1
|
Sokolowska I, Ngounou Wetie AG, Woods AG, Jayathirtha M, Darie CC. Role of Mass Spectrometry in Investigating a Novel Protein: The Example of Tumor Differentiation Factor (TDF). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:417-433. [PMID: 31347062 DOI: 10.1007/978-3-030-15950-4_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Better understanding of central nervous system (CNS) molecules can include the identification of new molecules and their receptor systems. Discovery of novel proteins and elucidation of receptor targets can be accomplished using mass spectrometry (MS). We describe a case study of such a molecule, which our lab has studied using MS in combination with other protein identification techniques, such as immunohistochemistry and Western Blotting. This molecule is known as tumor differentiation factor (TDF), a recently-found protein secreted by the pituitary into the blood. TDF mRNA has been detected in brain; not heart, placenta, lung, liver, skeletal muscle, or pancreas. Currently TDF has an unclear function, and prior to our studies, its localization was only minimally understood, with no understanding of receptor targets. We investigated the distribution of TDF in the rat brain using immunohistochemistry (IHC) and immunofluorescence (IF). TDF protein was detected in pituitary and most other brain regions, in specific neurons but not astrocytes. We found TDF immunoreactivity in cultured neuroblastoma, not astrocytoma. These data suggest that TDF is localized to neurons, not to astrocytes. Our group also conducted studies to identify the TDF receptor (TDF-R). Using LC-MS/MS and Western blotting, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) as potential TDF-R candidates in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cells fibroblasts or fibroblast-like cells. These studies have combined directed protein identification techniques with mass spectrometry to increase our understanding of a novel protein that may have distinct actions as a hormone in the body and as a growth factor in the brain.
Collapse
Affiliation(s)
- Izabela Sokolowska
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA.
| | - Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Alisa G Woods
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
2
|
Woods AG, Wormwood KL, Iosifescu DV, Murrough J, Darie CC. Protein Biomarkers in Major Depressive Disorder: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:585-600. [DOI: 10.1007/978-3-030-15950-4_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Semo M, Haamedi N, Stevanato L, Carter D, Brooke G, Young M, Coffey P, Sinden J, Patel S, Vugler A. Efficacy and Safety of Human Retinal Progenitor Cells. Transl Vis Sci Technol 2016; 5:6. [PMID: 27486556 PMCID: PMC4959814 DOI: 10.1167/tvst.5.4.6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
PURPOSE We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. METHODS Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. RESULTS The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. CONCLUSIONS Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. TRANSLATIONAL RELEVANCE Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies.
Collapse
Affiliation(s)
- Ma'ayan Semo
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology, London, UK
| | - Nasrin Haamedi
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology, London, UK
| | | | - David Carter
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology, London, UK
| | | | - Michael Young
- Massachusetts Eye and Ear, Schepens Eye Research Institute, Boston, MA, USA
| | - Peter Coffey
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology, London, UK
| | | | | | - Anthony Vugler
- Department of Ocular Biology and Therapeutics, UCL-Institute of Ophthalmology, London, UK
| |
Collapse
|
4
|
Herrera AJ, Espinosa-Oliva AM, Carrillo-Jiménez A, Oliva-Martín MJ, García-Revilla J, García-Quintanilla A, de Pablos RM, Venero JL. Relevance of chronic stress and the two faces of microglia in Parkinson's disease. Front Cell Neurosci 2015; 9:312. [PMID: 26321913 PMCID: PMC4536370 DOI: 10.3389/fncel.2015.00312] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/28/2015] [Indexed: 12/26/2022] Open
Abstract
This review is aimed to highlight the importance of stress and glucocorticoids (GCs) in modulating the inflammatory response of brain microglia and hence its potential involvement in Parkinson’s disease (PD). The role of inflammation in PD has been reviewed extensively in the literature and it is supposed to play a key role in the course of the disease. Historically, GCs have been strongly associated as anti-inflammatory hormones. However, accumulating evidence from the peripheral and central nervous system have clearly revealed that, under specific conditions, GCs may promote brain inflammation including pro-inflammatory activation of microglia. We have summarized relevant data linking PD, neuroinflamamation and chronic stress. The timing and duration of stress response may be critical for delineating an immune response in the brain thus probably explain the dual role of GCs and/or chronic stress in different animal models of PD.
Collapse
Affiliation(s)
- Antonio J Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Ana M Espinosa-Oliva
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Alejandro Carrillo-Jiménez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - María J Oliva-Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Juan García-Revilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Alberto García-Quintanilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Rocío M de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - José L Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| |
Collapse
|
5
|
Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets 2014; 14:1262-76. [PMID: 24020974 PMCID: PMC3788324 DOI: 10.2174/13894501113149990208] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022]
Abstract
Traditionally, microglia have been considered to act as macrophages of the central nervous system. While this concept still remains true it is also becoming increasingly apparent that microglia are involved in a host of non-immunological activities, such as monitoring synaptic function and maintaining synaptic integrity. It has also become apparent that microglia are exquisitely sensitive to perturbation by environmental challenges. The aim of the current review is to critically examine the now substantial literature that has developed around the ability of acute, sub-chronic and chronic stressors to alter microglial structure and function. The vast majority of studies have demonstrated that stress promotes significant structural remodelling of microglia, and can enhance the release of pro-inflammatory cytokines from microglia. Mechanistically, many of these effects appear to be driven by traditional stress-linked signalling molecules, namely corticosterone and norepinephrine. The specific effects of these signalling molecules are, however, complex as they can exert both inhibitory and suppressive effects on microglia depending upon the duration and intensity of exposure. Importantly, research has now shown that these stress-induced microglial alterations, rather than being epiphenomena, have broader behavioural implications, with the available evidence implicating microglia in directly regulating certain aspects of cognitive function and emotional regulation.
