1
|
Yuceli S, Suleyman B, Yazici GN, Mammadov R, Cankaya M, Kunak CS, Bulut S, Suleyman H, Altuner D. Effect of Taxifolin on Ischemia/Reperfusion-Induced Oxidative Injury of Sciatic Nerve in Rats. Transplant Proc 2021; 53:3087-3092. [PMID: 34772492 DOI: 10.1016/j.transproceed.2021.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Ischemia is a condition in which blood flow to tissues is decreased or entirely stopped for various reasons. The reperfusion process exacerbates damage caused by ischemia in the organs and tissues. Reactive oxygen species (ROS) are mainly responsible for ischemia-reperfusion (IR) damage. ROS increase results in lipid peroxidation (LPO) and oxidative stress. In the literature, taxifolin reportedly suppresses ROS production. This study aimed to determine the effect of taxifolin, which is a flavonoid, on IR injury of the sciatic nerve in rats. METHODS This study divided 30 albino Wistar rats into 3 groups: IR without medication (IR) group, taxifolin applied IR (TAX+IR) group, and only dissection made to the sciatic nerve sham group (SHAM). Sciatic nerve injury was induced by applying 2 hours of ischemia and 3 hours of reperfusion to the abdominal aorta and iliolumbar arteries. Biochemical and histopathologic investigations then were performed on sciatic nerve tissues. Malondialdehyde, total glutathione, glutathione reductase, and glutathione peroxidase were analyzed as oxidative stress markers, and tumor necrosis factor-α and interleukin-1β levels were evaluated as inflammatory stress markers in biochemical tests. RESULTS The IR group has statistically significantly high oxidant and cytokine levels and low antioxidant levels compared with the TAX+IR group. Taxifolin treatment was also shown to cause significant histopathologic improvement. CONCLUSIONS We suggest that taxifolin may be effective in preventing IR injury of the sciatic nerve.
Collapse
Affiliation(s)
- Sahin Yuceli
- Department of Neurosurgery, Neon Hospital, Erzincan, Turkey
| | - Bahadir Suleyman
- Department of Pharmacology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey
| | - Gulce Naz Yazici
- Department of Histology and Embryology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey
| | - Murat Cankaya
- Department of Biology, Erzincan Binali Yildirim University School of Art and Science, Erzincan, Turkey
| | | | - Seval Bulut
- Department of Pharmacology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey
| | - Durdu Altuner
- Department of Pharmacology, Erzincan Binali Yildirim University School of Medicine, Erzincan, Turkey.
| |
Collapse
|
2
|
Ding Y, Pan L, Gao G, Huang H. In vitro and in vivo immunologic potentiation of herb extracts on shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2020; 107:556-566. [PMID: 33161092 DOI: 10.1016/j.fsi.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
In vitro and in vivo effects of Astragalus polysaccharide (APS), chlorogenic acid (CGA) and berberine (BBR) on shrimp (Litopenaeus vannamei) were studied. In vitro test showed that the combination of APS and BBR and the combination of APS and CGA have strong immune enhancement effects and no lysosomal membrane damage on hemocyte. Then, feeding experiment was proceeded to optimize the concentrations of compound herbal extracts. Four diets containing G1-G4(0.5 g kg -1 APS + 0.5 g kg -1 BBR, 1.0 g kg -1 APS +1.0 g kg -1 BBR, 0.5 g kg -1 APS +0.5 g kg -1 CGA, 1.0 g kg -1 APS + 1.0 g kg -1 CGA) associated with the control group (common diet) were compared and determined their biomolecule damage to hepatopancreas including DNA damage, lipid peroxidation and protein carbonyl. The results indicated that G3 (0.5 g kg -1 APS +0.5 g kg -1 CGA) showed higher total hemocyte counts, phagocytic activities, antibacterial activities and bacteriolytic activities during 6 days feeding, and without biomolecule damages after 6 days post-withdrawal. Therefore, the appropriate immunostimulants formula in this study was the combination of 0.5 g kg -1 APS and 0.5 g kg-1 CGA, which was used for 6 days followed by 6 days post-withdrawal. Additionally, our study provides new support for screening composite immunostimulants formula by using primary shrimp hemocyte culture.
Collapse
Affiliation(s)
- Yanjun Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong Province, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong Province, PR China.
| | - Guorui Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong Province, PR China
| | - Hui Huang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong Province, PR China
| |
Collapse
|
3
|
Mustafa AG, Al-Shboul O, Alfaqih MA, Al-Qudah MA, Al-Dwairi AN. Phenelzine reduces the oxidative damage induced by peroxynitrite in plasma lipids and proteins. Arch Physiol Biochem 2018; 124:418-423. [PMID: 29256275 DOI: 10.1080/13813455.2017.1415939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Peroxynitrite is a reactive nitrogen species produced in the intravascular compartment from superoxide anion and nitric oxide. Peroxynitrite destroys blood plasma proteins and membranes of red blood cells and of platelets. This explains why excessive production of peroxynitrite contributes to diseases and to ageing. Therapeutics that antagonize peroxynitrite may delay ageing and the progression of disease. We developed an in vitro assay that allows the investigation of the oxidative damage caused by peroxynitrite in the intravascular compartment. This assay correlates the damage with the rate of formation of protein carbonyl groups, 3-nitrotyrosine (3-NT) and thiobarbituric acid reactive substances. Using this assay, we evaluated the ability of phenelzine, a scavenger of reactive aldehydes, to antagonize the effects of peroxynitrite. Herein, we showed that phenelzine significantly decreased the lipid peroxidative damage caused by peroxynitirite in blood plasma and platelets. Moreover, it inhibited carbonyl group and 3-NT formation in blood plasma and platelet proteins.
