1
|
Geisler CE, Hayes MR. Metabolic hormone action in the VTA: Reward-directed behavior and mechanistic insights. Physiol Behav 2023; 268:114236. [PMID: 37178855 PMCID: PMC10330780 DOI: 10.1016/j.physbeh.2023.114236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Dysfunctional signaling in midbrain reward circuits perpetuates diseases characterized by compulsive overconsumption of rewarding substances such as substance abuse, binge eating disorder, and obesity. Ventral tegmental area (VTA) dopaminergic activity serves as an index for how rewarding stimuli are perceived and triggers behaviors necessary to obtain future rewards. The evolutionary linking of reward with seeking and consuming palatable foods ensured an organism's survival, and hormone systems that regulate appetite concomitantly developed to regulate motivated behaviors. Today, these same mechanisms serve to regulate reward-directed behavior around food, drugs, alcohol, and social interactions. Understanding how hormonal regulation of VTA dopaminergic output alters motivated behaviors is essential to leveraging therapeutics that target these hormone systems to treat addiction and disordered eating. This review will outline our current understanding of the mechanisms underlying VTA action of the metabolic hormones ghrelin, glucagon-like peptide-1, amylin, leptin, and insulin to regulate behavior around food and drugs of abuse, highlighting commonalities and differences in how these five hormones ultimately modulate VTA dopamine signaling.
Collapse
Affiliation(s)
- Caroline E Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Engel JA, Pålsson E, Vallöf D, Jerlhag E. Ghrelin activates the mesolimbic dopamine system via nitric oxide associated mechanisms in the ventral tegmental area. Nitric Oxide 2023; 131:1-7. [PMID: 36513266 DOI: 10.1016/j.niox.2022.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Besides enhanced feeding, the orexigenic peptide ghrelin activates the mesolimbic dopamine system to cause reward as measured by locomotor stimulation, dopamine release in nucleus accumbens shell (NAcS), and conditioned place preference. Although the ventral tegmental area (VTA) appears to be a central brain region for this ghrelin-reward, the underlying mechanisms within this area are unknown. The findings that the gaseous neurotransmitter nitric oxide (NO) modulate the ghrelin enhanced feeding, led us to hypothesize that ghrelin increases NO levels in the VTA, and thereby stimulates reward-related behaviors. We initially demonstrated that inhibition of NO synthesis blocked the ghrelin-induced activation of the mesolimbic dopamine system. We then established that antagonism of downstream signaling of NO in the VTA, namely sGC, prevents the ability of ghrelin to stimulate the mesolimbic dopamine system. The association of ghrelin to NO was further strengthened by in vivo electrochemical recordings showing that ghrelin enhances the NO release in the VTA. Besides a GABAB -receptor agonist, known to reduce NO and cGMP, blocks the stimulatory properties of ghrelin. The present series of experiments reveal that ablated NO signaling, through pharmacologically inhibiting the production of NO and/or cGMP, prevents the ability of ghrelin to induced reward-related behaviors.
Collapse
Affiliation(s)
- Jörgen A Engel
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Pålsson
- Institute of Neuroscience and Physiology, Department of Neurochemistry and Psychiatry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Vallöf
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Wirtshafter HS, Disterhoft JF. Place cells are nonrandomly clustered by field location in CA1 hippocampus. Hippocampus 2023; 33:65-84. [PMID: 36519700 PMCID: PMC9877199 DOI: 10.1002/hipo.23489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
A challenge in both modern and historic neuroscience has been achieving an understanding of neuron circuits, and determining the computational and organizational principles that underlie these circuits. Deeper understanding of the organization of brain circuits and cell types, including in the hippocampus, is required for advances in behavioral and cognitive neuroscience, as well as for understanding principles governing brain development and evolution. In this manuscript, we pioneer a new method to analyze the spatial clustering of active neurons in the hippocampus. We use calcium imaging and a rewarded navigation task to record from 100 s of place cells in the CA1 of freely moving rats. We then use statistical techniques developed for and in widespread use in geographic mapping studies, global Moran's I, and local Moran's I to demonstrate that cells that code for similar spatial locations tend to form small spatial clusters. We present evidence that this clustering is not the result of artifacts from calcium imaging, and show that these clusters are primarily formed by cells that have place fields around previously rewarded locations. We go on to show that, although cells with similar place fields tend to form clusters, there is no obvious topographic mapping of environmental location onto the hippocampus, such as seen in the visual cortex. Insights into hippocampal organization, as in this study, can elucidate mechanisms underlying motivational behaviors, spatial navigation, and memory formation.
Collapse
Affiliation(s)
- Hannah S. Wirtshafter
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, 310 E. Superior St., Morton 5-660, Chicago, IL 60611
| | - John F. Disterhoft
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, 310 E. Superior St., Morton 5-660, Chicago, IL 60611
| |
Collapse
|
4
|
Elgueta-Reyes M, Martínez-Pinto J, Renard GM, Sotomayor-Zárate R. Neonatal programming with sex hormones: Effect on expression of dopamine D 1 receptor and neurotransmitters release in nucleus accumbens in adult male and female rats. Eur J Pharmacol 2021; 902:174118. [PMID: 33905702 DOI: 10.1016/j.ejphar.2021.174118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Steroid sex hormones produce physiological effects in reproductive and non-reproductive tissues, such as the brain. In the brain, sex hormones receptors are expressed in cortical, limbic and midbrain areas modulating memory, arousal, fear and motivation between other behaviors. One neurotransmitters system regulated by sex hormones is dopamine (DA), where during adulthood, sex hormones promote neurophysiological and behavioral effects on DA systems such as tuberoinfundibular (prolactin secretion), nigrostriatal (motor circuit regulation) and mesocorticolimbic (driving of motivated behavior). However, the long-term effects induced by neonatal exposure to sex hormones on DA release induced by D1 receptor activation and its expression in nucleus accumbens (NAcc) have not been fully studied. To answer this question, neurochemical, cellular and molecular techniques were used. The data show sex differences in NAcc DA extracellular levels induced by D1 receptor activation and protein content of this receptor in male and female control rats. In addition, neonatal programming with a single dose of TP increases the NAcc protein content of D1 receptors of adult male and female rats. Our results show new evidence related with sex differences that could explain the dependence to drug of abuse in males and females, which may be associated with increased reinforcing effects of drugs of abuse.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/administration & dosage
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Aging
- Animals
- Animals, Newborn
- Dopamine/metabolism
- Dopamine Agonists/administration & dosage
- Dopamine Agonists/pharmacology
- Estradiol/administration & dosage
- Estradiol/pharmacology
- Female
- Glutamic Acid/metabolism
- Gonadal Steroid Hormones/administration & dosage
- Gonadal Steroid Hormones/pharmacology
- Injections
- Male
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Sex Factors
- Testosterone Propionate/administration & dosage
- Testosterone Propionate/pharmacology
- Time
- gamma-Aminobutyric Acid/metabolism
- Rats
Collapse
Affiliation(s)
- Maximiliano Elgueta-Reyes
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile.
| | - Jonathan Martínez-Pinto
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Georgina M Renard
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile.
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
5
|
de Beaurepaire R. A Review of the Potential Mechanisms of Action of Baclofen in Alcohol Use Disorder. Front Psychiatry 2018; 9:506. [PMID: 30459646 PMCID: PMC6232933 DOI: 10.3389/fpsyt.2018.00506] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
Baclofen, a GABA-B receptor agonist, is a promising treatment for alcohol use disorder (AUD). Its mechanism of action in this condition is unknown. GABA-B receptors interact with many biological systems potentially involved in AUD, including transduction pathways and neurotransmitter systems. Preclinical studies have shown that GABA-B receptors are involved in memory storage and retrieval, reward, motivation, mood and anxiety; neuroimaging studies in humans show that baclofen produces region-specific alterations in cerebral activity; GABA-B receptor activation may have neuroprotective effects; baclofen also has anti-inflammatory properties that may be of interest in the context of addiction. However, none of these biological effects fully explain the mechanism of action of baclofen in AUD. Data from clinical studies have provided a certain number of elements which may be useful for the comprehension of its mechanism of action: baclofen typically induces a state of indifference toward alcohol; the effective dose of baclofen in AUD is extremely variable from one patient to another; higher treatment doses correlate with the severity of the addiction; many of the side effects of baclofen resemble those of alcohol, raising the possibility that baclofen acts as a substitution drug; usually, however, there is no tolerance to the effects of baclofen during long-term AUD treatment. In the present article, the biological effects of baclofen are reviewed in the light of its clinical effects in AUD, assuming that, in many instances, clinical effects can be reliable indicators of underlying biological processes. In conclusion, it is proposed that baclofen may suppress the Pavlovian association between cues and rewards through an action in a critical part of the dopaminergic network (the amygdala), thereby normalizing the functional connectivity in the reward network. It is also proposed that this action of baclofen is made possible by the fact that baclofen and alcohol act on similar brain systems in certain regions of the brain.
