1
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
2
|
Hypertension and Its Impact on Stroke Recovery: From a Vascular to a Parenchymal Overview. Neural Plast 2019; 2019:6843895. [PMID: 31737062 PMCID: PMC6815533 DOI: 10.1155/2019/6843895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the first modifiable vascular risk factor accounting for 10.4 million deaths worldwide; it is strongly and independently associated with the risk of stroke and is related to worse prognosis. In addition, hypertension seems to be a key player in the implementation of vascular cognitive impairment. Long-term hypertension, complicated or not by the occurrence of ischemic stroke, is often reviewed on its vascular side, and parenchymal consequences are put aside. Here, we sought to review the impact of isolated hypertension or hypertension associated to stroke on brain atrophy, neuron connectivity and neurogenesis, and phenotype modification of microglia and astrocytes. Finally, we discuss the impact of antihypertensive therapies on cell responses to hypertension and functional recovery. This attractive topic remains a focus of continued investigation and stresses the relevance of including this vascular risk factor in preclinical investigations of stroke outcome.
Collapse
|
3
|
Cortés D, Carballo-Molina OA, Castellanos-Montiel MJ, Velasco I. The Non-Survival Effects of Glial Cell Line-Derived Neurotrophic Factor on Neural Cells. Front Mol Neurosci 2017; 10:258. [PMID: 28878618 PMCID: PMC5572274 DOI: 10.3389/fnmol.2017.00258] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 01/23/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was first characterized as a survival-promoting molecule for dopaminergic neurons (DANs). Afterwards, other cells were also discovered to respond to GDNF not only as a survival factor but also as a protein supporting other cellular functions, such as proliferation, differentiation, maturation, neurite outgrowth and other phenomena that have been less studied than survival and are now more extendedly described here in this review article. During development, GDNF favors the commitment of neural precursors towards dopaminergic, motor, enteric and adrenal neurons; in addition, it enhances the axonal growth of some of these neurons. GDNF also induces the acquisition of a dopaminergic phenotype by increasing the expression of Tyrosine Hydroxylase (TH), Nurr1 and other proteins that confer this identity and promote further dendritic and electrical maturation. In motor neurons (MNs), GDNF not only promotes proliferation and maturation but also participates in regenerating damaged axons and modulates the neuromuscular junction (NMJ) at both presynaptic and postsynaptic levels. Moreover, GDNF modulates the rate of neuroblastoma (NB) and glioblastoma cancer cell proliferation. Additionally, the presence or absence of GDNF has been correlated with conditions such as depression, pain, muscular soreness, etc. Although, the precise role of GDNF is unknown, it extends beyond a survival effect. The understanding of the complete range of properties of this trophic molecule will allow us to investigate its broad mechanisms of action to accelerate and/or improve therapies for the aforementioned pathological conditions.
Collapse
Affiliation(s)
- Daniel Cortés
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Oscar A. Carballo-Molina
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - María José Castellanos-Montiel
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| |
Collapse
|
4
|
Dillon-Carter O, Johnston RE, Borlongan CV, Truckenmiller ME, Coggiano M, Freed WJ. T155g-Immortalized Kidney Cells Produce Growth Factors and Reduce Sequelae of Cerebral Ischemia. Cell Transplant 2017. [DOI: 10.3727/096020198390012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fetal rat kidney cells produce high levels of glial-derived neurotrophic factor (GDNF) and exert neuroprotective effects when transplanted into the brain in animal models of Parkinson's disease and stroke. The purpose of the present experiment was to produce kidney cell lines that secrete GDNF. Genes encoding two truncated N-terminal fragments of SV40 large T antigen, T155g and T155c, which does not code for small t antigen, were used. T155g was transduced into E17 cultured fetal Sprague-Dawley rat kidney cortex cells using a plasmid vector, and T155c was transduced with a plasmid and a retroviral vector. Sixteen clones were isolated from cultures transfected with the T155g-expressing plasmid. No cell lines were obtained with T155c. Four clones produced GDNF at physiological concentrations ranging from 55 to 93 pg/ml of medium. These four clones were transplanted into the ischemic core or penumbra of rats that had undergone middle cerebral artery occlusion (MCAO). Three of the four clones reduced the volume of infarction and the behavioral abnormalities normally resulting from MCAO. Blocking experiments with antibodies to GDNF and platelet-derived growth factor (PDGF) suggested that these growth factors contributed only minimally to the reduction in infarct volume and behavioral abnormality. These cell lines may be useful for intracerebral transplantation in animal models of brain injury, stroke, or Parkinson's disease.
Collapse
Affiliation(s)
- Ora Dillon-Carter
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Rowena E. Johnston
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Cesario V. Borlongan
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Mary Ellen Truckenmiller
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Mark Coggiano
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - William J. Freed
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| |
Collapse
|
5
|
Chiang YH, Borlongan CV, Zhou FC, Hoffer BJ, Wang Y. Transplantation of Fetal Kidney Cells: Neuroprotection and Neuroregeneration. Cell Transplant 2017; 14:1-9. [PMID: 15789657 DOI: 10.3727/000000005783983304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Various trophic factors in the transforming growth factor-β (TGF-β) superfamily have been reported to have neuroprotective and neuroregenerative effects. Intracerebral administration of glial cell line-derived neurotrophic factor (GDNF) or bone morphogenetic proteins (BMPs), both members of the TGF-β family, reduce ischemia- or 6-hydroxydopamine (6-OHDA)-induced injury in adult rat brain. Because BMPs and GDNF are highly expressed in fetal kidney cells, transplantation of fetal kidney tissue could serve as a cellular reservoir for such molecules and protect against neuronal injury induced by ischemia, neurotoxins, or reactive oxygen species. In this review, we discuss preclinical evidence for the efficacy of fetal kidney cell transplantation in neuroprotection and regeneration models.
Collapse
Affiliation(s)
- Yung-Hsiao Chiang
- Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | | | | | | | | |
Collapse
|
6
|
Curcio M, Salazar IL, Inácio AR, Duarte EP, Canzoniero LMT, Duarte CB. Brain ischemia downregulates the neuroprotective GDNF-Ret signaling by a calpain-dependent mechanism in cultured hippocampal neurons. Cell Death Dis 2015; 6:e1645. [PMID: 25675305 PMCID: PMC4669807 DOI: 10.1038/cddis.2014.578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/08/2014] [Accepted: 11/14/2014] [Indexed: 01/07/2023]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) has an important role in neuronal survival through binding to the GFRα1 (GDNF family receptor alpha-1) receptor and activation of the receptor tyrosine kinase Ret. Transient brain ischemia alters the expression of the GDNF signaling machinery but whether the GDNF receptor proteins are also affected, and the functional consequences, have not been investigated. We found that excitotoxic stimulation of cultured hippocampal neurons leads to a calpain-dependent downregulation of the long isoform of Ret (Ret51), but no changes were observed for Ret9 or GFRα1 under the same conditions. Cleavage of Ret51 by calpains was selectively mediated by activation of the extrasynaptic pool of N-methyl-d-aspartate receptors and leads to the formation of a stable cleavage product. Calpain-mediated cleavage of Ret51 was also observed in hippocampal neurons subjected to transient oxygen and glucose deprivation (OGD), a model of global brain ischemia, as well as in the ischemic region in the cerebral cortex of mice exposed to transient middle cerebral artery occlusion. Although the reduction of Ret51 protein levels decreased the total GDNF-induced receptor activity (as determined by assessing total phospho-Ret51 protein levels) and their downstream signaling activity, the remaining receptors still showed an increase in phosphorylation after incubation of hippocampal neurons with GDNF. Furthermore, GDNF protected hippocampal neurons when present before, during or after OGD, and the effects under the latter conditions were more significant in neurons transfected with human Ret51. These results indicate that the loss of Ret51 in brain ischemia partially impairs the neuroprotective effects of GDNF.
Collapse
Affiliation(s)
- M Curcio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - I L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - A R Inácio
- Wallenberg Neuroscience Center, Lund University, Lund 221 84, Sweden
| | - E P Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra 3004-517, Portugal
| | - L M T Canzoniero
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - C B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra 3004-517, Portugal
| |
Collapse
|
7
|
Tanaka S, Miyagi T, Dohi E, Seki T, Hide I, Sotomaru Y, Saeki Y, Antonio Chiocca E, Matsumoto M, Sakai N. Developmental expression of GPR3 in rodent cerebellar granule neurons is associated with cell survival and protects neurons from various apoptotic stimuli. Neurobiol Dis 2014; 68:215-27. [PMID: 24769160 DOI: 10.1016/j.nbd.2014.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/08/2014] [Accepted: 04/15/2014] [Indexed: 11/15/2022] Open
Abstract
G-protein coupled receptor 3 (GPR3), GPR6, and GPR12 belong to a family of constitutively active Gs-coupled receptors that activate 3'-5'-cyclic adenosine monophosphate (cAMP) and are highly expressed in the brain. Among these receptors, the endogenous expression of GPR3 in cerebellar granule neurons (CGNs) is increased following development. GPR3 is important for neurite outgrowth and neural maturation; however, the physiological functions of GPR3 remain to be fully elucidated. Here, we investigated the survival and antiapoptotic functions of GPR3 under normal and apoptosis-inducing culture conditions. Under normal culture conditions, CGNs from GPR3-knockout mice demonstrated lower survival than did CGNs from wild-type or GPR3-heterozygous mice. Cerebellar sections from GPR3-/- mice at P7, P14, and P21 revealed more caspase-3-positive neurons in the internal granular layer than in cerebellar sections from wild-type mice. Conversely, in a potassium-deprivation model of apoptosis, increased expression of these three receptors promoted neuronal survival. The antiapoptotic effect of GPR3 was also observed under hypoxic (1% O2/5% CO2) and reactive oxygen species (ROS)-induced apoptotic conditions. We further investigated the signaling pathways involved in the GPR3-mediated antiapoptotic effect. The addition of the PKA inhibitor KT5720, the MAP kinase inhibitor U0126, and the PI3 kinase inhibitor LY294002 abrogated the GPR3-mediated antiapoptotic effect in a potassium-deprivation model of apoptosis, whereas the PKC inhibitor Gö6976 did not affect the antiapoptotic function of GPR3. Furthermore, downregulation of endogenous GPR3 expression in CGNs resulted in a marked reduction in the basal levels of ERK and Akt phosphorylation under normal culture conditions. Finally, we used a transient middle cerebral artery occlusion (tMCAO) model in wild-type and GPR3-knockout mice to determine whether GPR3 expression modulates neuronal survival after brain ischemia. After tMCAO, GPR3-knockout mice exhibited a significantly larger infarct area than did wild-type mice. Collectively, these in vitro and in vivo results suggest that the developmental expression of constitutively active Gs-coupled GPR3 activates the ERK and Akt signaling pathways at the basal level, thereby protecting neurons from apoptosis that is induced by various stimuli.