Collapse
Affiliation(s)
- Frederick Rohan Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | |
Collapse
|
6
|
Woods AG, Sokolowska I, Deinhardt K, Darie CC. Investigating a Novel Protein Using Mass Spectrometry: The Example of Tumor Differentiation Factor (TDF). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:509-23. [DOI: 10.1007/978-3-319-06068-2_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Biomarkers in major depressive disorder: the role of mass spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:545-60. [PMID: 24952202 DOI: 10.1007/978-3-319-06068-2_27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is common. Despite numerous available treatments, many individuals fail to improve clinically. MDD continues to be diagnosed exclusively via behavioral rather than biological methods. Biomarkers-which include measurements of genes, proteins, and patterns of brain activity-may provide an important objective tool for the diagnosis of MDD or in the rational selection of treatments. Proteomic analysis and validation of its results as biomarkers is less explored than other areas of biomarker research in MDD. Mass spectrometry (MS) is a comprehensive, unbiased means of proteomic analysis, which can be complemented by directed protein measurements, such as Western Blotting. Prior studies have focused on MS analysis of several human biomaterials in MDD, including human post-mortem brain, cerebrospinal fluid (CSF), blood components, and urine. Further studies utilizing MS and proteomic analysis in MDD may help solidify and establish biomarkers for use in diagnosis, identification of new treatment targets, and understanding of the disorder. The ultimate goal is the validation of a biomarker or a biomarker signature that facilitates a convenient and inexpensive predictive test for depression treatment response and helps clinicians in the rational selection of next-step treatments.
Collapse
|
8
|
Identification of tumor differentiation factor (TDF) in select CNS neurons. Brain Struct Funct 2013; 219:1333-42. [DOI: 10.1007/s00429-013-0571-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
|
9
|
Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res 2012. [PMID: 23179590 DOI: 10.1007/s11064-012-0932-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The selective vulnerability of specific neuronal subpopulations to trimethyltin (TMT), an organotin compound with neurotoxicant effects selectively involving the limbic system and especially marked in the hippocampus, makes it useful to obtain in vivo models of neurodegeneration associated with behavioural alterations, such as hyperactivity and aggression, cognitive impairment as well as temporal lobe epilepsy. TMT has been widely used to study neuronal and glial factors involved in selective neuronal death, as well as the molecular mechanisms leading to hippocampal neurodegeneration (including neuroinflammation, excitotoxicity, intracellular calcium overload, mitochondrial dysfunction and oxidative stress). It also offers a valuable instrument to study the cell-cell interactions and signalling pathways that modulate injury-induced neurogenesis, including the involvement of newly generated neurons in the possible repair processes. Since TMT appears to be a useful tool to damage the brain and study the various responses to damage, this review summarises current data from in vivo and in vitro studies on neuroprotective strategies to counteract TMT-induced neuronal death, that may be useful to elucidate the role of putative candidates for translational medical research on neurodegenerative diseases.
Collapse
|
10
|
Sun YE, Peng L, Sun X, Bo J, Yang D, Zheng Y, Liu C, Zhu B, Ma Z, Gu X. Intrathecal injection of spironolactone attenuates radicular pain by inhibition of spinal microglia activation in a rat model. PLoS One 2012; 7:e39897. [PMID: 22768159 PMCID: PMC3387194 DOI: 10.1371/journal.pone.0039897] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/28/2012] [Indexed: 01/28/2023] Open
Abstract
Background Microglia might play an important role in nociceptive processing and hyperalgesia by neuroinflammatory process. Mineralocorticoid receptor (MR) expressed on microglia might play a central role in the modulation of microglia activity. However the roles of microglia and MR in radicular pain were not well understood. This study sought to investigate whether selective MR antagonist spironolactone develop antinociceptive effects on radicular pain by inhibition neuroinflammation induced by spinal microglia activation. Results Radicular pain was produced by chronic compression of the dorsal root ganglia with SURGIFLO™. The expression of microglia, interleukin beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), NR1 subunit of the NMDA receptor (t-NR1), and NR1 subunit phosphorylated at Ser896 (p-NR1) were also markedly up-regulated. Intrathecal injection of spironolactone significantly attenuated pain behaviors as well as the expression of microglia, IL-1β, TNF-α, t-NR1, and p-NR1, whereas the production of IL-6 wasn’t affected. Conclusion These results suggest that intrathecal delivery spironolactone has therapeutic effects on radicular pain in rats. Decreasing the activation of glial cells, the production of proinflammatory cytokines and down-regulating the expression and phosphorylation of NMDA receptors in the spinal dorsal horn and dorsal root ganglia are the main mechanisms contributing to its beneficial effects.
Collapse
Affiliation(s)
- Yu-e Sun
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Liangyu Peng
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Xiaofeng Sun
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Jinhua Bo
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Dong Yang
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Yaguo Zheng
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Chenglong Liu
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Beibei Zhu
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
| | - Zhengliang Ma
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
- * E-mail: (ZLM); (XPG)
| | - Xiaoping Gu
- Department of Anaesthesiology, Affiliated Drum-Tower Hospital of Medical College of Nanjing University, Nanjing, Jiangsu province, China
- * E-mail: (ZLM); (XPG)
| |
Collapse
|
11
|
Soga T, Dalpatadu SL, Wong DW, Parhar IS. Neonatal dexamethasone exposure down-regulates GnRH expression through the GnIH pathway in female mice. Neuroscience 2012; 218:56-64. [PMID: 22626647 DOI: 10.1016/j.neuroscience.2012.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 04/12/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Synthetic glucocorticoid (dexamethasone; DEX) treatment during the neonatal stage is known to affect reproductive activity. However, it is still unknown whether neonatal stress activates gonadotropin-inhibitory hormone (GnIH) synthesizing cells in the dorsomedial hypothalamus (DMH), which could have pronounced suppressive action on gonadotropin-releasing hormone (GnRH) neurons, leading to delayed pubertal onset. This study was designed to determine the effect of neonatal DEX (1.0mg/kg) exposure on reproductive maturation. Therefore, GnRH, GnIH and GnIH receptors, G-protein coupled receptors (GPR) 147 and GPR74 mRNA levels were measured using quantitative real-time PCR in female mice at postnatal (P) days 21, 30 and in estrus stage mice, aged between P45-50. DEX-treated females of P45-50 had delayed vaginal opening, and irregular estrus cycles and lower GnRH expression in the preoptic area (POA) when compared with age-matched controls. The expression levels of GPR147 and GPR74 mRNA in the POA increased significantly in DEX-treated female mice of P21 and P45-50 compared to controls. In addition, GPR147 and GPR74 mRNA expression was observed in laser captured single GnRH neurons in the POA. Although there was no difference in GnIH mRNA expression in the DMH, immunostained GnIH cell numbers in the DMH increased in DEX-treated females of P45-50 compared to controls. Taken together, the results show that the delayed pubertal onset could be due to the inhibition of GnRH gene expression after neonatal DEX treatment, which may be accounted for in part by the inhibitory signals from the up-regulated GnIH-GnIH receptor pathway to the POA.
