapses, whereas low levels potentiate intracortical synapses. Furthermore, recent work has implicated the thalamus in controlling cortical network state during waking and attention, when ACh levels are highest. To test this hypothesis, we used rat thalamocortical slices maintained in medium to generate spontaneous up- and down-states and applied different ACh concentrations to slices in which thalamocortical connections were either maintained or severed. The effects on spontaneous and evoked up-states were measured using voltage-sensitive dye imaging, intracellular recordings, local field potentials, and single/multiunit activity. We found that high ACh can increase the frequency of spontaneous up-states, but reduces their duration in slices with intact thalamocortical connections. Strikingly, when thalamic connections are severed, high ACh instead greatly reduces or abolishes spontaneous up-states. Furthermore, high ACh reduces the spatial propagation, velocity, and depolarization amplitude of evoked up-states. In contrast, low ACh dramatically increases up-state frequency regardless of the presence or absence of intact thalamocortical connections and does not reduce the duration, spatial propagation, or velocity of evoked up-states. Therefore, our data support the hypothesis that strong cholinergic modulation increases the influence, and thus the signal-to-noise ratio, of afferent input over local cortical activity and that lower cholinergic tone enhances recurrent cortical activity regardless of thalamic input.
Collapse
|
36
|
Csaba Z, Krejci E, Bernard V. Postsynaptic muscarinic m2 receptors at cholinergic and glutamatergic synapses of mouse brainstem motoneurons. J Comp Neurol 2013. [PMID: 23184757 DOI: 10.1002/cne.23268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In many brain areas, few cholinergic synapses are identified. Acetylcholine is released into the extracellular space and acts through diffuse transmission. Motoneurons, however, are contacted by numerous cholinergic terminals, indicating synaptic cholinergic transmission on them. The muscarinic m2 receptor is the major acetylcholine receptor subtype of motoneurons; therefore, we analyzed the localization of the m2 receptor in correlation with synapses by electron microscopic immunohistochemistry in the mouse trigeminal, facial, and hypoglossal motor nuclei. In all nuclei, m2 receptors were localized at the membrane of motoneuronal perikarya and dendrites. The m2 receptors were concentrated at cholinergic synapses located on the perikarya and most proximal dendrites. However, m2 receptors at cholinergic synapses represented only a minority (<10%) of surface m2 receptors. The m2 receptors were also enriched at glutamatergic synapses in both motoneuronal perikarya and dendrites. A relatively large proportion (20-30%) of plasma membrane-associated m2 receptors were located at glutamatergic synapses. In conclusion, the effect of acetylcholine on motoneuron populations might be mediated through a synaptic as well as diffuse type of transmission.
Collapse
Affiliation(s)
- Zsolt Csaba
- Université Paris Descartes, 75006 Paris, France.
| | | | | |
Collapse
|
37
|
Griffith WH, Dubois DW, Fincher A, Peebles KA, Bizon JL, Murchison D. Characterization of age-related changes in synaptic transmission onto F344 rat basal forebrain cholinergic neurons using a reduced synaptic preparation. J Neurophysiol 2013; 111:273-86. [PMID: 24133226 DOI: 10.1152/jn.00129.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Basal forebrain (BF) cholinergic neurons participate in a number of cognitive processes that become impaired during aging. We previously found that age-related enhancement of Ca(2+) buffering in rat cholinergic BF neurons was associated with impaired performance in the water maze spatial learning task (Murchison D, McDermott AN, Lasarge CL, Peebles KA, Bizon JL, and Griffith WH. J Neurophysiol 102: 2194-2207, 2009). One way that altered Ca(2+) buffering could contribute to cognitive impairment involves synaptic function. In this report we show that synaptic transmission in the BF is altered with age and cognitive status. We have examined the properties of spontaneous postsynaptic currents (sPSCs) in cholinergic BF neurons that have been mechanically dissociated without enzymes from behaviorally characterized F344 rats. These isolated neurons retain functional presynaptic terminals on their somata and proximal dendrites. Using whole cell patch-clamp recording, we show that sPSCs and miniature PSCs are predominately GABAergic (bicuculline sensitive) and in all ways closely resemble PSCs recorded in a BF in vitro slice preparation. Adult (4-7 mo) and aged (22-24 mo) male rats were cognitively assessed using the water maze. Neuronal phenotype was identified post hoc using single-cell RT-PCR. The frequency of sPSCs was reduced during aging, and this was most pronounced in cognitively impaired subjects. This is the same population that demonstrated increased intracellular Ca(2+) buffering. We also show that increasing Ca(2+) buffering in the synaptic terminals of young BF neurons can mimic the reduced frequency of sPSCs observed in aged BF neurons.