Collapse
|
6
|
Blacktop JM, Vranjkovic O, Mayer M, Van Hoof M, Baker DA, Mantsch JR. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats. Neuropharmacology 2015; 102:197-206. [PMID: 26596556 DOI: 10.1016/j.neuropharm.2015.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/23/2015] [Accepted: 11/12/2015] [Indexed: 12/25/2022]
Abstract
Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5" duration, average every 40 s; range 10-70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts.
Collapse
Affiliation(s)
- Jordan M Blacktop
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Oliver Vranjkovic
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Matthieu Mayer
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Matthew Van Hoof
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| |
Collapse
|
7
|
Glutamate input in the dorsal raphe nucleus as a determinant of escalated aggression in male mice. J Neurosci 2015; 35:6452-63. [PMID: 25904796 DOI: 10.1523/jneurosci.2450-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the dorsal raphe nucleus (DRN) has long been linked to neural control of aggression, little is known about the regulatory influences of the DRN when an animal engages in either adaptive species-typical aggressive behavior or escalated aggression. Therefore it is important to explore which neurotransmitter inputs into the DRN determine the escalation of aggression in male mice. Previously, we observed that microinjection of the GABAB receptor agonist baclofen into the DRN escalates aggressive behavior in male mice. Here, we used a serotonin (5-HT) neuron-specific GABAB receptor knock-out mouse to demonstrate that baclofen acts on nonserotonergic neurons to escalate aggression. Intra-DRN baclofen administration increased glutamate release, but did not alter GABA release, within the DRN. Microinjection of l-glutamate into the DRN escalated dose-dependently attack bites toward an intruder. In vivo microdialysis showed that glutamate release increased in the DRN during an aggressive encounter, and the level of glutamate was further increased when the animal was engaged in escalated aggressive behavior after social instigation. Finally, 5-HT release was increased within the DRN and also in the medial prefrontal cortex when animals were provoked by social instigation, and during escalated aggression after social instigation, but this increase in 5-HT release was not observed when animals were engaged in species-typical aggression. In summary, glutamate input into the DRN is enhanced during escalated aggression, which causes a phasic increase of 5-HT release from the DRN 5-HT neurons.
Collapse
|
8
|
Filip M, Frankowska M, Sadakierska-Chudy A, Suder A, Szumiec Ł, Mierzejewski P, Bienkowski P, Przegaliński E, Cryan JF. GABAB receptors as a therapeutic strategy in substance use disorders: Focus on positive allosteric modulators. Neuropharmacology 2015; 88:36-47. [DOI: 10.1016/j.neuropharm.2014.06.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/16/2022]
|
9
|
Abstract
INTRODUCTION There is increasing evidence encouraging the development of drugs that positively modulate the γ-aminobutyric acid type B (GABA(B)) receptor for combating addiction. Compounds that target GABA(B) receptors are unique as anti-abuse therapies because of their impact against multiple addictive drugs. AREAS COVERED The authors present the basic information concerning the drug actions of GABA and GABA(B) receptor orthosteric agonists and positive allosteric modulators (PAM). Furthermore, they discuss several recent excellent reviews and newer results pertaining to GABA(B) receptor drug effects on responses to and self-administration of: alcohol (ethanol), nicotine, cocaine, (meth)amphetamine, and opioids. Preclinical and clinical data are considered. EXPERT OPINION Clinical data exist only for baclofen and mostly for alcohol use disorders. Additional trials are needed, but effects are promising. Whether PAMs, given alone or in combination with a direct GABA(B) receptor agonist, will be clinically effective and have fewer side effects requires investigation. The sedative effects of baclofen, a Food and Drug Administration (FDA)-approved drug, become less severe over time. Based on existing data, baclofen is well-tolerated. However, genetic and physiological differences are likely to contribute to individual responses to different therapeutic agents. The more immediate development of baclofen as a therapeutic for alcohol use disorders may be of significant benefit to some individuals.
Collapse
Affiliation(s)
- Tamara J Phillips
- Oregon Health & Science University, Veterans Affairs Medical Center, Department of Behavioral Neuroscience , 3710 SW US Veterans Hospital Rd, Portland, OR 97239 , USA +1 503 220 8262 Ext. 56674 ; +1 503 721 1029 ;
| | | |
Collapse
|
10
|
Draycott B, Loureiro M, Ahmad T, Tan H, Zunder J, Laviolette SR. Cannabinoid transmission in the prefrontal cortex bi-phasically controls emotional memory formation via functional interactions with the ventral tegmental area. J Neurosci 2014; 34:13096-109. [PMID: 25253856 PMCID: PMC6608340 DOI: 10.1523/jneurosci.1297-14.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 01/01/2023] Open
Abstract
Disturbances in cortical cannabinoid CB1 receptor signaling are well established correlates of various neuropsychiatric disorders, including depression and schizophrenia. Importantly, the ability of cannabinoid transmission to modulate emotional processing is functionally linked to interactions with subcortical DA systems. While considerable evidence demonstrates that CB1 receptor-mediated modulation of emotional processing and related behaviors follows a biphasic functional curve, little is known regarding how CB1 signaling within cortical networks may interact with subcortical DAergic systems involved in emotional behavior regulation. Using a combination of in vivo electrophysiological recordings and behavioral pharmacology in rats, we investigated the relationship between mPFC cannabinoid transmission, fear memory formation, and subcortical DA neuron activity patterns. We report that direct intra-mPFC CB1 activation biphasically modulates spontaneous, subcortical VTA DA neuron activity in a dose-dependent fashion; while lower doses of a CB1 receptor agonist, WIN 55,212-2, significantly increased spontaneous firing and bursting rates of VTA DA neurons, higher doses strongly inhibited spontaneous DA neuron activity. Remarkably, this same dose-related functional difference was observed with the regulation of fear-related emotional memory formation. Thus, lower levels of CB1 activation potentiated the emotional salience of normally subthreshold fear memory, whereas higher levels completely blocked fear memory acquisition. Furthermore, while the potentiation of subthreshold fear memory salience was blocked by DA receptor antagonism, CB1-mediated blunting of suprathreshold fear memory was rescued by intra-VTA administration of a GABAB receptor antagonist, demonstrating that reversal of GABAergic inhibitory mechanisms in the VTA can reverse the inhibitory influence of intra-PFC CB1 transmission on mesolimbic DA activity.
Collapse
Affiliation(s)
| | - Michael Loureiro
- Addiction Research Group, Departments of Anatomy and Cell Biology
| | - Tasha Ahmad
- Addiction Research Group, Departments of Anatomy and Cell Biology
| | - Huibing Tan
- Addiction Research Group, Departments of Anatomy and Cell Biology
| | - Jordan Zunder
- Addiction Research Group, Departments of Anatomy and Cell Biology
| | - Steven R Laviolette
- Addiction Research Group, Departments of Anatomy and Cell Biology, Department of Psychiatry, and Department of Psychology, Schulich School of Medicine and Dentistry. University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
11
|
Shim I, Stratford TR, Wirtshafter D. Dopamine is differentially involved in the locomotor hyperactivity produced by manipulations of opioid, GABA and glutamate receptors in the median raphe nucleus. Behav Brain Res 2013; 261:65-70. [PMID: 24333380 DOI: 10.1016/j.bbr.2013.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 12/24/2022]
Abstract
The median raphe nucleus (MR) has been shown to exert a powerful influence on behavioral arousal and marked locomotor hyperactivity can be produced by intra-MR injections of a variety of drugs including GABAA and GABAB agonists, excitatory amino acid antagonists, and μ- and δ-opioid agonists. Other studies have indicated that the MR exerts an inhibitory influence on ascending dopamine systems, suggesting that MR induced alterations in activity may be mediated through changes in dopaminergic transmission. In the present study, we explored this possibility by examining whether systemic administration of the preferential D2 dopamine antagonist haloperidol is able to antagonize the hyperactivity produced by intra-MR injections of various drugs. We found that haloperidol completely blocked the locomotor response to intra-MR injections of the μ-opioid receptor agonist DAMGO and the δ-opioid receptor agonist DPDPE. In marked contrast, at doses which abolished the locomotor response to systemic amphetamine, haloperidol had no effect on the hyperactivity induced by intra-MR injections of GABAA agonist muscimol, the GABAB agonist baclofen, or the kainate/quisqualate antagonist pBB-PZDA, even though it suppressed baseline activity in these same animals. These results indicate that there must be at least two mechanisms capable of influencing behavioral arousal within the MR region, one of which is dependent on D2 dopamine receptors and the other is not.
