1
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
2
|
Edwards CM, Guerrero IE, Zheng H, Dolezel T, Rinaman L. Blockade of Ghrelin Receptor Signaling Enhances Conditioned Passive Avoidance and Context-Associated cFos Activation in Fasted Male Rats. Neuroendocrinology 2022; 113:535-548. [PMID: 36566746 PMCID: PMC10133005 DOI: 10.1159/000528828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Interoceptive feedback to the brain regarding the body's physiological state plays an important role in guiding motivated behaviors. For example, a state of negative energy balance tends to increase exploratory/food-seeking behaviors while reducing avoidance behaviors. We recently reported that overnight food deprivation reduces conditioned passive avoidance behavior in male (but not female) rats. Since fasting increases circulating levels of ghrelin, we hypothesized that ghrelin signaling contributes to the ability of fasting to reduce conditioned avoidance. METHODS Ad libitum-fed male rats were trained in a passive avoidance procedure using mild footshock. Later, following overnight food deprivation, the same rats were pretreated with ghrelin receptor antagonist (GRA) or saline vehicle 30 min before avoidance testing. RESULTS GRA restored passive avoidance in fasted rats as measured by both latency to enter and time spent in the shock-paired context. In addition, compared to vehicle-injected fasted rats, fasted rats that received GRA before reexposure to the shock-paired context displayed more cFos activation of prolactin-releasing peptide (PrRP)-positive noradrenergic (NA) neurons in the caudal nucleus of the solitary tract, accompanied by more cFos activation in downstream target sites of PrRP neurons (i.e., bed nucleus of the stria terminalis and paraventricular nucleus of the hypothalamus). DISCUSSION These results support the view that ghrelin signaling contributes to the inhibitory effect of fasting on learned passive avoidance behavior, perhaps by suppressing recruitment of PrRP-positive NA neurons and their downstream hypothalamic and limbic forebrain targets.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | | | - Huiyuan Zheng
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Tyla Dolezel
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Linda Rinaman
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
3
|
Жуков ДА, Марков АГ, Виноградова ЕП. [Prolactin-releasing peptide increases rat anxiety]. PROBLEMY ENDOKRINOLOGII 2021; 67:29-33. [PMID: 34766487 PMCID: PMC9112849 DOI: 10.14341/probl12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Prolactin-releasing peptide(Prl-RP), in addition to stimulating the production of prolactin, interacts with various parts of the central nervous system, participating in the implementation of many functions that are reflected in behavior. AIM The effect of Prl-RP on the anxiety of white Wistar rats was studied since there were no data in the literature on the relationship between Prl-RP and anxiety. MATERIALS AND METHODS Anxiety was assessed in two tests. In the elevated plus-maze (EPM), the time spent in the open arms and the number of edge reactions were recorded. In the social preference test, the time spent near a stranger, near a familiar individual, and in neutral territory were recorded. RESULTS The administration of Prl-RP at a dose of 10-10 M with a volume of 10 µl in each nostril reduced the time spent by the animals in the open arms of the EPM, and the number of edge reactions. For testing the social interaction, animals were pre-selected for high or low levels of anxiety in the EPM. In rats with initially low levels of anxiety, Prl-RP reduced the time spent near a stranger, indicating an increase in anxiety levels. The behavior of rats with initially high levels of anxiety did not change after application of the Prl-RP. CONCLUSION The results of our experiments indicate that the intranasal administration of Prl-RP increases the anxiety of rats.
Collapse
|
4
|
Sex and metabolic state interact to influence expression of passive avoidance memory in rats: Potential contribution of A2 noradrenergic neurons. Physiol Behav 2021; 239:113511. [PMID: 34181929 DOI: 10.1016/j.physbeh.2021.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
Competing motivational drives coordinate behaviors essential for survival. For example, interoceptive feedback from the body during a state of negative energy balance serves to suppress anxiety-like behaviors and promote exploratory behaviors in rats. Results from past research suggest that this shift in motivated behavior is linked to reduced activation of specific neural populations within the caudal nucleus of the solitary tract (cNTS). However, the potential impact of metabolic state and the potential role of cNTS neurons on conditioned avoidance behaviors has not been examined. The present study investigated these questions in male and female rats, using a task in which rats learn to avoid a context (i.e., a darkened chamber) after it is paired with a single mild footshock. When rats later were tested for passive avoidance of the shock-paired chamber, male rats tested in an overnight food-deprived state and female rats (regardless of feeding status) displayed significantly less avoidance compared to male rats that were fed ad libitum prior to testing. Based on prior evidence that prolactin-releasing peptide (PrRP)-positive noradrenergic neurons and glucagon-like peptide 1 (GLP1)-positive neurons within the cNTS are particularly sensitive to metabolic state, we examined whether these neural populations are activated in conditioned rats after re-exposure to the shock-paired chamber, and whether neural activation is modulated by metabolic state. Compared to the control condition, chamber re-exposure activated PrRP+ noradrenergic neurons and also activated neurons within the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST), which receives dense input from PrRP+ terminals, in both male and female rats when fed ad libitum. In parallel with sex differences in passive avoidance behavior, PrRP+ neurons were less activated in female vs. male rats after chamber exposure. GLP1+ neurons were not activated in either sex. In both sexes, overnight food deprivation before chamber re-exposure reduced activation of PrRP+ neurons, and also reduced vlBNST activation. Our results support the view that PrRP+ noradrenergic neurons and their inputs to the vlBNST contribute to the expression of passive avoidance memory, and that this contribution is modulated by metabolic state.
Collapse
|
5
|
Holt MK, Rinaman L. The role of nucleus of the solitary tract glucagon-like peptide-1 and prolactin-releasing peptide neurons in stress: anatomy, physiology and cellular interactions. Br J Pharmacol 2021; 179:642-658. [PMID: 34050926 PMCID: PMC8820208 DOI: 10.1111/bph.15576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroendocrine, behavioural and autonomic responses to stressful stimuli are orchestrated by complex neural circuits. The caudal nucleus of the solitary tract (cNTS) in the dorsomedial hindbrain is uniquely positioned to integrate signals of both interoceptive and psychogenic stress. Within the cNTS, glucagon‐like peptide‐1 (GLP‐1) and prolactin‐releasing peptide (PrRP) neurons play crucial roles in organising neural responses to a broad range of stressors. In this review we discuss the anatomical and functional overlap between PrRP and GLP‐1 neurons. We outline their co‐activation in response to stressful stimuli and their importance as mediators of behavioural and physiological stress responses. Finally, we review evidence that PrRP neurons are downstream of GLP‐1 neurons and outline unexplored areas of the research field. Based on the current state‐of‐knowledge, PrRP and GLP‐1 neurons may be compelling targets in the treatment of stress‐related disorders.
Collapse
Affiliation(s)
- Marie K Holt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
6
|
van den Burg EH, Hegoburu C. Modulation of expression of fear by oxytocin signaling in the central amygdala: From reduction of fear to regulation of defensive behavior style. Neuropharmacology 2020; 173:108130. [PMID: 32389750 DOI: 10.1016/j.neuropharm.2020.108130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 12/17/2022]
Abstract
Many studies in preclinical animal models have described fear-reducing effects of the neuropeptide oxytocin in the central nucleus of the amygdala. However, recent studies have refined the role of oxytocin in the central amygdala, which may extend to the selection of an active defensive coping style in the face of immediate threat, and also fear-enhancing effects have been reported. On top of this, oxytocin enables the discrimination of unfamiliar conspecifics on the basis of their emotional state, which could allow for the selection of an appropriate coping style. This is in line with many observations that support the hypothesis that the precise outcome of oxytocin signaling in the central amygdala or other brain regions depends on the emotional or physiological state of an animal. In this review, we highlight a number of studies to exemplify the diverse effects oxytocin exerts on fear in the central amygdala of rodents. These are discussed in the context of the organization of the neural network within the central amygdala and in relation to the oxytocin-synthesizing neurons in the hypothalamus.