Collapse
Affiliation(s)
- Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; Department of Clinical Neuroscience and Therapeutics, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Tatsuhiro Miyagi
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Eisuke Dohi
- Department of Clinical Neuroscience and Therapeutics, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takahiro Seki
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8551, Japan
| | | | - E Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Institute for the Neurosciences at the Brigham, Brigham and Women's/Faulkner Hospital and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
8
|
Rennie K, Haukenfrers J, Ribecco-Lutkiewicz M, Ly D, Jezierski A, Smith B, Zurakowski B, Martina M, Gruslin A, Bani-Yaghoub M. Therapeutic potential of amniotic fluid-derived cells for treating the injured nervous system. Biochem Cell Biol 2013; 91:271-86. [DOI: 10.1139/bcb-2013-0019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is a need for improved therapy for acquired brain injury, which has proven resistant to treatment by numerous drugs in clinical trials and continues to represent one of the leading causes of disability worldwide. Research into cell-based therapies for the treatment of brain injury is growing rapidly, but the ideal cell source has yet to be determined. Subpopulations of cells found in amniotic fluid, which is readily obtained during routine amniocentesis, can be easily expanded in culture, have multipotent differentiation capacity, are non-tumourigenic, and avoid the ethical complications associated with embryonic stem cells, making them a promising cell source for therapeutic purposes. Beneficial effects of amniotic fluid cell transplantation have been reported in various models of nervous system injury. However, evidence that amniotic fluid cells can differentiate into mature, functional neurons in vivo and incorporate into the existing circuitry to replace lost or damaged neurons is lacking. The mechanisms by which amniotic fluid cells improve outcomes after experimental nervous system injury remain unclear. However, studies reporting the expression and release of neurotrophic, angiogenic, and immunomodulatory factors by amniotic fluid cells suggest they may provide neuroprotection and (or) stimulate endogenous repair and remodelling processes in the injured nervous system. In this paper, we address recent research related to the neuronal differentiation of amniotic fluid-derived cells, the therapeutic efficacy of these cells in animal models of nervous system injury, and the possible mechanisms mediating the positive outcomes achieved by amniotic fluid cell transplantation.
Collapse
Affiliation(s)
- Kerry Rennie
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Julie Haukenfrers
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Maria Ribecco-Lutkiewicz
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Dao Ly
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Anna Jezierski
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| | - Brandon Smith
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Bogdan Zurakowski
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Marzia Martina
- Synaptic Therapies and Devices, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| | - Andrée Gruslin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| | - Mahmud Bani-Yaghoub
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| |
Collapse
|
9
|
|
10
|
Yamagata K. Pathological alterations of astrocytes in stroke-prone spontaneously hypertensive rats under ischemic conditions. Neurochem Int 2011; 60:91-8. [PMID: 22100568 DOI: 10.1016/j.neuint.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/27/2011] [Accepted: 11/04/2011] [Indexed: 11/18/2022]
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP/Izm) develop severe hypertension, and more than 95% of them die of cerebral stroke. We showed the vulnerability of neuronal cells of SHRSP/Izm rats. Furthermore, we analyzed the characteristics of SHRSP/Izm astrocytes during a stroke. It is known that the proliferating ability of SHRSP/Izm astrocytes is significantly enhanced compared with those in the normotensive Wistar Kyoto rats (WKY/Izm) strain. Conversely, the ability of SHRSP/Izm astrocytes to form tight junctions (TJ) was attenuated compared with astrocytes from WKY/Izm rats. During the stress of hypoxia and reoxygenation (H/R), lactate production, an energy source for neuronal cells, decreased in SHRSP/Izm astrocytes in comparison with the WKY/Izm strain. Moreover, during H/R, SHRSP/Izm astrocytes decreased their production of glial cell line-derived neurotrophic factor (GDNF) in comparison with WKY/Izm astrocytes. Furthermore, SHRSP/Izm rats decreased production of l-serine, compared with WKY/Izm rats following nitric oxide (NO) stimulation. Additionally, in H/R, astrocytes of SHRSP/Izm rats expressed adhesion molecules such as VCAM-1 at higher levels. It is possible that all of these differences between SHRSP/Izm and WKY/Izm astrocytes are not associated with the neurological disorders in SHRSP/Izm. However, attenuated production of lactate and reduced GDNF production in astrocytes may reduce required energy levels and weaken the nutritional status of SHRSP/Ism neuronal cells. We suggest that the attenuation of astrocytes' functions accelerates neuronal cell death during stroke, and may contribute to the development of strokes in SHRSP/Izm. In this review, we summarize the altered properties of SHRSP/Izm astrocytes during a stroke.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Laboratory of Molecular Health Science of Food, Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University (NUBS), 1866 Kameino, Fujisawa-shi, Kanagawa 252-8510, Japan.
| |
Collapse
|
11
|
Ahn M, Jin JK, Moon C, Matsumoto Y, Koh CS, Shin T. Glial cell line-derived neurotrophic factor is expressed by inflammatory cells in the sciatic nerves of Lewis rats with experimental autoimmune neuritis. J Peripher Nerv Syst 2010; 15:104-12. [DOI: 10.1111/j.1529-8027.2010.00258.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, Masuda J, Kobayashi S, Kim SU, Yamaguchi S. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 2010; 88:1017-25. [PMID: 19885863 DOI: 10.1002/jnr.22279] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies have suggested that intravenous transplantation of mesenchymal stem cells (MSCs) in rat ischemia models reduces ischemia-induced brain damage. Here, we analyzed the expression of neurotrophic factors in transplanted human MSCs and host brain tissue in rat middle cerebral artery occlusion (MCAO) ischemia model. At 1 day after transient MCAO, 3 x 10(6) immortalized human MSC line (B10) cells or PBS was intravenously transplanted. Behavioral tests, infarction volume, and B10 cell migration were investigated at 1, 3, 7, and 14 days after MCAO. The expression of endogenous (rat origin) and exogenous (human origin) neurotrophic factors and cytokines was evaluated by quantitative real-time RT-PCR and Western blot analysis. Compared with PBS controls, rats receiving MSC transplantation showed improved functional recovery and reduced brain infarction volume at 7 and 14 days after MCAO. In MSC-transplanted brain, among many neurotrophic factors, only human insulin-like growth factor 1 (IGF-1) was detected in the core and ischemic border zone at 3 days after MCAO, whereas host cells expressed markedly higher neurotrophic factors (rat origin) than control rats, especially vascular endothelial growth factor (VEGF) at 3 days and epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) at 7 days after MCAO. Intravenously transplanted human MSCs induced functional improvement, reduced infarct volume, and neuroprotection in ischemic rats, possibly by providing IGF-1 and inducing VEGF, EGF, and bFGF neurotrophic factors in host brain.
Collapse
Affiliation(s)
- Kiryo Wakabayashi
- Department of Neurology, Shimane University School of Medicine, Izumo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pertusa M, García-Matas S, Mammeri H, Adell A, Rodrigo T, Mallet J, Cristòfol R, Sarkis C, Sanfeliu C. Expression of GDNF transgene in astrocytes improves cognitive deficits in aged rats. Neurobiol Aging 2008; 29:1366-79. [PMID: 17399854 DOI: 10.1016/j.neurobiolaging.2007.02.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 01/25/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was assayed for its neurotrophic effects against the neuronal atrophy that causes cognitive deficits in old age. Aged Fisher 344 rats with impairment in the Morris water maze received intrahippocampal injections at the dorsal CA1 area of either a lentiviral vector encoding human GDNF or the same vector encoding human green fluorescent protein as a control. Recombinant lentiviral vectors constructed with human cytomegalovirus promotor and pseudotyped with lyssavirus Mokola glycoprotein specifically transduced the astrocytes in vivo. Astrocyte-secreted GDNF enhanced neuron function as shown by local increases in synthesis of the neurotransmitters acetylcholine, dopamine and serotonin. This neurotrophic effect led to cognitive improvement of the rats as early as 2 weeks after gene transduction. Spatial learning and memory testing showed a significant gain in cognitive abilities due to GDNF exposure, whereas control-transduced rats kept their performance at the chance level. These results confirm the broad spectrum of the neurotrophic action of GDNF and open new gene therapy possibilities for reducing age-related neurodegeneration.
Collapse
Affiliation(s)
- M Pertusa
- Departament de Farmacologia i Toxicologia, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC-IDIBAPS, Rosselló 161, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Michel TM, Frangou S, Camara S, Thiemeyer D, Jecel J, Tatschner T, Zoechling R, Grünblatt E. Altered glial cell line-derived neurotrophic factor (GDNF) concentrations in the brain of patients with depressive disorder: a comparative post-mortem study. Eur Psychiatry 2008; 23:413-20. [PMID: 18760907 DOI: 10.1016/j.eurpsy.2008.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/03/2008] [Accepted: 06/07/2008] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION A growing body of evidence suggests that the glial cell line-derived neurotrophic factor (GDNF) is involved in the aetiopathology of mood disorders. GDNF is a neurotrophic factor from the transforming growth factor-beta-family, playing a role in cell development and function in the limbic system. This is the first study to examine GDNF concentration in different brain regions of patients with depressive disorder (DD). MATERIAL AND METHODS We used sandwich-ELISA-technique to ascertain GDNF concentration and Lowry assay for overall protein levels in post-mortem brain tissue of 7 patients with recurrent depressive disorder and 14 individuals without any neurological or psychiatric diagnoses. We included cortical regions as well as limbic area's (hippocampus, entorhinal cortex) basal ganglia (putamen, caudate nucleus), thalamus and cingulated gyrus. RESULTS We found a significant increase in GDNF concentration in the parietal cortex of patients with DD compared to the control group. In other regions the trend of an increased GDNF concentration did not reach statistical difference. DISCUSSION This proof of concept study supports previous findings of an alteration of the GDNF in patients with depressive disorder. However, for the first time a significant increase of GDNF in a cortical brain area was found in DD.