Collapse
Affiliation(s)
- Ayman G Mustafa
- a School of Medicine , Jordan University of Science and Technology , Irbid , Jordan
| | - Othman Al-Shboul
- a School of Medicine , Jordan University of Science and Technology , Irbid , Jordan
| | - Mahmoud A Alfaqih
- b Department of Physiology and Biochemistry, Faculty of Medicine , Jordan University of Science and Technology , Irbid , Jordan
| | - Mohammad A Al-Qudah
- a School of Medicine , Jordan University of Science and Technology , Irbid , Jordan
| | - Ahmed N Al-Dwairi
- a School of Medicine , Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
4
|
Ischemia-Reperfusion Injury of Sciatic Nerve in Rats: Protective Role of Combination of Vitamin C with E and Tissue Plasminogen Activator. Neurochem Res 2018; 43:650-658. [PMID: 29327309 DOI: 10.1007/s11064-017-2465-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/23/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
Abstract
An ischemia/reperfusion injury of rat's sciatic nerve was experimentally developed. In this model, we measured the in vivo production of superoxide radical, as a marker of oxidative stress and the occludin expression as an indicator of blood-nerve barrier function and we examined potential protective innervations against these abnormalities. Right sciatic nerves of the animals underwent 3 h of ischemia followed by 7 days of reperfusion and were divided into three groups: ischemic, pretreated with vitamin C in conjunction with vitamin E and treated with tissue plasminogen activator. Compared to measurements from left sciatic nerves used as sham, the ischemic group showed significantly increased superoxide radical and reduced expression of occludin in western blot and immunohistochemistry. No such differences were detected between sham and nerves in the vitamin or tissue plasminogen activator groups. It is suggested that the experimental ischemia/reperfusion model was suitable for studying the relationship between oxidative state and blood-nerve barrier. The reversion of abnormalities by the applied neuroprotective agents might prove to be a clinically important finding in view of the implication of vascular supply derangement in various neuropathies in humans.
Collapse
|
5
|
Ke T, Li R, Chen W. Inhibition of the NMDA receptor protects the rat sciatic nerve against ischemia/reperfusion injury. Exp Ther Med 2016; 11:1563-1572. [PMID: 27168774 PMCID: PMC4840580 DOI: 10.3892/etm.2016.3148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/25/2015] [Indexed: 12/23/2022] Open
Abstract
Inhibition of the N-methyl-D-aspartate (NMDA) receptor by MK-801 reduces ischemia/reperfusion (I/R) injury in the central nervous system. However, few previous studies have evaluated the neuroprotective effects of MK-801 against peripheral I/R injury. The present study aimed to investigate the protective effects of MK-801 pretreatment against I/R injury in the rat sciatic nerve (SN). Sprague-Dawley rats were subjected to a sham surgery (n=8) or to a 5-h ischemic insult by femoral artery clamping (I/R and I/R+MK-801 groups; n=48 per group). I/R+MK-801 rats were intraperitoneally injected with MK-801 (0.5 ml or 1 mg/kg) at 15 min prior to reperfusion. The rats were sacrificed at 0, 6, 12, 24, 72 h, or 7 days following reperfusion. Plasma malondialdehyde (MDA) and nitric oxide (NO) concentrations, and SN inducible NO synthase (iNOS) protein expression levels, were measured using colorimetry. In addition, the protein expression levels of tumor necrosis factor-α (TNF-α) were measured using immunohistochemistry, and histological analyses of the rat SN were conducted using light and electron microscopy. Alterations in the mRNA expression levels of TNF-α and TNF-α converting enzyme (TACE) in the rat SN were detected using reverse transcription-quantitative polymerase chain reaction. In the I/R group, plasma concentrations of NO (175.3±4.2 µmol/l) and MDA (16.2±1.9 mmol/l), and the levels of iNOS (2.5±0.3) in the SN, peaked at 24 h post-reperfusion. At 24 h, pretreatment with MK-801 significantly reduced plasma NO (107.3±3.6 µmol/l) and MDA (11.8±1.6 mmol/l), and SN iNOS (1.65±0.2) levels (all P<0.01). The mRNA expression levels of TNF-α and TACE in the SN were significantly reduced in the I/R+MK-801 group, as compared with the I/R group (P<0.05). Furthermore, MK-801 pretreatment was shown to have alleviated histological signs of I/R injury, including immune cell infiltration and axon demyelination. The results of the present study suggested that pretreatment with MK-801 may alleviate I/R injury of the SN by inhibiting the activation of TNF-α and reducing the levels of iNOS in the SN.