Collapse
Affiliation(s)
- Erwin H van den Burg
- Center for Psychiatric Neurosciences, Lausanne University Hospital Center (CHUV), Prilly, Lausanne, Switzerland.
| | - Chloé Hegoburu
- Center for Psychiatric Neurosciences, Lausanne University Hospital Center (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
7
|
Prolactin-Releasing Peptide: Physiological and Pharmacological Properties. Int J Mol Sci 2019; 20:ijms20215297. [PMID: 31653061 PMCID: PMC6862262 DOI: 10.3390/ijms20215297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, but also on its pharmacological properties and the actions of its G-protein coupled receptor, GPR10. Special attention is paid to structure-activity relationship studies on PrRP and its analogs as well as to their effect on different physiological functions, mainly their anorexigenic and neuroprotective features and the regulation of the cardiovascular system, pain, and stress. Additionally, the therapeutic potential of this peptide and its analogs is explored.
Collapse
|
8
|
Onaka T, Takayanagi Y. Role of oxytocin in the control of stress and food intake. J Neuroendocrinol 2019; 31:e12700. [PMID: 30786104 PMCID: PMC7217012 DOI: 10.1111/jne.12700] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Oxytocin neurones in the hypothalamus are activated by stressful stimuli and food intake. The oxytocin receptor is located in various brain regions, including the sensory information-processing cerebral cortex; the cognitive information-processing prefrontal cortex; reward-related regions such as the ventral tegmental areas, nucleus accumbens and raphe nucleus; stress-related areas such as the amygdala, hippocampus, ventrolateral part of the ventromedial hypothalamus and ventrolateral periaqueductal gray; homeostasis-controlling hypothalamus; and the dorsal motor complex controlling intestinal functions. Oxytocin affects behavioural and neuroendocrine stress responses and terminates food intake by acting on the metabolic or nutritional homeostasis system, modulating emotional processing, reducing reward values of food intake, and facilitating sensory and cognitive processing via multiple brain regions. Oxytocin also plays a role in interactive actions between stress and food intake and contributes to adaptive active coping behaviours.
Collapse
Affiliation(s)
- Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiJapan
| |
Collapse
|
9
|
Nasanbuyan N, Yoshida M, Takayanagi Y, Inutsuka A, Nishimori K, Yamanaka A, Onaka T. Oxytocin-Oxytocin Receptor Systems Facilitate Social Defeat Posture in Male Mice. Endocrinology 2018; 159:763-775. [PMID: 29186377 DOI: 10.1210/en.2017-00606] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/14/2017] [Indexed: 11/19/2022]
Abstract
Social stress has deteriorating effects on various psychiatric diseases. In animal models, exposure to socially dominant conspecifics (i.e., social defeat stress) evokes a species-specific defeat posture via unknown mechanisms. Oxytocin neurons have been shown to be activated by stressful stimuli and to have prosocial and anxiolytic actions. The roles of oxytocin during social defeat stress remain unclear. Expression of c-Fos, a marker of neuronal activation, in oxytocin neurons and in oxytocin receptor‒expressing neurons was investigated in mice. The projection of oxytocin neurons was examined with an anterograde viral tracer, which induces selective expression of membrane-targeted palmitoylated green fluorescent protein in oxytocin neurons. Defensive behaviors during double exposure to social defeat stress in oxytocin receptor‒deficient mice were analyzed. After social defeat stress, expression of c-Fos protein was increased in oxytocin neurons of the bed nucleus of the stria terminalis, supraoptic nucleus, and paraventricular hypothalamic nucleus. Expression of c-Fos protein was also increased in oxytocin receptor‒expressing neurons of brain regions, including the ventrolateral part of the ventromedial hypothalamus and ventrolateral periaqueductal gray. Projecting fibers from paraventricular hypothalamic oxytocin neurons were found in the ventrolateral part of the ventromedial hypothalamus and in the ventrolateral periaqueductal gray. Oxytocin receptor‒deficient mice showed reduced defeat posture during the second social defeat stress. These findings suggest that social defeat stress activates oxytocin-oxytocin receptor systems, and the findings are consistent with the view that activation of the oxytocin receptor in brain regions, including the ventrolateral part of the ventromedial hypothalamus and the ventrolateral periaqueductal gray, facilitates social defeat posture.
Collapse
Affiliation(s)
- Naranbat Nasanbuyan
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Miyagi-ken, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| |
Collapse
|
10
|
Interoceptive modulation of neuroendocrine, emotional, and hypophagic responses to stress. Physiol Behav 2017; 176:195-206. [PMID: 28095318 DOI: 10.1016/j.physbeh.2017.01.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022]
Abstract
Periods of caloric deficit substantially attenuate many centrally mediated responses to acute stress, including neural drive to the hypothalamic-pituitary-adrenal (HPA) axis, anxiety-like behavior, and stress-induced suppression of food intake (i.e., stress hypophagia). It is posited that this stress response plasticity supports food foraging and promotes intake during periods of negative energy balance, even in the face of other internal or external threats, thereby increasing the likelihood that energy stores are repleted. The mechanisms by which caloric deficit alters central stress responses, however, remain unclear. The caudal brainstem contains two distinct populations of stress-recruited neurons [i.e., noradrenergic neurons of the A2 cell group that co-express prolactin-releasing peptide (PrRP+ A2 neurons), and glucagon-like peptide 1 (GLP-1) neurons] that also are responsive to interoceptive feedback about feeding and metabolic status. A2/PrRP and GLP-1 neurons have been implicated anatomically and functionally in the central control of the HPA axis, anxiety-like behavior, and stress hypophagia. The current review summarizes a growing body of evidence that caloric deficits attenuate physiological and behavioral responses to acute stress as a consequence of reduced recruitment of PrRP+ A2 and hindbrain GLP-1 neurons, accompanied by reduced signaling to their brainstem, hypothalamic, and limbic forebrain targets.