Collapse
Affiliation(s)
- William H Griffith
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas; and
| | | | | | | | | | | |
Collapse
|
38
|
Muller JF, Mascagni F, Zaric V, McDonald AJ. Muscarinic cholinergic receptor M1 in the rat basolateral amygdala: ultrastructural localization and synaptic relationships to cholinergic axons. J Comp Neurol 2013; 521:1743-59. [PMID: 23559406 DOI: 10.1002/cne.23254] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/20/2012] [Accepted: 10/25/2012] [Indexed: 02/02/2023]
Abstract
Muscarinic neurotransmission in the anterior basolateral amygdalar nucleus (BLa) mediated by the M1 receptor (M1R) is critical for memory consolidation. Although knowledge of the subcellular localization of M1R in the BLa would contribute to an understanding of cholinergic mechanisms involved in mnemonic function, there have been no ultrastructural studies of this receptor in the BLa. In the present investigation, immunocytochemistry at the electron microscopic level was used to determine which structures in the BLa express M1R. The innervation of these structures by cholinergic axons expressing the vesicular acetylcholine transporter (VAChT) was also studied. All perikarya of pyramidal neurons were labeled, and about 90% of dendritic shafts and 60% of dendritic spines were M1R+. Some dendrites had spines suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of interneurons. M1R immunoreactivity (M1R-ir) was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M1R+ terminals forming asymmetrical synapses were dendritic spines, most of which were M1R+. The main targets of M1R+ terminals forming symmetrical synapses were M1R+ perikarya and dendritic shafts. About three-quarters of VAChT+ cholinergic terminals formed synapses; the main postsynaptic targets were M1R+ dendritic shafts and spines. In some cases M1R-ir was seen near the postsynaptic membrane of these processes, but in other cases it was found outside of the active zone of VAChT+ synapses. These findings suggest that M1R mechanisms in the BLa are complex, involving postsynaptic effects as well as regulating release of neurotransmitters from presynaptic terminals.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | | | | | |
Collapse
|
39
|
Takács VT, Freund TF, Nyiri G. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain. PLoS One 2013; 8:e72450. [PMID: 24039767 PMCID: PMC3764118 DOI: 10.1371/journal.pone.0072450] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/17/2013] [Indexed: 01/17/2023] Open
Abstract
Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum). In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties of brain circuits and behavior.
Collapse
Affiliation(s)
- Virág T. Takács
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás F. Freund
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
40
|
Poorthuis RB, Mansvelder HD. Nicotinic acetylcholine receptors controlling attention: behavior, circuits and sensitivity to disruption by nicotine. Biochem Pharmacol 2013; 86:1089-98. [PMID: 23856288 DOI: 10.1016/j.bcp.2013.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/26/2022]
Abstract
Attention is a central cognitive function that enables long-term engagement in a task and suppression of irrelevant information to obtain future goals. The prefrontal cortex (PFC) is the main link in integrating emotional and motivational state of an animal to regulate top-down attentional processes. Acetylcholine modulates PFC neuronal networks by activating nicotinic acetylcholine receptors (nAChRs) to support attention. However, how neuronal activity changes in the PFC during attention and which nAChR subtypes mediate this is only rudimentarily understood, but progress is being made. Recently, exciting new insights were obtained in the dynamics of cholinergic signaling in the PFC and modes of acetylcholine transmission via nAChRs in the cortex. In addition, mechanisms are uncovered on how the PFC circuitry is regulated by nAChRs. Novel studies show that endogenous activation of nAChRs in the PFC plays a central role in controlling attention. Here, we review current insights into how different subtypes of nAChRs expressed by distinct types of neurons in the PFC circuitry shape attention. In addition we discuss the impact of nicotine on the cholinergic system and prefrontal cortical circuits. Low concentrations of nicotine, as experienced by smokers, interfere with cholinergic signaling. In the long-term exposure to nicotine during adolescence leads to maladaptive adaptations of the PFC circuitry, which ultimately leads to a decrement in attention performance, again emphasizing the importance of nAChRs in attention.
