1
|
Kostović I, Džaja D, Raguž M, Kopić J, Blažević A, Krsnik Ž. Transient compartmentalization and accelerated volume growth coincide with the expected development of cortical afferents in the human neostriatum. Cereb Cortex 2022; 33:434-457. [PMID: 35244150 DOI: 10.1093/cercor/bhac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/17/2023] Open
Abstract
The neostriatum plays a central role in cortico-subcortical circuitry underlying goal-directed behavior. The adult mammalian neostriatum shows chemical and cytoarchitectonic compartmentalization in line with the connectivity. However, it is poorly understood how and when fetal compartmentalization (AChE-rich islands, nonreactive matrix) switches to adult (AChE-poor striosomes, reactive matrix) and how this relates to the ingrowth of corticostriatal afferents. Here, we analyze neostriatal compartments on postmortem human brains from 9 postconceptional week (PCW) to 18 postnatal months (PM), using Nissl staining, histochemical techniques (AChE, PAS-Alcian), immunohistochemistry, stereology, and comparing data with volume-growth of in vivo and in vitro MRI. We find that compartmentalization (C) follows a two-compartment (2-C) pattern around 10PCW and is transformed into a midgestational labyrinth-like 3-C pattern (patches, AChE-nonreactive perimeters, matrix), peaking between 22 and 28PCW during accelerated volume-growth. Finally, compartmentalization resolves perinatally, by the decrease in transient "AChE-clumping," disappearance of AChE-nonreactive, ECM-rich perimeters, and an increase in matrix reactivity. The initial "mature" pattern appears around 9 PM. Therefore, transient, a 3-C pattern and accelerated neostriatal growth coincide with the expected timing of the nonhomogeneous distribution of corticostriatal afferents. The decrease in growth-related AChE activity and transfiguration of corticostriatal terminals are putative mechanisms underlying fetal compartments reorganization. Our findings serve as normative for studying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Džaja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Anatomy and Clinical Anatomy, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Raguž
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Neurosurgery, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Andrea Blažević
- Department of Anatomy and Clinical Anatomy, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Mealer RG, Williams SE, Daly MJ, Scolnick EM, Cummings RD, Smoller JW. Glycobiology and schizophrenia: a biological hypothesis emerging from genomic research. Mol Psychiatry 2020; 25:3129-3139. [PMID: 32377000 PMCID: PMC8081046 DOI: 10.1038/s41380-020-0753-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Advances in genomics are opening new windows into the biology of schizophrenia. Though common variants individually have small effects on disease risk, GWAS provide a powerful opportunity to explore pathways and mechanisms contributing to pathophysiology. Here, we highlight an underappreciated biological theme emerging from GWAS: the role of glycosylation in schizophrenia. The strongest coding variant in schizophrenia GWAS is a missense mutation in the manganese transporter SLC39A8, which is associated with altered glycosylation patterns in humans. Furthermore, variants near several genes encoding glycosylation enzymes are unambiguously associated with schizophrenia: FUT9, MAN2A1, TMTC1, GALNT10, and B3GAT1. Here, we summarize the known biological functions, target substrates, and expression patterns of these enzymes as a primer for future studies. We also highlight a subset of schizophrenia-associated proteins critically modified by glycosylation including glutamate receptors, voltage-gated calcium channels, the dopamine D2 receptor, and complement glycoproteins. We hypothesize that common genetic variants alter brain glycosylation and play a fundamental role in the development of schizophrenia. Leveraging these findings will advance our mechanistic understanding of disease and may provide novel avenues for treatment development.