Collapse
|
11
|
Ueta Y, Ozaki Y, Saito J, Onaka T. Involvement of Novel Feeding-Related Peptides in Neuroendocrine Response to Stress. Exp Biol Med (Maywood) 2016; 228:1168-74. [PMID: 14610256 DOI: 10.1177/153537020322801011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Various stressors are known to cause eating disorders. However, it is not known in detail about the neural network and molecular mechanism that are involved in the stress-induced changes of feeding behavior in the central nervous system. Many novel feeding-regulated peptides such as orexins/hypocretins and ghrelin have been discovered since the discovery of leptin derived from adipocytes as a product of the ob gene. These novel peptides were identified as endogenous ligands of orphan G protein-coupled receptors. The accumulating evidence reveals that these peptides may be involved in stress responses via the central nervous system, as well as feeding behavior. The possible involvement of novel feeding-related peptides in neuroendocrine responses to stress is reviewed here.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | | | |
Collapse
|
12
|
Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by "Silencing" Central Glucagon-Like Peptide 1 Signaling in Rats. J Neurosci 2015. [PMID: 26224855 DOI: 10.1523/jneurosci.3464-14.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Previous reports indicate that caloric restriction attenuates anxiety and other behavioral responses to acute stress, and blunts the ability of stress to increase anterior pituitary release of adrenocorticotropic hormone. Since hindbrain glucagon-like peptide-1 (GLP-1) neurons and noradrenergic prolactin-releasing peptide (PrRP) neurons participate in behavioral and endocrine stress responses, and are sensitive to the metabolic state, we examined whether overnight food deprivation blunts stress-induced recruitment of these neurons and their downstream hypothalamic and limbic forebrain targets. A single overnight fast reduced anxiety-like behavior assessed in the elevated-plus maze and acoustic startle test, including marked attenuation of light-enhanced startle. Acute stress [i.e., 30 min restraint (RES) or 5 min elevated platform exposure] robustly activated c-Fos in GLP-1 and PrRP neurons in fed rats, but not in fasted rats. Fasting also significantly blunted the ability of acute stress to activate c-Fos expression within the anterior ventrolateral bed nucleus of the stria terminalis (vlBST). Acute RES stress suppressed dark-onset food intake in rats that were fed ad libitum, whereas central infusion of a GLP-1 receptor antagonist blocked RES-induced hypophagia, and reduced the ability of RES to activate PrRP and anterior vlBST neurons in ad libitum-fed rats. Thus, an overnight fast "silences" GLP-1 and PrRP neurons, and reduces both anxiety-like and hypophagic responses to acute stress. The partial mimicking of these fasting-induced effects in ad libitum-fed rats after GLP-1 receptor antagonism suggests a potential mechanism by which short-term negative energy balance attenuates neuroendocrine and behavioral responses to acute stress. SIGNIFICANCE STATEMENT The results from this study reveal a potential central mechanism for the "metabolic tuning" of stress responsiveness. A single overnight fast, which markedly reduces anxiety-like behavior in rats, reduces or blocks the ability of acute stress to activate hindbrain neurons that are immunoreactive for either prolactin-releasing peptide or glucagon-like peptide 1, and attenuates the activation of their stress-sensitive projection targets in the limbic forebrain. In nonfasted rats, central antagonism of glucagon-like peptide 1 receptors partially mimics the effect of an overnight fast by blocking the ability of acute stress to inhibit food intake, and by attenuating stress-induced activation of hindbrain and limbic forebrain neurons. We propose that caloric restriction attenuates behavioral and physiological responses to acute stress by "silencing" central glucagon-like peptide 1 signaling pathways.
Collapse
|
13
|
Yoshida M, Takayanagi Y, Onaka T. The medial amygdala-medullary PrRP-synthesizing neuron pathway mediates neuroendocrine responses to contextual conditioned fear in male rodents. Endocrinology 2014; 155:2996-3004. [PMID: 24877622 PMCID: PMC4207914 DOI: 10.1210/en.2013-1411] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fear responses play evolutionarily beneficial roles, although excessive fear memory can induce inappropriate fear expression observed in posttraumatic stress disorder, panic disorder, and phobia. To understand the neural machineries that underlie these disorders, it is important to clarify the neural pathways of fear responses. Contextual conditioned fear induces freezing behavior and neuroendocrine responses. Considerable evidence indicates that the central amygdala plays an essential role in expression of freezing behavior after contextual conditioned fear. On the other hand, mechanisms of neuroendocrine responses remain to be clarified. The medial amygdala (MeA), which is activated after contextual conditioned fear, was lesioned bilaterally by infusion of N-methyl-d-aspartate after training of fear conditioning. Plasma oxytocin, ACTH, and prolactin concentrations were significantly increased after contextual conditioned fear in sham-lesioned rats. In MeA-lesioned rats, these neuroendocrine responses but not freezing behavior were significantly impaired compared with those in sham-lesioned rats. In contrast, the magnitudes of neuroendocrine responses after exposure to novel environmental stimuli were not significantly different in MeA-lesioned rats and sham-lesioned rats. Contextual conditioned fear activated prolactin-releasing peptide (PrRP)-synthesizing neurons in the medulla oblongata. In MeA-lesioned rats, the percentage of PrRP-synthesizing neurons activated after contextual conditioned fear was significantly decreased. Furthermore, neuroendocrine responses after contextual conditioned fear disappeared in PrRP-deficient mice. Our findings suggest that the MeA-medullary PrRP-synthesizing neuron pathway plays an important role in neuroendocrine responses to contextual conditioned fear.
Collapse
Affiliation(s)
- Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken 329-0498, Japan
| | | | | |
Collapse
|
14
|
Tachibana T, Sakamoto T. Functions of two distinct "prolactin-releasing peptides" evolved from a common ancestral gene. Front Endocrinol (Lausanne) 2014; 5:170. [PMID: 25426099 PMCID: PMC4226156 DOI: 10.3389/fendo.2014.00170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) is one of the RF-amide peptides and was originally identified in the bovine hypothalamus as a stimulator of prolactin (PRL) release. Independently, another RF-amide peptide was found in Japanese crucian carp and named Carassius-RFa (C-RFa), which shows high homology to PrRP and stimulates PRL secretion in teleost fish. Therefore, C-RFa has been recognized as fish PrRP. However, recent work has revealed that PrRP and C-RFa in non-mammalian vertebrates are encoded by separate genes originated through duplication of an ancestral gene. Indeed, both PrRP and C-RFa are suggested to exist in teleost, amphibian, reptile, and avian species. Therefore, we propose that non-mammalian PrRP (C-RFa) be renamed PrRP2. Despite a common evolutionary origin, PrRP2 appears to be a physiological regulator of PRL, whereas this is not a consistent role for PrRP itself. Further work revealed that the biological functions of PrRP and PrRP2 are not limited solely to PRL release, because they are also neuromodulators of several hypothalamus-pituitary axes and are involved in some brain circuits related to the regulation of food intake, stress, and cardiovascular functions. However, these actions appear to be different among vertebrates. For example, central injection of PrRP inhibits feeding behavior in rodents and teleosts, while it stimulates it in chicks. Therefore, both PrRP and PrRP2 have acquired diverse actions through evolution. In this review, we integrate the burgeoning information of structures, expression profiles, and multiple biological actions of PrRP in higher vertebrates, as well as those of PrRP2 in non-mammals.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- *Correspondence: Tetsuya Tachibana, Laboratory of Animal Production, Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan e-mail:
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Japan
| |
Collapse
|
15
|
Yamashita M, Takayanagi Y, Yoshida M, Nishimori K, Kusama M, Onaka T. Involvement of prolactin-releasing peptide in the activation of oxytocin neurones in response to food intake. J Neuroendocrinol 2013; 25:455-65. [PMID: 23363338 PMCID: PMC3664423 DOI: 10.1111/jne.12019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/10/2012] [Accepted: 12/26/2012] [Indexed: 12/16/2022]
Abstract
Food intake activates neurones expressing prolactin-releasing peptide (PrRP) in the medulla oblongata and oxytocin neurones in the hypothalamus. Both PrRP and oxytocin have been shown to have an anorexic action. In the present study, we investigated whether the activation of oxytocin neurones following food intake is mediated by PrRP. We first examined the expression of PrRP receptors (also known as GPR10) in rats. Immunoreactivity of PrRP receptors was observed in oxytocin neurones and in vasopressin neurones in the paraventricular and supraoptic nuclei of the hypothalamus and in the bed nucleus of the stria terminalis. Application of PrRP to isolated supraoptic nuclei facilitated the release of oxytocin and vasopressin. In mice, re-feeding increased the expression of Fos protein in oxytocin neurones of the hypothalamus and bed nucleus of the stria terminalis. The increased expression of Fos protein in oxytocin neurones following re-feeding or i.p. administration of cholecystokinin octapeptide (CCK), a peripheral satiety factor, was impaired in PrRP-deficient mice. CCK-induced oxytocin increase in plasma was also impaired in PrRP-deficient mice. Furthermore, oxytocin receptor-deficient mice showed an increased meal size, as reported in PrRP-deficient mice and in CCKA receptor-deficient mice. These findings suggest that PrRP mediates, at least in part, the activation of oxytocin neurones in response to food intake, and that the CCK-PrRP-oxytocin pathway plays an important role in the control of the termination of each meal.