Collapse
Affiliation(s)
- Tanja M Michel
- RWTH Aachen University, Department of Psychiatry and Psychotherapy, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yamagata K, Hakata K, Maeda A, Mochizuki C, Matsufuji H, Chino M, Yamori Y. Adenosine induces expression of glial cell line-derived neurotrophic factor (GDNF) in primary rat astrocytes. Neurosci Res 2007; 59:467-74. [PMID: 17920149 DOI: 10.1016/j.neures.2007.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/13/2007] [Accepted: 08/24/2007] [Indexed: 02/06/2023]
Abstract
Adenosine, which accumulates rapidly during ischemia due to the breakdown of ATP, has beneficial effects in many tissues. We examined whether adenosine induces the production of glial cell line-derived neurotrophic factor (GDNF) in cultured astrocytes. We evaluated GDNF mRNA expression and GDNF production in astrocytes cultured with adenosine and the adenosine selective receptor agonists 5-(N-ethylcarboxamido) adenosine (NECA), N(6)-cyclopentyladenosine (CPA) and 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamindo-adenosine hydrochloride (CGS 21680). Moreover, we examined the possibility that the expression of GDNF is regulated differently in cultured astrocytes from the stroke-prone spontaneously hypertensive rat (SHRSP) than in those from Wistar Kyoto rats (WKY). In this study, we confirmed that adenosine and the selective A(2B) adenosine receptor agonist NECA induced the expression of GDNF in cultured astrocytes. The A(2B) receptor antagonist alloxazine was able to inhibit the increase in extracellular GDNF produced by adenosine. Furthermore, the amounts of GDNF produced were significantly reduced in astrocytes of the adenosine-treated SHRSP compared with those of WKY. These results indicate that adenosine induces the expression of GDNF, and adenosine A(2B) receptors participate in the regulation of GDNF levels in astrocytes. This expression was attenuated in astrocytes of SHRSP compared with those of WKY.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University (NUBS), Kameino, Fujisawa, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Chung H, Kim E, Lee DH, Seo S, Ju S, Lee D, Kim H, Park S. Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinology 2007; 148:148-59. [PMID: 17053024 DOI: 10.1210/en.2006-0991] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ghrelin is an endogenous ligand for the GH secretagogue receptor, produced and secreted mainly from the stomach. Ghrelin stimulates GH release and induces positive energy balances. Previous studies have reported that ghrelin inhibits apoptosis in several cell types, but its antiapoptotic effect in neuronal cells is unknown. Therefore, we investigated the role of ghrelin in ischemic neuronal injury using primary hypothalamic neurons exposed to oxygen-glucose deprivation (OGD). Here we report that treatment of hypothalamic neurons with ghrelin inhibited OGD-induced cell death and apoptosis. Exposure of neurons to ghrelin caused rapid activation of ERK1/2. Ghrelin-induced activation of ERK1/2 and the antiapoptotic effect of ghrelin were blocked by chemical inhibition of MAPK, phosphatidylinositol 3 kinase, protein kinase C, and protein kinase A. Ghrelin attenuated OGD-induced activation of c-Jun NH2-terminal kinase and p-38 but not ERK1/2. We also investigated ghrelin regulation of apoptosis at the mitochondrial level. Ghrelin protected cells from OGD insult by inhibiting reactive oxygen species generation and stabilizing mitochondrial transmembrane potential. In addition, ghrelin-treated cells showed an increased Bcl-2/Bax ratio, prevention of cytochrome c release, and inhibition of caspase-3 activation. Finally, in vivo administration of ghrelin significantly reduced infarct volume in an animal model of ischemia. Our data indicate that ghrelin may act as a survival factor that preserves mitochondrial integrity and inhibits apoptotic pathways.
Collapse
Affiliation(s)
- Hyunju Chung
- Department of Pharmacology, Kyunghee University School of Medicine, Dongdaemun-ku, Seoul 130-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee YJ, Jin JK, Jeong BH, Carp RI, Kim YS. Increased expression of glial cell line-derived neurotrophic factor (GDNF) in the brains of scrapie-infected mice. Neurosci Lett 2006; 410:178-82. [PMID: 17101222 DOI: 10.1016/j.neulet.2006.09.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 11/27/2022]
Abstract
Prion diseases, also called transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders characterized by neuronal loss, astrogliosis, and spongiform changes in the brain. It is postulated that appearance of astrogliosis may provide the neurotrophic factors to prevent or reduce neuronal cell loss in the pathogenesis of prion diseases. To investigate the role of the glial cell line-derived neurotrophic factor (GDNF), we studied the expression levels of GDNF mRNA and protein in an animal model of prion diseases. The expression levels of GDNF mRNA and protein were significantly increased in the brains of scrapie-infected mice at 100 and 160 days after inoculation with scrapie strain compared with those of control mice. In addition, we found more intensive immunoreactivity of GDNF in the brains of scrapie-infected mice, specifically in the hippocampal astrocytes, than was seen in control mice. These results suggest that GDNF participates in protection against neuronal cell loss and atrophy in neurodegenerative disorders, which may play one of the important roles in the pathogenic mechanisms of prion diseases.
Collapse
Affiliation(s)
- Yun-Jung Lee
- Ilsong Institute of Life Science, College of Medicine, Hallym University, Anyang, Kyonggi-do 431-060, South Korea
| | | | | | | | | |
Collapse
|
18
|
Bakshi A, Shimizu S, Keck CA, Cho S, LeBold DG, Morales D, Arenas E, Snyder EY, Watson DJ, McIntosh TK. Neural progenitor cells engineered to secrete GDNF show enhanced survival, neuronal differentiation and improve cognitive function following traumatic brain injury. Eur J Neurosci 2006; 23:2119-34. [PMID: 16630059 DOI: 10.1111/j.1460-9568.2006.04743.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We sought to evaluate the potential of C17.2 neural progenitor cells (NPCs) engineered to secrete glial cell line-derived neurotrophic factor (GDNF) to survive, differentiate and promote functional recovery following engraftment into the brains of adult male Sprague-Dawley rats subjected to lateral fluid percussion brain injury. First, we demonstrated continued cortical expression of GDNF receptor components (GFRalpha-1, c-Ret), suggesting that GDNF could have a physiological effect in the immediate post-traumatic period. Second, we demonstrated that GDNF over-expression reduced apoptotic NPC death in vitro. Finally, we demonstrated that GDNF over-expression improved survival, promoted neuronal differentiation of GDNF-NPCs at 6 weeks, as compared with untransduced (MT) C17.2 cells, following transplantation into the perilesional cortex of rats at 24 h post-injury, and that brain-injured animals receiving GDNF-C17.2 transplants showed improved learning compared with those receiving vehicle or MT-C17.2 cells. Our results suggest that transplantation of GDNF-expressing NPCs in the acute post-traumatic period promotes graft survival, migration, neuronal differentiation and improves cognitive outcome following traumatic brain injury.
Collapse
Affiliation(s)
- Asha Bakshi
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Focal permanent or transient cerebral artery occlusion produces massive cell death in the central core of the infarction, whereas in the peripheral zone (penumbra) nerve cells are subjected to various determining survival and death signals. Cell death in the core of the infarction and in the adult brain is usually considered a passive phenomenon, although events largely depend on the partial or complete disruption of crucial metabolic pathways. Cell death in the penumbra is currently considered an active process largely dependent on the activation of cell death programs leading to apoptosis. Yet cell death in the penumbra includes apoptosis, necrosis, intermediate and other forms of cell death. A rather simplistic view implies poor prospects regarding cell survival in the core of the infarction and therapeutic expectations in the control of cell death and cell survival in the penumbra. However, the capacity for neuroprotection depends on multiple factors, primarily the use of the appropriate agent, at the appropriate time and during the appropriate interval. Understanding the mechanisms commanding cell death and survival area is as important as delimiting the therapeutic time window and the facility of a drug to effectively impact on specific targets. Moreover, the detrimental effects of homeostasis and the activation of multiple pathways with opposing signals following ischemic stroke indicate that better outcome probably does not depend on a single compound but on several drugs acting in combination at the optimal time in a particular patient.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Hospitalet de Llobregat, Spain.
| |
Collapse
|
20
|
Mori K. Future prospects of transplantation therapy for neurological diseases using adult bone marrow stromal cells. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.2.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bone marrow stromal cells (BMSCs) can differentiate into neuronal cell types as well as mesenchymal cell types. BMSCs possess three distinctive abilities: secretion of neurotrophic factors; differentiation into neurons, glia and Schwann cells; and migration throughout the CNS. Extensive preclinical studies of BMSC transplantation therapy have investigated the treatment of various neurological disorders. This review provides a concise overview of the mainly preclinical studies of transplantation therapy based on BMSCs derived from adult bone marrow. This highlights the three main characteristics that provide the potential for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Kentaro Mori
- Juntendo University, Department of Neurosurgery, Shizuoka Hospital, 1129 Nagaoka, Izunokuni, Shizuoka 410–2295, Japan
| |
Collapse
|
21
|
Villadiego J, Méndez-Ferrer S, Valdés-Sánchez T, Silos-Santiago I, Fariñas I, López-Barneo J, Toledo-Aral JJ. Selective glial cell line-derived neurotrophic factor production in adult dopaminergic carotid body cells in situ and after intrastriatal transplantation. J Neurosci 2006; 25:4091-8. [PMID: 15843611 PMCID: PMC6724965 DOI: 10.1523/jneurosci.4312-04.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) exerts a notable protective effect on dopaminergic neurons in rodent and primate models of Parkinson's disease (PD). The clinical applicability of this therapy is, however, hampered by the need of a durable and stable GDNF source allowing the safe and continuous delivery of the trophic factor into the brain parenchyma. Intrastriatal carotid body (CB) autografting is a neuroprotective therapy potentially useful in PD. It induces long-term recovery of parkinsonian animals through a trophic effect on nigrostriatal neurons and causes amelioration of symptoms in some PD patients. Moreover, the adult rodent CB has been shown to express GDNF. Here we show, using heterozygous GDNF/lacZ knock-out mice, that unexpectedly CB dopaminergic glomus, or type I, cells are the source of CB GDNF. Among the neural or paraneural cells tested, glomus cells are those that synthesize and release the highest amount of GDNF in the adult rodent (as measured by standard and in situ ELISA). Furthermore, GDNF expression by glomus cells is maintained after intrastriatal grafting and in CB of aged and parkinsonian 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated animals. Thus, glomus cells appear to be prototypical abundant sources of GDNF, ideally suited to be used as biological pumps for the endogenous delivery of trophic factors in PD and other neurodegenerative diseases.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Age Factors
- Analysis of Variance
- Animals
- Animals, Newborn
- Carotid Body/cytology
- Carotid Body/metabolism
- Carotid Body/ultrastructure
- Cell Differentiation
- Cells, Cultured
- Corpus Striatum/transplantation
- Disease Models, Animal
- Dopamine/metabolism
- Enzyme-Linked Immunosorbent Assay/methods
- Glial Cell Line-Derived Neurotrophic Factor/genetics
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Glial Fibrillary Acidic Protein/metabolism
- Immunohistochemistry/methods
- MPTP Poisoning/metabolism
- MPTP Poisoning/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron, Transmission/methods
- Neurons/metabolism
- Neurons/transplantation
- Neurons/ultrastructure
- PC12 Cells
- Rats
- Rats, Wistar
- Time Factors
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Javier Villadiego
- Laboratorio de Investigaciones Biomédicas, Departamento de Fisiología and Hospital Universitario Virgen del Rocío, Universidad de Sevilla, 41013 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Wu WC, Lai CC, Chen SL, Sun MH, Xiao X, Chen TL, Lin KK, Kuo SW, Tsao YP. Long-term safety of GDNF gene delivery in the retina. Curr Eye Res 2005; 30:715-22. [PMID: 16109652 DOI: 10.1080/02713680591005922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To examine retinal function after the long-term, gene therapy-delivered expression of exogenous glial cell line-derived neurotrophic factor (GDNF). METHODS Forty Sprague-Dawley rats each received an intravitreal injection of recombinant adeno-associated virus expressing GDNF (rAAV-GDNF) in their right eye. The left eye was untreated. One year after viral transduction in ocular tissues, retinal morphology and function were compared between rAAV-GDNF-injected and normal naïve eyes. Synthesis and accumulation of GDNF within the retina were immunohistologically confirmed using enzyme-linked immunosorbent assay. Morphological analyses included light microscope examination of retinal sections and the counting of retinal ganglion cells. Inflammation by infiltration of leukocytes in retina was assessed immunohistochemically. Retinal function was assessed using electroretinography. RESULTS GDNF expression was confirmed. There was no obvious abnormality in retinal section or increased infiltration by leukocytes after retinal transduction of rAAV-GDNF for 1 year. Counts of retinal ganglion cells were not decreased in rAAV-GDNF-injected eyes. There were no statistical differences in amplitude as well as latency of the electroretinogram-determined a- and b-waves between transduced and untreated eyes. CONCLUSIONS Long-term expression of GDNF within the eyes can be achieved by intravitreal injection of rAAV vectors in the absence of morphological or functional deficits in the retina.