Collapse
Affiliation(s)
- Tie Ke
- Department of Emergency Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China; Emergency Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China; Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Renbin Li
- Department of Orthopedics, The Affiliated Fuzhou Second Hospital, Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Wenchang Chen
- Department of Emergency Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
6
|
Thang LV, Demel SL, Crawford R, Kaminski NE, Swain GM, Van Rooijen N, Galligan JJ. Macrophage depletion lowers blood pressure and restores sympathetic nerve α2-adrenergic receptor function in mesenteric arteries of DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 2015; 309:H1186-97. [PMID: 26320034 DOI: 10.1152/ajpheart.00283.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023]
Abstract
We tested the hypothesis that vascular macrophage infiltration and O2 (-) release impairs sympathetic nerve α2-adrenergic autoreceptor (α2AR) function in mesenteric arteries (MAs) of DOCA-salt hypertensive rats. Male rats were uninephrectomized or sham operated (sham). DOCA pellets were implanted subcutaneously in uninephrectomized rats who were provided high-salt drinking water or high-salt water with apocynin. Sham rats received tap water. Blood pressure was measured using radiotelemetry. Treatment of sham and DOCA-salt rats with liposome-encapsulated clodronate was used to deplete macrophages. After 3-5, 10-13, and 18-21 days of DOCA-salt treatment, MAs and peritoneal fluid were harvested from euthanized rats. Norepinephrine (NE) release from periarterial sympathetic nerves was measured in vitro using amperometry with microelectrodes. Macrophage infiltration into MAs as well as TNF-α and p22(phox) were measured using immunohistochemistry. Peritoneal macrophage activation was measured by flow cytometry. O2 (-) was measured using dihydroethidium staining. Hypertension developed over 28 days, and apocynin reduced blood pressure on days 18-21. O2 (-) and macrophage infiltration were greater in DOCA-salt MAs compared with sham MAs after day 10. Peritoneal macrophage activation occurred after day 10 in DOCA-salt rats. Macrophages expressing TNF-α and p22(phox) were localized near sympathetic nerves. Impaired α2AR function and increased NE release from sympathetic nerves occurred in MAs from DOCA-salt rats after day 18. Macrophage depletion reduced blood pressure and vascular O2 (-) while restoring α2AR function in DOCA-salt rats. Macrophage infiltration into the vascular adventitia contributes to increased blood pressure in DOCA-salt rats by releasing O2 (-), which disrupts α2AR function, causing enhanced NE release from sympathetic nerves.
Collapse
Affiliation(s)
- Loc V Thang
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Stacie L Demel
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Robert Crawford
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Greg M Swain
- Neuroscience Program, Michigan State University, East Lansing, Michigan; Department of Chemistry, Michigan State University, East Lansing, Michigan; and
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - James J Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; Neuroscience Program, Michigan State University, East Lansing, Michigan;
| |
Collapse
|
7
|
Houée-Lévin C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res 2015; 49:347-73. [DOI: 10.3109/10715762.2015.1007968] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 2014; 16:193-217. [PMID: 25547488 PMCID: PMC4307243 DOI: 10.3390/ijms16010193] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse pathophysiological conditions, including inflammation, neurodegenerative diseases and cancer. Accumulating evidence indicates that oxidative damage to biomolecules including lipids, proteins and DNA, contributes to these diseases. Previous studies suggest roles of lipid peroxidation and oxysterols in the development of neurodegenerative diseases and inflammation-related cancer. Our recent studies identifying and characterizing carbonylated proteins reveal oxidative damage to heat shock proteins in neurodegenerative disease models and inflammation-related cancer, suggesting dysfunction in their antioxidative properties. In neurodegenerative diseases, DNA damage may not only play a role in the induction of apoptosis, but also may inhibit cellular division via telomere shortening. Immunohistochemical analyses showed co-localization of oxidative/nitrative DNA lesions and stemness markers in the cells of inflammation-related cancers. Here, we review oxidative stress and its significant roles in neurodegenerative diseases and cancer.
Collapse
|
9
|
Zhao X, Gao Y, Qi M. Toxicity of phthalate esters exposure to carp (Cyprinus carpio) and antioxidant response by biomarker. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:626-32. [PMID: 24468924 PMCID: PMC4012160 DOI: 10.1007/s10646-014-1194-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 05/06/2023]
Abstract
To study the toxic effects of phthalate esters on the aquatic creatures, carps were exposed to dibutyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) of six different concentrations for 96 h-LC50 measurements. It shows that the 96 h-LC50 is 16.30 and 37.95 mg L(-1), thus the safe concentration (1/10LC(50)) is 1.63 mg L(-1). The activities of xanthine oxidase (XOD) and catalase (CAT) were measured in liver to carp exposure for single or combinations of DBP and DEHP. The quantity of malonic dialdehyde (MDA) was also measured in the same way. XOD, CAT and MDA had shown an evident change while exposure time and concentration increased, combined exposure can aggravate this change. They might be used as early warning indicators and monitors, and have potentials in the ecological risk assessment.
Collapse
Affiliation(s)
- Xiaoxiang Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China,
| | | | | |
Collapse
|
10
|
|
11
|
Inhibition of nitric oxide mediated protein nitration: therapeutic implications in experimental radiculopathy. Spine (Phila Pa 1976) 2013; 38:1749-53. [PMID: 23797499 DOI: 10.1097/brs.0b013e3182a085d9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental animal study. OBJECTIVE This study investigated whether nitric oxide (NO) mediated protein nitration is involved in the pathogenesis of radiculopathy and whether the symptoms can be relieved by its suppression. SUMMARY OF BACKGROUND DATA It has been reported that nitration of protein mediated by NO is involved in the degenerative neurological disorders, but its involvement is not clear in the radiculopathy. METHODS Two kinds of rat models of radiculopathy were used. Radiculopathy was induced either by ligation of spinal nerve roots or transplantation of autologous nucleus pulposus. In separate groups of rats, aminoguanidine, a potent nitric oxide synthetase inhibitor, was administered just before induction of radiculopathy, to suppress NO production and resultant nitration of protein. Sensation of the hind limb was evaluated by plantar stimulation test, and motor weakness was assessed by observation of gait pattern. Nitrotyrosine, product of protein nitration, was assayed quantitatively by Western immunoblotting. RESULTS Mechanical allodynia was observed in both compression and nucleus pulposus groups, but motor weakness was observed only in the compression group. Preoperative administration of aminoguanidine attenuated mechanical allodynia and motor weakness. Optical densities of nitrotyrosine bands increased significantly in radiculopathy groups, but they were lowered by administration of aminoguanidine. CONCLUSION NO mediated protein nitration contributes to the development of both types of radiculopathies. Suppression of NO production can decrease protein nitration and relieve neural dysfunctions of radiculopathy. LEVEL OF EVIDENCE N/A.