Collapse
Affiliation(s)
- M Yamashita
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Maniscalco JW, Kreisler AD, Rinaman L. Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing Peptide or glucagon-like Peptide 1. Front Neurosci 2013; 6:199. [PMID: 23346044 PMCID: PMC3549516 DOI: 10.3389/fnins.2012.00199] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/31/2012] [Indexed: 12/20/2022] Open
Abstract
Neural circuits distributed within the brainstem, hypothalamus, and limbic forebrain interact to control food intake and energy balance under normal day-to-day conditions, and in response to stressful conditions under which homeostasis is threatened. Experimental studies using rats and mice have generated a voluminous literature regarding the functional organization of circuits that inhibit food intake in response to satiety signals, and in response to stress. Although the central neural bases of satiation and stress-induced hypophagia often are studied and discussed as if they were distinct, we propose that both behavioral states are generated, at least in part, by recruitment of two separate but intermingled groups of caudal hindbrain neurons. One group comprises a subpopulation of noradrenergic (NA) neurons within the caudal nucleus of the solitary tract (cNST; A2 cell group) that is immunopositive for prolactin-releasing peptide (PrRP). The second group comprises non-adrenergic neurons within the cNST and nearby reticular formation that synthesize glucagon-like peptide 1 (GLP-1). Axonal projections from PrRP and GLP-1 neurons target distributed brainstem and forebrain regions that shape behavioral, autonomic, and endocrine responses to actual or anticipated homeostatic challenge, including the challenge of food intake. Evidence reviewed in this article supports the view that hindbrain PrRP and GLP-1 neurons contribute importantly to satiation and stress-induced hypophagia by modulating the activity of caudal brainstem circuits that control food intake. Hindbrain PrRP and GLP-1 neurons also engage hypothalamic and limbic forebrain networks that drive parallel behavioral and endocrine functions related to food intake and homeostatic challenge, and modulate conditioned and motivational aspects of food intake.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Neuroscience, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
17
|
Dodd GT, Luckman SM. Physiological Roles of GPR10 and PrRP Signaling. Front Endocrinol (Lausanne) 2013; 4:20. [PMID: 23467899 PMCID: PMC3587801 DOI: 10.3389/fendo.2013.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/19/2013] [Indexed: 12/28/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) was first isolated from bovine hypothalamus, and was found to act as an endogenous ligand at the G-protein-coupled receptor 10 (GPR10 or hGR3). Although originally named as it can affect the secretion of prolactin from anterior pituitary cells, the potential functions for this peptide have been greatly expanded over the past decade. Anatomical, pharmacological, and physiological studies indicate that PrRP, signaling via the GPR10 receptor, may have a wide range of roles in neuroendocrinology; such as in energy homeostasis, stress responses, cardiovascular regulation, and circadian function. This review will provide the current knowledge of the PrRP and GPR10 signaling system, its putative functions, implications for therapy, and future perspectives.
Collapse
Affiliation(s)
- Garron T. Dodd
- Faculty of Life Sciences, AV Hill Building, University of ManchesterManchester, UK
| | - Simon M. Luckman
- Faculty of Life Sciences, AV Hill Building, University of ManchesterManchester, UK
- *Correspondence: Simon M. Luckman, Faculty of Life Sciences, AV Hill Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK. e-mail:
| |
Collapse
|
18
|
Hashimoto H, Uezono Y, Ueta Y. Pathophysiological function of oxytocin secreted by neuropeptides: A mini review. PATHOPHYSIOLOGY 2012; 19:283-98. [DOI: 10.1016/j.pathophys.2012.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022] Open
|
19
|
Onaka T, Takayanagi Y, Yoshida M. Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 2012; 24:587-98. [PMID: 22353547 DOI: 10.1111/j.1365-2826.2012.02300.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxytocin neurones are activated by stressful stimuli, food intake and social attachment. Activation of oxytocin neurones in response to stressful stimuli or food intake is mediated, at least in part, by noradrenaline/prolactin-releasing peptide (PrRP) neurones in the nucleus tractus solitarius, whereas oxytocin neurones are activated after social stimuli via medial amygdala neurones. Activation of oxytocin neurones induces the release of oxytocin not only from their axon terminals, but also from their dendrites. Oxytocin acts locally where released or diffuses and acts on remote oxytocin receptors widely distributed within the brain, resulting in anxiolytic, anorexic and pro-social actions. The action sites of oxytocin appear to be multiple. Oxytocin shows anxiolytic actions, at least in part, via serotoninergic neurones in the median raphe nucleus, has anorexic actions via pro-opiomelanocortin neurones in the nucleus tractus solitarius and facilitates social recognition via the medial amygdala. Stress, obesity and social isolation are major risk factors for mortality in humans. Thus, the oxytocin-oxytocin receptor system is a therapeutic target for the promotion of human health.
Collapse
Affiliation(s)
- T Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shinotsuke-shi, Tochigi-ken, Japan.
| | | | | |
Collapse
|
20
|
KITAGAWA S, ABE N, SUTOH M, KASUYA E, SUGITA S, AOYAMA M, YAYOU KI. Effect of intracerebroventricular injections of prolactin-releasing peptide on prolactin release and stress-related responses in steers. Anim Sci J 2011; 82:314-9. [DOI: 10.1111/j.1740-0929.2010.00841.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Prolactin-releasing peptide enhances synaptic transmission in rat thalamus. Neuroscience 2011; 172:1-11. [DOI: 10.1016/j.neuroscience.2010.10.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/14/2010] [Accepted: 10/29/2010] [Indexed: 11/21/2022]
|
22
|
Takayanagi Y, Onaka T. Roles of prolactin-releasing peptide and RFamide related peptides in the control of stress and food intake. FEBS J 2010; 277:4998-5005. [DOI: 10.1111/j.1742-4658.2010.07932.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Onaka T, Takayanagi Y, Leng G. Metabolic and stress-related roles of prolactin-releasing peptide. Trends Endocrinol Metab 2010; 21:287-93. [PMID: 20122847 DOI: 10.1016/j.tem.2010.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 12/26/2022]
Abstract
In the modern world, improvements in human health can be offset by unhealthy lifestyle factors, including the deleterious consequences of stress and obesity. For energy homeostasis, humoral factors and neural afferents from the gastrointestinal tract, in combination with long-term nutritional signals, communicate information to the brain to regulate energy intake and expenditure. Energy homeostasis and stress interact with each other, and stress affects both food intake and energy expenditure. Prolactin-releasing peptide, synthesized in discrete neuronal populations in the hypothalamus and brainstem, plays an important role in integrating these responses. This review describes how prolactin-releasing peptide neurons receive information concerning both internal metabolic states and environmental conditions, and play a key role in energy homeostasis and stress responses.