Collapse
Affiliation(s)
- Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Serra MP, Quartu M, Mascia F, Manca A, Boi M, Pisu MG, Lai ML, Del Fiacco M. Ret, GFRalpha‐1, GFRalpha‐2 and GFRalpha‐3 receptors in the human hippocampus and fascia dentata. Int J Dev Neurosci 2005; 23:425-38. [PMID: 16002253 DOI: 10.1016/j.ijdevneu.2005.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/24/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022] Open
Abstract
The immunohistochemical occurrence and localization of the receptor components of the glial cell line-derived neurotrophic factor (GDNF) family ligands, the Ret receptor tyrosine kinase and GDNF family receptor (GFR) alpha-1 to -3, is described in the human post-mortem hippocampal formation at pre- and full-term newborn, and adult age. Two different antibodies for each of the four-receptor molecules were used. Western blot analysis indicates that the availability of GFRalpha receptor proteins may vary with age and post-mortem delay. The immunohistochemical detectability of GFRalpha-1, GFRalpha-2, GFRalpha-3 and Ret receptor molecules is shown in the rat up to 72 h post-mortem. In the human specimens, labelled neuronal perikarya were detectable for each receptor protein at all examined ages, with prevalent localization in the pyramidal layer of the Ammon's horn and hilus and granular layer of the fascia dentata. In the adult subjects, abundant punctate-like structures were also present. Labelled glial elements were identifiable. Comparison of the pattern of immunoreactive elements among young and adult subjects suggests that the intracellular distribution of the GDNF family ligands may vary between pre- and perinatal life and adult age. The results obtained suggest the involvement of the Ret and GFRalpha receptors signalling in processes subserving both the organization of this cortical region during development and the functional activity and maintenance of the mature hippocampal neurons.
Collapse
Affiliation(s)
- Maria Pina Serra
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yu Y, Matsuyama Y, Yanase M, Ito S, Adachi K, Satake K, Ishiguro N, Kiuchi K. Effects of hyperbaric oxygen on GDNF expression and apoptosis in spinal cord injury. Neuroreport 2005; 15:2369-73. [PMID: 15640758 DOI: 10.1097/00001756-200410250-00014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of hyperbaric oxygen treatment on the progress of secondary damage following traumatic spinal cord injury were investigated. The early onset of hyperbaric oxygen treatment significantly diminished the number of apoptotic cells 1 day after the injury. However, hyperbaric oxygen did not influence the proliferation of macrophages or activated microglia. The gene expression of glial cell line-derived neurotrophic factor (GDNF) and inducible nitric oxide synthetase (iNOS) was significantly attenuated 1 day after the injury in the hyperbaric oxygen groups compared with the control group. The down-regulation was confirmed by immunohistochemical staining. Early hyperbaric oxygen treatment was shown to effectively suppress the progress of apoptosis perhaps via the inhibition of iNOS gene despite the down-regulation of the GDNF gene.
Collapse
Affiliation(s)
- Yimin Yu
- Department of Orthopaedic Surgery, Nagoya University School of Medicine, 466-8500 Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Katsuragi S, Ikeda T, Date I, Shingo T, Yasuhara T, Ikenoue T. Grafting of glial cell line-derived neurotrophic factor secreting cells for hypoxic-ischemic encephalopathy in neonatal rats. Am J Obstet Gynecol 2005; 192:1137-45. [PMID: 15846193 DOI: 10.1016/j.ajog.2004.10.619] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE It has been reported that an infarcted area is reduced by the injection of glial cell line-derived neurotrophic factor into brain parenchyma after hypoxic/ischemic insult in neonatal rats. For use of glial cell line-derived neurotrophic factor in humans, we have developed a system for the delivery of a constant supply of glial cell line-derived neurotrophic factor to the brain. The aim of this study was to examine the neuroprotective effect of glial cell line-derived neurotrophic factor with the use of this delivery system. STUDY DESIGN Baby hamster kidney cells were transfected with human glial cell line-derived neurotrophic factor complementary DNA, encapsulated in semipermeable hollow fibers, and implanted into the left cerebrum of 12-day-old Wistar rats (glial cell line-derived neurotrophic factor group, 11 rats). Nontransfected baby hamster kidney cells served as controls (control group, 9 rats). Two days after implantation, the rats received a hypoxic/ischemic stress, with a modification of Levine's method. Seven days later the rats were killed, and coronal brain slices were cut 2, 4, 6, 8, and 10 mm from the anterior pole. The cortex, hippocampus, striatum, and thalamus were evaluated for damage severity. The serum concentrations of glial cell line-derived neurotrophic factor were also determined. RESULTS The left brain hemispheric area was significantly larger; the neuronal damage to each brain region was significantly less, and the serum glial cell line-derived neurotrophic factor concentrations were significantly higher in the glial cell line-derived neurotrophic factor group, compared with the control group. CONCLUSION Grafting of encapsulated glial cell line-derived neurotrophic factor-secreting cells is a promising way to protect the neonatal brain from hypoxic/ischemic insult.
Collapse
Affiliation(s)
- Shinji Katsuragi
- Department of Obstetrics and Gynecology, Miyazaki Medical College, Kiyotake-Cho, Miyazaki, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Schmidt KM, Repine MJ, Hicks SD, DeFranco DB, Callaway CW. Regional changes in glial cell line-derived neurotrophic factor after cardiac arrest and hypothermia in rats. Neurosci Lett 2004; 368:135-9. [PMID: 15351435 DOI: 10.1016/j.neulet.2004.06.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 06/28/2004] [Accepted: 06/29/2004] [Indexed: 02/09/2023]
Abstract
Hypothermia after resuscitation from cardiac arrest reduces functional and histological brain injury. Stimulation of neurotrophic factors may contribute to the beneficial effects of hypothermia. This study examined the effects of cardiac arrest and induced hypothermia on regional levels of glial cell line-derived neurotrophic factor (GDNF) over the first 24 h after rat cardiac arrest. Hypothermia increased GDNF in hippocampus at 6 h, but did not prevent a subsequent decline in hippocampal GDNF. In contrast, hypothermia prevented early increases in cortical levels of GDNF at 3 and 6 h. Cerebellar GDNF increased slightly over 24 h in hypothermia-treated rats, but brainstem levels of GDNF did not change in response to cardiac arrest or hypothermia. These results suggest that temperature after resuscitation produces regionally specific changes of GNDF levels in brain.
Collapse
Affiliation(s)
- Katherine M Schmidt
- Department of Emergency Medicine, University of Pittsburgh, 230 McKee Place, Suite 400, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
27
|
Harvey BK, Hoffer BJ, Wang Y. Stroke and TGF-beta proteins: glial cell line-derived neurotrophic factor and bone morphogenetic protein. Pharmacol Ther 2004; 105:113-25. [PMID: 15670622 DOI: 10.1016/j.pharmthera.2004.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Recent studies have indicated that proteins in the transforming growth factor-beta superfamily alter damage induced by various neuronal injuries. Of these proteins, glial cell line-derived neurotrophic factor (GDNF) and bone morphogenetic protein-7 (BMP-7) have unique protective and regenerative effects in stroke animals. Delivery of GDNF or BMP-7 to brain tissue reduced cerebral infarction and improved motor functions in stroke animals. Pretreatment with these factors reduced caspase-3 activity and DNA fragmentation in the ischemic brain region, suggesting that antiapoptotic effects are involved. Beside the protective effects, BMP-7 given after stroke improves locomotor function. These regenerative effects of BMP-7 may involve the enhancement of dendritic growth and remodeling. In this review, we illustrate the neuroprotective and neuroregenerative properties of GDNF and BMP-7 and emphasize their therapeutic potential for stroke.