Collapse
Affiliation(s)
- Insop Shim
- Department of Psychology, University of Illinois at Chicago M/C 285 1007 W. Harrison St., Chicago 60607-7137, IL, U.S.A; AMSRC, Department of Basic Science College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Thomas R Stratford
- Department of Psychology, University of Illinois at Chicago M/C 285 1007 W. Harrison St., Chicago 60607-7137, IL, U.S.A
| | - David Wirtshafter
- Department of Psychology, University of Illinois at Chicago M/C 285 1007 W. Harrison St., Chicago 60607-7137, IL, U.S.A.
| |
Collapse
|
12
|
Holstein SE, Li N, Eshleman AJ, Phillips TJ. GABAB receptor activation attenuates the stimulant but not mesolimbic dopamine response to ethanol in FAST mice. Behav Brain Res 2013; 237:49-58. [PMID: 22982185 PMCID: PMC3500454 DOI: 10.1016/j.bbr.2012.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 12/20/2022]
Abstract
Neural processes influenced by γ-aminobutyric acid B (GABA(B)) receptors appear to contribute to acute ethanol sensitivity, including the difference between lines of mice bred for extreme sensitivity (FAST) or insensitivity (SLOW) to the locomotor stimulant effect of ethanol. One goal of the current study was to determine whether selection of the FAST and SLOW lines resulted in changes in GABA(B) receptor function, since the lines differ in sensitivity to the GABA(B) receptor agonist baclofen and baclofen attenuates the stimulant response to ethanol in FAST mice. A second goal was to determine whether the baclofen-induced reduction in ethanol stimulation in FAST mice is associated with an attenuation of the mesolimbic dopamine response to ethanol. In Experiment 1, the FAST and SLOW lines were found to not differ in GABA(B) receptor function (measured by baclofen-stimulated [(35)S]GTPγS binding) in whole brain or in several regional preparations, except in the striatum in one of the two replicate sets of selected lines. In Experiment 2, baclofen-induced attenuation of the locomotor stimulant response to ethanol in FAST mice was not accompanied by a reduction in dopamine levels in the nucleus accumbens, as measured by microdialysis. These data suggest that, overall, GABA(B) receptor function does not play an integral role in the genetic difference in ethanol sensitivity between the FAST and SLOW lines. Further, although GABA(B) receptors do modulate the locomotor stimulant response to ethanol in FAST mice, this effect does not appear to be due to a reduction in tonic dopamine signaling in the nucleus accumbens.
Collapse
Affiliation(s)
- Sarah E. Holstein
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Na Li
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Amy J. Eshleman
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Dept of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Research Service, Dept of Veterans Affairs Medical Center, 3710 SW Veterans Hospital Road, Portland, OR 97239, USA
| | - Tamara J. Phillips
- Dept of Behavioral Neuroscience and the Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Research Service, Dept of Veterans Affairs Medical Center, 3710 SW Veterans Hospital Road, Portland, OR 97239, USA
| |
Collapse
|
13
|
Ting-A-Kee R, van der Kooy D. The neurobiology of opiate motivation. Cold Spring Harb Perspect Med 2012; 2:2/10/a012096. [PMID: 23028134 DOI: 10.1101/cshperspect.a012096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Opiates are a highly addictive class of drugs that have been reported to possess both dopamine-dependent and dopamine-independent rewarding properties. The search for how, if at all, these distinct mechanisms of motivation are related is of great interest in drug addiction research. Recent electrophysiological, molecular, and behavioral work has greatly improved our understanding of this process. In particular, the signaling properties of GABA(A) receptors located on GABA neurons in the ventral tegmental area (VTA) appear to be crucial to understanding the interplay between dopamine-dependent and dopamine-independent mechanisms of opiate motivation.
Collapse
Affiliation(s)
- Ryan Ting-A-Kee
- Institute of Medical Science, University of Toronto, Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 3E1, Canada.
| | | |
Collapse
|
14
|
Orrù A, Fujani D, Cassina C, Conti M, Di Clemente A, Cervo L. Operant, oral alcoholic beer self-administration by C57BL/6J mice: effect of BHF177, a positive allosteric modulator of GABA(B) receptors. Psychopharmacology (Berl) 2012; 222:685-700. [PMID: 22411427 DOI: 10.1007/s00213-012-2672-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/14/2012] [Indexed: 12/30/2022]
Abstract
RATIONALE With its high palatability, near-beer has been successfully used in rats as a vehicle to induce ethanol oral self-administration. OBJECTIVES The study aimed to develop an operant model of oral alcoholic beer self-administration promoting a stable intake of pharmacologically relevant amounts of ethanol in free-feeding C57BL/6J mice. It also aimed to assess the model's predictive validity by evaluating the influence of baclofen, a GABA(B) agonist, and BHF177, a GABA(B) positive allosteric modulator, on alcoholic beer self-administration. METHODS Mice were trained to self-administer, under a fixed ratio three schedule of reinforcement, 10 μl of beer containing increasing ethanol concentrations (0-18% v/v) in daily 30-min sessions. The effects on motor coordination (rotarod), locomotor activity (open field, automated cages) and anxiety-like behavior (elevated plus maze, EPM) were examined. Baclofen (1.25-5 mg/kg, intraperitoneal, i.p.) and BHF177 (3.75-30 mg/kg, i.p.) were used to see the effects on 9% alcoholic beer and near-beer self-administration. RESULTS Near-beer stably maintained operant oral self-administration in mice. Adding ethanol to near-beer reduced the number of active lever presses, while the corresponding amount of ethanol self-administration increased (0.8-1.0 g/kg/session). Motor impairment was observed when more than 1.3 g/kg/session of ethanol was self-administered with beer and slight but consistent hyperlocomotion with more than 0.9-1.0 g/kg/session. BHF177 (15 mg/kg) preferentially reduced 9% alcoholic beer self-administration, while the higher dose (30 mg/kg)-like baclofen 5 mg/kg-also reduced near-beer self-administration. CONCLUSIONS The operant model of oral alcoholic beer self-administration in C57BL/6J mice should prove useful for studying ethanol-reinforced behaviors and to identify candidate compounds for the pharmacological management of alcohol addiction.
Collapse
Affiliation(s)
- Alessandro Orrù
- Experimental Psychopharmacology, Department of Neuroscience, "Mario Negri" Institute for Pharmacological Research, Via La Masa 19, 20156 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Identification of rat ventral tegmental area GABAergic neurons. PLoS One 2012; 7:e42365. [PMID: 22860119 PMCID: PMC3409171 DOI: 10.1371/journal.pone.0042365] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/06/2012] [Indexed: 12/29/2022] Open
Abstract
The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR) activation produces reward by disinhibiting midbrain ventral tegmental area (VTA) dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal heterogeneity and the recent demonstration that MOR agonists inhibit GABAergic terminals in the VTA arising from extrinsic neurons. In addition, VTA MOR reward can be dopamine-independent. To directly test the assumption that MOR activation directly inhibits local GABAergic neurons, we investigated the properties of rat VTA GABA neurons directly identified with either immunocytochemistry for GABA or GAD65/67, or in situ hybridization for GAD65/67 mRNA. Utilizing co-labeling with an antibody for the neural marker NeuN and in situ hybridization against GAD65/67, we found that 23±3% of VTA neurons are GAD65/67(+). In contrast to the assumptions of the two neuron model, VTA GABAergic neurons are heterogeneous, both physiologically and pharmacologically. Importantly, only 7/13 confirmed VTA GABA neurons were inhibited by the MOR selective agonist DAMGO. Interestingly, all confirmed VTA GABA neurons were insensitive to the GABAB receptor agonist baclofen (0/6 inhibited), while all confirmed dopamine neurons were inhibited (19/19). The heterogeneity of opioid responses we found in VTA GABAergic neurons, and the fact that GABA terminals arising from neurons outside the VTA are inhibited by MOR agonists, make further studies essential to determine the local circuit mechanisms underlying VTA MOR reward.
Collapse
|
16
|
Vollrath-Smith FR, Shin R, Ikemoto S. Synergistic interaction between baclofen administration into the median raphe nucleus and inconsequential visual stimuli on investigatory behavior of rats. Psychopharmacology (Berl) 2012; 220:15-25. [PMID: 21904820 PMCID: PMC3245792 DOI: 10.1007/s00213-011-2450-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/07/2011] [Indexed: 01/06/2023]
Abstract
RATIONALE Noncontingent administration of amphetamine into the ventral striatum or systemic nicotine increases responses rewarded by inconsequential visual stimuli. When these drugs are contingently administered, rats learn to self-administer them. We recently found that rats self-administer the GABA(B) receptor agonist baclofen into the median (MR) or dorsal (DR) raphe nuclei. OBJECTIVES We examined whether noncontingent administration of baclofen into the MR or DR increases rats' investigatory behavior rewarded by a flash of light. RESULTS Contingent presentations of a flash of light slightly increased lever presses. Whereas noncontingent administration of baclofen into the MR or DR did not reliably increase lever presses in the absence of visual stimulus reward, the same manipulation markedly increased lever presses rewarded by the visual stimulus. Heightened locomotor activity induced by intraperitoneal injections of amphetamine (3 mg/kg) failed to concur with increased lever pressing for the visual stimulus. These results indicate that the observed enhancement of visual stimulus seeking is distinct from an enhancement of general locomotor activity. Visual stimulus seeking decreased when baclofen was co-administered with the GABA(B) receptor antagonist, SCH 50911, confirming the involvement of local GABA(B) receptors. Seeking for visual stimulus also abated when baclofen administration was preceded by intraperitoneal injections of the dopamine antagonist, SCH 23390 (0.025 mg/kg), suggesting enhanced visual stimulus seeking depends on intact dopamine signals. CONCLUSIONS Baclofen administration into the MR or DR increased investigatory behavior induced by visual stimuli. Stimulation of GABA(B) receptors in the MR and DR appears to disinhibit the motivational process involving stimulus-approach responses.