Collapse
Affiliation(s)
- Tatsushi Onaka
- Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken 329-0498, Japan
| | | | | |
Collapse
|
24
|
Uchida K, Kobayashi D, Das G, Onaka T, Inoue K, Itoi K. Participation of the prolactin-releasing peptide-containing neurones in caudal medulla in conveying haemorrhagic stress-induced signals to the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2010; 22:33-42. [PMID: 19912474 DOI: 10.1111/j.1365-2826.2009.01935.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prolactin-releasing peptide (PrRP) has been proposed to be a co-transmitter or modulator of noradrenaline (NA) because it colocalises with NA in the A1 (in the ventrolateral reticular formation) and A2 (in the nucleus of the solitary tract; NTS) cell groups in the caudal medulla. The baroreceptor signals, originating from the great vessels, are transmitted primarily to the NTS, and then part of the signals is conveyed to the hypothalamic neuroendocrine neurones via the ascending NA neurones. The hypotensive haemorrhagic paradigm was employed to examine whether the PrRP-containing neurones in the caudal medulla participate in conveying signals to the hypothalamic neuroendocrine neurones. Among the caudal medullary A1 or A2 neurones, the majority of the PrRP-immunoreactive (-ir) neurones became c-Fos-ir at 2 h after hypotensive haemorrhage. Hypothalamic corticotrophin-releasing hormone-ir neurones and vasopressin-ir neurones became c-Fos positive in parallel with the activation of medullary PrRP-ir neurones. After delivery of retrograde tracer fluorogold (FG) to the paraventricular nucleus of the hypothalamus (PVN), part of the PrRP/FG double-labelled neurones in the A1 and A2 became c-Fos-ir after haemorrhage, demonstrating that PrRP-ir neurones participate in conveying the haemorrhagic stress-induced signals from the medulla to the PVN. PrRP and/or NA were microinjected directly to the PVN of conscious rats, and they presented a synergistic action on arginine vasopressin release, whereas an additive action was observed for adrenocorticotrophin release. These results suggest that the PrRP-containing NA neurones in the caudal medulla may relay the haemorrhagic stress-induced medullary inputs to the hypothalamic neuroendocrine neurones.
Collapse
Affiliation(s)
- K Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Aramaki-aza Aoba, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Insana SP, Wilson JH. Social buffering in rats: prolactin attenuation of active interaction. Psychol Rep 2008; 103:77-87. [PMID: 18982939 DOI: 10.2466/pr0.103.1.77-87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stress may result when the present environment is interpreted as threatening, and stress is known to increase the prolactin-secretory response. In the present study, rats (N=83) were exposed to a conditioned-fear paradigm (environment paired with footshock), and on testing day, rats were exposed to the experimental chamber without shock while alone (Alone n=16), with an object (Object n=17), with a euthanized conspecific (Euthanized n=16), or with a social partner (Social n=19). The control group (Control n=15) was exposed to the experimental chamber but was never shocked. The Control group had significantly lower levels of prolactin than the Alone, Object, and Euthanized groups; however, the Control group's levels of prolactin were not significantly different than that of the Social group, which was significantly lower than that for the Alone group. Social interaction decreased fear independent of the distraction provided by a stimulus in the chamber. Active touch appeared to be crucial for social buffering to occur.
Collapse
|
26
|
Takayanagi Y, Matsumoto H, Nakata M, Mera T, Fukusumi S, Hinuma S, Ueta Y, Yada T, Leng G, Onaka T. Endogenous prolactin-releasing peptide regulates food intake in rodents. J Clin Invest 2008; 118:4014-24. [PMID: 19033670 DOI: 10.1172/jci34682] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 09/17/2008] [Indexed: 02/03/2023] Open
Abstract
Food intake is regulated by a network of signals that emanate from the gut and the brainstem. The peripheral satiety signal cholecystokinin is released from the gut following food intake and acts on fibers of the vagus nerve, which project to the brainstem and activate neurons that modulate both gastrointestinal function and appetite. In this study, we found that neurons in the nucleus tractus solitarii of the brainstem that express prolactin-releasing peptide (PrRP) are activated rapidly by food ingestion. To further examine the role of this peptide in the control of food intake and energy metabolism, we generated PrRP-deficient mice and found that they displayed late-onset obesity and adiposity, phenotypes that reflected an increase in meal size, hyperphagia, and attenuated responses to the anorexigenic signals cholecystokinin and leptin. Hypothalamic expression of 6 other appetite-regulating peptides remained unchanged in the PrRP-deficient mice. Blockade of endogenous PrRP signaling in WT rats by central injection of PrRP-specific mAb resulted in an increase in food intake, as reflected by an increase in meal size. These data suggest that PrRP relays satiety signals within the brain and that selective disturbance of this system can result in obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tóth ZE, Zelena D, Mergl Z, Kirilly E, Várnai P, Mezey E, Makara GB, Palkovits M. Chronic repeated restraint stress increases prolactin-releasing peptide/tyrosine-hydroxylase ratio with gender-related differences in the rat brain. J Neurochem 2008; 104:653-66. [PMID: 18199117 DOI: 10.1111/j.1471-4159.2007.05069.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, we investigated the effect of chronic repeated restraint (RR) on prolactin-releasing peptide (PrRP) expression. In the brainstem, where PrRP colocalize with norepinephrine in neurons of the A1 and A2 catecholaminergic cell groups, the expression of tyrosine hydroxylase (TH) has also been examined. In the brainstem, but not in the hypothalamus, the basal PrRP expression in female rats was higher than that in the males that was abolished by ovariectomy. RR evoked an elevation of PrRP expression in all areas investigated, with smaller reaction in the brainstems of females. There was no gender-related difference in the RR-evoked TH expression. Elevation of PrRP was relatively higher than elevation of TH, causing a shift in PrRP/TH ratio in the brainstem after RR. Estrogen alpha receptors were found in the PrRP neurons of the A1 and A2 cell groups, but not in the hypothalamus. Bilateral lesions of the hypothalamic paraventricular nucleus did not prevent RR-evoked changes. Elevated PrRP production parallel with increased PrRP/TH ratio in A1/A2 neurons indicate that: (i) there is a clear difference in the regulation of TH and PrRP expression after RR, and (ii) among other factors this may also contribute to the changed sensitivity of the hypothalamo-pituitary-adrenal axis during chronic stress.
Collapse
Affiliation(s)
- Zsuzsanna E Tóth
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Prolactin-releasing peptide (PrRP) was initially isolated from the bovine hypothalamus as an activating component that stimulated arachidonic acid release from cells stably expressing the orphan G protein-coupled receptor hGR3 (Hinuma et al. 1998) [also known as GPR10 (Marchese et al. 1995), or UHR-1 for the rat orthologue (Welch et al. 1995)]. Initially touted as a prolactin-releasing factor (therefore aptly named prolactin-releasing peptide), the perspective on the function of this peptide in the organism has been greatly expanded. Over 120 papers have been published on this subject since its initial discovery in 1998. Herein I review the state of knowledge of the PrRP system, its putative function in the organism, and implications for therapy.