Collapse
Affiliation(s)
- T Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway Campus, 46150, Malaysia.
| | | | | | | |
Collapse
|
12
|
Woods AG, Sokolowska I, Yakubu R, Butkiewicz M, LaFleur M, Talbot C, Darie CC. Blue Native PAGE and Mass Spectrometry as an Approach for the Investigation of Stable and Transient Protein-Protein Interactions. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1083.ch012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Alisa G. Woods
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Izabela Sokolowska
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Rama Yakubu
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Melissa Butkiewicz
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Martin LaFleur
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Christopher Talbot
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Costel C. Darie
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| |
Collapse
|
13
|
Jauregui-Huerta F, Ruvalcaba-Delgadillo Y, Gonzalez-Castañeda R, Garcia-Estrada J, Gonzalez-Perez O, Luquin S. Responses of glial cells to stress and glucocorticoids. ACTA ACUST UNITED AC 2010; 6:195-204. [PMID: 20729991 DOI: 10.2174/157339510791823790] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A growing body of evidence suggests that glial cells are involved in practically all aspects of neural function. Glial cells regulate the homeostasis of the brain, influence the development of the nervous system, modulate synaptic activity, and carry out the immune response inside the brain. In addition, they play an important role in the restoration of the nervous system after damage, and they also participate in various neurodegenerative disorders. In a similar way, the importance of stress and glucocorticoids (GCs) on brain function is being increasingly recognized. Within the brain, stress hormones target both neurons and glial cells. Through their actions on these cells, glucocorticoids exert organizational functions on various processes of the developing brain and contribute to neuronal plasticity in the adult brain. Moreover, stress and glucocorticoids have become especially attractive in the study of a number of neurodegenerative disorders. However, studies on the mechanisms behind glucocorticoid-induced regulation of brain function have been classically focused on their effects on neurons. In this review, we start by describing the main functions of glial cells and then proceed to present data highlighting the effects of stress and GCs on brain function. We conclude the review by presenting recent evidence linking stress and glucocorticoids to glial cell function.
Collapse
Affiliation(s)
- F Jauregui-Huerta
- Microscopía de Alta Resolución. Departamento de Neurociencias. Universidad de Guadalajara
| | | | | | | | | | | |
Collapse
|
14
|
Protracted exposure to supraphysiological levels of corticosterone does not cause neuronal loss or damage and protects against kainic acid-induced neurotoxicity in the hippocampus of C57BL/6J mice. Neurotoxicology 2009; 30:965-76. [PMID: 19616023 DOI: 10.1016/j.neuro.2009.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/30/2009] [Accepted: 07/08/2009] [Indexed: 12/18/2022]
Abstract
High levels of stress or stress hormones have been reported to exacerbate a variety of human disorders of the cardiovascular, gastrointestinal, immune, reproductive, and nervous systems. In rats, high glucocorticoid levels have been reported to cause neuronal death and injury as well as enhance susceptibility to neurotoxic agents and attenuate repair mechanisms; however, the impact of high dosages of CORT in mice has not been fully evaluated. We investigated the ability of supraphysiological levels of CORT to cause hippocampal neuronal death, and to modulate the neurotoxicity of kainic acid (KA) in male C57BL/6J mice. Timed-release CORT pellets (10, 35, 100 mg/21 d) were implanted subcutaneously in the back of mice, and the sustained release of glucocorticoid caused involution of the thymus and decreased the weight of the spleen. Kainic acid caused stage 1 seizures that were unaffected by CORT; however, steroid treatment decreased KA-associated mortality. Little neuronal damage was detected by the cupric-silver neurodegeneration stain. Neurotoxicity caused by an intraperitoneal injection of 25mg/kg KA was attenuated by seven days of CORT pre-treatment. The KA-induced increase in cupric-silver staining, reactive gliosis, microglial activation, and blood-brain barrier disruption was attenuated indicating neuroprotection. Our data indicate supraphysiological levels of CORT do not cause neuronal death or injury in hippocampus of C57BL/6J mice and provide neuroprotection against KA-induced neural damage.
Collapse
|
15
|
Deller T, Del Turco D, Rappert A, Bechmann I. Structural reorganization of the dentate gyrus following entorhinal denervation: species differences between rat and mouse. PROGRESS IN BRAIN RESEARCH 2008; 163:501-28. [PMID: 17765735 DOI: 10.1016/s0079-6123(07)63027-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deafferentation of the dentate gyrus by unilateral entorhinal cortex lesion or unilateral perforant pathway transection is a classical model to study the response of the central nervous system (CNS) to denervation. This model has been extensively characterized in the rat to clarify mechanisms underlying denervation-induced gliosis, transneuronal degeneration of denervated neurons, and collateral sprouting of surviving axons. As a result, candidate molecules have been identified which could regulate these changes, but a causal link between these molecules and the postlesional changes has not yet been demonstrated. To this end, mutant mice are currently studied by many groups. A tacit assumption is that data from the rat can be generalized to the mouse, and fundamental species differences in hippocampal architecture and the fiber systems involved in sprouting are often ignored. In this review, we will (1) provide an overview of some of the basics and technical aspects of the entorhinal denervation model, (2) identify anatomical species differences between rats and mice and will point out their relevance for the axonal reorganization process, (3) describe glial and local inflammatory changes, (4) consider transneuronal changes of denervated dentate neurons and the potential role of reactive glia in this context, and (5) summarize the differences in the reorganization of the dentate gyrus between the two species. Finally, we will discuss the use of the entorhinal denervation model in mutant mice.