Collapse
Affiliation(s)
- Fiori R. Vollrath-Smith
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Rick Shin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Satoshi Ikemoto
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224, USA, National Institute on Drug Abuse, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
17
|
Bullock SA, Potenza MN. Pathological Gambling: Neuropsychopharmacology and Treatment. CURRENT PSYCHOPHARMACOLOGY 2012; 1:10.2174/2211556011201010067. [PMID: 24349964 PMCID: PMC3860173 DOI: 10.2174/2211556011201010067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathological gambling (PG) affects about 0.2-2% of adults and the impact extends to family members, employers and society as a whole. Recent research has identified similarities in the pathophysiologies of PG and substance use disorders (SUDs). As such, findings regarding SUDs provide a framework for investigating PG. The aims of the manuscript are two-fold. First, we will briefly revivew neural systems implicated in PG. Cortico-limbic circuitry involving the ventral striatum, ventromedial prefrontal cortex, anterior cingulate cortex, and dorsolateral prefrontal cortex are discussed as are the neurotransmitters norepinephrine, serotonin, dopamine, opioids, glutamate, and gamma-aminobutyric acid (GABA). This background will provide a framework for reviewing the psychopharmacological treatments that have been tested for efficacy and safety in treating PG. Of medications, the strongest data suggest the efficacy and tolerability of opioid antagonists in the treatment of PG, and other agents have varying degree of empirical support. As behavioral therapies have also shown efficacy, they will be briefly considered as well. Future research is needed to understand how treatments work in PG and for whom specific treatments might work best.
Collapse
Affiliation(s)
- Scott A Bullock
- Department of Psychiatry, Yale University School of Medicine, 1 Church Street 7 floor, New Haven, CT, 06510, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, 1 Church Street 7 floor, New Haven, CT, 06510, USA ; Departments of Psychiatry and Child Study Center, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
| |
Collapse
|
18
|
Wierońska JM, Kusek M, Tokarski K, Wabno J, Froestl W, Pilc A. The GABA B receptor agonist CGP44532 and the positive modulator GS39783 reverse some behavioural changes related to positive syndromes of psychosis in mice. Br J Pharmacol 2011; 163:1034-47. [PMID: 21371011 DOI: 10.1111/j.1476-5381.2011.01301.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE An important role of GABAergic neurotransmission in schizophrenia was proposed a long time ago, but there is limited data to support this hypothesis. In the present study we decided to investigate GABA(B) receptor ligands in animal models predictive for the antipsychotic activity of drugs. The GABA(B) receptor antagonists CGP51176 and CGP36742, agonist CGP44532 and positive allosteric modulator GS39783 were studied. EXPERIMENTAL APPROACH The effects of all ligands were investigated in MK-801- and amphetamine-induced hyperactivity tests. The anti-hallucinogenic-like effect of the compounds was screened in the model of head twitches induced by (±)1-(2.5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Furthermore, the effect of GS39783 and CGP44532 on DOI-induced frequency of spontaneous excitatory postsynaptic currents (EPSCs) in slices from mouse brain frontal cortices was investigated. The anti-cataleptic properties of the compounds were also assessed. KEY RESULTS The GABA(B) receptor activators CGP44532 and GS39783 exhibited antipsychotic-like effects both in the MK-801- and amphetamine-induced hyperactivity tests, as well as in the head-twitch model in mice. Such effects were not observed for the GABA(B) receptor antagonists. DOI-induced increased frequency of spontaneous EPSCs was also decreased by the compounds. Moreover, CGP44532 and GS39783 inhibited haloperidol-induced catalepsy and EPSCs. CONCLUSION AND IMPLICATIONS These data suggest that selective GABA(B) receptor activators may be useful in the treatment of psychosis.
Collapse
Affiliation(s)
- J M Wierońska
- Department of Neurobiology, Institute of Pharmacology PAS, 31-343 Kraków, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
gamma-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the brain which acts through different receptor subtypes. Metabotropic GABA(B) receptors are widely distributed throughout the brain. Alterations in GABA signaling through pharmacological activation or deactivation of the GABA(B) receptor regulate behavior and brain reward processes. GABA(B) receptor agonists and, most recently, positive modulators have been found to inhibit the reinforcing effects of drugs of abuse, such as cocaine, amphetamine, nicotine, ethanol, and opiates. This converging evidence of the effects of GABA(B) compounds on the reinforcing properties of addictive drugs is based on behavioral studies that used a variety of procedures with relevance to reward processes and drug abuse liability, including intracranial self-stimulation, intravenous self-administration under both fixed- and progressive-ratio schedules of reinforcement, reinstatement, and conditioned place preference. GABA(B) receptor agonists and positive modulators block the reinforcing effects of drugs of abuse in these animal models. However, GABA(B) receptor agonists also have undesirable side-effects. GABA(B) receptor modulators have potential advantages as medications for drug addiction. These compounds have a better side-effect profile than GABA(B) agonists because they are devoid of intrinsic agonistic activity in the absence of GABA. They only exert their modulatory actions in concert with endogenous GABAergic activity. Thus, GABA(B) receptor positive modulators are promising therapeutics for the treatment of various aspects of dependence (e.g., initiation, maintenance, and relapse) on various drugs of abuse, such as cocaine, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Styliani Vlachou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
20
|
Sotomayor-Zárate R, Araya KA, Pereira P, Blanco E, Quiroz G, Pozo S, Carreño P, Andrés ME, Forray MI, Gysling K. Activation of GABA-B receptors induced by systemic amphetamine abolishes dopamine release in the rat lateral septum. J Neurochem 2010; 114:1678-86. [DOI: 10.1111/j.1471-4159.2010.06877.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Miner P, Borkuhova Y, Shimonova L, Khaimov A, Bodnar RJ. GABA-A and GABA-B receptors mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions. Brain Res 2010; 1355:86-96. [PMID: 20696149 DOI: 10.1016/j.brainres.2010.07.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/24/2022]
Abstract
Food intake is significantly increased following administration of GABA-B and GABA-A agonists into the nucleus accumbens (NAC) shell and ventral tegmental area (VTA) with receptor-selective antagonist pretreatment capable of blocking these responses within sites. Regional interactions in feeding studies have been evaluated by administering an antagonist in one site of interest prior to administration of the feeding-active agonist in a second site of interest and have identified important relationships, particularly for opioid-opioid interactions. To evaluate whether regional and reciprocal VTA and NAC shell interactions occur for GABA-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen, microinjected into the NAC shell was dose-dependently blocked by pretreatment with either the GABA-B antagonist, saclofen, or the GABA-A antagonist, bicuculline, into the VTA, and then whether VTA baclofen-induced feeding was dose-dependently blocked by NAC shell pretreatment of either saclofen or bicuculline in rats. Rats were stereotaxically implanted with bilateral pairs of cannulae aimed at the VTA and NAC shell and were assessed for food intake following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NAC shell treatment. Baclofen administration in the VTA and NAC shell was preceded 20 min earlier with administration of bicuculline (0, 7.5, 75, 150, 300 ng) or saclofen (0, 0.5, 1.5, 3, 5 μg) into the other site with intake measured 1, 2 and 4h after agonist treatment. VTA saclofen dose-dependently and significantly blocked feeding elicited by NAC shell baclofen. Correspondingly, NAC shell saclofen dose-dependently and significantly blocked feeding elicited by VTA baclofen, indicating a robust and bidirectional GABA-B/GABA-B receptor interaction between sites. Whereas VTA bicuculline significantly blocked the increased feeding elicited by NAC shell baclofen, NAC shell bicuculline reduced but did not block feeding elicited by VTA baclofen, indicating a unidirectional interaction GABA-B/GABA-A receptor interaction between sites. Unlike within-site receptor specificity governing the ability of GABA agonist mediation of food intake, the present study demonstrates that GABA, like opioids, employs a distributed brain network in mediating its ingestive effects, and that under certain circumstances, uses multiple receptor subtypes to underlie its regional effects.
Collapse
Affiliation(s)
- Patricia Miner
- Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA
| | | | | | | | | |
Collapse
|
22
|
Frankowska M, Nowak E, Filip M. Effects of GABAB receptor agonists on cocaine hyperlocomotor and sensitizing effects in rats. Pharmacol Rep 2010; 61:1042-9. [PMID: 20081239 DOI: 10.1016/s1734-1140(09)70166-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 10/23/2009] [Indexed: 01/21/2023]
Abstract
The present study was designed to find out whether pharmacological activation of GABA(B) receptors played a role in cocaine sensitization. To this end, male Wistar rats were injected with baclofen or 3-aminopropyl(methyl)phosphinic acid (SKF 97541), the potent and selective GABA(B) receptor agonists. The rats, which were repeatedly (for 5 days) administered with cocaine (10 mg/kg) and then challenged with cocaine (10 mg/kg) after 5-day withdrawal period, showed significantly higher locomotor hyperactivity in comparison with the effect observed in saline-pretreated and cocaine challenged rats. Baclofen (1.25, 2.5 and 5 mg/kg), administered for 5 days prior to cocaine, dose-dependently attenuated cocaine sensitization. When injected in the same treatment regimen, SKF 97541 (0.03 mg/kg) reduced the development of cocaine sensitization. To examine the effects of baclofen and SKF 97541 on the expression of cocaine sensitization, the drugs were given acutely before a challenge dose of cocaine (10 mg/kg) on day 10. Either baclofen (2.5 and 5 mg/kg) or SKF 97541 (0.1 mg/kg) decreased sensitization to cocaine. Our findings implicate a role of GABA(B) receptors in locomotor responses to cocaine. More specifically, they show that stimulation of GABA(B) receptors exerted inhibitory actions on acute locomotor responses to cocaine and on the expression of cocaine sensitization, what may offer a therapeutic potential of GABA(B) receptor agonists in the treatment of cocaine dependence.