Collapse
|
29
|
|
30
|
Mera T, Fujihara H, Saito J, Kawasaki M, Hashimoto H, Saito T, Shibata M, Onaka T, Tanaka Y, Oka T, Tsuji S, Ueta Y. Downregulation of prolactin-releasing peptide gene expression in the hypothalamus and brainstem of diabetic rats. Peptides 2007; 28:1596-604. [PMID: 17681402 DOI: 10.1016/j.peptides.2007.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/24/2007] [Accepted: 06/28/2007] [Indexed: 11/20/2022]
Abstract
We investigated the prolactin-releasing peptide (PrRP) mRNA levels in the hypothalamus and brainstem of streptozotocin (STZ)-induced diabetic rats and fa/fa Zucker diabetic rats, using in situ hybridization histochemistry. PrRP mRNA levels in the hypothalamus and brainstem of STZ-induced diabetic rats were significantly reduced in comparison with those of control rats. PrRP mRNA levels in the diabetic rats were reversed by both insulin and leptin. PrRP mRNA levels in the fa/fa diabetic rats were significantly reduced in comparison with those of Fa/? rats. PrRP mRNA levels in the fa/fa diabetic rats were significantly increased by insulin-treatment, but did not reach control levels in the Fa/? rats. We also investigated the effect of restraint stress on PrRP mRNA levels in STZ-induced diabetic rats. The PrRP mRNA levels in the control and the STZ-induced diabetic rats increased significantly after restraint stress. The diabetic condition and insulin-treatment may affect the regulation of PrRP gene expression via leptin and other factors, such as plasma glucose level. The diabetic condition may not impair the role of PrRP as a stress mediator.
Collapse
Affiliation(s)
- Takashi Mera
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chang H, Saito T, Ohiwa N, Tateoka M, Deocaris CC, Fujikawa T, Soya H. Inhibitory effects of an orexin-2 receptor antagonist on orexin A- and stress-induced ACTH responses in conscious rats. Neurosci Res 2006; 57:462-6. [PMID: 17188385 DOI: 10.1016/j.neures.2006.11.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 11/08/2006] [Accepted: 11/01/2006] [Indexed: 11/18/2022]
Abstract
Orexins, recognized for their diverse functions in sleep/wakefulness/arousal and appetite regulation, may play provocative roles in stress response. Although the PVN of the hypothalamus expresses an abundance of orexin-2 receptor (OX-2R), the involvement of OX-2R in regulating ACTH response to stress remains unclear. To address this, we examined effects of a selective antagonist to OX-2R (N-{(1S)-1-[6,7-dimethoxy-3,4-dihydro-2(1H)-isoquinolinyl]carbonyl}-2,2-dimethylpropyl)-N-{4-pyridinylmethyl}amine upon plasma ACTH concentrations after administration of orexin A and swimming stress. Increases in ACTH levels with orexin A or swimming stress were attenuated with prior administration of an OX-2R antagonist. These results suggest that swimming stress facilitates ACTH release, at least in part via activation of OX-2R.
Collapse
Affiliation(s)
- Hyukki Chang
- Laboratory of Exercise Biochemistry, University of Tsukuba, Graduate School of Comprehensive Human Sciences, 1-1-1 Tennôdai, Tsukuba 305-8574, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Kriegsfeld LJ. Driving reproduction: RFamide peptides behind the wheel. Horm Behav 2006; 50:655-66. [PMID: 16876801 PMCID: PMC3427797 DOI: 10.1016/j.yhbeh.2006.06.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 06/06/2006] [Accepted: 06/06/2006] [Indexed: 11/20/2022]
Abstract
The availability of tools for probing the genome and proteome more efficiently has allowed for the rapid discovery of novel genes and peptides that play important, previously uncharacterized roles in neuroendocrine regulation. In this review, the role of a class of neuropeptides containing the C-terminal Arg-Phe-NH(2) (RFamide) in regulating the reproductive axis will be highlighted. Neuropeptides containing the C-terminal Phe-Met-Arg-Phe-NH(2) (FMRFamide) were first identified as cardioregulatory elements in the bi-valve mollusk Macrocallista nimbosa. During the past two decades, numerous studies have shown the presence of structurally similar peptides sharing the RFamide motif across taxa. In vertebrates, RFamide peptides have pronounced influences on opiatergic regulation and neuroendocrine function. Two key peptides in this family are emerging as important regulators of the reproductive axis, kisspeptin and gonadotropin-inhibitory hormone (GnIH). Kisspeptin acts as the accelerator, directly driving gonadotropin-releasing hormone (GnRH) neurons, whereas GnIH acts as the restraint. Recent evidence suggests that both peptides play a role in mediating the negative feedback effects of sex steroids. This review presents the hypothesis that these peptides share complementary roles by responding to internal and external stimuli with opposing actions to precisely regulate the reproductive axis.
Collapse
Affiliation(s)
- Lance J Kriegsfeld
- Department of Psychology and Helen Wills Neuroscience Institute, 3210 Tolman Hall, # 1650, University of California, Berkeley, CA 94720-1650, USA.
| |
Collapse
|
33
|
Ohiwa N, Chang H, Saito T, Onaka T, Fujikawa T, Soya H. Possible inhibitory role of prolactin-releasing peptide for ACTH release associated with running stress. Am J Physiol Regul Integr Comp Physiol 2006; 292:R497-504. [PMID: 16917019 DOI: 10.1152/ajpregu.00345.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise around the lactate threshold induces a stress response, defined as "running stress." We have previously demonstrated that running stress is associated with activation of certain regions of the brain, e.g., the paraventricular hypothalamic nucleus (PVN) and supraoptic nucleus, that are hypothesized to play an integral role in regulating stress-related responses, including ACTH release during running. Thus we investigated the role of prolactin-releasing peptide (PrRP), found in the ventrolateral medulla and the nucleus of the solitary tract, which is known to project to the PVN during running-induced ACTH release. Accumulation of c-Fos in PrRP neurons correlated with running speeds, reaching maximal levels under running stress. Intracerebroventricular injection of neutralizing anti-PrRP antibodies led to increased plasma ACTH level and blood lactate accumulation during running stress, but not during restraint stress. Exogenous intracerebroventricular administration of low doses of PrRP had the opposite effects. Therefore, our results suggest that, during running stress, PrRP-containing neurons are activated in an exercise intensity-dependent manner, and likewise the produced endogenous PrRP attenuates ACTH release and blood lactate accumulation during running stress. Here we provide a novel perspective on understanding of PrRP in the endocrine-metabolic response associated with running stress.