Collapse
Affiliation(s)
- Thomas Deller
- Institute of Clinical Neuroanatomy, J.W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
16
|
Zhang ZY, Zhang Z, Fauser U, Schluesener HJ. Global hypomethylation defines a sub-population of reactive microglia/macrophages in experimental traumatic brain injury. Neurosci Lett 2007; 429:1-6. [DOI: 10.1016/j.neulet.2007.09.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/11/2007] [Accepted: 09/21/2007] [Indexed: 01/05/2023]
|
17
|
Brown J, Hacker H, Schuschereba ST, Zwick H, Lund DJ, Stuck BE. Steroidal and Nonsteroidal Antiinflammatory Medications Can Improve Photoreceptor Survival after Laser Retinal Photocoagulation. Ophthalmology 2007; 114:1876-83. [PMID: 17908593 DOI: 10.1016/j.ophtha.2007.04.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 04/27/2007] [Accepted: 04/27/2007] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To determine whether methylprednisolone or indomethacin can enhance photoreceptor survival after laser retinal injury in an animal model. DESIGN Experimental study. PARTICIPANTS Twenty rhesus monkeys. METHODS Twenty rhesus monkeys (Macaca mulatta) received a grid of argon green (514.5 nm, 10 ms) laser lesions in the macula of the right eye and a grid of neodymium:yttrium-aluminum-garnet (Nd:YAG; 1064 nm, 10 ns) lesions in the macula of the left eye, followed by randomization to 2 weeks of treatment in 1 of 4 treatment groups: high-dose methylprednisolone, moderate-dose methylprednisolone, indomethacin, or control. The lesions were assessed at day 1, day 14, 2 months, and 4 months. The authors were masked to the treatment group. This report discusses the histologic results of ocular tissue harvested at 4 months. MAIN OUTCOME MEASURE The number of surviving photoreceptor cell nuclei within each lesion was compared with the number of photoreceptor nuclei in surrounding unaffected retina. The proportion of surviving photoreceptor nuclei was compared between each treatment group. RESULTS Argon retinal lesions in the high-dose steroid treatment group and the indomethacin treatment group demonstrated improved photoreceptor survival compared with the control group (P = 0.004). Hemorrhagic Nd:YAG lesions demonstrated improved survivability with indomethacin treatment compared with controls (P = 0.003). In nonhemorrhagic Nd:YAG laser retinal lesions, the lesions treated with moderate-dose steroids demonstrated improved photoreceptor survival compared with the control group (P = 0.004). CONCLUSIONS Based on histologic samples of retinal laser lesions 4 months after injury, treatment with indomethacin resulted in improved photoreceptor survival in argon laser lesions and hemorrhagic Nd:YAG laser lesions. Treatment with systemic methylprednisolone demonstrated improved photoreceptor survival in argon retinal lesions and in nonhemorrhagic Nd:YAG lesions.
Collapse
Affiliation(s)
- Jeremiah Brown
- United States Army Medical Research Detachment, Walter Reed Army Institute of Research, Brooks Air Force Base, Texas 78235, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Nair A, Hunzeker J, Bonneau RH. Modulation of microglia and CD8(+) T cell activation during the development of stress-induced herpes simplex virus type-1 encephalitis. Brain Behav Immun 2007; 21:791-806. [PMID: 17349776 DOI: 10.1016/j.bbi.2007.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/20/2006] [Accepted: 01/08/2007] [Indexed: 01/07/2023] Open
Abstract
The central nervous system (CNS) has been shown to be vulnerable to a variety of insults in animals exposed to glucocorticoids. For example, psychological stress, a known inducer of glucocorticoid production, enhances the susceptibility of mice to herpes simplex virus type-1 (HSV-1) infection and results in the development of HSV-1 encephalitis (HSE). To determine the immune mechanisms by which stress promotes the development of HSE, we examined the role of the glucocorticoid receptor (GR) and the N-methyl-d-aspartate (NMDA) receptor in the development of HSE. Our findings demonstrate that blockade of either the GR or the NMDA receptor enhances survival following HSV-1 infection in stressed mice to levels similar to non-stressed mice. Subsequent studies determined the effect of GR and NMDA receptor blockade on immune function by specifically examining both microglia and CD8(+) T cell activation. Stress inhibited the expression of MHC class I by microglia and other brain-derived antigen presenting cells (CD45(hi)) independent of either the glucocorticoid receptor or the NMDA receptor, suggesting that stress-induced suppression of MHC class I expression in the brain does not affect survival during HSE. Blockade of the NMDA receptor, however, diminished HSV-1-induced increases in class I expression by CD45(hi) cells, suggesting that blockade of the NMDA receptor may limit CNS inflammation. Also, while CD8(+) T cell activation and function in the brain were not affected by stress, the number of CD8(+) T cells in the superficial cervical lymph nodes (SCLN) was decreased in stressed mice via GR-mediated mechanisms. These findings indicate that stress-induced hypocellularity is mediated by the GR while NMDA receptor activation is responsible for enhancing CNS inflammation. The combined effects of GR-mediated hypocellularity of the SCLN and NMDA receptor-mediated CNS inflammation during stress promote the development of HSE.
Collapse
MESH Headings
- Animals
- Brain/cytology
- Brain/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cytokines/metabolism
- Disease Models, Animal
- Encephalitis, Herpes Simplex/immunology
- Encephalitis, Herpes Simplex/psychology
- Encephalitis, Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Major Histocompatibility Complex/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Microglia/immunology
- Microglia/metabolism
- Microglia/virology
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Stress, Psychological/complications
- Stress, Psychological/immunology
- Stress, Psychological/virology
Collapse
Affiliation(s)
- Aji Nair
- Graduate Program in Neuroscience, The Pennsylvania State University College of Medicine, Milton S Hershey Medical Center, Hershey, PA 17033, USA
| | | | | |
Collapse
|
19
|
Microglial Activation is Required for Aβ Clearance After Intracranial Injection of Lipopolysaccharide in APP Transgenic Mice. J Neuroimmune Pharmacol 2007; 2:222-31. [DOI: 10.1007/s11481-007-9069-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
|
20
|
Abstract
Hormonal and locally produced steroids act in the nervous system as neuroendocrine regulators, as trophic factors and as neuromodulators and have a major impact on neural development and function. Glial cells play a prominent role in the local production of steroids and in the mediation of steroid effects on neurons and other glial cells. In this review, we examine the role of glia in the synthesis and metabolism of steroids and the functional implications of glial steroidogenesis. We analyze the mechanisms of steroid signaling on glia, including the role of nuclear receptors and the mechanisms of membrane and cytoplasmic signaling mediated by changes in intracellular calcium levels and activation of signaling kinases. Effects of steroids on functional parameters of glia, such as proliferation, myelin formation, metabolism, cytoskeletal reorganization, and gliosis are also reviewed, as well as the implications of steroid actions on glia for the regulation of synaptic function and connectivity, the regulation of neuroendocrine events, and the response of neural tissue to injury.