Collapse
Affiliation(s)
- Rogier B Poorthuis
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | | |
Collapse
|
41
|
Anisuzzaman ASM, Uwada J, Masuoka T, Yoshiki H, Nishio M, Ikegaya Y, Takahashi N, Matsuki N, Fujibayashi Y, Yonekura Y, Momiyama T, Muramatsu I. Novel contribution of cell surface and intracellular M1-muscarinic acetylcholine receptors to synaptic plasticity in hippocampus. J Neurochem 2013; 126:360-71. [DOI: 10.1111/jnc.12306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/30/2013] [Accepted: 05/14/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Abu Syed Md Anisuzzaman
- Division of Pharmacology; Department of Biochemistry and Bioinformative Sciences; School of Medicine; University of Fukui; Eiheiji Japan
| | - Junsuke Uwada
- Division of Pharmacology; Department of Biochemistry and Bioinformative Sciences; School of Medicine; University of Fukui; Eiheiji Japan
- Organization for Life Science Advancement Programs; University of Fukui; Eiheiji Japan
| | - Takayoshi Masuoka
- Department of Pharmacology; School of Medicine; Kanazawa Medical University; Uchinada Japan
| | - Hatsumi Yoshiki
- Division of Pharmacology; Department of Biochemistry and Bioinformative Sciences; School of Medicine; University of Fukui; Eiheiji Japan
| | - Matomo Nishio
- Department of Pharmacology; School of Medicine; Kanazawa Medical University; Uchinada Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo Bunkyo-ku Japan
| | - Naoya Takahashi
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo Bunkyo-ku Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo Bunkyo-ku Japan
| | | | | | - Toshihiko Momiyama
- Department of Pharmacology; Jikei University School of Medicine; Minato-ku Japan
| | - Ikunobu Muramatsu
- Division of Pharmacology; Department of Biochemistry and Bioinformative Sciences; School of Medicine; University of Fukui; Eiheiji Japan
- Organization for Life Science Advancement Programs; University of Fukui; Eiheiji Japan
- Child Development Research Center; Graduate School of Medicine; University of Fukui; Eiheiji Japan
| |
Collapse
|
42
|
Bell LA, Bell KA, McQuiston AR. Synaptic muscarinic response types in hippocampal CA1 interneurons depend on different levels of presynaptic activity and different muscarinic receptor subtypes. Neuropharmacology 2013; 73:160-73. [PMID: 23747570 DOI: 10.1016/j.neuropharm.2013.05.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/22/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
Depolarizing, hyperpolarizing and biphasic muscarinic responses have been described in hippocampal inhibitory interneurons, but the receptor subtypes and activity patterns required to synaptically activate muscarinic responses in interneurons have not been completely characterized. Using optogenetics combined with whole cell patch clamp recordings in acute slices, we measured muscarinic responses produced by endogenously released acetylcholine (ACh) from cholinergic medial septum/diagonal bands of Broca inputs in hippocampal CA1. We found that depolarizing responses required more cholinergic terminal stimulation than hyperpolarizing ones. Furthermore, elevating extracellular ACh with the acetylcholinesterase inhibitor physostigmine had a larger effect on depolarizing versus hyperpolarizing responses. Another subpopulation of interneurons responded biphasically, and periodic release of ACh entrained some of these interneurons to rhythmically burst. M4 receptors mediated hyperpolarizing responses by activating inwardly rectifying K(+) channels, whereas the depolarizing responses were inhibited by the nonselective muscarinic antagonist atropine but were unaffected by M1, M4 or M5 receptor modulators. In addition, activation of M4 receptors significantly altered biphasic interneuron firing patterns. Anatomically, interneuron soma location appeared predictive of muscarinic response types but response types did not correlate with interneuron morphological subclasses. Together these observations suggest that the hippocampal CA1 interneuron network will be differentially affected by cholinergic input activity levels. Low levels of cholinergic activity will preferentially suppress some interneurons via hyperpolarization and increased activity will recruit other interneurons to depolarize, possibly because of elevated extracellular ACh concentrations. These data provide important information for understanding how cholinergic therapies will affect hippocampal network function in the treatment of some neurodegenerative diseases.