Collapse
Affiliation(s)
- Robert G. Mealer
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute.,Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA.,Corresponding Author: Robert Gene Mealer, M.D., Ph.D., Richard B. Simches Research Center, 185 Cambridge St, 6th Floor, Boston, MA 02114, Tel: +1 (617) 724-9076,
| | - Sarah E. Williams
- Massachusetts General Hospital, Department of Psychiatry.,Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA
| | - Mark J. Daly
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| | - Edward M. Scolnick
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA
| | - Jordan W. Smoller
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| |
Collapse
|
3
|
Kaur N, Han W, Li Z, Madrigal MP, Shim S, Pochareddy S, Gulden FO, Li M, Xu X, Xing X, Takeo Y, Li Z, Lu K, Imamura Kawasawa Y, Ballester-Lurbe B, Moreno-Bravo JA, Chédotal A, Terrado J, Pérez-Roger I, Koleske AJ, Sestan N. Neural Stem Cells Direct Axon Guidance via Their Radial Fiber Scaffold. Neuron 2020; 107:1197-1211.e9. [PMID: 32707082 DOI: 10.1016/j.neuron.2020.06.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wenqi Han
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhuo Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Graduate Program in Histology and Embryology, Zhengzhou University, 450001 Zhengzhou, China
| | - M Pilar Madrigal
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Sungbo Shim
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biochemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Forrest O Gulden
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xuming Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaojun Xing
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Genome Editing Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yutaka Takeo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhen Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kangrong Lu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yuka Imamura Kawasawa
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology and of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Begoña Ballester-Lurbe
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | | | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - José Terrado
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Ignacio Pérez-Roger
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, 46113 Valencia, Spain
| | - Anthony J Koleske
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Departments of Genetics, Psychiatry, and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, and Yale Child Study Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
4
|
Seidmann L, Suhan T, Kamyshanskiy Y, Nevmerzhitskaya A, Gerein V, Kirkpatrick CJ. CD15 - a new marker of pathological villous immaturity of the term placenta. Placenta 2014; 35:925-31. [PMID: 25149387 DOI: 10.1016/j.placenta.2014.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/10/2014] [Accepted: 07/31/2014] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Idiopathic immaturity is one of the main reasons for latent placental insufficiency and antenatal hypoxia. Postnatal identification of the immature placental phenotype may help early stratification of a heterogeneous population of newborns and individually identify risk of disease in the immediate postnatal life. The aim of the study was to determine the relevant diagnostic markers associated with pathological placental immaturity. METHODS 111 tissue samples from normal and pathological term placentas with persisting villous immaturity comprised the comparative immunohistochemical study (CD15, CD34). Positive immunohistochemical reactions were quantitatively assessed in the chorionic plate and vessels of the villi of different histological type. RESULTS We have shown that pathological villous immaturity is attended by significantly increased CD15-expression in the macro- and microvascular endothelium compared with the normal placenta. CD34-expression was not different from that in normal placentas. DISCUSSION This paper documents the correlation of CD15+ endothelium in the macrovascular fetoplacental vessels with a severe form of villous immaturity associated with fetal hypoxia/asphyxia and erythroblastosis. Increased CD15-expression only in the microvascular segment of the fetoplacental vessels correlated with moderate villous immaturity and was associated with GDM, idiopathic fetal macrosomia and nonspecific chronic villitis. CONCLUSION We propose that "immature" CD15+ endothelium is an important diagnostic marker of persisting villous immaturity and chronic placental dysfunction. The level of CD15 expression in the macro- and microvasculature reflects the degree of pathological placental villous immaturity.
Collapse
Affiliation(s)
- L Seidmann
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.
| | - T Suhan
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Y Kamyshanskiy
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - A Nevmerzhitskaya
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - V Gerein
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - C J Kirkpatrick
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Sarchielli E, Marini M, Ambrosini S, Peri A, Mazzanti B, Pinzani P, Barletta E, Ballerini L, Paternostro F, Paganini M, Porfirio B, Morelli A, Gallina P, Vannelli GB. Multifaceted roles of BDNF and FGF2 in human striatal primordium development. An in vitro study. Exp Neurol 2014; 257:130-47. [PMID: 24792640 DOI: 10.1016/j.expneurol.2014.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 12/24/2022]
Abstract
Grafting fetal striatal cells into the brain of Huntington's disease (HD) patients has raised certain expectations in the past decade as an effective cell-based-therapy for this devastating condition. We argue that the first requirement for successful transplantation is defining the window of plasticity for the striatum during development when the progenitor cells, isolated from their environment, are able to maintain regional-specific-identity and to respond appropriately to cues. The primary cell culture from human fetal striatal primordium described here consists of a mixed population of neural stem cells, neuronal-restricted progenitors and striatal neurons. These cells express trophic factors, such as BDNF and FGF2. We show that these neurotrophins maintain cell plasticity, inducing the expression of neuronal precursor markers and cell adhesion molecules, as well as promoting neurogenesis, migration and survival. We propose that BDNF and FGF2 play an important autocrine-paracrine role during early striatum development in vivo and that their release by fetal striatal grafts may be relevant in the setting of HD cell therapy.