Collapse
|
12
|
Increased susceptibility to ischemia and macrophage activation in STZ-diabetic rat nerve. Brain Res 2010; 1373:172-82. [PMID: 21134361 DOI: 10.1016/j.brainres.2010.11.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/22/2010] [Accepted: 11/25/2010] [Indexed: 01/04/2023]
Abstract
Ischemic vulnerability in diabetic nerve plays a paramount role in the development of diabetic neuropathy, yet little is known of the underlying mechanism. Diabetes enhances the inflammatory response to ischemia and reperfusion. We investigated pathological characteristics of nerve fibers and endoneurial macrophages along the length of sciatic-tibial nerves before and after ischemia (60 to 90 min) and reperfusion (6h to 7 days) in 8 weeks of STZ-induced diabetic rats. Without ischemia, diabetic nerves revealed significantly increased the density of Iba-1-positive endoneurial macrophages when compared with controls. Most of macrophages appeared slim and triangular in shape, but in diabetic nerves, some were rounded with bromodeoxyuridine (BrdU) incorporation, suggesting proliferating macrophages. Seventy-five minutes of ischemia is the minimal ischemic time to cause pathological changes in diabetic nerves. Following 90 min of ischemia and 6h of reperfusion in diabetic rats, the number of Iba-1-positive endoneurial macrophages was increased significantly at the thigh level of sciatic nerve when compared with those before ischemia. Endoneurial macrophages in diabetic nerves increased in number further significantly after 24 and 48 h of reperfusion and underwent morphological alterations; swollen and rounded including phagocytosis. After 90 min of ischemia and 7 days of reperfusion, severe pathological alterations, e.g., demyelination and endoneurial edema at proximal nerves and axonal degeneration distally, were observed in diabetic nerves, while control nerves showed normal morphology. We conclude that macrophage proliferation occurs in STZ-diabetic nerves. The acute inflammatory response after ischemia and reperfusion was intensified in diabetic nerves. Activation of resident macrophages and infiltration by recruited macrophages could be casually linked to ischemic susceptibility in diabetic nerve.
Collapse
|
13
|
Onufriev MV. Nitrosative stress in the brain: Autoantibodies to nitrotyrosine in the liquor as a potential marker. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410030116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Abstract
Cellular damage occurring under oxidative conditions has been ascribed mainly to the formation of peroxynitrite (ONOOH/ONOO(-)) that originates from the reaction of NO(*) with O(2) (*-). The detrimental effects of peroxynitrite are exacerbated by the reaction with CO(2) that leads to ONOOC(O)O(-), which further decays to the strong oxidant radicals NO(2) (*) and CO(3) (*-). The reaction with CO(2), however, may redirect peroxynitrite specificity. An excessive formation of peroxynitrite represents an important mechanism contributing to the DNA damage, the inactivation of metabolic enzymes, ionic pumps, and structural proteins, and the disruption of cell membranes. Because of its ability to oxidize biomolecules, peroxynitrite is implicated in an increasing list of diseases, including neurodegenerative and cardiovascular disorders, inflammation, pain, autoimmunity, cancer, and aging. However, peroxynitrite displays also protective activities: (i) at high concentrations, it shows anti-viral, anti-microbial, and anti-parasitic actions; and (ii) at low concentrations, it stimulates protective mechanisms in the cardiovascular, nervous, and respiratory systems. The detrimental effects of peroxynitrite and related reactive species are impaired by (pseudo-) enzymatic systems, mainly represented by heme-proteins (e.g., hemoglobin and myoglobin). Here, we report biochemical aspects of peroxynitrite actions being at the root of its biomedical effects.
Collapse
|
15
|
Soung DY, Rhee SH, Kim JS, Lee JY, Yang HS, Choi JS, Yokozawa T, Han YN, Chung HY. Peroxynitrite scavenging activity of lithospermate B from Salvia miltiorrhiza. J Pharm Pharmacol 2010; 55:1427-32. [PMID: 14607026 DOI: 10.1211/0022357021891] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Peroxynitrite (ONOO−) is produced by the reaction of superoxide (O2−) with nitric oxide. ONOO− damages proteins through nitration or oxidation. For protection from ONOO− induced protein modifications, ONOO− scavengers should be supplemented. Evidence was obtained that lithospermate B extracted from Salvia miltiorrhiza showed the strongest scavenging activity among its constituents. Its ONOO− scavenging activity is via an electron donation mechanism. A dihydroxyl group and a double bond seem to be essential structure requirements. The data from the experiments further confirmed a protective effect of lithospermate B on bovine serum albumin and low-density lipoprotein against ONOO−. This study demonstrated that lithospermate B with hydroxyl groups and double bonds exerts an anti-nitration effect by scavenging ONOO−.
Collapse
Affiliation(s)
- Do You Soung
- Department of Pharmacy, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cold exposure exacerbates the development of diabetic polyneuropathy in the rat. EXPERIMENTAL DIABETES RESEARCH 2010; 2009:827943. [PMID: 20130819 PMCID: PMC2814234 DOI: 10.1155/2009/827943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/24/2009] [Accepted: 10/11/2009] [Indexed: 01/09/2023]
Abstract
Diabetic polyneuropathy (DPN) and cold-induced nerve injury share several pathogenic mechanisms. This study explores whether cold exposure contributes to the development of DPN. Streptozotocin-induced diabetic rats and controls were exposed to a room temperature (23°C) or cold environment (10°C). H-reflex, tail and sciatic motor, and sensory nerve conduction studies were performed. Analyses of sural nerve, intraepidermal nerve fibers, and skin and nerve nitrotyrosine ELISAs were performed. Diabetic animals exposed to a cold environment had an increased H-reflex four weeks earlier than diabetic room temperature animals (P = .03). Cold-exposed diabetic animals also had greater reduction in motor conduction velocities at 20 weeks (P = .017), decreased skin nerve fiber density (P = .037), and increased skin nitrotyrosine levels (P = .047). Cold exposure appears to hasten the development of DPN in the rat STZ model of diabetes. These findings support that further study into the relationship between ambient temperature and DPN is warranted.