Collapse
Affiliation(s)
- L Andrew Bell
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | | | | |
Collapse
|
43
|
Parsons CG, Danysz W, Dekundy A, Pulte I. Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer's disease. Neurotox Res 2013; 24:358-69. [PMID: 23657927 PMCID: PMC3753463 DOI: 10.1007/s12640-013-9398-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 12/11/2022]
Abstract
This review describes the preclinical mechanisms that may underlie the increased therapeutic benefit of combination therapy-with the N-methyl-D-aspartate receptor antagonist, memantine, and an acetylcholinesterase inhibitor (AChEI)-for the treatment of Alzheimer's disease (AD). Memantine, and the AChEIs target two different aspects of AD pathology. Both drug types have shown significant efficacy as monotherapies for the treatment of AD. Furthermore, clinical observations indicate that their complementary mechanisms offer superior benefit as combination therapy. Based on the available literature, the authors have considered the preclinical mechanisms that could underlie such a combined approach. Memantine addresses dysfunction in glutamatergic transmission, while the AChEIs serve to increase pathologically lowered levels of the neurotransmitter acetylcholine. In addition, preclinical studies have shown that memantine has neuroprotective effects, acting to prevent glutamatergic over-stimulation and the resulting neurotoxicity. Interrelations between the glutamatergic and cholinergic pathways in regions of the brain that control learning and memory mean that combination treatment has the potential for a complex influence on disease pathology. Moreover, studies in animal models have shown that the combined use of memantine and the AChEIs can produce greater improvements in measures of memory than either treatment alone. As an effective approach in the clinical setting, combination therapy with memantine and an AChEI has been a welcome advance for the treatment of patients with AD. Preclinical data have shown how these drugs act via two different, but interconnected, pathological pathways, and that their complementary activity may produce greater effects than either drug individually.
Collapse
Affiliation(s)
- Chris G Parsons
- In Vitro Pharmacology, Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318, Frankfurt, Germany.
| | | | | | | |
Collapse
|
44
|
A novel population of cholinergic neurons in the macaque spinal dorsal horn of potential clinical relevance for pain therapy. J Neurosci 2013; 33:3727-37. [PMID: 23447584 DOI: 10.1523/jneurosci.3954-12.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endogenous acetylcholine (ACh) is a well-known modulator of nociceptive transmission in the spinal cord of rodents. It arises mainly from a sparse population of cholinergic interneurons located in the dorsal horn of the spinal cord. This population was thought to be absent from the spinal cord of monkey, what might suggest that spinal ACh would not be a relevant clinical target for pain therapy. In humans, however, pain responses can be modulated by spinal ACh, as evidenced by the increasingly used analgesic procedure (for postoperative and labor patients) consisting of the epidural injection of the acetylcholinesterase inhibitor neostigmine. The source and target of this ACh remain yet to be elucidated. In this study, we used an immunolabeling for choline acetyltransferase to demonstrate, for the first time, the presence of a plexus of cholinergic fibers in laminae II-III of the dorsal horn of the macaque monkey. Moreover, we show the presence of numerous cholinergic cell bodies within the same laminae and compared their density and morphological properties with those previously described in rodents. An electron microscopy analysis demonstrates that cholinergic boutons are presynaptic to dorsal horn neurons as well as to the terminals of sensory primary afferents, suggesting that they are likely to modulate incoming somatosensory information. Our data suggest that this newly identified dorsal horn cholinergic system in monkeys is the source of the ACh involved in the analgesic effects of epidural neostigmine and could be more specifically targeted for novel therapeutic strategies for pain management in humans.