Collapse
|
21
|
Nair A, Bonneau RH. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol 2005; 171:72-85. [PMID: 16278020 DOI: 10.1016/j.jneuroim.2005.09.012] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 09/21/2005] [Indexed: 11/28/2022]
Abstract
The immunosuppressive nature of glucocorticoids has been well documented both in vitro and in vivo. This glucocorticoid-mediated immunosuppression has also been observed in immune cells within the central nervous system (CNS). For example, microglia have previously been shown to exhibit decreased proliferation, cytokine production, and antigen presentation upon treatment with glucocorticoids in vitro. Despite these in vitro findings, the impact of glucocorticoids on microglia function in vivo has not been fully investigated. To determine the interaction between glucocorticoids and microglia within the CNS, we used a restraint model of psychological stress to elevate corticosterone levels in mice. Quantification of microglia from stressed mice indicated that four sessions of stress induced the proliferation of microglia. This proliferation was a function of corticosterone-induced activation of the N-methyl-D-aspartate (NMDA) receptor within the CNS since blockade of corticosterone synthesis, the glucocorticoid receptor, or the NMDA receptor each prevented stress-induced increases in microglia number. In addition, the NMDA receptor antagonist MK-801 prevented increases in microglia following exogenous corticosterone administration to non-stressed mice. We conclude that activation of the NMDA receptor and subsequent microglia proliferation is a downstream effect of elevated corticosterone levels. These findings demonstrate that elevated levels of glucocorticoids are able to activate microglia in vivo and suggest that stress is able to induce a pro-inflammatory response within the CNS. A pro-inflammatory microglia response may be a contributing factor in the development of various stress-induced inflammatory conditions in the CNS.
Collapse
Affiliation(s)
- Aji Nair
- Graduate Program in Neuroscience, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | |
Collapse
|
22
|
Poulsen FR, Blaabjerg M, Montero M, Zimmer J. Glutamate receptor antagonists and growth factors modulate dentate granule cell neurogenesis in organotypic, rat hippocampal slice cultures. Brain Res 2005; 1051:35-49. [PMID: 15993864 DOI: 10.1016/j.brainres.2005.05.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 05/19/2005] [Accepted: 05/22/2005] [Indexed: 12/01/2022]
Abstract
Generation of dentate granule cells and its modulation by glutamate receptor antagonists, growth factors and pilocarpine-induced seizure-like activity was investigated in rat hippocampal slice cultures derived from 1-week-old rats and grown for 2 weeks. Focussing on the dentate granule cell layer facing CA1 and the immediate subgranular zone, exposure for 3 days to the NMDA receptor blocking agents MK-801 (10 microM) or APV (25 microM) in the culture medium, increased the number of TOAD-64/Ulip/CRMP-4 (TUC-4)-positive cells as counted in the slice cultures at the end of the 3-day treatment period. Exposure to IGF-I (200 ng/ml) and EGF (20 ng/ml) also increased the number of TUC-4-positive cells. Combining APV with IGF-I/EGF had an additive effect. Similar results were obtained by 3 days treatment with the AMPA receptor antagonist CNQX (25 microM). Surprisingly, addition of 5 mM pilocarpine reduced the number of TUC-4-positive cells, just as combining pilocarpine with the neurogenesis-stimulating compounds, prevented or reduced the increase of TUC-4-positive cells. None of the treatments were found to induce dentate granule cell death within the observed period. Labeling of dividing cells by adding 5-bromo-2-deoxyuridine (BrdU) to the culture medium did not result in cells double-labeled with BrdU and TUC-4. The induced increase in TUC-4-positive cells therefore represent neuronal differentiation of existing neural precursor cells when investigated at the 3-day time point. We conclude that 3 days treatment of 2-week-old hippocampal slice cultures with IGF-I and EGF and NMDA and AMPA glutamate receptor antagonists increase granule cell neurogenesis from preexisting neural precursors.
Collapse
Affiliation(s)
- Frantz Rom Poulsen
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winslowparken 21, DK-5000 Odense C, Denmark.
| | | | | | | |
Collapse
|
23
|
Nichols NR, Agolley D, Zieba M, Bye N. Glucocorticoid regulation of glial responses during hippocampal neurodegeneration and regeneration. ACTA ACUST UNITED AC 2005; 48:287-301. [PMID: 15850668 DOI: 10.1016/j.brainresrev.2004.12.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
Abstract
Glucocorticoids can prevent or accelerate neurodegeneration in the adult rat hippocampus. To investigate these actions of glucocorticoids, we previously cloned genes from the hippocampus. Adrenalectomy specifically increased glial fibrillary acidic protein and transforming growth factor (TGF)-beta1 mRNAs in the dentate gyrus and these effects were dependent on induced apoptosis. Corticosterone treatment prevented apoptosis, and decreased glial activation and the influx of activated microglia. Since these effects are opposite to injury and neurodegeneration, we propose that they represent adaptive actions of glucocorticoids, preventing cellular defense mechanisms from overshooting. We used adrenalectomy as a model to investigate how adult granule neurons die in vivo and the effects of neurotrophic factors in protecting against apoptosis. Neurotrophin-4/5 and TGF-beta1 protected granule neurons against adrenalectomy-induced apoptosis. Since neurogenesis is also greatly increased in the dentate gyrus following adrenalectomy, we compared the time course of birth and death with glial responses. TGF-beta1 mRNA increased before the detection of dying cells in the dentate gyrus, which was coincident with increased proliferation in the neurogenic zone. Glucocorticoids also increased Ndrg2 mRNA in glia in the neurogenic zone; Ndrg2 is a member of a novel gene family involved in neural differentiation and synapse formation. Therefore, studying the effects of glucocorticoid manipulation on the dentate gyrus is increasing our understanding of how mature neurons die by apoptosis and the role of glia in induced apoptosis and neurogenesis. Discovering how endocrine and inflammatory responses regulate neuron birth and survival is important for developing successful neuron replacement strategies to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Nancy R Nichols
- Department of Physiology, Building 13F, Monash University, Clayton, Australia.