Collapse
Affiliation(s)
- Erica Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirca Marini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefano Ambrosini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Peri
- Department of Experimental and Clinical Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | - Benedetta Mazzanti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pamela Pinzani
- Department of Experimental and Clinical Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | - Lara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Paganini
- Department of Neuroscience and NEUROFARBA, University of Florence, Florence, Italy
| | - Berardino Porfirio
- Department of Experimental and Clinical Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pasquale Gallina
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Gabriella B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Gallina P, Paganini M, Lombardini L, Mascalchi M, Porfirio B, Gadda D, Marini M, Pinzani P, Salvianti F, Crescioli C, Bucciantini S, Mechi C, Sarchielli E, Romoli AM, Bertini E, Urbani S, Bartolozzi B, De Cristofaro MT, Piacentini S, Saccardi R, Pupi A, Vannelli GB, Di Lorenzo N. Human striatal neuroblasts develop and build a striatal-like structure into the brain of Huntington's disease patients after transplantation. Exp Neurol 2009; 222:30-41. [PMID: 20026043 DOI: 10.1016/j.expneurol.2009.12.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/26/2009] [Accepted: 12/05/2009] [Indexed: 12/16/2022]
Abstract
Rebuilding brain structure and neural circuitries by transplantation of fetal tissue is a strategy to repair the damaged nervous system and is currently being investigated using striatal primordium in Huntington's disease (HD) patients. Four HD patients underwent bilateral transplantation with human fetal striatal tissues (9-12 week gestation). Small blocks of whole ganglionic eminencies were processed to obtain cell suspension and then stereotactically grafted in the caudate head and in the putamen. Follow-up period ranged between 18 and 34 months (mean, 24.7 months). Surgery was uneventful. Starting from the fourth month after grafting, neo-generation of metabolically active tissue with striatal-like MRI features was observed in 6 out of 8 grafts. The increase in D2 receptor binding suggested striatal differentiation of the neo-generated tissue in 3 patients. New tissue, connecting the developing grafts with the frontal cortex and, in one case, with the ventral striatum, was also observed. The new tissue growth halted after the ninth month post transplantation. All patients showed stabilization or improvement in some neurological indices. No clinical and imaging signs, suggestive of graft uncontrolled growth, were seen. This study provides the first evidence in humans that neuroblasts of a striatal primordium can develop and move into the brain after neurotransplantation. Primordium development resulted in the building of a new structure with the same imaging features as the corresponding mature structure, combined with short- and long-distance targeted migration of neuroblasts. The results of this study support both the reconstructive potential of fetal tissue and the remarkably retained plasticity of adult brain. Further studies are necessary to assess the clinical efficacy of the human fetal striatal transplantation.
Collapse
Affiliation(s)
- Pasquale Gallina
- Department of Neurosurgery, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lewis(x) and alpha2,3-sialyl glycans and their receptors TAG-1, Contactin, and L1 mediate CD24-dependent neurite outgrowth. J Neurosci 2009; 29:6677-90. [PMID: 19458237 DOI: 10.1523/jneurosci.4361-08.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although carbohydrates have been implicated in cell interactions in the nervous system, the molecular bases of their functions have remained largely obscure. Here, we show that promotion or inhibition of neurite outgrowth of cerebellar or dorsal root ganglion neurons, respectively, induced by the mucin-type adhesion molecule CD24 depends on alpha2,3-linked sialic acid and Lewis(x) present on glia-specific CD24 glycoforms. Alpha2,3-sialyl residues of CD24 bind to a structural motif in the first fibronectin type III domain of the adhesion molecule L1. Following the observation that the adhesion molecules TAG-1 and Contactin show sequence homologies with fucose-specific lectins, we obtained evidence that TAG-1 and Contactin mediate Lewis(x)-dependent CD24-induced effects on neurite outgrowth. Thus, L1, TAG-1, and Contactin function as lectin-like neuronal receptors. Their cis interactions with neighboring adhesion molecules, e.g., Caspr1 and Caspr2, and with their triggered signal transduction pathways elicit cell type-specific promotion or inhibition of neurite outgrowth induced by glial CD24 in a glycan-dependent trans interaction.