Collapse
|
45
|
Deformation of attractor landscape via cholinergic presynaptic modulations: a computational study using a phase neuron model. PLoS One 2013; 8:e53854. [PMID: 23326520 PMCID: PMC3543278 DOI: 10.1371/journal.pone.0053854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Corticopetal acetylcholine (ACh) is released transiently from the nucleus basalis of Meynert (NBM) into the cortical layers and is associated with top-down attention. Recent experimental data suggest that this release of ACh disinhibits layer 2/3 pyramidal neurons (PYRs) via muscarinic presynaptic effects on inhibitory synapses. Together with other possible presynaptic cholinergic effects on excitatory synapses, this may result in dynamic and temporal modifications of synapses associated with top-down attention. However, the system-level consequences and cognitive relevance of such disinhibitions are poorly understood. Herein, we propose a theoretical possibility that such transient modifications of connectivity associated with ACh release, in addition to top-down glutamatergic input, may provide a neural mechanism for the temporal reactivation of attractors as neural correlates of memories. With baseline levels of ACh, the brain returns to quasi-attractor states, exhibiting transitive dynamics between several intrinsic internal states. This suggests that top-down attention may cause the attention-induced deformations between two types of attractor landscapes: the quasi-attractor landscape (Q-landscape, present under low-ACh, non-attentional conditions) and the attractor landscape (A-landscape, present under high-ACh, top-down attentional conditions). We present a conceptual computational model based on experimental knowledge of the structure of PYRs and interneurons (INs) in cortical layers 1 and 2/3 and discuss the possible physiological implications of our results.
Collapse
|
46
|
Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 2012; 76:116-29. [PMID: 23040810 DOI: 10.1016/j.neuron.2012.08.036] [Citation(s) in RCA: 880] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2012] [Indexed: 11/22/2022]
Abstract
Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity, and coordinates firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuromodulator. Here, we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss consequences of this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse effects of acetylcholine depend on site of release, receptor subtypes, and target neuronal population; however, a common theme is that acetylcholine potentiates behaviors that are adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in many brain areas makes cholinergic modulation an essential mechanism underlying complex behaviors.
Collapse
|
47
|
Becchetti A. Neuronal nicotinic receptors in sleep-related epilepsy: studies in integrative biology. ISRN BIOCHEMISTRY 2012; 2012:262941. [PMID: 25969754 PMCID: PMC4392997 DOI: 10.5402/2012/262941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/21/2012] [Indexed: 11/23/2022]
Abstract
Although Mendelian diseases are rare, when considered one by one, overall they constitute a significant social burden. Besides the medical aspects, they propose us one of the most general biological problems. Given the simplest physiological perturbation of an organism, that is, a single gene mutation, how do its effects percolate through the hierarchical biological levels to determine the pathogenesis? And how robust is the physiological system to this perturbation? To solve these problems, the study of genetic epilepsies caused by mutant ion channels presents special advantages, as it can exploit the full range of modern experimental methods. These allow to extend the functional analysis from single channels to whole brains. An instructive example is autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), which can be caused by mutations in neuronal nicotinic acetylcholine receptors. In vitro, such mutations often produce hyperfunctional receptors, at least in heterozygous condition. However, understanding how this leads to sleep-related frontal epilepsy is all but straightforward. Several available animal models are helping us to determine the effects of ADNFLE mutations on the mammalian brain. Because of the complexity of the cholinergic regulation in both developing and mature brains, several pathogenic mechanisms are possible, which also present different therapeutic implications.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
48
|
Bennett C, Arroyo S, Berns D, Hestrin S. Mechanisms generating dual-component nicotinic EPSCs in cortical interneurons. J Neurosci 2012; 32:17287-96. [PMID: 23197720 PMCID: PMC3525105 DOI: 10.1523/jneurosci.3565-12.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 01/26/2023] Open
Abstract
Activation of cortical nicotinic receptors by cholinergic axons from the basal forebrain (BF) significantly impacts cortical function, and the loss of nicotinic receptors is a hallmark of aging and neurodegenerative disease. We have previously shown that stimulation of BF axons generates a fast α7 and a slow non-α7 receptor-dependent response in cortical interneurons. However, the synaptic mechanisms that underlie this dual-component nicotinic response remain unclear. Here, we report that fast α7 receptor-mediated EPSCs in the mouse cortex are highly variable and insensitive to perturbations of acetylcholinesterase (AChE), while slow non-α7 receptor-mediated EPSCs are reliable and highly sensitive to AChE activity. Based on these data, we propose that the fast and slow nicotinic responses reflect differences in synaptic structure between cholinergic varicosities activating α7 and non-α7 classes of nicotinic receptors.