Collapse
|
17
|
Trujillo M, Alvarez B, Souza JM, Romero N, Castro L, Thomson L, Radi R. Mechanisms and Biological Consequences of Peroxynitrite-Dependent Protein Oxidation and Nitration. Nitric Oxide 2010. [DOI: 10.1016/b978-0-12-373866-0.00003-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Jarrett SG, Albon J, Boulton M. The contribution of DNA repair and antioxidants in determining cell type-specific resistance to oxidative stress. Free Radic Res 2007; 40:1155-65. [PMID: 17050169 DOI: 10.1080/10715760600876613] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aims of this study were; (i) to elucidate the mechanisms involved in determining cell type-specific responses to oxidative stress and (ii) to test the hypothesis that cell types which are subjected to high oxidative burdens in vivo, have greater oxidative stress resistance. Cultures of the retinal pigment epithelium (RPE), corneal fibroblasts, alveolar type II epithelium and skin epidermal cells were studied. Cellular sensitivity to H2O2 was determined by the MTT assay. Cellular antioxidant status (CuZnSOD, MnSOD, GPX, CAT) was analyzed with enzymatic assays and the susceptibility and repair capacities of nuclear and mitochondrial genomes were assessed by QPCR. Cell type-specific responses to H2O2 were observed. The RPE had the greatest resistance to oxidative stress (P>0.05; compared to all other cell types) followed by the corneal fibroblasts (P < 0.05; compared to skin and lung cells). The oxidative tolerance of the RPE coincided with greater CuZnSOD, GPX and CAT enzymatic activity (P < 0.05; compared to other cells). The RPE and corneal fibroblasts both had up-regulated nDNA repair post-treatment (P < 0.05; compared to all other cells). In summary, variations in the synergistic interplay between enzymatic antioxidants and nDNA repair have important roles in influencing cell type-specific vulnerability to oxidative stress. Furthermore, cells located in highly oxidizing microenvironments appear to have more efficient oxidative defence and repair mechanisms.
Collapse
Affiliation(s)
- Stuart G Jarrett
- Cell and Molecular Biology Unit, School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
19
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
20
|
Nouri M, Pourabbasi A, Ebrahimnejad M, Abolhassani F, Jahanzad I. Pravastatin prevents ischemia-reperfusion injury in rat sciatic nerve. ACTA ACUST UNITED AC 2006; 66:337-8; discussion 338-40. [PMID: 16935660 DOI: 10.1016/j.surneu.2006.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 05/22/2006] [Indexed: 11/17/2022]
|
21
|
Lee SJ, Han TR, Hyun JK, Jeon JY, Myong NH. Electromyographic findings in nucleus pulposus-induced radiculopathy in the rat. Spine (Phila Pa 1976) 2006; 31:2053-8. [PMID: 16915088 DOI: 10.1097/01.brs.0000231741.66134.8e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study was conducted to investigate the electromyographic changes and their pathophysiologic background in the animal model of nucleus pulposus-induced radiculopathy. OBJECTIVES To observe the abnormal spontaneous activities in the electromyography (EMG) of rats with nucleus pulposus-induced radiculopathy and assess the role of nitric oxide in their development. SUMMARY OF BACKGROUND DATA It has been shown that application of nucleus pulposus to nerve roots induces changes consistent with radiculopathy. However, to our knowledge, electromyographic findings and their background have never been studied in this model of radiculopathy. METHODS Autologous nucleus pulposus was harvested from the tails of Sprague-Dawley rats, and applied to L4 and L5 nerve roots. The rats were tested for mechanical allodynia, motor paresis, and needle EMG, before and after surgery. Specimens of nerve roots were stained histochemically for nitrotyrosine. RESULTS The rats had mechanical allodynia after surgery, but motor paresis was absent. EMG showed abnormal spontaneous activities after surgery, but only temporarily. Immunoreactivity for nitrotyrosine was detected in the cell bodies and axons of nerve roots. CONCLUSIONS The data indicate that abnormal spontaneous activities can be observed in electromyographic examination of nucleus pulposus-induced radiculopathy. The development of these activities is considered related to nitric oxide-mediated protein nitration and resultant axonal dysfunction.
Collapse
Affiliation(s)
- Seong Jae Lee
- Department of Rehabilitation Medicine, Dankook University College of Medicine, Cheonan, Choongnam, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Bagdatoglu OT, Polat G, Bagdatoglu C, Atik U. Roles of nitric oxide, malondialdehyde, and fibronectin in an experimental peripheral nerve ischemia-reperfusion model. Microsurgery 2006; 26:207-11. [PMID: 16485293 DOI: 10.1002/micr.20220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although there are many studies of the neuropathology of the ischemic degeneration of peripheral nerves, the pathogenesis is not well-understood. The roles of several biomolecules on this process were previously reported. An adhesion molecule, fibronectin, which is applied locally (as a conduit material), is very effective in nerve recovery. This study was carried out to evaluate the roles of fibronectin, lipid peroxidation, and nitric oxide (NO) in an experimental model of peripheral nerves. Ischemia and reperfusion injury of sciatic nerves was rendered by clamping the femoral artery and vein. Rats were divided into nine groups. Ischemia and reperfusion were not applied to group 1. In group 2, only ischemia was performed, but reperfusion was not accomplished. For groups 3-9, 1, 2, and 24 h and 1, 2, 3, and 4 weeks of reperfusion were applied following 3 h of ischemia. Then NO, malondialdehyde (MDA), and fibronectin levels were observed in serum samples of rats. Colorimetric and nephelometric assays were used for determination of the levels of these parameters. In this study, all biochemical parameters were found to be increased in the ischemia groups when compared with the control group 1 (P < 0.05). A significant difference was observed between study groups with respect to MDA, NO, and fibronectin levels (P < 0.05). Also, some correlations were established between biochemical parameters in the same group, depending on the varying reperfusion time (r > 0.50). Ischemia causes some important changes in biochemical parameters, and depending on the reperfusion time, nerve injury continues for a while. In our study, we observed that serum levels of MDA decreased in the periods when NO and fibronectin simultaneously increased. Such increases may contribute to neural recovery, and there may be interactions among them.