Collapse
Affiliation(s)
- Brandon K Harvey
- Neural Protection and Regeneration Section, Molecular Neuropsychiatry Branch, National Institute on Drug Abuse, NIH, Baltimore, MD 21124, USA
| | | | | |
Collapse
|
28
|
Wang W, Redecker C, Bidmon HJ, Witte OW. Delayed neuronal death and damage of GDNF family receptors in CA1 following focal cerebral ischemia. Brain Res 2004; 1023:92-101. [PMID: 15364023 DOI: 10.1016/j.brainres.2004.07.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2004] [Indexed: 11/18/2022]
Abstract
Delayed neuronal death (DND) of pyramidal neurons in the CA1 and CA3 regions of the hippocampus has been extensively studied following global brain ischemia, whereas only little is known about DND in this highly vulnerable brain region after focal brain ischemia. In the present study, the distribution and time course of hippocampal neuronal apoptosis were studied following transient middle cerebral artery occlusion (MCAO) in rats 1, 3, 7, 14, and 30 days after the insult. In 60% of the animals, more than 90% of CA1 pyramidal neurons showed strong nick-end labeling (TUNEL) staining at day 3 with fragmentation and marginalization of the nuclei in approximately 40% of these cells. The number of TUNEL-positive cells decreased within the next days, but 30 days after MCAO, some apoptotic neurons were still present. Analysis of the expression of the glial cell line-derived neurotrophic factor (GDNF) and its receptors GFRalpha1, GFRalpha2, and GFRalpha3 using triple immunofluorescence and confocal laser scanning microscopy revealed that in all animals showing marked hippocampal DND, the neuronal staining for GFRalpha1, GFRalpha3, and GDNF decreased prior to the onset of TUNEL staining in CA1. After 7 days, some apoptotic neurons still expressed GFRalpha3, whereas only few showed GFRalpha1 immunoreactivity, indicating that GFRalpha1 may be beneficial for the survival of hippocampal neurons. The data suggest that reduced expression of GDNF and impairment of GFRalpha1/3 may contribute to hippocampal DND after focal brain ischemia.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, Friedrich-Schiller University, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | |
Collapse
|
29
|
Cunningham MG, Bolay H, Scouten CW, Moore C, Jacoby D, Moskowitz M, Sorensen JC. Preclinical evaluation of a novel intracerebral microinjection instrument permitting electrophysiologically guided delivery of therapeutics. Neurosurgery 2004; 54:1497-507; discussion 1507. [PMID: 15157308 DOI: 10.1227/01.neu.0000125007.03145.00] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Accepted: 12/17/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This series of studies was designed to evaluate the function of a new neurosurgical instrument for precision injection of therapeutics within the central nervous system. METHODS An intracerebral microinjection instrument was designed to 1) allow multiple injections to be placed in three-dimensional space within a target structure from a single proximal brain penetration, 2) incur minimal injury at the site of injection, 3) enable accurate microvolume injections, and 4) permit electrophysiological recording during the injection procedure. Rats received injections of fluorescent microspheres or suspensions of labeled cells to test instrument function and level of induced trauma. A rodent model of stroke was used to test the instrument's ability to record electrocorticograms or somatosensory evoked potentials from normal and damaged tissue. RESULTS Microliter volumes of fluorescent microspheres were accurately placed at predetermined sites within the rat striatum. Reactive gliosis was markedly reduced using the intracerebral microinjection instrument when compared with standard cannulas. In a stroke model, electrophysiological recording with the instrument allowed discrimination between viable and nonviable ischemic tissue, and function of pathways or circuits was assessed using evoked potentials. Embryonic stem cells grafted immediately after electrophysiological recordings demonstrated robust long-term survival. CONCLUSION The intracerebral microinjection instrument enables electrophysiologically guided microinjection of therapeutics to target areas with exquisite accuracy while incurring minimal local trauma and reactive gliosis at the injection site. The instrument also permits minimally invasive, multiple injections to be disseminated in three-dimensional space within the target region from a single proximal penetration of the brain.
Collapse
Affiliation(s)
- Miles G Cunningham
- Laboratory for Neural Reconstruction, Program in Neuroscience, Harvard Medical School, and Department of Psychiatry, McLean Hospital, Belmont, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Shirakura M, Inoue M, Fujikawa S, Washizawa K, Komaba S, Maeda M, Watabe K, Yoshikawa Y, Hasegawa M. Postischemic administration of Sendai virus vector carrying neurotrophic factor genes prevents delayed neuronal death in gerbils. Gene Ther 2004; 11:784-90. [PMID: 14961067 DOI: 10.1038/sj.gt.3302224] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sendai virus (SeV) vector-mediated gene delivery of glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) prevented the delayed neuronal death induced by transient global ischemia in gerbils, even when the vector was administered several hours after ischemia. Intraventricular administration of SeV vector directed high-level expression of the vector-encoded neurotrophic factor genes, which are potent candidates for the treatment of neurodegenerative diseases. After occlusion of the bilateral carotid arteries of gerbils, SeV vector carrying GDNF (SeV/GDNF), NGF (SeV/NGF), brain-derived neurotrophic factor (SeV/BDNF), insulin-like growth factor-1 (SeV/IGF-1) or vascular endothelial growth factor (SeV/VEGF) was injected into the lateral ventricle. Administration of SeV/GDNF, SeV/NGF or SeV/BDNF 30 min after the ischemic insult effectively prevented the delayed neuronal death of the hippocampal CA1 pyramidal neurons. Furthermore, the administration of SeV/GDNF or SeV/NGF as late as 4 or 6 h after the ischemic insult also prevented the death of these neurons. These results indicate that SeV vector-mediated gene transfer of neurotrophic factors has high therapeutic potency for preventing the delayed neuronal death induced by transient global ischemia, and provides an approach for gene therapy of stroke.
Collapse
|
31
|
Ding YM, Jaumotte JD, Signore AP, Zigmond MJ. Effects of 6-hydroxydopamine on primary cultures of substantia nigra: specific damage to dopamine neurons and the impact of glial cell line-derived neurotrophic factor. J Neurochem 2004; 89:776-87. [PMID: 15086533 DOI: 10.1111/j.1471-4159.2004.02415.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6-Hydroxydopamine (6-OHDA)-induced loss of dopamine (DA) neurons has served to produce an animal model of DA neuron loss in Parkinson's disease. We report here the use of 6-OHDA to produce an in vitro model of this phenomena using dissociated cultures prepared from neonatal rat mesencephalon. Cultures were exposed to 6-OHDA (40-100 microm, 15 min) in an antioxidant medium, and DA and GABA neurons evaluated by immunocytochemistry. 6-OHDA induced morphological and biochemical signs of cell death in DA neurons within 3 h, followed by loss of tyrosine hydroxylase immunoreactive neurons within 2 days. In substantia nigra (SN) cultures, DA neurons were much more affected by 6-OHDA than were GABA neurons. In contrast, DA neurons from the ventral tegmental area were only lost at higher, non-specific concentrations of 6-OHDA. The effects of 6-OHDA on nigral DA neurons were blocked by inhibitors of high affinity DA transport and by z-DEVD-fmk (150 microm), a caspase inhibitor. Glial cell line-derived neurotrophic factor (GDNF) treatment reduced TUNEL labeling 3 h after 6-OHDA exposure, but did not prevent loss of DA neurons at 48 h. Thus, 6-OHDA can selectively destroy DA neurons in post-natal cultures of SN, acting at least in part by initiating caspase-dependent apoptosis, and this effect can be attenuated early but not late by GDNF.
Collapse
Affiliation(s)
- Yun Min Ding
- Department of Neurology and the Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
32
|
Harvey BK, Chang CF, Chiang YH, Bowers WJ, Morales M, Hoffer BJ, Wang Y, Federoff HJ. HSV amplicon delivery of glial cell line-derived neurotrophic factor is neuroprotective against ischemic injury. Exp Neurol 2003; 183:47-55. [PMID: 12957487 DOI: 10.1016/s0014-4886(03)00080-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Direct intracerebral administration of glial cell line-derived neurotrophic factor (GDNF) is neuroprotective against ischemia-induced cerebral injury. Utilizing viral vectors to deliver and express therapeutic genes presents an opportunity to produce GDNF within localized regions of an evolving infarct. We investigated whether a herpes simplex virus (HSV) amplicon-based vector encoding GDNF (HSVgdnf) would protect neurons against ischemic injury. In primary cortical cultures HSVgdnf reduced oxidant-induced injury compared to the control vector HSVlac. To test protective effects in vivo, HSVgdnf or HSVlac was injected into the cerebral cortex 4 days prior to, or 3 days, after a 60-min unilateral occlusion of the middle cerebral artery. Control stroke animals developed bradykinesia and motor asymmetry; pretreatment with HSVgdnf significantly reduced such motor deficits. Animals receiving HSVlac or HSVgdnf after the ischemic insult did not exhibit any behavioral improvement. Histological analyses performed 1 month after stroke revealed a reduction in ischemic tissue loss in rats pretreated with HSVgdnf. Similarly, these animals exhibited less immunostaining for glial fibrillary acidic protein and the apoptotic marker caspase-3. Taken together, our data indicate that HSVgdnf pretreatment provides protection against cerebral ischemia and supports the utilization of the HSV amplicon for therapeutic delivery of trophic factors to the CNS.
Collapse
Affiliation(s)
- B K Harvey
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bonde C, Sarup A, Schousboe A, Gegelashvili G, Noraberg J, Zimmer J. GDNF pre-treatment aggravates neuronal cell loss in oxygen-glucose deprived hippocampal slice cultures: a possible effect of glutamate transporter up-regulation. Neurochem Int 2003; 43:381-8. [PMID: 12742082 DOI: 10.1016/s0197-0186(03)00025-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Besides its neurotrophic and neuroprotective effects on dopaminergic neurons and spinal motoneurons, glial cell line-derived neurotrophic factor (GDNF) has potent neuroprotective effects in cerebral ischemia. The protective effect has so far been related to reduced activation of N-methyl-D-aspartate receptors (NMDAr). This study tested the effects of GDNF on glutamate transporter expression, with the hypothesis that modulation of glutamate transporter activity would affect the outcome of cerebral ischemia. Organotypic hippocampal slice cultures, derived from 1-week-old rats, were treated with 100 ng/ml GDNF for either 2 or 5 days, followed by Western blot analysis of NMDAr subunit 1 (NR1) and two glutamate transporter subtypes, GLAST and GLT-1. After 5-day exposure to GDNF, expression of GLAST and GLT-1 was up-regulated to 169 and 181% of control values, respectively, whereas NR1 was down-regulated to 64% of control. However, despite these changes that potentially would support neuronal resistance to excitotoxicity, the long-term treatment with GDNF was found to aggravate the neuronal damage induced by oxygen-glucose deprivation (OGD). The increased cell death, assessed by propidium iodide (PI) uptake, occurred not only among the most susceptible CA1 pyramidal cells, but also in CA3 and fascia dentata. Given that glutamate transporters are able to release glutamate by reversed action during energy failure, it is suggested that the observed increase in OGD-induced cell death in the GDNF-pretreated cultures was caused by the build-up of excitotoxic concentrations of extracellular glutamate released through the glutamate transporters, which were up-regulated by GDNF. Although the extent and consequences of glutamate release via reversal of GLAST and GLT-1 transporters seem to vary in different energy failure models, the present findings should be taken into account in clinical trials of GDNF.