| | | | | | | |
Collapse
|
24
|
Kurkowska-Jastrzebska I, Litwin T, Joniec I, Ciesielska A, Przybyłkowski A, Członkowski A, Członkowska A. Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson's disease. Int Immunopharmacol 2005; 4:1307-18. [PMID: 15313429 DOI: 10.1016/j.intimp.2004.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 02/05/2004] [Accepted: 05/05/2004] [Indexed: 10/26/2022]
Abstract
The pathological process of neurodegeneration, which is observed in Alzheimer's (AD) and Parkinson's (PD) diseases and that follows any insult to the central nervous system, is accompanied by an inflammatory reaction, which is believed to contribute to the pathogenesis of the diseases. In accordance to this, the anti-inflammatory agents are suggested to be effective in slowing or inhibiting the degenerative process. In this study, we investigated the influence of dexamethasone (DXM) on the nigrostriatal dopaminergic neurons damage following administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridine (MPTP). Mice C57BL received pre-treatment of the various doses of dexamethasone followed by MPTP administration (40 mg/kg). We found that dexamethasone 1 mg/kg diminished a dopamine content depletion in striatum by about 20%, when the doses of 0.1 mg/kg was ineffective and 10 mg/kg even aggravate the dopamine content decrease. In the second step of the experiment, we chose the effective doses, 1 mg/kg, and started the treatment before and 24 h after MPTP administration. We observed the same protection in both situations: less dopamine depletion and less decrease in the number of dopaminergic cells in the substantia nigra (SN). Dexamethasone also similarly decreased the inflammatory reaction (glial activation, lymphocytic infiltration) in the injured areas. Our study showed that dexamethasone may exert a neuroprotective effect towards neurons injured by MPTP, but only when used in a proper dose. The mechanism of dexamethasone protective properties may be an inhibition of inflammatory process; however, direct interactions with neurons are also possible.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Blotting, Western
- Chromatography, High Pressure Liquid
- Corpus Striatum/pathology
- Dexamethasone/administration & dosage
- Dexamethasone/pharmacology
- Dexamethasone/therapeutic use
- Disease Models, Animal
- Dopamine/metabolism
- Dose-Response Relationship, Drug
- Inflammation/pathology
- Inflammation/prevention & control
- Male
- Mice
- Mice, Inbred C57BL
- Nerve Degeneration/pathology
- Nerve Degeneration/prevention & control
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Parkinson Disease, Secondary/etiology
- Parkinson Disease, Secondary/pathology
- Parkinson Disease, Secondary/prevention & control
Collapse
|
25
|
Bi X, Baudry M, Liu J, Yao Y, Fu L, Brucher F, Lynch G. Inhibition of Geranylgeranylation Mediates the Effects of 3-Hydroxy-3-methylglutaryl (HMG)-CoA Reductase Inhibitors on Microglia. J Biol Chem 2004; 279:48238-45. [PMID: 15364922 DOI: 10.1074/jbc.m405442200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammatory responses involving microglia, the resident macrophages of the brain, are thought to contribute importantly to the progression of Alzheimer's disease (AD) and possibly other neurodegenerative disorders. The present study tested whether the mevalonate-isoprenoid biosynthesis pathway, which affects inflammation in many types of tissues, tonically regulates microglial activation. This question takes on added significance given the potential use of statins, drugs that block the rate-limiting step (3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase)) in mevalonate and cholesterol synthesis, in AD treatment. Both mevastatin and simvastatin caused a concentration- and time-dependent activation of microglia in cultured rat hippocampal slices. This response consisted of a transformation of the cells from a typical resting configuration to an amoeboid, macrophage-like morphology, increased expression of a macrophage antigen, and up-regulation of the cytokine tumor necrosis factor-alpha. Evidence for proliferation was also obtained. Statin-induced microglial changes were blocked by mevalonate but not by cholesterol, indicating that they were probably due to suppression of isoprenoid synthesis. In accord with this, the statin effects were absent in slices co-incubated with geranylgeranyl pyrophosphate, a mevalonate product that provides for the prenylation of Rho GTPases. Finally, PD98089, a compound that blocks activation of extracellularly regulated kinases1/2, suppressed statin-induced up-regulation of tumor necrosis factor-alpha but had little effect on microglial transformation. These results suggest that 1) the mevalonate-isoprenoid pathway is involved in regulating microglial morphology and in controlling expression of certain cytokines and 2) statins have the potential for enhancing a component of AD with uncertain relationships to other features of the disease.
Collapse
Affiliation(s)
- Xiaoning Bi
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, CA 92617-1695, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Guízar-Sahagún G, Grijalva I, Salgado-Ceballos H, Espitia A, Orozco S, Ibarra A, Martínez A, Franco-Bourland RE, Madrazo I. Spontaneous and induced aberrant sprouting at the site of injury is irrelevant to motor function outcome in rats with spinal cord injury. Brain Res 2004; 1013:143-51. [PMID: 15193522 DOI: 10.1016/j.brainres.2004.03.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2004] [Indexed: 11/24/2022]
Abstract
In the absence of effective regeneration following spinal cord (SC) injury, sprouting from undamaged axons has been regarded as an underlying factor for functional improvement after incomplete SC injury. The influence of spontaneous and induced axonal sprouting at the injury site on motor function was tested using rats subjected to moderate SC contusion at T9 level, using megadoses of methylprednisolone (MP) and intralesion implantation of cells from sciatic nerve (PNI). Groups using MP and PNI combined, implant vehicle, and injury with no treatment were also included. Amount of sprouting at the injury sites was significantly different depending on treatment. It was abundant in PNI-treated rats, moderate in rats treated with vehicle or nontreated, and limited in rats given MP with or without PNI (chi2, p=0.0084). This sprouting showed an aberrant course and was located in proliferating tissue at the site of injury, characterized by the presence of ependymal cells, macrophages, and myelinating and nonmyelinating Schwann cells. Functional scores and amount of spared white matter were not significantly different among groups. Correlation of the amount of sprouting vs. functional outcome or vs. amount of spared tissue was not significant, while correlation of functional outcome vs. amount of spared tissue was significant (p<0.0001). In conclusion, PNI increase aberrant sprouting at the injury site, while MP limits such sprouting, in either case without impact on motor function outcome. Missing guiding channels for sprouting axons could explain the absence of any functional improvement.