Collapse
Affiliation(s)
- Małgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland
| | | | | |
Collapse
|
23
|
Shin R, Ikemoto S. The GABAB receptor agonist baclofen administered into the median and dorsal raphe nuclei is rewarding as shown by intracranial self-administration and conditioned place preference in rats. Psychopharmacology (Berl) 2010; 208:545-54. [PMID: 20054525 PMCID: PMC2891391 DOI: 10.1007/s00213-009-1757-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 12/09/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE The midbrain raphe regions have long been implicated in affective processes and disorders. There is increasing evidence to suggest that the median (MR) and dorsal raphe nuclei (DR) tonically inhibit reward-related processes. OBJECTIVES Stimulation of GABAB receptors in the midbrain raphe nuclei is known to inhibit local neurons, especially serotonergic neurons. We sought to determine if injections of the GABAB receptor agonist baclofen into the MR or DR are rewarding, using intracranial self-administration and conditioned place preference. RESULTS Rats quickly learned to lever press for infusions of baclofen (0.1–2.5 mM) into the MR, but not the ventral tegmental area or central linear nucleus. Rats increased lever pressing associated with intra-DR baclofen infusions, but not readily. Baclofen self-administration into the MR or DR was attenuated by coadministration of the GABAB receptor antagonist SCH 50911 (1 mM) or systemic pretreatment with the dopamine receptor antagonist SCH 23390 (0.025 mg/kg, i.p.). In addition, intra-DR and intra-MR injections of baclofen induced conditioned place preference; injection into DR was more effective. CONCLUSIONS Baclofen injections into the midbrain raphe nuclei are rewarding. Baclofen was more readily self-administered into the MR than into the DR, while baclofen injections into the DR more readily induced conditioned place preference than those into the MR. These sites may be differentially involved in aspects of reward. These findings suggest that MR or DR neurons containing GABAB receptors are involved in tonic inhibitory control over reward processes.
Collapse
Affiliation(s)
- Rick Shin
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - Satoshi Ikemoto
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
24
|
|
25
|
Maccioni P, Carai MA, Kaupmann K, Guery S, Froestl W, Leite-Morris KA, Gessa GL, Colombo G. Reduction of Alcohol’s Reinforcing and Motivational Properties by the Positive Allosteric Modulator of the GABABReceptor, BHF177, in Alcohol-Preferring Rats. Alcohol Clin Exp Res 2009; 33:1749-56. [DOI: 10.1111/j.1530-0277.2009.01012.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Miranda F, Jiménez JC, Cedillo LN, Sandoval-Sánchez A, Millán-Mejía P, Sánchez-Castillo H, Velázquez-Martínez DN. The GABA-B antagonist 2-hydroxysaclofen reverses the effects of baclofen on the discriminative stimulus effects of d-amphetamine in the conditioned taste aversion procedure. Pharmacol Biochem Behav 2009; 93:25-30. [DOI: 10.1016/j.pbb.2009.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 03/24/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
|
27
|
Fattore L, Spano MS, Cossu G, Scherma M, Fratta W, Fadda P. Baclofen prevents drug-induced reinstatement of extinguished nicotine-seeking behaviour and nicotine place preference in rodents. Eur Neuropsychopharmacol 2009; 19:487-98. [PMID: 19250803 DOI: 10.1016/j.euroneuro.2009.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/11/2008] [Accepted: 01/27/2009] [Indexed: 11/28/2022]
Abstract
The gamma-aminobutyric acid(GABA)-B receptor agonist baclofen is known to reduce drug intake in both animals and humans and to prevent reinstatement of cocaine-, opioid-, and alcohol-seeking in rats after a period of extinction, but its effect on nicotine reinstatement is unknown. This study investigated the effect of baclofen on nicotine-seeking reinstatement both using the extinction/reinstatement model of nicotine self-administration and conditioned place preference (CPP). Results showed that in rats previously trained to intravenously self-administer nicotine (30 microg/kg/inf) under a FR-1 schedule of reinforcement, acute nicotine (0.15 mg/kg) priming effectively reinstates nicotine-seeking behaviour following extinction. At doses used in this study (up to 2.5 mg/kg) baclofen alone did not affect locomotor activity and did not reinstate responding. However, baclofen dose-dependently attenuated drug-induced reinstatement of nicotine-seeking in rats. Moreover, baclofen (1.25 mg/kg) completely blocked nicotine-induced reinstatement of extinguished nicotine (0.3 mg/kg) CPP in mice. Altogether, our results showed that baclofen is able to antagonise reinstatement of nicotine-seeking and CPP triggered by nicotine primings, suggesting its potential clinical utility as an anti-relapse agent.
Collapse
Affiliation(s)
- Liana Fattore
- Institute of Neuroscience, Section of Cagliari, National Research Council CNR, c/o Department of Neuroscience, University of Cagliari, Cittadella Universitaria of Monserrato, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Parga JA, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL. Effects of GABA and GABA receptor inhibition on differentiation of mesencephalic precursors into dopaminergic neurons in vitro. Dev Neurobiol 2007; 67:1549-59. [PMID: 17525990 DOI: 10.1002/dneu.20531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitters have been shown to control CNS neurogenesis, and GABA-mediated signaling is thought to be involved in the regulation of nearly all key developmental stages. Generation of dopaminergic (DA) neurons from stem/precursor cells for cell therapy in Parkinson's disease has become a major focus of research. However, the possible effects of GABA on generation of DA neurons from proliferating neurospheres of mesencephalic precursors have not been studied. In the present study, GABA(A), and GABA(B) receptors were found to be located in DA cells. Treatment of cultures with GABA did not cause significant changes in generation of DA cells from precursors. However, treatment with the GABA(A) receptor antagonist bicuculline (10(-5) M) led to a significant increase in the number DA cells, and treatment with the GABA(B) receptor antagonist CGP 55845 (10(-5) M) to a significant decrease. Simultaneous treatment with bicuculline and CGP 55845 did not induce significant changes. Apoptotic cell death studies and bromodeoxyuridine immunohistochemistry indicated that the aforementioned differences in generation of DA neurons are not due to changes in survival or proliferation of DA cells, but rather to increased or decreased differentiation of mesencephalic precursors towards the DA phenotype. The results suggest that these effects are exerted via GABA receptors located on DA precursors, and are not an indirect consequence of effects on the serotonergic or glial cell population. Administration of GABA(A) receptor antagonists in the differentiation medium may help to obtain higher rates of DA neurons for potential use in cell therapy for Parkinson's disease.
Collapse
Affiliation(s)
- J A Parga
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
29
|
Filip M, Frankowska M, Przegaliński E. Effects of GABAB receptor antagonist, agonists and allosteric positive modulator on the cocaine-induced self-administration and drug discrimination. Eur J Pharmacol 2007; 574:148-57. [PMID: 17698060 DOI: 10.1016/j.ejphar.2007.07.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 11/19/2022]
Abstract
Preclinical and clinical findings indicate that a GABA(B) receptor agonist baclofen decreases cocaine use. The present study investigated the effects of the GABA(B) receptor antagonist (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH 50911), the agonists baclofen and 3-aminopropyl(methyl)phoshinic acid (SKF 97541) and the allosteric positive modulator 3,5-bis(1,1-dimethylethyl-4-hydroxy-beta,beta-dimethylbenzenepropanol (CGP 7930) in cocaine-and food-maintained responding under a fixed ratio 5 schedule of reinforcement in male Wistar rats. The effects of the GABA(B) receptor ligands on cocaine (10 mg/kg)-induced discriminative stimulus in a two-lever, water-reinforced fixed ratio 20 task and on basal locomotor activity were also assessed. Baclofen (2.5-5 mg/kg), SKF 97541 (0.1-0.3 mg/kg) and CGP 7930 (30-100 mg/kg) decreased the cocaine (0.5 mg/kg/injection)-maintained responding; SCH 50911 (3-10 mg/kg) was inactive in this respect. Baclofen (5 mg/kg) and SKF 97541 (0.3 mg/kg), but not CGP 7930 or SCH 50911 attenuated the food-maintained responding. The inhibitory effects of the GABA(B) receptor agonists and the modulator were blocked by SCH 50911. SKF 97541 (0.1 mg/kg) or CGP 9730 (30-100 mg/kg) did not produce a significant shift in the cocaine (1.25-10 mg/kg) dose-response curve in a drug discrimination procedure, while baclofen (1.5 mg/kg) or SCH 50911 (10 mg/kg) attenuated the effects of separate doses of cocaine. Baclofen (5 mg/kg) and CGP 7930 (100 mg/kg) significantly reduced basal horizontal activity. We found that pharmacological stimulation of GABA(B) receptors by direct agonists or allosteric positive modulation reduces cocaine reinforcement while this property of cocaine is not related to tonic activation of GABA(B) receptors. The GABA(B) receptor stimulation-induced reduction of cocaine reinforcement was separated from its discriminative stimulus effects. Moreover, a dissociation between effects of direct GABA(B) receptor agonists and a GABA(B) allosteric positive modulator on cocaine vs. food-maintained responding was demonstrated.