Collapse
Affiliation(s)
- Nao Ohiwa
- Laboratory of Exercise Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Fukusumi S, Fujii R, Hinuma S. Recent advances in mammalian RFamide peptides: the discovery and functional analyses of PrRP, RFRPs and QRFP. Peptides 2006; 27:1073-86. [PMID: 16500002 DOI: 10.1016/j.peptides.2005.06.031] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/24/2005] [Indexed: 11/24/2022]
Abstract
Since the first discovery of a peptide with RFamide structure at its C-terminus (i.e., an RFamide peptide) from an invertebrate in 1977, numerous studies on RFamide peptides have been conducted, and a variety have been identified in various phyla throughout the animal kingdom. The first reported mammalian RFamide peptides were neuropeptide FF (NPFF) and neuropeptide AF (NPAF) in 1985. However, for many years after this, no new novel RFamide peptides were identified in mammals. A breakthrough in discovering mammalian RFamide peptides was made possible by reverse pharmacology on the basis of orphan G protein-coupled receptor (GPCR) research. The first report of an RFamide peptide identified from orphan GPCR research was prolactin (PRL)-releasing peptide (PrRP) in 1998. To date, a total of five RFamide peptide genes have been discovered in mammals. Orphan GPCR research has contributed considerably to the identification of these peptides and their receptor genes. This paper examines these mammalian RFamide peptides focusing especially on PrRP, RFamide-related peptides (RFRPs) and, the most recently identified, pyroglutamylated RFamide peptide (QRFP), the discovery of all of which the authors were at least partly involved in. We review here the strategies employed for the identification of these peptides and examine their characteristics, tissue distribution, receptors and functions.
Collapse
Affiliation(s)
- Shoji Fukusumi
- Frontier Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Wadai 10, Tsukuba-shi, Ibaraki 300-4293, Japan
| | | | | |
Collapse
|
35
|
Abstract
The brain systems that motivate humans to form emotional bonds with others probably first evolved to mobilize the high-quality maternal care necessary for reproductive success in placental mammals. In these species, the helplessness of infants at birth and their dependence upon nutrition secreted from their mothers' bodies (milk) and parental body heat to stay warm required the evolution of a new motivational system in the brain to stimulate avid and sustained mothering behavior. Other types of social bonds that emerged subsequently in placental mammals, in particular monogamous bonds between breeding pairs, appear to have evolved from motivational brain systems that stimulate maternal behavior. This chapter focuses on aspects of the evolution and neurobiology of maternal and pair bonding and associated behavioral changes that may provide insights into the origins of human violence. The roles of the neuropeptides oxytocin and vasopressin as well as the neurotransmitter dopamine will be emphasized. Maternal and pair bonding are accompanied by increased aggressiveness toward perceived threats to the object of attachment as well as diminished fear and anxiety in stressful situations. The sustained closeness with mother required for the survival of infant mammals opened a new evolutionary niche in which aspects of the mother's care became increasingly important in regulating development in offspring. The quantity and quality of maternal care received during infancy determines adult social competence, ability to cope with stress, aggressiveness, and even preference for addictive substances. Indeed, the development of neurochemical systems within the brain that regulate mothering, aggression, and other types of social behavior, such as the oxytocin and vasopressin systems, are strongly affected by parental nurturing received during infancy. Evidence will be reviewed that the neural circuitry and neurochemistry implicated in studies of lower mammals also facilitate primate/human interpersonal bonding. It is hypothesized that neural bonding systems may also be important for the development in individuals of loyalty to the social group and its culture. Neglect and abuse during early life may cause bonding systems to develop abnormally and compromise capacity for rewarding interpersonal relationships and commitment to societal and cultural values later in life. Other means of stimulating reward pathways in the brain, such as drugs, sex, aggression, and intimidating others, could become relatively more attractive and less constrained by concern about violating trusting relationships. The ability to modify behavior based on negative experiences may be impaired. Unmet needs for social bonding and acceptance early in life might increase the emotional allure of groups (gangs, sects) with violent and authoritarian values and leadership. Social neurobiology has the potential to provide new strategies for treating and preventing violence and associated social dysfunction.
Collapse
Affiliation(s)
- Cort A Pedersen
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7160, USA.
| |
Collapse
|
36
|
Mera T, Fujihara H, Kawasaki M, Hashimoto H, Saito T, Shibata M, Saito J, Oka T, Tsuji S, Onaka T, Ueta Y. Prolactin-releasing peptide is a potent mediator of stress responses in the brain through the hypothalamic paraventricular nucleus. Neuroscience 2006; 141:1069-1086. [PMID: 16730416 DOI: 10.1016/j.neuroscience.2006.04.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/04/2006] [Accepted: 04/05/2006] [Indexed: 12/13/2022]
Abstract
The effects of i.c.v. administration of prolactin-releasing peptide on neurons in the paraventricular nucleus of rats and plasma corticosterone levels were examined by measuring changes in Fos-like immunoreactivity, c-fos mRNA using in situ hybridization histochemistry, and plasma corticosterone using a specific radioimmunoassay. Approximately 80% of corticotropin-releasing hormone immunoreactive cells exhibited Fos-like immunoreactivity in the parvocellular division of the paraventricular nucleus 90 min after i.c.v. administration of prolactin-releasing peptide. The greatest induction of the c-fos mRNA expression in the paraventricular nucleus was observed 30 min after administration of prolactin-releasing peptide, and occurred in a dose-related manner. Plasma corticosterone levels were also significantly increased 30 min after administration of prolactin-releasing peptide. Next, the effects of restraint stress, nociceptive stimulus and acute inflammatory stress on the expression of the prolactin-releasing peptide mRNA in the dorsomedial hypothalamic nucleus, nucleus of the solitary tract and ventrolateral medulla were examined using in situ hybridization histochemistry for prolactin-releasing peptide mRNA. Restraint stress and acute inflammatory stress upregulated the prolactin-releasing peptide mRNA expression in the nucleus of the solitary tract and ventrolateral medulla. Nociceptive stimulus upregulated the prolactin-releasing peptide mRNA expression in the ventrolateral medulla. Finally, we observed that pretreatment (i.c.v. administration) with an anti-prolactin-releasing peptide antibody significantly attenuated nociceptive stimulus-induced c-fos mRNA expression in the paraventricular nucleus. These results suggest that prolactin-releasing peptide is a potent and important mediator of the stress response in the brain through the hypothalamic paraventricular nucleus.
Collapse
Affiliation(s)
- T Mera
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - H Fujihara
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - M Kawasaki
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - H Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - T Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - M Shibata
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - J Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - T Oka
- Department of Neurology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - S Tsuji
- Department of Neurology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - T Onaka
- Department of Physiology, Jichi Medical School, Tochigi 329-0498, Japan
| | - Y Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| |
Collapse
|
37
|
|
38
|
Sun B, Nemoto H, Fujiwara K, Adachi S, Inoue K. Nicotine stimulates prolactin-releasing peptide (PrRP) cells and non-PrRP cells in the solitary nucleus. ACTA ACUST UNITED AC 2005; 126:91-6. [PMID: 15620420 DOI: 10.1016/j.regpep.2004.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nicotine has been reported to regulate food intake and body weight. But the mechanisms underlying these roles have not been fully elucidated. In the present study, we showed that acute administration of nicotine (0.5 mg/kg s.c.) could activate prolactin-releasing peptide (PrRP)-bearing neurons in the A2 area of the NTS of rats, suggesting that PrRP may be associated with nicotine-induced effects in the central nervous system (CNS). We next treated rats with nicotine chronically (4 mg/kg/day for 7 days i.p.), and the results showed that the body weight was strongly reduced and food intake was greatly suppressed compared to the vehicle control group (p<0.01). Immunocytochemical studies revealed that PrRP-bearing neurons in the NTS were evidently activated after chronic administration of nicotine, suggesting that PrRP was involved in the regulation of nicotine-mediated body weight loss and food intake suppression in rats. We also found that acute/chronic administration of nicotine activated PrRP-negative neurons in the NTS, and the majority of these neurons were shown to be TH-negative, suggesting that noncatecholaminergic, PrRP-negative neurons in the NTS are associated with the roles of nicotine. Nicotine has also been shown to stimulate the secretion of ACTH, a stress responsive hormone. In the present study, rats received nicotine (0.5 mg/kg s.c.) or saline followed by restraint stress for 30 min. The immunocytochemical results showed that nicotine/stress and saline/stress both activated the majority of the PrRP neurons in the NTS, there being no significant difference between the two treatments (p>0.05). Nicotine/stress also greatly activated PrRP/TH-negative neurons in the NTS. Saline/stress, however, caused much lower effect on the activation of PrRP/TH-negative neurons. In addition, the activation effect of nicotine/stress on PrRP/TH-negative neurons was much stronger than that of nicotine alone (p<0.01). These results indicated that PrRP was associated with stress responses, but it had little effect on nicotine-mediated stress responses. On the other hand, nicotine and restraint stress may synergistically activate PrRP/TH-negative neurons in the NTS. Taken together, our data show that PrRP is involved in the nicotine-induced regulation of body weight and food intake, but may not be involved in the mediation of nicotine on stress responses. PrRP/TH-negative neurons in the NTS are also associated with the roles of nicotine in the CNS.