Collapse
|
27
|
Del Turco D, Woods AG, Gebhardt C, Phinney AL, Jucker M, Frotscher M, Deller T. Comparison of commissural sprouting in the mouse and rat fascia dentata after entorhinal cortex lesion. Hippocampus 2003; 13:685-99. [PMID: 12962314 DOI: 10.1002/hipo.10118] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reactive axonal sprouting occurs in the fascia dentata after entorhinal cortex lesion. This sprouting process has been described extensively in the rat, and plasticity-associated molecules have been identified that might be involved in its regulation. To demonstrate causal relationships between these candidate molecules and the axonal reorganization process, it is reasonable to analyze knockout and transgenic animals after entorhinal cortex lesion, and because gene knockouts are primarily generated in mice, it is necessary to characterize the sprouting response after entorhinal cortex lesion in this species. In the present study, Phaseolus vulgaris-leucoagglutinin (PHAL) tracing was used to analyze the commissural projection to the inner molecular layer in mice with longstanding entorhinal lesions. Because the commissural projection to the fascia dentata is neurochemically heterogeneous, PHAL tracing was combined with immunocytochemistry for calretinin, a marker for commissural/associational mossy cell axons. Using both techniques singly as well as in combination (double-immunofluorescence) at the light or electron microscopic level, it could be shown that in response to entorhinal lesion mossy cell axons leave the main commissural fiber plexus, invade the denervated middle molecular layer, and form asymmetric synapses within the denervated zone. Thus, the commissural sprouting response in mice has a considerable translaminar component. This is in contrast to the layer-specific commissural sprouting observed in rats, in which the overwhelming majority of mossy cell axons remain within their home territory. These data demonstrate an important species difference in the commissural/associational sprouting response between rats and mice that needs to be taken into account in future studies.
Collapse
Affiliation(s)
- Domenico Del Turco
- Institute of Clinical Neuroanatomy, J. W. Goethe University, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Chuai M, Ogata T, Morino T, Okumura H, Yamamoto H, Schubert P. Prostaglandin E1 analog inhibits the microglia function: suppression of lipopolysaccharide-induced nitric oxide and TNF-alpha release. J Orthop Res 2002; 20:1246-52. [PMID: 12472236 DOI: 10.1016/s0736-0266(02)00068-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Release of nitric oxide and TNF-alpha, a toxic cytokine, have been reported to accelerate neuronal damage under several pathological conditions, such as trauma or ischemia in the central nervous system. In the present study, we tested the effect of alprostadil alfadex, a prostaglandin E1 analog, on cultured microglia from the rat spinal cord. The cultured microglia were exposed to lipopolysaccharide (LPS) (100 ng/ml), an endotoxin, for 24 h, then the released nitric oxide and TNF-alpha in the culture media was analyzed. The released nitric oxide was detected by the Griess reaction and released TNF-alpha was measured using ELISA method. The LPS-induced nitric oxide release was inhibited by the simultaneous addition of alprostadil alfadex in a dose-dependent manner (0.1-100 microM). The LPS-induced TNF-alpha release was also inhibited by alprostadil alfadex addition (0.1-100 microM). The IC50 values of alprostadil alfadex on nitric oxide and TNF-alpha release were about 1 and 10 microM, respectively. These results suggest that prostaglandin E1 possibly protects spinal cord neurons from several types of neurodegenerative damage, not only via increased blood supply, but also via inhibition of pathological immunoreactions of activated microglia.
Collapse
|
29
|
Ramos-Remus C, González-Castañeda RE, González-Perez O, Luquin S, García-Estrada J. Prednisone induces cognitive dysfunction, neuronal degeneration, and reactive gliosis in rats. J Investig Med 2002; 50:458-64. [PMID: 12425433 DOI: 10.1136/jim-50-06-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND High glucocorticoid serum levels and prednisone (PDN) therapy have been associated with depression, posttraumatic stress disorder, and some types of cognitive dysfunction in humans. OBJECTIVE The aim of this study was to assess whether chronic (90 days) PDN administration produces disturbance in learning and memory retention associated with neuronal degeneration and cerebral glial changes. METHODS Male Wistar rats were studied. Controls received 0.1 ml distilled water vehicle orally. The PDN group was treated orally with 5 mg/kg/d PDN, which is equivalent to moderate doses used in clinical settings. Learning and memory retention were assessed with the Morris water maze. The index of degenerated neurons as well as the number and cytoplasmic transformation of astrocytes and microglia cells were evaluated in the prefrontal cortex and the CA1 hippocampus. RESULTS PDN-treated rats showed a significant delay of 20% in learning and memory retention as compared with controls. In addition, in the PDN group, the neuronal degeneration index was two times higher in the prefrontal cortex, and approximately 10 times higher in the CA1 hippocampus, than in control animals. The number and cytoplasmic transformation of astrocytes were also significantly higher in the PDN group than in control animals. In the PDN-treated group, isolectin-B4-labeled microglia cells were higher in the prefrontal cortex but not in the hippocampus. CONCLUSION These results suggest that chronic exposure to PDN produces learning and memory impairment, reduces neural viability, and increases glial reactivity in cerebral regions with these cognitive functions.
Collapse
Affiliation(s)
- César Ramos-Remus
- Department of Rheumatology, Centro Medico Nacional de Occidente del Instituto Mexicano del Seguro Social, Guadalajara, México.