Collapse
Affiliation(s)
- C Bonde
- Anatomy and Neurobiology, SDU-Odense University, Winsløwparken 21, DK-5000 Odense C, Denmark.
| | | | | | | | | | | |
Collapse
|
34
|
Unsicker K, Krieglstein K. TGF-betas and their roles in the regulation of neuron survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:353-74. [PMID: 12575828 DOI: 10.1007/978-1-4615-0123-7_13] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Transforming growth factor-betas (TGF-betas) are a still growing superfamily of cytokines with widespread distribution and diverse biological functions. They fall into several subfamilies including the TGF-betas 1, 2, and 3, the bone morphogenetic proteins (BMPs), the growth/differentiation factors (GDFs), activins and inhibins, and the members of the glial cell line-derived neurotrophic factor family. Following a brief description of their general roles and signaling in development, maintenance of homeostasis, and disease, we shall focus on their distribution in the CNS and their involvement in regulating neuron survival and death.
Collapse
Affiliation(s)
- Klaus Unsicker
- Neuroanatomy and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 307, 2. OG, D-69120 Heidelberg, Germany
| | | |
Collapse
|
35
|
Sarabi A, Chang CF, Wang Y, Tomac AC, Hoffer BJ, Morales M. Differential expression of the cell line-derived neurotrophic factor (GDNF) receptor GFRalpha1 in heterozygous Gfralpha1 null-mutant mice after stroke. Neurosci Lett 2003; 341:241-5. [PMID: 12697293 DOI: 10.1016/s0304-3940(03)00195-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exogenous administration of glial cell line-derived neurotrophic factor (GDNF) reduces ischemia-induced cerebral infarction. Cerebral ischemia induces gene expression of GDNF, GDNF-receptor alpha-1 (GFRalpha-1) and c-Ret, suggesting that a GDNF signaling cascade mechanism may be involved in endogenous neuroprotection during ischemia. In the present study, we examined if this endogenous neuroprotective pathway was altered in Gfralpha-1 deficient mice. Since mice homozygous for the Gfralpha-1 deletion (-/-) die within 24 h of birth, stroke-induced changes in the levels of Gfralpha-1 mRNA were studied in Gfralpha-1 heterozygous (+/-) mice and their wild-type (+/+) littermates. The right middle cerebral artery was transiently ligated for 45 min in anesthetized mice. Animals were killed at 0, 6, 12 and 24 h after the onset of reperfusion and levels of Gfralpha-1 mRNA were measured by in situ hybridization histochemistry. Previously, we showed that Gfralpha-1 (+/-) mice are more vulnerable to focal cerebral ischemia. In the present study, we found that basal levels of GFRalpha-1 mRNA were at similar low levels in cortex and striatum in adult Gfralpha-1 (+/+) and Gfralpha-1 (+/-) mice and that ischemia/reperfusion induced up-regulation of Gfralpha-1 mRNA in the lesioned and contralateral sides of cortex and striatum in both Gfralpha-1 (+/+) and GFRalpha-1 (+/-) mice. However, the ischemia/reperfusion induction of Gfralpha-1 mRNA was significantly higher in the cortex of wild type mice, as compared to Gfralpha-1 (+/-) mice. Moreover, the increased expression of Gfralpha-1 in striatum after reperfusion occurred earlier in the GFRalpha-1 (+/+) than in the Gfralpha-1 (+/-) mice. These results indicate that after ischemia, there is a differential up-regulation of Gfralpha-1 expression in Gfralpha-1 (+/+) and Gfralpha-1 (+/-) mice. Since GDNF has neuroprotective effects, the reduced up-regulation of Gfralpha-1 in Gfralpha-1 (+/-) mice at early time points after ischemia suggests that the responsiveness to GDNF and GDNF receptor mediated neuroprotection is attenuated in these genetically modified animals and may underlie their greater vulnerability.
Collapse
Affiliation(s)
- A Sarabi
- National Institute on Drug Abuse, IRP Department, Cellular Neurophysiology Section, NIH, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
36
|
Miyazaki H, Okuma Y, Nomura J, Nagashima K, Nomura Y. Age-related alterations in the expression of glial cell line-derived neurotrophic factor in the senescence-accelerated mouse brain. J Pharmacol Sci 2003; 92:28-34. [PMID: 12832852 DOI: 10.1254/jphs.92.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Senescence-accelerated mouse prone 8 (SAMP8) and prone 10 (SAMP10) are useful murine model of accelerated aging. SAMP8 shows marked impairment of learning and memory, whereas SAMP10 shows brain atrophy and aging-associated depressive behavior. This study examined the expression of glial cell line-derived neurotrophic factor (GDNF) in SAMP8 and SAMP10 brains, relative to that in SAM resistant 1 (SAMR1) controls, which age normally. Hippocampal GDNF mRNA expression decreased in an age-dependent manner (10- vs 2-month-old animals) in the SAMR1, but not in the SAMP8 or SAMP10 strains. Furthermore, GDNF mRNA expression in 2-month-old SAMP8 and SAMP10 strains was less than in SAMR1 specimens of the same age. The number of surviving neurons in the CA1 region decreased with age in SAMP8 and SAMP10, and also decreased relative to the number of neurons in 10-month-old SAMR1 controls. Immunohistochemistry revealed that cells that were positive for GDNF-like activity in 10-month-old SAMP8 and SAMP10 were diffusely distributed, in part, around the pyramidal cell layer in the hippocampus. These findings suggest that low GDNF expression in young SAMP8 and SAMP10 may be involved in hippocampal dysfunctions, such as age-related learning impairment and neuronal death.
Collapse
Affiliation(s)
- Hiroyuki Miyazaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
37
|
Shirakura M, Fukumura M, Inoue M, Fujikawa S, Maeda M, Watabe K, Kyuwa S, Yoshikawa Y, Hasegawa M. Sendai virus vector-mediated gene transfer of glial cell line-derived neurotrophic factor prevents delayed neuronal death after transient global ischemia in gerbils. Exp Anim 2003; 52:119-27. [PMID: 12806886 DOI: 10.1538/expanim.52.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We have developed a cytoplasmic replicating virus vector of Sendai virus (SeV) that infects and replicates in most mammalian cells, including neurons, and directs high-level gene expression. To investigate the protective effect of SeV vector-mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF) on the delayed neuronal death caused by transient global ischemia in gerbils, SeV vectors carrying either GDNF (SeV/GDNF) or enhanced green fluorescent protein gene (SeV/GFP) were stereotaxically microinjected into the lateral ventricle. Four days after injection, occlusion of the bilateral common carotid arteries for 5 min produced transient global forebrain ischemia. Treatment with SeV/GDNF significantly decreased the delayed neuronal death of the hippocampal CA1 pyramidal neurons observed 6 days after the operation. TUNEL staining demonstrated that SeV/GDNF treatment markedly reduced the number of apoptotic cells in the hippocampal CA1 neurons, indicating that SeV/GDNF treatment prevented apoptosis. Furthermore, delayed neuronal death on the contralateral side of the hippocampal CA1 was also prevented to a similar extent as that on the ipsilateral side. These results suggest that SeV/GDNF prevents the delayed neuronal death induced by ischemia and is potentially useful for gene therapy for stroke.
Collapse
Affiliation(s)
- Masayuki Shirakura
- DNAVEC Research Inc., 1-25-11 Kannondai, Tsukuba-shi, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
There is increasing evidence that some neuronal death after brain ischaemia is mediated by the action of cysteine-requiring aspartate-directed proteases (caspases), the proteases responsible for apoptosis in mammals, although this form of neuronal death is not always accompanied by the morphological changes that are typical of apoptosis in other tissues. Caspase-mediated neuronal death is more extensive after transient than permanent focal brain ischaemia and may contribute to delayed loss of neurons from the penumbral region of infarcts. The activation of caspases after brain ischaemia is largely consequent on the translocation of Bax, Bak, and other BH3-only members of the Bcl-2 family to the mitochondrial outer membrane and the release of cytochrome c, procaspase-9, and apoptosis activating factor-1 (Apaf-1) from the mitochondrial intermembrane space. How exactly ischaemia induces this translocation is still poorly understood. NF-kappaB, the c-jun N-terminal kinase-c-Jun pathway, p53, E2F1, and other transcription factors are probably all involved in regulating the expression of BH3-only proteins after brain ischaemia, and mitochondrial translocation of Bad from sequestering cytosolic proteins is promoted by inactivation of the serine-threonine kinase, Akt. Other processes that are probably involved in the activation of caspases after brain ischaemia include the mitochondrial release of the second mitochondrial activator of caspases (Smac) or direct inhibitor-of-apoptosis-binding protein with low pI (DIABLO), the accumulation of products of lipid peroxidation, a marked reduction in protein synthesis, and the aberrant reentry of neurons into the cell cycle. Non-caspase-mediated neuronal apoptosis may also occur, but there is little evidence to date that this makes a significant contribution to brain damage after ischaemia. The intracellular processes that contribute to caspase-mediated neuronal death after ischaemia are all potential targets for therapy. However, anti-apoptotic interventions in stroke patients will require detailed evaluation using a range of outcome measures, as some such interventions seem simply to delay neuronal death and others to preserve neurons but not neuronal function.
Collapse
Affiliation(s)
- Seth Love
- Department of Neuropathology, Institute of Clinical Neurosciences, Frenchay Hospital, BS16 1LE, Bristol, UK.
| |
Collapse
|
39
|
Takahashi M, Arai Y, Kurosawa H, Sueyoshi N, Shirai S. Ependymal cell reactions in spinal cord segments after compression injury in adult rat. J Neuropathol Exp Neurol 2003; 62:185-94. [PMID: 12578228 DOI: 10.1093/jnen/62.2.185] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, it has been suggested that neural stem cells and neural progenitor cells exist in the ependyma that forms the central canal of the spinal cord. In this study, we produced various degrees of thoracic cord injury in adult rats using an NYU-weight-drop device, assessed the degree of recovery of lower limb motor function based on a locomotor rating scale, and analyzed the kinetics of ependymal cell proliferation and differentiation by proliferating cell nuclear antigen (PCNA), nestin, glial fibrillary acidic protein (GFAP), or GAP-43 immunostaining. The results showed that the time course of the ependymal cell proliferation and differentiation reactions differed according to the severity of injury, and that the responses occurred not only in the neighborhood of the injury but in the entire spinal cord. An increase in the locomotor rating score was related to an increase in the number of PCNA-positive cells, and the differentiation of ependymal cells into reactive astrocytes was involved in injury repair. No apoptotic cells in the ependyma were detectable by the TUNEL method. These results indicate that the ependymal cells of the spinal central canal are themselves multipotent, can divide and proliferate according to the severity of injury, and differentiate into reactive astrocytes within the ependyma without undergoing apoptosis or cell death.