Collapse
|
8
|
Brito C, Escrevente C, Reis CA, Lee VMY, Trojanowski JQ, Costa J. Increased levels of fucosyltransferase IX and carbohydrate Lewisx adhesion determinant in human NT2N neurons. J Neurosci Res 2007; 85:1260-70. [PMID: 17335083 DOI: 10.1002/jnr.21230] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The expression of the fucosylated carbohydrate Lewis(x) (Le(x)) determinant (Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc-R) has been found in glycoproteins, proteoglycans, and glycolipids from the nervous system. Evidence suggests its association with cell-cell recognition, neurite outgrowth, and neuronal migration during central nervous system development. In the present work, we detected increased levels of Le(x) in differentiated human NT2N neurons cultured in vitro. To identify which fucosyltransferase (FUT) synthesized the Le(x) in NT2N neurons, RT-PCR, FUT substrate specificity and Western blot analysis were carried out. Strong activity toward acceptors Galbeta4GlcNAc-O-R and Fucalpha2Galbeta4GlcNAc-O-R [R = -(CH(2))(3)NHCO(CH(2))(5)NH-biotin], together with strong FUT9 detection by Western blot and presence of transcripts showed that FUT9 was the enzyme associated with Le(x) biosynthesis in NT2N neurons. Le(x) was detected at the plasma membrane of NT2N neurons, in lysosomes marked with lysosomal-associated membrane protein 1 (LAMP-1), and it was found for the first time to colocalize with the tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) that defines the TI-VAMP exocytic compartment that is involved in neurite outgrowth. Furthermore, incubation with anti-Le(x) monoclonal antibody L5 led to impaired adhesion of NT2N neurons to the surface matrix and inhibited neurite initiation. In conclusion, FUT9 and its product Le(x) are detected specifically in human NT2N neurons and our results indicate that they underlie cell differentiation, cell adhesion, and initiation of neurite outgrowth in those neurons.
Collapse
Affiliation(s)
- Catarina Brito
- Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
9
|
Kudo T, Fujii T, Ikegami S, Inokuchi K, Takayama Y, Ikehara Y, Nishihara S, Togayachi A, Takahashi S, Tachibana K, Yuasa S, Narimatsu H. Mice lacking alpha1,3-fucosyltransferase IX demonstrate disappearance of Lewis x structure in brain and increased anxiety-like behaviors. Glycobiology 2006; 17:1-9. [PMID: 16973732 DOI: 10.1093/glycob/cwl047] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 3-fucosyl-N-acetyllactosamine [Lewis x (Le(x)), CD15, SSEA-1] carbohydrate structure is expressed on several glycolipids, glycoproteins, and proteoglycans of the nervous system and has been implicated in cell-cell recognition, neurite outgrowth, and neuronal migration during development. To characterize the functional role of Le(x) carbohydrate structure in vivo, we have generated mutant mice that lack alpha1,3-fucosyltransferase IX (Fut9(-/-)). Fut9(-/-) mice were unable to synthesize the Le(x) structure carried on glycoproteins and glycolipids in embryonic and adult brain. However, no obvious pathological differences between wild-type and Fut9(-/-) mice were found in brain. In behavioral tests, Fut9(-/-) mice exhibited increased anxiety-like responses in dark-light preference and in elevated plus maze tests. Immunohistochemical analysis showed that the number of calbindin-positive neurons was decreased in the basolateral amygdala in Fut9(-/-) mice. These observations indicated that the carbohydrates synthesized by Fut9 play critical roles in functional regulations of interneurons in the amygdalar subdivisions and suggested a role for the Le(x) structure in some aspects of emotional behavior in mice.
Collapse
Affiliation(s)
- Takashi Kudo
- Glycogene Function Team, Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Central-2, Open Space Laboratory, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen N, Hudson JE, Walczak P, Misiuta I, Garbuzova-Davis S, Jiang L, Sanchez-Ramos J, Sanberg PR, Zigova T, Willing AE. Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells 2005; 23:1560-70. [PMID: 16081669 PMCID: PMC2680124 DOI: 10.1634/stemcells.2004-0284] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mononuclear fraction from human umbilical cord blood (HUCB) contains a significant number of stem/progenitor cells that in theory could be come any cell in the body, including neurons. Taking into consideration that transdifferentiation would be a very rare event and also knowing that overlapping genetic programs for hematopoiesis and neuropoiesis exist, we undertook a characterization of the HUCB mononuclear fraction, including analysis of cellular subpopulations and their morphology, cell viability, proliferation, and expression of neural and hematopoietic antigens. Two cell populations were apparent-adherent and floating fractions. The adherent fraction was mainly lymphocytes (~53%) expressing hematopoietic antigens. Upon replate, the floating population had many cells that expressed stem cell antigens. More of the cells in this subfraction expressed neural proteins. Neurotrophin receptors trkB and trkC were present in both cell fractions, although expression was higher in the floating fraction. Our initial characterization suggests that a subpopulation of cells exists within the HUCB mononuclear fraction that seems to have the potential to become neural cells, which could then be used in the development of cell-based therapies for brain injuries and diseases.