Collapse
|
23
|
Väänänen AJ, Kankuri E, Rauhala P. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain. Free Radic Biol Med 2005; 38:1102-11. [PMID: 15780768 DOI: 10.1016/j.freeradbiomed.2005.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 10/04/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.
Collapse
Affiliation(s)
- Antti J Väänänen
- Institute of Biomedicine (Pharmacology), Biomedicum Helsinki, P.O. Box 63, University of Helsinki 00014, Finland
| | | | | |
Collapse
|
24
|
Wang Y, Schmelzer JD, Schmeichel A, Iida H, Low PA. Ischemia–reperfusion injury of peripheral nerve in experimental diabetic neuropathy. J Neurol Sci 2004; 227:101-7. [PMID: 15546599 DOI: 10.1016/j.jns.2004.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The pathogenesis of human diabetic neuropathy likely involves the interplay of hyperglycemia, ischemia, and oxidative stress. Mild-moderate ischemia-reperfusion to streptozotocin (STZ)-induced diabetes results in florid fiber degeneration in diabetic but not in normal nerves. Uncertainty exists as to the influence of duration of diabetes on this susceptibility. We therefore studied diabetic tibial and sciatic nerves using a rat ischemia-reperfusion (IR) model after 1 month and 4 months of diabetes utilizing electrophysiological, behavioral, and neuropathological methods. Electrophysiological abnormalities were present in 1-month diabetic rats (D) and persisted over 4 months. Behavioral scores were decreased markedly at 4 months (p<0.05). Endoneurial edema and ischemia fiber degeneration (IFD) were observed at both the 1-month (p<0.01 and p<0.001) and 4-month (p<0.001) durations in diabetic nerves, whereas only mild or no damage was observed in age-matched control nerves. These findings demonstrate that STZ-induced diabetes exacerbates the morphological and electrophysiological pathology in peripheral nerve to IR injury both in the early timepoint of 1 month and late timepoint of 4 months, although there was a gradation of injury, which is more severe at the later timepoint. Reperfusion exaggerated morphological pathology in 1-month STZ-induced diabetic peripheral nerve.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, Mayo Clinic, 811 Guggenheim, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
25
|
Soung DY, Choi HR, Kim JY, No JK, Lee JH, Kim MS, Rhee SH, Park JS, Kim MJ, Yang R, Chung HY. Peroxynitrite scavenging activity of indole derivatives: interaction of indoles with peroxynitrite. J Med Food 2004; 7:84-9. [PMID: 15117558 DOI: 10.1089/109662004322984752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the products of nitrogen-derived free radicals, peroxynitrite (ONOO(-)), is formed by the reaction of superoxide anion (O(2)(*-)) with nitric oxide (NO). ONOO(-) can cause damage to proteins and DNA through nitration. In particular, proteins and their constituent amino acids have been proven to be extremely sensitive to ONOO(-). However, the lack of specific endogenous defense enzymes to protect against ONOO(-) has prompted many researchers to search for endogenous scavengers. We previously found 5-hydroxytryptamine (HT), which is an indole derivative (ID), to be an efficient ONOO(-) scavenger. In the present study, the interaction of several other indoles was further investigated: tryptophan (TRP), 5-hydroxyL-tryptophan (HLT), HT, N-acetyl-5-hydroxytryptamine (AHT), 5-methoxyindole-3-acetate (MIA), 5-methoxytryptamine (MT), and melatonin. The ONOO(-) scavenging activity of ID was assayed by measuring the formation of oxidized dihydrorhodamine-123 (DHR-123). The scavenging efficacy was expressed as the IC(50), denoting the concentration of each indole required to cause 50% inhibition of DHR-123 formation. In a separate in vitro study, the protective effect of IDs against ONOO(-)-induced nitration of bovine serum albumin was investigated. Nitration was quantified using an immunoassay with a monoclonal anti-nitrotyrosine antibody, and a horseradish peroxidase-conjugated anti-mouse secondary antibody from sheep. The results revealed that the inhibitory activities of indoles were as follows: HLT, IC(50) = 0.73 microM; HT, IC(50) = 1.03 microM; and AHT, IC(50) = 0.98 microM), showing relatively strong activities against ONOO(-). Interestingly, TRP, MIA, MT, and melatonin were less effective. Regarding the protection of albumin by IDs, the data showed that the formation of ONOO(-) was inhibited in a dose-dependent manner. Further probing of the mode of the interaction of indoles revealed that the hydroxyl groups in IDs are required for the enhanced scavenging action. It was concluded that several indole derivatives with hydroxyl groups are effective scavengers against ONOO(-), and that the scavenging efficacy depends on the presence of hydroxyl groups located within the indole ring structure.