Collapse
Affiliation(s)
- Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | | | | |
Collapse
|
30
|
Bambico FR, Katz N, Debonnel G, Gobbi G. Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J Neurosci 2007; 27:11700-11. [PMID: 17959812 PMCID: PMC6673235 DOI: 10.1523/jneurosci.1636-07.2007] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 11/21/2022] Open
Abstract
Preclinical and clinical studies show that cannabis modulates mood and possesses antidepressant-like properties, mediated by the agonistic activity of cannabinoids on central CB1 receptors (CB1Rs). The action of CB1R agonists on the serotonin (5-HT) system, the major transmitter system involved in mood control and implicated in the mechanism of action of antidepressants, remains however poorly understood. In this study, we demonstrated that, at low doses, the CB1R agonist WIN55,212-2 [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate] exerts potent antidepressant-like properties in the rat forced-swim test (FST). This effect is CB1R dependent because it was blocked by the CB1R antagonist rimonabant and is 5-HT mediated because it was abolished by pretreatment with the 5-HT-depleting agent parachlorophenylalanine. Then, using in vivo electrophysiology, we showed that low doses of WIN55,212-2 dose dependently enhanced dorsal raphe nucleus 5-HT neuronal activity through a CB1R-dependent mechanism. Conversely, high doses of WIN55,212-2 were ineffective in the FST and decreased 5-HT neuronal activity through a CB1R-independent mechanism. The CB1R agonist-induced enhancement of 5-HT neuronal activity was abolished by total or medial prefrontocortical, but not by lateral prefrontocortical, transection. Furthermore, 5-HT neuronal activity was enhanced by the local microinjection of WIN55,212-2 into the ventromedial prefrontal cortex (mPFCv) but not by the local microinjection of WIN55,212-2 into the lateral prefrontal cortex. Similarly, the microinjection of WIN55,212-2 into the mPFCv produced a CB1R-dependent antidepressant-like effect in the FST. These results demonstrate that CB1R agonists possess antidepressant-like properties and modulate 5-HT neuronal activity via the mPFCv.
Collapse
Affiliation(s)
- Francis Rodriguez Bambico
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Quebec, Canada H3A 1A1, and
| | - Noam Katz
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Quebec, Canada H3A 1A1, and
- Department of Psychiatry, Centre de Recherche Fernand Seguin, Hôpital L.H. Lafontaine, Université de Montréal, Quebec, Canada H1N 3V2
| | - Guy Debonnel
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Quebec, Canada H3A 1A1, and
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, Quebec, Canada H3A 1A1, and
- Department of Psychiatry, Centre de Recherche Fernand Seguin, Hôpital L.H. Lafontaine, Université de Montréal, Quebec, Canada H1N 3V2
| |
Collapse
|
31
|
Waselus M, Van Bockstaele EJ. Co-localization of corticotropin-releasing factor and vesicular glutamate transporters within axon terminals of the rat dorsal raphe nucleus. Brain Res 2007; 1174:53-65. [PMID: 17825268 PMCID: PMC2175392 DOI: 10.1016/j.brainres.2007.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 10/23/2022]
Abstract
Electrophysiological, microdialysis and behavioral studies support a modulatory role for corticotropin-releasing factor (CRF) in regulating the dorsal raphe nucleus (DRN)-serotonin (5-HT) system. CRF and 5-HT are implicated in the pathophysiology of depression, thus neuroanatomical substrates of CRF-DRN-5-HT interactions are of interest. Identification of co-transmitters within DRN CRF axon terminals is important for elucidating the complex effects underlying CRF afferent regulation of DRN neurons. This study investigated whether CRF-labeled axon terminals within the DRN contain immunoreactivity for vesicular glutamate transporters (isoforms vGlut1 and vGlut2) indicative of the excitatory neurotransmitter glutamate. Dual immunohistochemistry for CRF and either vGlut1 or vGlut2 was conducted within the same tissue section and immunofluorescence results indicated patterns of immunoreactivity consistent with previous reports. Abundant vGlut1- and vGlut2-immunoreactivity was found in puncta exhibiting a largely uniform distribution, whereas CRF-immunoreactivity was localized to topographically distributed varicose processes within the DRN. Profiles containing both CRF- and either vGlut1- or vGlut2-immunoreactivity were apparent in the DRN. Electron microscopy confirmed that immunoreactivity for CRF and vGlut1 was localized primarily to separate axon terminals in the DRN, with a subset co-localizing CRF and vGlut1. Examination of CRF and vGlut2 immunoreactivities in the DRN indicated that CRF and vGlut2 were found within the same axon terminal more frequently than CRF and vGlut1. Overall, these anatomical findings suggest that CRF may function, in part, with the excitatory neurotransmitter glutamate in the modulation of neuronal activity in the DRN.
Collapse
Affiliation(s)
- Maria Waselus
- Department of Neurosurgery, Thomas Jefferson University, Farber Institute for Neurosciences, 900 Walnut Street, Suite 417, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
32
|
Filip M, Frankowska M. Effects of GABAB receptor agents on cocaine priming, discrete contextual cue and food induced relapses. Eur J Pharmacol 2007; 571:166-73. [PMID: 17610868 DOI: 10.1016/j.ejphar.2007.05.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/24/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
In the present study we investigated the effects of the GABA(B) receptor antagonist (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH 50911), the agonists baclofen and 3-aminopropyl(methyl)phosphinic acid (SKF 97541), and the allosteric positive modulator 3,5-bis(1,1-dimethylethyl)-4-hydroxy-beta,beta-dimethylbenzenepropanol (CGP 7930) on cocaine seeking behavior. The effects of the above drugs on the reinstatement of responding induced by natural reinforcer (food) were also studied. Male Wistar rats were trained to self-administer either cocaine (0.5 mg/kg/infusion) or food (sweet milk) and responding on the reinforcer-paired lever was extinguished. Reinstatement of responding was induced by a noncontingent presentation of the self-administered reinforcer (10 mg/kg cocaine, i.p.), a discrete contextual cue, or a contingent presentation of food. SCH 50911 (3-10 mg/kg) dose-dependently attenuated responding on the previously cocaine-paired lever during both reinstatement conditions, with slightly greater efficacy at reducing conditioned cue reinstatement. At the same time, it failed to alter reinstatement of food-seeking behavior. Baclofen (1.25-5 mg/kg) and SKF 97541 (0.03-0.3 mg/kg) attenuated cocaine- or food-seeking behavior; the effect of the drug appeared more effective for cocaine-seeking than food-seeking. CGP 7930 (10-30 mg/kg) reduced cocaine seeking without affecting food-induced reinstatement on reward seeking. Our results indicate that tonic activation of GABA(B) receptors is required for cocaine seeking behavior in rats. Moreover, the GABA(B) receptor antagonist SCH 50911 was effective in reducing relapse to cocaine at doses that failed to alter reinstatement of food-seeking behavior (present study), basal locomotor activity, cocaine and food self-administration (Filip et al., submitted for publication), suggesting its selective effects on motivated drug-seeking behavior. The potent inhibitory responses on cocaine seeking behavior were also seen following the GABA(B) receptor agonists or the allosteric positive modulator, however, doses of baclofen and SKF 97541 that inhibited cocaine-seeking were only threefold lower of those that inhibited food-seeking. In addition, the direct GABA(B) receptor agonists and the allosteric positive modulator cause decreases in cocaine or food self-administration (Filip et al., submitted for publication), indicating their nonspecific effects on relapse to drug-seeking and drug-taking behavior. In conclusion, the GABA(B) receptor antagonist SCH 50911 seems to be viable treatment for reducing cocaine craving and preventing relapse, while the GABA(B) receptor allosteric positive modulator CGP 7930 may hold the highest promise for attenuating cue-evoked relapses to cocaine as well as the direct rewarding properties of cocaine.