Collapse
Affiliation(s)
- Corbett Bennett
- Department of Comparative Medicine, Stanford University School of Medicine, and
| | - Sergio Arroyo
- Department of Comparative Medicine, Stanford University School of Medicine, and
| | - Dominic Berns
- Department of Biology, Stanford University, Stanford, California 94305
| | - Shaul Hestrin
- Department of Comparative Medicine, Stanford University School of Medicine, and
| |
Collapse
|
49
|
Trueta C, De-Miguel FF. Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system. Front Physiol 2012; 3:319. [PMID: 22969726 PMCID: PMC3432928 DOI: 10.3389/fphys.2012.00319] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/21/2012] [Indexed: 11/14/2022] Open
Abstract
We review the evidence of exocytosis from extrasynaptic sites in the soma, dendrites, and axonal varicosities of central and peripheral neurons of vertebrates and invertebrates, with emphasis on somatic exocytosis, and how it contributes to signaling in the nervous system. The finding of secretory vesicles in extrasynaptic sites of neurons, the presence of signaling molecules (namely transmitters or peptides) in the extracellular space outside synaptic clefts, and the mismatch between exocytosis sites and the location of receptors for these molecules in neurons and glial cells, have long suggested that in addition to synaptic communication, transmitters are released, and act extrasynaptically. The catalog of these molecules includes low molecular weight transmitters such as monoamines, acetylcholine, glutamate, gama-aminobutiric acid (GABA), adenosine-5-triphosphate (ATP), and a list of peptides including substance P, brain-derived neurotrophic factor (BDNF), and oxytocin. By comparing the mechanisms of extrasynaptic exocytosis of different signaling molecules by various neuron types we show that it is a widespread mechanism for communication in the nervous system that uses certain common mechanisms, which are different from those of synaptic exocytosis but similar to those of exocytosis from excitable endocrine cells. Somatic exocytosis has been measured directly in different neuron types. It starts after high-frequency electrical activity or long experimental depolarizations and may continue for several minutes after the end of stimulation. Activation of L-type calcium channels, calcium release from intracellular stores and vesicle transport towards the plasma membrane couple excitation and exocytosis from small clear or large dense core vesicles in release sites lacking postsynaptic counterparts. The presence of synaptic and extrasynaptic exocytosis endows individual neurons with a wide variety of time- and space-dependent communication possibilities. Extrasynaptic exocytosis may be the major source of signaling molecules producing volume transmission and by doing so may be part of a long duration signaling mode in the nervous system.
Collapse
Affiliation(s)
- Citlali Trueta
- Departamento de Neurofisiología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz México, D.F., México
| | | |
Collapse
|
50
|
Prolonged disynaptic inhibition in the cortex mediated by slow, non-α7 nicotinic excitation of a specific subset of cortical interneurons. J Neurosci 2012; 32:3859-64. [PMID: 22423106 DOI: 10.1523/jneurosci.0115-12.2012] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cholinergic activation of nicotinic receptors in the cortex plays a critical role in arousal, attention, and learning. Here we demonstrate that cholinergic axons from the basal forebrain of mice excite a specific subset of cortical interneurons via a remarkably slow, non-α7 nicotinic receptor-mediated conductance. In turn, these inhibitory cells generate a delayed and prolonged wave of disynaptic inhibition in neighboring cortical neurons, altering the spatiotemporal pattern of inhibition in cortical circuits.
Collapse
|