Collapse
Affiliation(s)
- Do Yu Soung
- College of Pharmacy, Pusan National University, Gumjung-gu, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Väänänen AJ, Liebkind R, Kankuri E, Liesi P, Rauhala P. Angeli's salt and spinal motor neuron injury. Free Radic Res 2004; 38:271-82. [PMID: 15129735 DOI: 10.1080/10715760410001659764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UNLABELLED Nitroxyl anion or its conjugate acid (NO-/HNO) and nitric oxide (NO) may both have pro-oxidative and cytotoxic properties. Superoxide dismutase (SOD) enzyme has been shown to convert reversibly HNO to NO. Mutations found in the SOD enzyme in some familial amyotrophic lateral sclerosis (ALS) patients affect redox properties of the SOD enzyme in a manner, which may affect the equilibrium between NO and HNO. Therefore, we studied the effects of HNO releasing compound, Angeli's salt (AS), on both motor and sensory functions after intrathecal administration in the lumbar spinal cord of a male rat. These functions were measured by rotarod, spontaneous activity, paw- and tail-flick tests. In addition, we compared the effect of AS to NO releasing papanonoate, old AS solution and sulphononoate in the motor performance test. The effect of intrathecal delivery of AS on the markers of the spinal cord injury and oxidative/nitrosative stress were further studied. RESULTS Freshly prepared AS (5 or 10 micromol), but not papanonoate, caused a marked decrease in the rotarod performance 3-7 days after the intrathecal administration. The peak motor deficiency was noted 3 days after AS (5 micromol) delivery. Old, degraded, AS solution and nitrous oxide releasing sulphononoate did not decrease motor performance in the rotarod test. AS did not affect the sensory stimulus evoked responses as measured by the paw-flick and tail-flick tests. Immunohistological examination revealed that AS caused injury related changes in the expression of glial fibrillary acidic protein (GFAP), fibroblast growth factor (FGF-2) and laminins in the spinal cord. Moreover, AS increased nitrotyrosine immunoreactivity in the spinal motor neurons. Therefore, we conclude that AS, but not NO releasing papanonoate, causes motor neuron injury but does not affect the function of sensory nerves in behavioural tests.
Collapse
Affiliation(s)
- Antti J Väänänen
- Institute of Biomedicine (Pharmacology), Biomedicum Helsinki, P.O. Box 63, University of Helsinki 00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
27
|
Goto S, Takahashi R, Nakamoto H. Aging and Oxidized Proteins: Generation and Degradation. J Clin Biochem Nutr 2004. [DOI: 10.3164/jcbn.35.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sataro Goto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| | - Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| | - Hideko Nakamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
28
|
Gray C, Nukada H, Jackson DM, McMorran PD, Wu A, Ma F. Neuroprotective effects of nitrone radical scavenger S-PBN on reperfusion nerve injury in rats. Brain Res 2003; 982:179-85. [PMID: 12915253 DOI: 10.1016/s0006-8993(03)03006-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nitrone-based free radical scavengers have potent neuroprotective activities in models of stroke in which oxidative stress plays a key role in its development. We examined the effects of S-PBN (sodium 4-[(tert-butylimino) methyl]benzene-3-sulfonate N-oxide), a spin trap nitrone, on reperfusion injury in rat peripheral nerves. Immediately after the onset of 4-h ischaemia in rat right hindlimb, S-PBN was administered via mini-osmotic pumps, containing 2 ml of S-PBN (1.2 M), inserted subcutaneously. S-PBN, in addition, was given by a single injection (50 mg/kg BW, i.p.). Mean plasma concentrations of S-PBN were significantly greater in S-PBN-treated rats than in controls after 24, 48 and 72 h of reperfusion. Pump and dosing solution analysis indicated that the rats received between 82 and 99% of the target S-PBN concentration. Morphology in sciatic, tibial and peroneal nerves was assessed after 4 h of ischaemia followed by 72 h and 7 days of reperfusion. After 72 h of reperfusion, saline-treated control rats showed endoneurial oedema at the thigh level and diffuse axonal degeneration of myelinated nerve fibres distally. S-PBN-treated nerves were normal or revealed less severe abnormalities in myelinated fibres after 72 h and 7 days of reperfusion, when compared with those in saline-treated control nerves. Morphometrically, the frequency of abnormal myelinated fibres at calf levels was significantly less in S-PBN-treated nerves than in controls. In conclusion, post-ischaemic administration of S-PBN exhibits substantial neuroprotective properties in ischemia/reperfusion nerve injury.
Collapse
Affiliation(s)
- Chris Gray
- Department of Pharmacology and Toxicology, University of Otago Medical School, Dunedin 9015, New Zealand
| | | | | | | | | | | |
Collapse
|
29
|
Lee WI, Fung HL. Mechanism-based partial inactivation of glutathione S-transferases by nitroglycerin: tyrosine nitration vs sulfhydryl oxidation. Nitric Oxide 2003; 8:103-10. [PMID: 12620373 DOI: 10.1016/s1089-8603(02)00183-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Liver glutathione-S-transferases (GSTs) are responsible for the detoxification of electrophiles, and specifically for the metabolism of orally administered organic nitrates such as nitroglycerin (NTG). Recent studies showed that reactive nitrogen species produced by tetranitromethane (TNM), peroxynitrite, or the myeloperoxidase/H2O2/nitrite system can inactivate GST. It is not known whether NTG can similarly inactivate liver GSTs, and if shown, by what mechanism(s). We incubated purified GSTs with NTG, S-nitroso-N-acetylpenicillamine (SNAP), TNM, or vehicle (5% dextrose, D5W), followed by determination of GST activity. Incubation of GST with NTG and TNM caused significant decreases in GST activity whereas no changes were observed with SNAP or D5W. The relative GST activity (vs preincubation) was 73+/-14% for NTG, 37+/-8% for TNM, 98+/-13% for SNAP, and 98+/-9% for D5W, respectively. Exogenous glutathione (GSH) prevented both NTG- and TNM-induced changes in GST activity, consistent with the observed oxidative modification of GST, such as -SH oxidation and dimerization of oxidized GST. In contrast, NTG and TNM exhibited substantial differences in their ability to nitrate tyrosine (TYR) sites in GST. These results demonstrated that NTG can reduce the activity of its own metabolizing enzyme such as GST and this inhibitory effect of NTG was unlikely to be mediated through NO, as such, since SNAP had no effect on GST activity. The partial inactivation of GST by NTG appeared to involve -SH oxidation, but not TYR nitration. These findings provided the first evidence of mechanism-based protein inactivation by NTG, and may lend insight into the hepatic metabolism of NTG and other organic nitrates after repeated oral exposure.