Collapse
MESH Headings
- Animals
- Baclofen/pharmacology
- Behavior, Animal/drug effects
- Cocaine/administration & dosage
- Cocaine-Related Disorders/drug therapy
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/psychology
- Conditioning, Operant/drug effects
- Cues
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Extinction, Psychological/drug effects
- Feeding Behavior/drug effects
- GABA Agonists/pharmacology
- GABA Antagonists/pharmacology
- Injections, Intravenous
- Male
- Morpholines/pharmacology
- Organophosphorus Compounds/pharmacology
- Phenols/pharmacology
- Rats
- Rats, Wistar
- Receptors, GABA-B/drug effects
- Receptors, GABA-B/metabolism
- Reinforcement, Psychology
- Secondary Prevention
- Self Administration
Collapse
Affiliation(s)
- Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, 12 Smetna, Poland.
| | | |
Collapse
|
33
|
Massé F, Hascoët M, Bourin M. Effect of GABAergic ligands on the anxiolytic-like activity of DOI (a 5-HT(2A/2C) agonist) in the four-plate test in mice. Eur Neuropsychopharmacol 2007; 17:483-91. [PMID: 17196374 DOI: 10.1016/j.euroneuro.2006.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 10/13/2006] [Accepted: 11/14/2006] [Indexed: 11/23/2022]
Abstract
5-HTergic and GABAergic systems are involved in neurobiology of anxiety. Precedent studies have demonstrated that SSRIs possessed an anxiolytic-like effect in the four-plate test (FPT) at doses that did not modify spontaneous locomotor activity. This effect seems to be mediated through the activation of 5-HT(2A) postsynaptic receptors. The purpose of the present study was to examine the implication of GABA system in the anxiolytic-like activity of DOI in the FPT. To achieve this, the co-administration of DOI (5-HT(2A/2C) receptor agonists) with GABA(A) and GABA(B) receptor ligands was evaluated in the FPT. Alprazolam, diazepam and muscimol (for higher dose) potentiated the anxiolytic-like effect of DOI. Bicuculline, picrotoxin and baclofen inhibited the anxiolytic-like effect of DOI. Flumazenil and CGP 35348 had no effect on the anxiolytic-like activity of DOI. These results suggest that the GABA system seems to be strongly implicated in the anxiolytic-like activity of DOI in the FPT.
Collapse
Affiliation(s)
- Fabienne Massé
- EA 3256 "Neurobiologie de l'Anxiété et de la Dépression", Faculté de Médecine, BP 53508, 1 rue Gaston Veil, F44035 Nantes cedex 01, France
| | | | | |
Collapse
|
34
|
Datta S, Maclean RR. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev 2007; 31:775-824. [PMID: 17445891 PMCID: PMC1955686 DOI: 10.1016/j.neubiorev.2007.02.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/17/2007] [Accepted: 02/26/2007] [Indexed: 11/17/2022]
Abstract
At its most basic level, the function of mammalian sleep can be described as a restorative process of the brain and body; recently, however, progressive research has revealed a host of vital functions to which sleep is essential. Although many excellent reviews on sleep behavior have been published, none have incorporated contemporary studies examining the molecular mechanisms that govern the various stages of sleep. Utilizing a holistic approach, this review is focused on the basic mechanisms involved in the transition from wakefulness, initiation of sleep and the subsequent generation of slow-wave sleep and rapid eye movement (REM) sleep. Additionally, using recent molecular studies and experimental evidence that provides a direct link to sleep as a behavior, we have developed a new model, the cellular-molecular-network model, explaining the mechanisms responsible for regulating REM sleep. By analyzing the fundamental neurobiological mechanisms responsible for the generation and maintenance of sleep-wake behavior in mammals, we intend to provide a broader understanding of our present knowledge in the field of sleep research.
Collapse
Affiliation(s)
- Subimal Datta
- Sleep and Cognitive Neuroscience Laboratory, Department of Psychiatry and Behavioral Neuroscience, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
35
|
Lhuillier L, Mombereau C, Cryan JF, Kaupmann K. GABA(B) receptor-positive modulation decreases selective molecular and behavioral effects of cocaine. Neuropsychopharmacology 2007; 32:388-98. [PMID: 16710312 PMCID: PMC1774586 DOI: 10.1038/sj.npp.1301102] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exposure to cocaine induces selective behavioral and molecular adaptations. In rodents, acute cocaine induces increased locomotor activity, whereas prolonged drug exposure results in behavioral locomotor sensitization, which is thought to be a consequence of drug-induced neuroadaptive changes. Recent attention has been given to compounds activating GABA(B) receptors as potential antiaddictive therapies. In particular, the principle of allosteric positive GABA(B) receptor modulators is very promising in this respect, as positive modulators lack the sedative and muscle relaxant properties of full GABA(B) receptor agonists such as baclofen. Here, we investigated the effects of systemic application of the GABA(B) receptor-positive modulator GS39783 (N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4, 6-diamine) in animals treated with acute and chronic cocaine administration. Both GS39783 and baclofen dose dependently attenuated acute cocaine-induced hyperlocomotion. Furthermore, both compounds also efficiently blocked cocaine-induced Fos induction in the striatal complex. In chronic studies, GS39783 induced a modest attenuation of cocaine-induced locomotor sensitization. Chronic cocaine induces the accumulation of the transcription factor deltaFosB and upregulates cAMP-response-element-binding protein (CREB) and dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). GS39783 blocked the induction/activation of DARPP-32 and CREB in the nucleus accumbens and dorsal striatum and partially inhibited deltaFosB accumulation in the dorsal striatum. In summary, our data provide evidence that GS39783 attenuates the acute behavioral effects of cocaine exposure in rodents and in addition prevents the induction of selective long-term adaptive changes in dopaminergic signaling pathways. Further investigation of GABA(B) receptor-positive modulation as a novel therapeutic strategy for the treatment of cocaine dependence and possibly other drugs of abuse is therefore warranted.
Collapse
Affiliation(s)
| | | | - John F. Cryan
- *Corresponding authors: JF Cryan & K Kaupmann, Novartis Institutes for BioMedical Research; Novartis Pharma AG; CH 4002 Basel, Switzerland; please address correspondence to KK () or JFC ()
| | - Klemens Kaupmann
- *Corresponding authors: JF Cryan & K Kaupmann, Novartis Institutes for BioMedical Research; Novartis Pharma AG; CH 4002 Basel, Switzerland; please address correspondence to KK () or JFC ()
| |
Collapse
|
36
|
Holstein SE, Phillips TJ. GABAB receptor stimulation accentuates the locomotor effects of morphine in mice bred for extreme sensitivity to the stimulant effects of ethanol. Pharmacol Biochem Behav 2006; 85:697-704. [PMID: 17161860 PMCID: PMC1805633 DOI: 10.1016/j.pbb.2006.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 11/15/2022]
Abstract
Mice selectively bred for divergent sensitivity to the locomotor stimulant effects of ethanol (FAST and SLOW) also differ in their locomotor response to morphine. The GABA(B) receptor has been implicated in the mediation of locomotor stimulation to both ethanol and morphine, and a reduction in ethanol-induced stimulation has been found with the GABA(B) receptor agonist baclofen in FAST mice. We hypothesized that GABA(B) receptor activation would also attenuate the locomotor stimulant responses to morphine in these mice. In order to test this hypothesis, baclofen was administered to FAST-1 and FAST-2 mice 15 min prior to morphine, and activity was recorded for 30 min. Baclofen attenuated stimulation to 32 mg/kg morphine in FAST-1 mice, but only at a dose that also reduced saline activity. There was no stimulant response to 32 mg/kg morphine in FAST-2 mice, or to 16 mg/kg or 48 mg/kg morphine in FAST-1 mice, but the combination of baclofen with these morphine doses accentuated locomotor activity. Therefore, it appears that GABA(B) receptor activation is not a common mechanism for the locomotor stimulant responses to ethanol and morphine in FAST mice; however, these data suggest that GABA(B) receptor activation may instead enhance some of the behavioral effects of morphine.
Collapse
Affiliation(s)
- Sarah E. Holstein
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, MC L-470, Portland, OR 97239, USA
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, MC L-470, Portland, OR 97239, USA
- Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd, R&D 32, Portland, OR 97239, USA
| |
Collapse
|
37
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 397] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
38
|
Urbain N, Creamer K, Debonnel G. Electrophysiological diversity of the dorsal raphe cells across the sleep-wake cycle of the rat. J Physiol 2006; 573:679-95. [PMID: 16613874 PMCID: PMC1779756 DOI: 10.1113/jphysiol.2006.108514] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Through their widespread projections to the entire brain, dorsal raphe cells participate in many physiological functions and are associated with neuropsychiatric disorders. In previous studies, the width of action potentials was used as a criterion to identify putative serotonergic neurons, and to demonstrate that cells with broad spikes were more active in wakefulness, slowed down their activity in slow wave sleep and became virtually silent during paradoxical sleep. However, recent studies reported that about half of these presumed serotonergic cells were not immunoreactive for tyrosine hydroxylase. Here, we re-examine the electrophysiological properties of dorsal raphe cells across the sleep-wake cycle in rats by the extracellular recording of a large sample of single units (n = 770). We identified two major types of cells, which differ in spike waveform: a first population characterized by broad, mostly positive spikes, and a second one displaying symmetrical positive-negative spikes with a large distribution of spike durations (0.6-3.2 ms). Although we found classical broad-spike cells that were more active in wakefulness, we also found that about one-third of these cells increased or did not change their firing rate during sleep compared with wakefulness. Moreover, 62% of the latter cells were active in paradoxical sleep when most of raphe cells were silent. Such a diversity in the neuronal firing behaviour is important in the light of the recent controversy regarding the neurochemical identity of dorsal raphe cells exhibiting broad spikes. Our results also suggest that the dorsal raphe contains subpopulations of neurons with reciprocal activity across the sleep-wake cycle.