Collapse
Affiliation(s)
- Ning Chen
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, Florida 33612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Droit-Volet S, Provasi J, Delgado M, Clément A. Le développement des capacités de jugement des durées chez l'enfant. PSYCHOLOGIE FRANCAISE 2005. [DOI: 10.1016/j.psfr.2004.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Ashwell KWS, Mai JK, Andressen C. CD15 immunoreactivity in the developing brain of a marsupial, the tammar wallaby ( Macropus eugenii). ANATOMY AND EMBRYOLOGY 2004; 209:157-68. [PMID: 15597195 DOI: 10.1007/s00429-004-0430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/02/2004] [Indexed: 10/26/2022]
Abstract
We have studied the distribution of the CD15 epitope in the developing brain of an Australian diprotodontid metatherian mammal, the tammar wallaby ( Macropus eugenii), using immunohistochemistry in conjunction with hematoxylin and eosin staining. At the time of birth (28 days after conception), CD15 immunoreactivity labeled somata in the primordial plexiform layer of the parietal cortex in a similar position to that seen in the early fetal eutherian brain. CD15 immunoreactivity in the brain of the developing pouch-young wallaby was found to be localized on the surface of radial glia at boundaries between developmentally significant forebrain compartments in a similar distribution to that seen in developing eutherian brain. These were best seen in the developing diencephalon, delineating epithalamus, ventral and dorsal thalamus and hypothalamic anlage, and in the striatum. Immunoreactivity for CD15 identified radial glia marking the lateral migratory stream at the striatopallial boundary, peaking in intensity at P19 to P25. From P37 to P54, CD15 immunoreactivity also demarcated patch compartments in the developing striatum. In contrast, CD15 immunoreactivity in hindbrain structures showed some differences from the temporospatial pattern seen in eutherian brain. These may reflect the relatively early brainstem maturation required for the newborn wallaby to be able to traverse the distance from the maternal genital tract to the pouch. The wallaby provides a convenient model for testing hypotheses concerning the role of CD15 in forebrain development because all events in which CD15 may play a critical role in forebrain morphogenesis occur during pouch life, when the young wallaby is accessible to experimental manipulation.
Collapse
Affiliation(s)
- K W S Ashwell
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, Sydney, 2052, New South Wales, Australia.
| | | | | |
Collapse
|
13
|
Abstract
The mouse retina has become an important model in vision research, mainly because of the wide availability of transgenic animals. In order to study cell function and connectivity in the inner retina, antibodies that differentially stain one cell type, or a small number of cell types, are helpful as markers. Here we characterize the CD15 (3[alpha1-3]-fucosyl-N-acetyl-lactosamine)-positive cells in the mouse retina using immunofluorescence confocal microscopy and reverse-transcription polymerase chain reaction. CD15 immunoreactivity was observed in two distinct types of amacrine cells and, faintly, in some cone bipolar cells. Type I CD15+ amacrine cells are GABAergic wide-field cells that stratify in lamina 3 and 4/5 of the inner plexiform layer. Type II CD15+ amacrine cells are also GABAergic and costratify with the dopaminergic tyrosine hydroxylase-positive cells in lamina 1 of the inner plexiform layer. The densities of types I and II CD15+ amacrine cells in mid-periphery were 258 cells/mm(2) and 274 cells/mm(2). Double labeling with several other markers for amacrine cell types showed that neither type belongs to another previously identified subpopulation of amacrine cells. Single-cell RT-PCR showed that CD15+ amacrine cells coexpress several AMPA receptors - GluR1, GluR2, and GluR4 being the most common combination.