Collapse
Affiliation(s)
- Masaki Takahashi
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
40
|
Chang CF, Morales M, Chou J, Chen HL, Hoffer B, Wang Y. Bone morphogenetic proteins are involved in fetal kidney tissue transplantation-induced neuroprotection in stroke rats. Neuropharmacology 2002; 43:418-26. [PMID: 12243771 DOI: 10.1016/s0028-3908(02)00092-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both bone morphogenetic proteins (BMPs) and glial cell line-derived neurotrophic factor (GDNF) reduce ischemia-induced cerebral injury in rats. Intracerebral transplantation of fetal kidney tissue, which normally expresses BMPs and GDNF during development, reduces ischemic injury in cerebral cortex. In this study, we tested the hypothesis that BMP is involved in this neuroprotective response. Fetal kidney tissue was cut into small pieces and transplanted into cortical areas adjacent to the right middle cerebral artery (MCA) in adult rats. In situ hybridization of brain indicated that these fetal kidney transplants contained high levels of BMP-7 mRNA three days after grafting. Immunohistochemical analysis of grafted brain showed co-localization of BMP-7 and PAX-2 immunoreactivity in the graft, suggesting that these transplants contained BMP protein. Some animals were grafted with fetal kidney tissue after intraventricular administration (ICV) of the BMP antagonist noggin (1 micro g) or after vehicle, followed by MCA ligation for 60 min. Animals receiving fetal kidney tissue transplantation developed significantly less body asymmetry, as compared to stroke animals that either did not receive transplantation or received fetal kidney grafts and noggin pretreatment. Analysis of these brains after triphenyltetrazolium chloride staining showed that fetal kidney tissue transplantation reduced the volume of infarction in the cerebral cortex. Noggin pretreatment reduced the protection induced by fetal kidney grafting, although noggin itself did not cause increase in cerebral infarction. Eight hours after ischemia, brain homogenates were obtained from grafted and control animals to assay caspase-3 enzymatic activity. This analysis demonstrated that fetal kidney grafts significantly reduced ischemia-induced caspase-3 activity. Reduction of caspase-3 activity could also be antagonized by noggin pretreatment. In conclusion, our data suggest that fetal kidney transplantation reduces ischemia/reperfusion-induced cortical infarction and behavioral deficits in adult rats, which are, at least partially, mediated through the effect of BMPs from the transplants.
Collapse
Affiliation(s)
- C F Chang
- Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
41
|
Zhao F, Kuroiwa T, Miyasaka N, Nagaoka T, Nakane M, Tamura A, Mizusawa H. Ultrastructural and MRI study of the substantia nigra evolving exofocal post-ischemic neuronal death in the rat. Neuropathology 2002; 22:91-105. [PMID: 12416550 DOI: 10.1046/j.1440-1789.2002.00437.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To clarify the morphological characteristics of exofocal post-ischemic neuronal death (EPND) in the substantia nigra (SN), we investigated the course of light- and electron-microscopic changes of the SN of rats subjected to occlusion of the left middle cerebral artery (MCA) for 1, 2, 4, 7 and 12 days. To assess cellular edema, sequential magnetic resonance (MR) mapping of the apparent diffusion coefficient (ADC) and the T2 value test was performed. Histological and electron-microscopic examination on day 1 showed dotted chromatin clumps in the nuclei of some neurons and mild swelling of the perivascular endfeet of astrocytes in the ipsilateral SN. On day 2, a few cells of the ipsilateral SN pars reticulata (SNr) revealed key morphological signs of apoptosis--apoptotic body-like condensation and segregation of the chromatin and DNA fragmentation-like nuclear remnants. On day 4, 38% of neurons became swollen (pale neurons) with cytoplasmic microvacuoles, which appeared to originate from rough endoplasmic reticulum (rER), mitochondria and Golgi apparatus. Twenty percent of neurons showed massive proliferation of the cisternae of the rER, some of which were fragmented or had lost their normal parallel arrangement. In addition, MR mapping revealed a transient ADC decrease with a T2 increase (signifying a phase of cellular edema), which coordinated with the phase of ultrastructural cellular swelling. Further, the total number of neurons started to decrease gradually, the perivascular endfeet of astrocytes were markedly swollen, and the neuropil became loose on day 4. On day 7, reactive astrocytes and dark neurons occurred most frequently. These results suggest that the EPND in the SN after occlusion of the MCA in adult rats is due to both apoptosis and necrosis, although necrosis seems to be the dominant mechanism of the EPND. However, the morphologic resemblances of EPND to delayed neuronal death suggest these processes have a common pathomechanism.
Collapse
Affiliation(s)
- Fengyu Zhao
- Department of Neurology and Neurological Science, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Wang Y, Chang CF, Morales M, Chiang YH, Hoffer J. Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann N Y Acad Sci 2002; 962:423-37. [PMID: 12076993 DOI: 10.1111/j.1749-6632.2002.tb04086.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a member of the transforming growth factor-beta (TGF-beta) superfamily, has been shown to have trophic activity on dopaminergic neurons. Recent studies indicate that GDNF can protect the cerebral hemispheres from damage induced by middle cerebral arterial ligation. We found that such neuroprotective effects are mediated through specific GDNF receptor alpha-1 (GFRalpha1). Animals with a deficiency in GFRalpha-1 have less GDNF-induced neuroprotection. Ischemia also enhances nitric oxide synthase (NOS) activity, which can be attenuated by GDNF. These.data suggest that GDNF can protect against ischemic injury through a GFRalpha-1/NOS mechanism. We also found that the receptor for GDNF, GFRalpha1, and its signaling moiety c-Ret were upregulated, starting immediately after ischemia. This upregulation suggests that activation of an endogenous neuroprotective mechanism occurs so that responsiveness of GDNF can be enhanced at very early stages during ischemia.
Collapse
Affiliation(s)
- Y Wang
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | | | |
Collapse
|
43
|
Miyazaki H, Nagashima K, Okuma Y, Nomura Y. Expression of Ret receptor tyrosine kinase after transient forebrain ischemia is modulated by glial cell line-derived neurotrophic factor in rat hippocampus. Neurosci Lett 2002; 318:1-4. [PMID: 11786211 DOI: 10.1016/s0304-3940(01)02213-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The Ret receptor tyrosine kinase is part of a functional receptor complex for the glial cell line-derived neurotrophic factor (GDNF) family. We examined the expression of Ret mRNA after transient forebrain ischemia, and explored the effect of local GDNF-pretreatment in rat hippocampus on Ret mRNA expression. Transient forebrain ischemia induced Ret mRNA expression in the hippocampus, with a peak effect at 12 h. Whereas intrahippocampal microinjection of GDNF (1.0 microg) in sham-operated rats induced the expression of Ret mRNA (peak at 6 to 12 h), the expected increase of Ret mRNA induced by ischemia was blunted by local GDNF-pretreatment. Immunohistochemical investigation revealed that ischemia-induced Ret receptor expression in the hippocampal CA1 region was also reduced by local GDNF-pretreatment. These findings suggest that GDNF modulates the expression of Ret, and that GDNF signaling pathways that involve the Ret receptor tyrosine kinase might play an important role in brain injury induced by ischemia.
Collapse
Affiliation(s)
- Hiroyuki Miyazaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Sapporo, Japan
| | | | | | | |
Collapse
|
44
|
Arvidsson A, Kokaia Z, Airaksinen MS, Saarma M, Lindvall O. Stroke induces widespread changes of gene expression for glial cell line-derived neurotrophic factor family receptors in the adult rat brain. Neuroscience 2002; 106:27-41. [PMID: 11564414 DOI: 10.1016/s0306-4522(01)00268-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gene expression for glial cell line-derived neurotrophic factor (GDNF) family ligands and receptors was analyzed with in situ hybridization after two focal ischemic insults of different severities. Focal ischemia was induced in rats by either 30 min or 2 h of middle cerebral artery occlusion (MCAO), causing damage to the striatum only, or involving also the parietal cortex, respectively. We found modest, transient elevation of GDNF mRNA in the dentate granule cell layer. In addition, the number of GDNF mRNA-expressing cells increased in the cortex and striatum after 2 h or 30 min of MCAO, respectively. No changes of neurturin or persephin mRNA expression were detected. Both c-Ret and GFRalpha1 mRNA levels were markedly increased in the ipsilateral cortex outside the ischemic lesion at 6-24 h after the 2-h insult, whereas GFRalpha2 expression was decreased in cortical areas both within and outside the lesion. Similar increases of c-Ret and GFRalpha1 mRNA levels were detected in the striatum, and to a lesser extent, in the cortex following 30 min of MCAO. The 2-h insult also gave rise to transient increases of c-Ret and GFRalpha1 mRNA in hippocampal subregions. Thirty minutes and 2 h of MCAO lead to elevated c-Ret, and GFRalpha1 or GFRalpha2 mRNA expression, respectively, in the ipsilateral ventroposterolateral thalamic nucleus. Both insults induced increased levels of GFRalpha1 mRNA in the subventricular zone of the lateral ventricle. Our data indicate major changes of GDNF family signaling in the forebrain, regulated mainly through altered receptor levels, in the post-ischemic phase. These changes could enhance neuroprotective and neuroregenerative responses both to endogenous and exogenous GDNF ligands.