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Bi X, Gall CM, Zhou J, Lynch G. Uptake and pathogenic effects of amyloid beta peptide 1-42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience 2002; 112:827-40. [PMID: 12088742 DOI: 10.1016/s0306-4522(02)00132-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many synapses contain two types of receptors - integrins and N-methyl-D-aspartate (NMDA) receptors - that have been implicated in peptide internalization. The present studies tested if either class is involved in the uptake of the 42-residue form of amyloid beta peptide (Abeta1-42), an event hypothesized to be of importance in the development of Alzheimer's disease. Cultured hippocampal slices were exposed to Abeta1-42 for 6 days in the presence or absence of soluble Gly-Arg-Gly-Asp-Ser-Pro, a peptide antagonist of Arg-Gly-Asp (RGD)-binding integrins, or the disintegrin echistatin. Abeta uptake, as assessed with immunocytochemistry, occurred in 42% of the slices incubated with Abeta peptide alone but in more than 80% of the slices co-treated with integrin antagonists. Uptake was also found in a broader range of hippocampal subfields in RGD-treated slices. Increased sequestration was accompanied by two characteristics of early stage Alzheimer's disease: elevated concentrations of cathepsin D immunoreactivity and activation of microglia. The selective NMDA receptor antagonist D-(-)-2-amino-5-phosphonovalerate completely blocked internalization of Abeta, up-regulation of cathepsin D, and activation of microglia. Our results identify two classes of receptors that cooperatively regulate the internalization of Abeta1-42 and support the hypothesis that characteristic pathologies of Alzheimer's disease occur once critical intraneuronal Abeta concentrations are reached.
Collapse
Affiliation(s)
- X Bi
- Psychiatry and Human Behavior, 101 Theory, Suite 250, University of California at Irvine, 92697, USA.
| | | | | | | |
Collapse
|
32
|
Sayer FT, Oudega M, Hagg T. Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord. Exp Neurol 2002; 175:282-96. [PMID: 12009779 DOI: 10.1006/exnr.2002.7901] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Spinal cord regeneration in adult mammals is limited by neurite outgrowth inhibitors and insufficient availability of outgrowth-promoting agents. Formation of degenerative swellings at the proximal ends of severed axons (terminal clubs), which starts early after injury, also may hinder recovery and their rupture may contribute to secondary spinal cord damage. We investigated whether neurotrophins would reduce these degenerative processes. Adult rats received a transection of the dorsal column sensory and corticospinal motor tracts at T9 and anterograde tracing of the axons from the sciatic nerve and motor cortex, respectively. The highest number of terminal clubs was found at 1 day and approximately half remained present until at least 28 days. A single injection immediately after injury of a mixture of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 into the lesion site, reduced the number of terminal clubs in the sensory system by approximately half at 1 and 7 days (but not 14) after the lesion. Individual or combinations of two neurotrophins were as effective, suggesting that the neurotrophins protected similar axonal populations. The injected neurotrophins did not affect degeneration of corticospinal motor axons. A 7-day continuous intrathecal infusion of neurotrophin-3 was more effective and also reduced terminal club formation of corticospinal axons by approximately 60%. Spinal tissue loss was not affected by the neurotrophin treatments, suggesting that terminal clubs are not major contributors to the pathogenesis of secondary spinal degeneration during the first two weeks. Thus, neurotrophins can reduce axonal degeneration in the spinal cord after traumatic axonal injury.
Collapse
Affiliation(s)
- Faisal T Sayer
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
33
|
Dallner C, Woods AG, Deller T, Kirsch M, Hofmann HD. CNTF and CNTF receptor alpha are constitutively expressed by astrocytes in the mouse brain. Glia 2002. [DOI: 10.1002/glia.10048] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Badie B, Schartner JM, Paul J, Bartley BA, Vorpahl J, Preston JK. Dexamethasone-induced abolition of the inflammatory response in an experimental glioma model: a flow cytometry study. J Neurosurg 2000; 93:634-9. [PMID: 11014542 DOI: 10.3171/jns.2000.93.4.0634] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Commonly used for management of cerebral edema in patients with brain tumors, steroid medications also have immunosuppressive functions. To characterize the effects of steroids on the central nervous system's response to tumors more clearly, flow cytometry was used to quantify the extent of inflammatory cell infiltration in an immunogenic rat glioma model. METHODS Freshly prepared 11-day-old intracranial C6 tumors that had been excised from dexamethasone-treated and untreated rats were labeled ex vivo with monoclonal antibodies against CD 11b/c, CD45, and CD8a antigens. The extent of microglia (CD11b/c-highly positive, CD45-slightly positive cell), macrophage (CD11b/c-highly positive, CD45-highly positive cell), lymphocyte (CD11b/c-negative, CD45-highly positive cell), and cytotoxic T-cell (CD8a-positive cell) infiltration into each rat's tumor, tumor periphery, and contralateral tumor-free hemisphere was analyzed using flow cytometry. Microglia and lymphocytes constituted a significant component of infiltrating cells in this model, comprising 23 +/- 3% and 33 +/- 5% of viable cells, respectively. Macrophages, on the other hand, accounted for only 9 +/- 1% of infiltrating cells. Treatment of rats with a 7-day course of low-dose dexamethasone (0.1 mg/kg/day) resulted in a greater than 50% inhibition of microglia (p = 0.03) and lymphocyte (p = 0.001) infiltration into tumors. Increasing the dexamethasone dose to 1 mg/kg/day further abolished lymphocyte infiltration (89% inhibition, p = 0.001) but had no additional inhibitory effect on microglia invasion. Macrophage infiltration of tumors was not inhibited at the dexamethasone doses used in this study (p = 0.42). CONCLUSIONS Flow cytometry is a valuable technique for characterizing tumor-associated inflammatory cells in gliomas. Even at low doses, dexamethasone was found to inhibit significantly the infiltration of brain tumors by lymphocytes and microglia. These findings should be considered when experimental immunotherapeutic strategies are evaluated for clinical application.
Collapse
Affiliation(s)
- B Badie
- Department of Neurological Surgery, University of Wisconsin School of Medicine, Madison 53792-3232, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Wang JY, Shum AY, Chao CC, Kuo JS, Wang JY. Production of macrophage inflammatory protein-2 following hypoxia/reoxygenation in glial cells. Glia 2000. [DOI: 10.1002/1098-1136(200011)32:2<155::aid-glia50>3.0.co;2-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|