Collapse
Affiliation(s)
- Binggui Sun
- Department of Regulation Biology, Faculty of Science, Saitama University, 255 Shimo-ohkubo, Saitama 338-0825, Japan
| | | | | | | | | |
Collapse
|
39
|
Ellacott KLJ, Donald EL, Clarkson P, Morten J, Masters D, Brennand J, Luckman SM. Characterization of a naturally-occurring polymorphism in the UHR-1 gene encoding the putative rat prolactin-releasing peptide receptor. Peptides 2005; 26:675-81. [PMID: 15752583 DOI: 10.1016/j.peptides.2004.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 11/23/2004] [Accepted: 11/24/2004] [Indexed: 10/26/2022]
Abstract
The rat orphan receptor UHR-1 and its human orthologue, GPR10, were first isolated in 1995. The ligand for this receptor, prolactin-releasing peptide (PrRP), was identified in 1998 by reverse pharmacology and has subsequently been implicated in a number of physiological processes. As supported by its localization and regulation in the hypothalamus and brainstem, we have shown previously that PrRP is involved in energy homeostasis. Here we describe a naturally occurring polymorphism in the UHR-1 gene that results in an ATG to ATA change at the putative translational initiation site. The presence of the polymorphism abolished the binding of 125I PrRP in rat brain slices but did not affect the ability of PrRP to reduce fast-induced food intake. Together this data suggest that PrRP may be exerting its feeding effects through a receptor other than UHR-1.
Collapse
Affiliation(s)
- Kate L J Ellacott
- Faculty of Life Sciences, University of Manchester, 1.124 Stopford Building, Oxford Rd, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Prolactin-releasing peptide (PrRP) was first isolated from bovine hypothalamus as an orphan G-protein-coupled receptor using the strategy of reverse pharmacology. The initial studies showed that PrRP was a potent and specific prolactin-releasing factor. Morphological and physiological studies, however, indicated that PrRP may play a wide range of roles in neuroendocrinology other than prolactin release, i.e., metabolic homeostasis, stress responses, cardiovascular regulation, gonadotropin secretion, GH secretion and sleep regulation. This review will provide the current knowledge of PrRP, especially its roles in energy metabolism and stress responses.
Collapse
Affiliation(s)
- Binggui Sun
- Department of Regulation Biology, Faculty of Science, Saitama University, 255 Shimo-ohkubo, Saitama 338-0825, Japan
| | | | | | | |
Collapse
|
41
|
Abstract
A baby sucks at a mother's breast for comfort and, of course, for milk. Milk is made in specialized cells of the mammary gland, and for a baby to feed, the milk must be released into a collecting chamber from where it can be extracted by sucking. Milk "let-down" is a reflex response to the suckling and kneading of the nipple--and sometimes in response to the sight, smell, and sound of the baby--and is ultimately affected by the secretion of oxytocin. Oxytocin has many physiological roles, but its only irreplaceable role is to mediate milk let-down: oxytocin-deficient mice cannot feed their young; the pups suckle but no milk is let down, and they will die unless cross-fostered. Most other physiological roles of oxytocin, including its role in parturition, are redundant in the sense that the roles can be assumed by other mechanisms in the absence of oxytocin throughout development and adult life. Nevertheless, physiological function in these roles can be altered or impaired by acute interventions that alter oxytocin secretion or change the actions of oxytocin. Here we focus on the diverse stimuli that regulate oxytocin secretion and on the apparent diversity of the roles for oxytocin.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative Physiology, The University of Edinburgh College of Medicine and Veterinary Sciences, Edinburgh EH8 9XD, United Kingdom
| | | | | |
Collapse
|
42
|
Abstract
With the completion of the human genome, many genes will be uncovered with unknown functions. The 'orphan' G protein coupled receptors (GPCRs) are examples of genes without known functions. These are genes that exhibit the seven helical conformation hallmark of the GPCRs but that are called 'orphans' because they are activated by none of the primary messengers known to activate GPCRs in vivo. They are the targets of undiscovered transmitters and this lack of knowledge precludes understanding their function. Yet, because they belong to the supergene family that has the widest regulatory role in the organism, the orphan GPCRs have generated much excitement in academia and industry. They hold much hope for revealing new intercellular interactions that will open new areas of basic research which ultimately will lead to new therapeutic applications. However, the first step in understanding the function of orphan GPCRs is to 'deorphanize' them, to identify their natural transmitters. Here we review the search for the natural primary messengers of orphan GPCRs and focus on two recently deorphanized GPCR systems, the melanin-concentrating hormone (MCH) and prolactin-releasing peptide (PrRP) systems, to illustrate the strategies applied to solve their function and to exemplify the therapeutic potentials that such systems hold.
Collapse
Affiliation(s)
- Steven H S Lin
- Department of Pharmacology and Developmental Cellular Biology, College of Medicine, University of California, Irvine, California 92612, USA
| | | |
Collapse
|
43
|
Rokkaku K, Onaka T, Okada N, Ideno J, Kawakami A, Honda K, Yada T, Ishibashi S. Neuromedin U facilitates oxytocin release from the pituitary via β adrenoceptors. Neuroreport 2003; 14:1997-2000. [PMID: 14561937 DOI: 10.1097/00001756-200310270-00024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuromedin U activates noradrenergic neurones in the medulla oblongata and oxytocin neurones in the hypothalamus. Here we examined roles of noradrenergic transmission in oxytocin release from the pituitary after intracerebroventricular administration of neuromedin U in rats. Neuromedin U administration facilitated noradrenaline release in the supraoptic nucleus. Administration of a beta1 adrenoceptor antagonist, metoprolol, or a beta2 antagonist, ICI 118551 but not an alpha1 antagonist, benoxathian, reduced increases in plasma oxytocin concentrations observed after administration of neuromedin U, but plasma ACTH concentrations were not significantly changed. All theses data suggest that neuromedin U stimulates oxytocin release from the pituitary, at least in part, via activation of beta adrenoceptors.
Collapse
Affiliation(s)
- Kumiko Rokkaku
- Department of Medicine, Jichi Medical School, Tochigi-ken, Japan
| | | | | | | | | | | | | | | |
Collapse
|