Collapse
Affiliation(s)
- A Arvidsson
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A11, University Hospital, SE-221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Yamagata K, Tagami M, Ikeda K, Tsumagari S, Yamori Y, Nara Y. Differential regulation of glial cell line-derived neurotrophic factor (GDNF) mRNA expression during hypoxia and reoxygenation in astrocytes isolated from stroke-prone spontaneously hypertensive rats. Glia 2002; 37:1-7. [PMID: 11746778 DOI: 10.1002/glia.10003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) plays several important roles in the survival and recovery of mature neurons during ischemia. We examined the possibility that the expression of GDNF mRNA and the release of GDNF protein are regulated differentially in cultured astrocytes from the stroke-prone spontaneously hypertensive rat (SHRSP) compared with those from Wistar Kyoto rats (WKY) during hypoxia and reoxygenation (H/R) and after exposure to glutamate and hydrogen peroxide (H(2)O(2)). The mRNA expression was quantitated by reverse transcription-polymerase chain reaction (RT-PCR) based on the fluorescent TaqMan methodology. A new instrument capable of measuring fluorescence in real-time was used to quantify gene amplification in astrocytes. GDNF protein was investigated by enzyme-linked immunosorbent assay (ELISA). GDNF mRNA expression and GDNF protein release at normoxia were greater in SHRSP than in WKY astrocytes. During H/R, however, the mRNA expression and protein release tended to be reduced in SHRSP compared with WKY. Glutamate and H(2)O(2) induced the expression of GDNF mRNA and the release of GDNF protein in both WKY and SHRSP in a dose-dependent manner. Levels of GDNF mRNA and protein in SHRSP were significantly lower than in WKY. These findings indicate that GDNF production in SHRSP astrocytes was low in response to H/R, glutamate, and H(2)O(2), compared with that observed in WKY. We conclude that the attenuated production of GDNF in astrocytes is involved in neuronal vulnerability in SHRSP during H/R, as GDNF production, which is stimulated by glutamate and H(2)O(2), is closely related to the protective effect against H/R-mediated neurotoxicity.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Division of Life Science, Graduate School of Integrated Science and Art, University of East Asia, Yamaguchi, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Miyazaki H, Nagashima K, Okuma Y, Nomura Y. Expression of glial cell line-derived neurotrophic factor induced by transient forebrain ischemia in rats. Brain Res 2001; 922:165-72. [PMID: 11743946 DOI: 10.1016/s0006-8993(01)03013-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study examined the expression of glial cell line-derived neurotrophic factor (GDNF) mRNA and the cellular localization of GDNF production in rats subjected to transient forebrain ischemia induced by four-vessel occlusion. Transient forebrain ischemia induced GDNF mRNA expression in the hippocampus from 3 h to 3 days after the ischemic episode, with peak expression at 6 h. The GDNF mRNA increase in the cerebral cortex was similar to that in the hippocampus, whereas no increase in GDNF mRNA was observed in the striatum and brainstem. Western blot analysis showed that GDNF in the hippocampal CA1 region was increased slightly from 3 to 24 h after the ischemia, and then subsequently declined to below the baseline level. In the hippocampus, GDNF was evenly produced in pyramidal neurons of both sham-operated rats and normal rats, as determined by immunohistochemistry. Interestingly, we found that ischemia-induced reactive astrocytes, as well as surviving neurons, produced GDNF in 3-7 days after the ischemia. On the other hand, in other regions, such as the cerebral cortex, striatum, and brainstem, there was no change in GDNF-positive cells secondary to ischemia. These findings suggest that expression of GDNF mRNA is regulated in part via ischemia-induced neuronal degeneration. They also suggest that ischemia-induced reactive astrocytes may produce GDNF to protect against neuronal death. Therefore, GDNF may play an important role in ischemia-induced neuronal death in the brain.
Collapse
Affiliation(s)
- H Miyazaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
47
|
Nomura Y. [Cellular and molecular pharmacological studies on membrane receptor-signaling and stress-responses in the brain]. YAKUGAKU ZASSHI 2001; 121:899-908. [PMID: 11766404 DOI: 10.1248/yakushi.121.899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies on the cellular and molecular mechanism of neurotransmitter receptor-signaling and of neuronal and glial cell responses to stresses seem to be important to elucidate the action mechanism of centrally-acting drugs and to develop novel therapeutics against several diseases in the brain. The present review shows our findings with regard to the membrane receptor-signaling mechanism including serotonin, noradrenaline, glutamate receptors, ion channels, G-proteins, protein kinases and drug actions in Xenopus oocytes injected with rat brain mRNA, NG108-15 cells and brain membranes. Regarding the results of studies on the inter- and intra-cellular mechanism of neurons and glial cells against cerebral ischemia/hypoxia, we review the involvement of a transcription factor NF-kappa B in LPS-elicited inducible NO synthase (iNOS) expression in rat astroglial cells. Then we describe possible involvement of: 1) ADP-ribosylation/nitrosylation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 2) decrease in mitochondrial membrane potential, release of caspase-3 from mitochondria and degradation of the inhibitor of caspase-activated DNase by activated caspase in NO-induced neuronal apoptosis. We observed that hypoxia results in expression of a molecular chaperon such as protein disulfide isomerase (PDI) and HSP70 in astroglial cells. Our recent findings indicate that overexpression of PDI in the rat hippocampus (in vivo) and in neuroblastoma SK-N-MC cells (in vitro) significantly suppress the hypoxia-induced neuronal death. From physiological/pathophysiological and pharmacological aspects, we review the importance of studies on the cellular and molecular mechanism of membrane receptor-signaling and of stress-responses in the brain to identify functional roles of neuro-glial- as well as neuro-neuronal interaction in the brain.
Collapse
Affiliation(s)
- Y Nomura
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
48
|
Miyata K, Omori N, Uchino H, Yamaguchi T, Isshiki A, Shibasaki F. Involvement of the brain-derived neurotrophic factor/TrkB pathway in neuroprotecive effect of cyclosporin A in forebrain ischemia. Neuroscience 2001; 105:571-8. [PMID: 11516824 DOI: 10.1016/s0306-4522(01)00225-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent studies have shown that cyclosporin A, a specific antagonist of calcineurin, a phosphatase, ameliorates neuronal cell death in the CA1 sector of the hippocampus after forebrain ischemia in animal models. The mechanism of this neuroprotective effect, however, has not yet been established. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophins, is one of the potent survival and developmental factors whose expression is regulated by cyclic AMP-response element-binding protein (CREB). Activation of CREB is dependent on its phosphorylation at Ser(133), and calcineurin has been reported to dephosphorylate CREB via protein phosphatase 1. Based on these observations, we attempted to investigate how cyclosporin A treatment would affect the changes of phosphorylated CREB (pCREB), BDNF and its receptor tyrosine kinase B (TrkB) after forebrain ischemia in rats. Phosphorylation of CREB was kept augmented throughout the time course examined in cyclosporin A-treated animals, while it ceased without cyclosporin A. Reverse transcription-polymerase chain reaction revealed prolonged maintenance of BDNF mRNA expression in the CA1 sector of cyclosporin A-treated animals. The protein expression of BDNF and TrkB appeared to be up-regulated in cyclosporin A-treated animals, whereas it was transiently up-regulated but decreased to the marginal level of expression without cyclosporin A.From these results we suggest that cyclosporin A induces pCREB by an inhibition of calcineurin, resulting in the induction of BDNF. The mechanisms by which cyclosporin A protects the CA1 region from neuronal cell death in forebrain ischemia may involve the interaction of pCREB, BDNF and TrkB.
Collapse
Affiliation(s)
- K Miyata
- Department of Anesthesiology, Tokyo Medical University, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Hisaoka K, Nishida A, Koda T, Miyata M, Zensho H, Morinobu S, Ohta M, Yamawaki S. Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. J Neurochem 2001; 79:25-34. [PMID: 11595754 DOI: 10.1046/j.1471-4159.2001.00531.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Modulation of neurotrophic factors to protect neurons from damage is proposed as a novel mechanism for the action of antidepressants. However, the effect of antidepressants on modulation of glial cell line-derived neurotrophic factor (GDNF), which has potent and widespread effects, remains unknown. Here, we demonstrated that long-term use of antidepressant treatment significantly increased GDNF mRNA expression and GDNF release in time- and concentration-dependent manners in rat C6 glioblastoma cells. Amitriptyline treatment also increased GDNF mRNA expression in rat astrocytes. GDNF release continued for 24 h following withdrawal of amitriptyline. Furthermore, following treatment with antidepressants belonging to several different classes (amitriptyline, clomipramine, mianserin, fluoxetine and paroxetine) significantly increased GDNF release, but which did not occur after treatment with non-antidepressant psychotropic drugs (haloperidol, diazepam and diphenhydramine). Amitriptyline-induced GDNF release was inhibited by U0126 (10 microM), a mitogen-activated protein kinase (MAPK)-extracellular signal-related kinase (ERK) kinase (MEK) inhibitor, but was not inhibited by H-89 (1 microM), a protein kinase A inhibitor, calphostin C (100 nM), a protein kinase C inhibitor and PD 169316 (10 microM), a p38 mitogen-activated protein kinase inhibitor. These results suggested that amitriptyline-induced GDNF synthesis and release occurred at the transcriptional level, and may be regulated by MEK/MAPK signalling. The enhanced and prolonged induction of GDNF by antidepressants could promote neuronal survival, and protect neurons from the damaging effects of stress. This may contribute to explain therapeutic action of antidepressants and suggest new strategies of pharmacological intervention.
Collapse
Affiliation(s)
- K Hisaoka
- Department of Psychiatry and Neuroscience, Institute of Clinical Research, National Kure Medical Center, Kure, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim BT, Rao VL, Sailor KA, Bowen KK, Dempsey RJ. Protective effects of glial cell line-derived neurotrophic factor on hippocampal neurons after traumatic brain injury in rats. J Neurosurg 2001; 95:674-9. [PMID: 11596962 DOI: 10.3171/jns.2001.95.4.0674] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The purpose of this study was to evaluate whether glial cell line-derived neurotrophic factor (GDNF) can protect against hippocampal neuronal death after traumatic brain injury (TBI). METHODS Male Sprague-Dawley rats were subjected to moderate TBI with a controlled cortical impact device while in a state of halothane-induced anesthesia. Then, GDNF or artificial cerebrospinal fluid ([aCSF]; vehicle) was infused into the frontal horn of the left lateral ventricle. In eight brain-injured and eight sham-operated rats, GDNF was infused continuously for 7 days (200 ng/day intracerebroventricularly at a rate of 8.35 ng/0.5 microl/hour). An equal volume of vehicle was infused at the same rate into the remaining eight brain-injured and eight sham-operated rats. Seven days post-injury, all rats were killed. Their brains were sectioned and stained with cresyl violet, and the hippocampal neuronal loss was evaluated in the CA2 and CA3 regions with the aid of microscopy. A parallel set of sections from each brain was subjected to immunoreaction with antibodies against glial fibrillary acidic protein (GFAP; astroglia marker). In the aCSF-treated group, TBI resulted in a significant neuronal loss in the CA2 (60%, p < 0.05) and CA3 regions (68%, p < 0.05) compared with the sham-operated control animals. Compared with control rats infused with aCSF, GDNF infusion significantly decreased the TBI-induced neuronal loss in both the CA2 (58%, p < 0.05) and CA3 regions (51%, p < 0.05). There was no difference in the number of GFAP-positive astroglial cells in the GDNF-infused rats in the TBI and sham-operated groups compared with the respective vehicle-treated groups. CONCLUSIONS The authors found that GDNF treatment following TBI is neuroprotective.
Collapse
Affiliation(s)
- B T Kim
- Department of Neurological Surgery and Cardiovascular Research Center, University of Wisconsin-Madison, 53792, USA
| | | | | | | | | |
Collapse
|