Collapse
Affiliation(s)
- Woo In Lee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 14260, Buffalo, NY 14260, USA.
| | | |
Collapse
|
30
|
Abstract
The streptozocin (STZ)-diabetic nerve manifests increased morphological susceptibility to a superimposed acute ischemic injury, and reperfusion injury exaggerates ischemic nerve pathology. To determine whether STZ-diabetic nerves are susceptible to reperfusion, we evaluated the pathological consequences after 2.5 hours of ischemia followed by 3 and 24 hours of reperfusion in a 20-week STZ-diabetic rat sciatic nerve. After 3 hours of reperfusion, endoneurial edema developed in diabetic nerves, whereas non-diabetic controls showed mild or no edema. Morphometric analysis of endoneurial edema, quantified by the total transverse fascicular area and the point-count score of endoneurial structureless space, confirmed significantly more reperfusion-induced edema at thigh and knee levels in diabetic nerves than in controls. Reperfusion caused a significant increase in the number of endoneurial mast cells at the thigh level in diabetic nerves. After 24 hours of reperfusion, there were striking morphological anomalies of myelinated nerve fibers in diabetic nerves, without any observable changes in control nerves. In conclusion, we have demonstrated that STZ-diabetes exacerbates the morphological change to reperfusion. Diabetes therefore renders the microvasculature more vulnerable to the deleterious effects of ischemia/reperfusion.
Collapse
Affiliation(s)
- Hitoshi Nukada
- Department of Medicine, University of Otago Medical School, Dunedin, New Zealand.
| | | | | |
Collapse
|
31
|
Alonso D, Serrano J, Rodríguez I, Ruíz-Cabello J, Fernández AP, Encinas JM, Castro-Blanco S, Bentura ML, Santacana M, Richart A, Fernández-Vizarra P, Uttenthal LO, Rodrigo J. Effects of oxygen and glucose deprivation on the expression and distribution of neuronal and inducible nitric oxide synthases and on protein nitration in rat cerebral cortex. J Comp Neurol 2002; 443:183-200. [PMID: 11793355 DOI: 10.1002/cne.10111] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Changes in the nitric oxide (NO) system of the rat cerebral cortex were investigated by immunohistochemistry, immunoblotting, NO synthase (NOS) activity assay, and magnetic resonance imaging (MRI) in an experimental model of global cerebral ischemia and reperfusion. Brains were perfused transcardially with an oxygenated plasma substitute and subjected to 30 minutes of oxygen and glucose deprivation, followed by reperfusion for up to 12 hours with oxygenated medium containing glucose. A sham group was perfused without oxygen or glucose deprivation, and a further group was treated with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) before and during perfusion. Global ischemia led to cerebrocortical injury as shown by diffusion MRI. This was accompanied by increasing morphologic changes in the large type I interneurons expressing neuronal NOS (nNOS) and the appearance of nNOS immunoreactivity in small type II neurons. The nNOS-immunoreactive band and calcium-dependent NOS activity showed an initial increase, followed by a fall after 6 hours of reperfusion. Inducible NOS immunoreactivity appeared in neurons, especially pyramidal cells of layers IV-V, after 4 hours of reperfusion, with corresponding changes on immunoblotting and in calcium-independent NOS activity. Immunoreactive protein nitrotyrosine, present in the nuclear area of neurons in nonperfused controls and sham-perfused animals, showed changes in intensity and distribution, appearing in the neuronal processes during the reperfusion period. Prior and concurrent L-NAME administration blocked the changes on diffusion MRI and attenuated the morphologic changes, suggesting that NO and consequent peroxynitrite formation during ischemia-reperfusion contributes to cerebral injury.
Collapse
Affiliation(s)
- David Alonso
- Department of Neuroanatomy and Cell Biology, Instituto de Neurobiología "Santiago Ramón y Cajal," CSIC, E-28002 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Greenacre SA, Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 2001; 34:541-81. [PMID: 11697033 DOI: 10.1080/10715760100300471] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nitration of free tyrosine or protein tyrosine residues generates 3-nitrotyrosine the detection of which has been utilised as a footprint for the in vivo formation of peroxynitrite and other reactive nitrogen species. The detection of 3-nitrotyrosine by analytical and immunological techniques has established that tyrosine nitration occurs under physiological conditions and levels increase in most disease states. This review provides an updated, comprehensive and detailed summary of the tissue, cellular and specific protein localisation of 3-nitrotyrosine and its quantification. The potential consequences of nitration to protein function and the pathogenesis of disease are also examined together with the possible effects of protein nitration on signal transduction pathways and on the metabolism of proteins.
Collapse
Affiliation(s)
- S A Greenacre
- Centre for Cardiovascular Biology and Medicine and Wolfson Centre for Age-related Disease, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|
33
|
|
34
|
Bursell SE, King GL. The Potential Use of Glutathionyl Hemoglobin as a Clinical Marker of Oxidative Stress. Clin Chem 2000. [DOI: 10.1093/clinchem/46.2.145] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - George L King
- Joslin Diabetes Center, 1 Joslin Place, Boston, MA 02215
| |
Collapse
|