Collapse
Affiliation(s)
- Tatjana C Jakobs
- Howard Hughes Medical Institute, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
14
|
Mai JK, Krajewski S, Ashwell KW, Andressen C. A CD15-Immunoreactive Subpopulation of Radial Glial Cells in the Developing Human Lateral Ganglionic Eminence. ACTA ACUST UNITED AC 2003. [DOI: 10.1159/000071022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Forutan F, Mai JK, Ashwell KW, Lensing-Höhn S, Nohr D, Voss T, Bohl J, Andressen C. Organisation and maturation of the human thalamus as revealed by CD15. J Comp Neurol 2001; 437:476-95. [PMID: 11503147 DOI: 10.1002/cne.1296] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution of the CD15 antigen (CD15, 3-fucosyl-N-acetyl-lactosamine, Lewis x) has been studied immunohistochemically in the fetal human thalamus. Its changing patterns could be related to three successive, but overlapping, periods primarily due to its association with radial glial cells, neuropil, and neural cell bodies, respectively. From 9 weeks of gestation (wg), a subset of CD15-positive radial glial cells distinguished the neuroepithelium of the ventral thalamus, a characteristic also seen in the developing mouse. Distal processes of the radial glial cells converged at the root of the forebrain choroid tenia, which was also CD15 positive. From 13 wg until approximately 20 wg, CD15-positive neuropil labeling marked the differentiation areas of prospective nuclei within the dorsal thalamus and progressively outlined their territories in a time sequence, which appeared specific for each nucleus. CD15 labeling of differentiating nuclei of the ventral, medial, anterior, and intralaminar thalamic divisions showed a transient topographic relationship with restricted areas of the ventricular wall. After 26 wg, CD15 immunoreactivity was observed in subpopulations of glial cells and neurons. Transient CD15 immunoreactivity was also found in delimited compartments within the subventricular region. The time of CD15 expression, its location, and cellular association suggest that CD15 is involved in segmentation of diencephalon, in the specification of differentiating nuclear areas and initial processes regarding the formation of intercellular contacts and cellular maturation.
Collapse
Affiliation(s)
- F Forutan
- Institute of Neuroanatomy, H.-Heine University, D-40001 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Togayachi A, Akashima T, Ookubo R, Kudo T, Nishihara S, Iwasaki H, Natsume A, Mio H, Inokuchi J, Irimura T, Sasaki K, Narimatsu H. Molecular cloning and characterization of UDP-GlcNAc:lactosylceramide beta 1,3-N-acetylglucosaminyltransferase (beta 3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. J Biol Chem 2001; 276:22032-40. [PMID: 11283017 DOI: 10.1074/jbc.m011369200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A new member of the UDP-N-acetylglucosamine:beta-galactose beta1,3-N-acetylglucosaminyltransferase (beta3Gn-T) family having the beta3Gn-T motifs was cloned from rat and human cDNA libraries and named beta3Gn-T5 based on its position in a phylogenetic tree. We concluded that beta3Gn-T5 is the most feasible candidate for lactotriaosylceramide (Lc(3)Cer) synthase, an important enzyme which plays a key role in the synthesis of lacto- or neolacto-series carbohydrate chains on glycolipids. beta3Gn-T5 exhibited strong activity to transfer GlcNAc to glycolipid substrates, such as lactosylceramide (LacCer) and neolactotetraosylceramide (nLc(4)Cer; paragloboside), resulting in the synthesis of Lc(3)Cer and neolactopentaosylceramide (nLc(5)Cer), respectively. A marked decrease in LacCer and increase in nLc(4)Cer was detected in Namalwa cells stably expressing beta3Gn-T5. This indicated that beta3Gn-T5 exerted activity to synthesize Lc(3)Cer and decrease LacCer, followed by conversion to nLc(4)Cer via endogenous galactosylation. The following four findings further supported that beta3Gn-T5 is Lc(3)Cer synthase. 1) The beta3Gn-T5 transcript levels in various cells were consistent with the activity levels of Lc(3)Cer synthase in those cells. 2) The beta3Gn-T5 transcript was presented in various tissues and cultured cells. 3) The beta3Gn-T5 expression was up-regulated by stimulation with retinoic acid and down-regulated with 12-O-tetradecanoylphorbol-13-acetate in HL-60 cells. 4) The changes in beta3Gn-T5 transcript levels during the rat brain development were determined. Points 2, 3, and 4 were consistent with the Lc(3)Cer synthase activity reported previously.
Collapse
Affiliation(s)
- A Togayachi
- Division of Cell Biology, Institute of Life Science, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Smelt KH, Blériot Y, Biggadike K, Lynn S, Lane AL, Watkin DJ, Fleet GW. Photobromination of a bicyclic mimic of α-L-fucose; components for a combinatorial library of rigid fucose analogues. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)00377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|