Collapse
Affiliation(s)
- Nadia Urbain
- Department of Psychiatry, McGill University, Montréal, Québec, Canada.
| | | | | |
Collapse
|
39
|
Paterson NE, Bruijnzeel AW, Kenny PJ, Wright CD, Froestl W, Markou A. Prolonged nicotine exposure does not alter GABAB receptor-mediated regulation of brain reward function. Neuropharmacology 2005; 49:953-62. [PMID: 16005474 DOI: 10.1016/j.neuropharm.2005.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 04/01/2005] [Accepted: 04/29/2005] [Indexed: 11/25/2022]
Abstract
Gamma-aminobutyric acid subtype B (GABA(B)) receptors play an important role in regulating brain reward function. Accumulating evidence suggests that chronic exposure to drugs of abuse may alter GABA(B) receptor function. The present studies investigated whether chronic nicotine administration, using a regimen that induces nicotine dependence, increased inhibitory regulation of brain reward function by GABA(B) receptors, as measured by intracranial self-stimulation (ICSS) thresholds in rats. Such an action of nicotine may contribute to the reward deficit observed during nicotine withdrawal. Nicotine-dependent and control rats received the GABA transaminase inhibitor gamma-vinyl-GABA or the GABA(B) receptor agonist CGP44532 according to a within-subjects Latin square design, and ICSS thresholds were assessed post-injection. Systemic administration of the lowest doses of GVG or CGP44532 did not alter reward thresholds in control or nicotine-treated rats, whereas the highest doses of each drug elevated thresholds similarly in both groups. Further, micro-infusion of CGP44532 directly into the ventral tegmental area elevated ICSS thresholds similarly in saline- and nicotine-treated rats. Overall, these data demonstrate that prolonged nicotine exposure did not alter GABA(B) receptor-mediated regulation of brain reward function, and suggest that alterations in GABA(B) receptor activity are unlikely to play a role in the brain reward deficits associated with spontaneous nicotine withdrawal.
Collapse
Affiliation(s)
- Neil E Paterson
- Department of Molecular and Integrative Neuroscience, CVN-7, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
40
|
Slattery DA, Markou A, Froestl W, Cryan JF. The GABAB receptor-positive modulator GS39783 and the GABAB receptor agonist baclofen attenuate the reward-facilitating effects of cocaine: intracranial self-stimulation studies in the rat. Neuropsychopharmacology 2005; 30:2065-72. [PMID: 15841108 DOI: 10.1038/sj.npp.1300734] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is an increasing interest in the development of nondopaminergic pharmacotherapies for cocaine abuse. Emerging preclinical and clinical data with the metabotropic GABAB receptor agonist baclofen support a role for the modulation of GABAB receptors in the treatment of drug addiction. Nevertheless, the muscle relaxant, hypothermic, and sedative properties of baclofen somewhat limit its widespread potential therapeutic utility. Recently, positive modulators of the GABAB receptor such as GS39783 (N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine) have been identified. These positive modulators enhance the effects of GABA (gamma-aminobutyric acid) through actions at an allosteric site and are devoid of intrinsic agonistic efficacy. The aim of the present study was to assess the ability of the novel GABAB-positive modulator GS39873 or baclofen to modulate the behavioral effects of cocaine. Drugs of abuse such as cocaine lower brain reward thresholds obtained using intracranial self-stimulation (ICSS). We demonstrate here that GS39783 had no intrinsic effects on ICSS reward thresholds (10-100 mg/kg p.o.) in rats, whereas the full GABAB receptor agonist baclofen (2.5-5 mg/kg p.o.) dose dependently elevated thresholds. Moreover, both GS39783 and baclofen attenuated the threshold lowering effect of cocaine administration (10 mg/kg intraperitoneally) in a dose-related manner. These data strongly suggest that activation of GABAB receptors attenuates the rewarding effects of acute cocaine. Therefore, GABAB-positive modulation may represent a novel therapeutic strategy for the treatment of cocaine dependence and possibly other drugs of abuse without the side effects of full GABAB receptor agonists.
Collapse
Affiliation(s)
- David A Slattery
- Psychiatry Program, Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | | |
Collapse
|
41
|
Bechtholt AJ, Cunningham CL. Ethanol-induced conditioned place preference is expressed through a ventral tegmental area dependent mechanism. Behav Neurosci 2005; 119:213-23. [PMID: 15727526 DOI: 10.1037/0735-7044.119.1.213] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The authors examined the role of the ventral tegmental area (VTA) and nucleus accumbens (NAc) in the expression of ethanol-induced conditioned place preference (CPP). After cannulas were implanted, male DBA/2J mice underwent an unbiased Pavlovian-conditioning procedure for ethanol-induced CPP. Before preference testing, the mice were injected intra-VTA (Experiments 1 and 3) or intra-NAc (Experiment 2) with the nonselective opioid antagonist methylnaloxonium (0-ng, 375-ng, or 750-ng total infusion; Experiments 1 and 2) or the gamma aminobutyric acid (GABA(B)) agonist baclofen (0-ng, 25-ng, or 50-ng total infusion; Experiment 3). Intra-VTA methylnaloxonium or baclofen decreased ethanol-induced CPP, whereas intra-NAc methylnaloxonium had no effect. These findings indicate that the conditioned rewarding effect of ethanol is expressed through a VTA-dependent mechanism that involves both opioid and GABA(B) receptors.
Collapse
Affiliation(s)
- Anita J Bechtholt
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | |
Collapse
|
42
|
Khaimova E, Kandov Y, Israel Y, Cataldo G, Hadjimarkou MM, Bodnar RJ. Opioid receptor subtype antagonists differentially alter GABA agonist-induced feeding elicited from either the nucleus accumbens shell or ventral tegmental area regions in rats. Brain Res 2005; 1026:284-94. [PMID: 15488491 DOI: 10.1016/j.brainres.2004.08.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 11/30/2022]
Abstract
Food intake is significantly increased by administration of either GABAA (e.g., muscimol) or GABAB (e.g., baclofen) agonists into either the shell region of the nucleus accumbens (NAC) or the ventral tegmental area (VTA); these responses are selectively blocked by pretreatment with corresponding GABAA and GABAB antagonists. Previous studies found that a single dose (5 microg) of the general opioid antagonist, naltrexone reduced feeding elicited by muscimol, but not baclofen in the NAC shell, and reduced feeding elicited by baclofen, but not muscimol in the VTA. The present study compared feeding responses elicited by either muscimol or baclofen in either the VTA and NAC shell following pretreatment with equimolar doses of selective mu (0.4, 4 microg), delta (0.4, 4 microg), or kappa (0.6, 6 microg) opioid receptor subtype antagonists. Muscimol (25 ng) and baclofen (200 microg) each significantly and equi-effectively increased food intake over 4 h following VTA or NAC shell microinjections. Muscimol-induced feeding elicited from the VTA was significantly enhanced by mu or delta antagonists, and was significantly reduced by kappa antagonists. Baclofen-induced feeding elicited from the VTA was significantly reduced by mu or kappa, but not delta antagonists. Muscimol-induced feeding elicited from the NAC was significantly reduced by either mu, kappa or delta antagonists. Baclofen-induced feeding elicited from the NAC was significantly reduced by kappa or delta, but not mu antagonists. These data indicate differential opioid receptor subtype antagonist-induced mediation of GABA receptor subtype agonist-induced feeding elicited from the VTA and NAC shell. This is consistent with previously demonstrated differential GABA receptor subtype antagonist-induced mediation of opioid-induced feeding elicited from these same sites. Thus, functional relationships exist for the elaborate anatomical and physiological interactions between these two neurochemical systems in the VTA and NAC shell.
Collapse
Affiliation(s)
- Eleonora Khaimova
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | | | | | | | | | | |
Collapse
|
43
|
Paterson NE, Froestl W, Markou A. Repeated administration of the GABAB receptor agonist CGP44532 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine-seeking in rats. Neuropsychopharmacology 2005; 30:119-28. [PMID: 15266350 DOI: 10.1038/sj.npp.1300524] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute administration of gamma-aminobutyric acid B (GABAB) receptor agonists decreased nicotine, cocaine, ethanol, and heroin self-administration. GABAB receptor agonists also decreased cue-induced cocaine craving or seeking in humans and animals, respectively. The present study investigated the effects of repeated subcutaneous administration of the GABAB receptor agonist CGP44532 on nicotine- and food-maintained responding under a fixed ratio 5 schedule of reinforcement. The second part of the study determined whether contingent presentation of previously nicotine-associated cues reinstated extinguished nicotine-seeking behavior, and whether acute subcutaneous CGP44532 administration affected cue-induced reinstatement of extinguished nicotine-seeking behavior. The results indicated that repeated administration of 0.25 mg/kg CGP44532 selectively decreased nicotine self-administration compared to food-maintained responding during the first 7 days of treatment. Repeated administration of 0.5 mg/kg/day CGP44532 nonselectively decreased both nicotine- and food-maintained responding. Contingent presentation of previously nicotine-associated cues reinstated extinguished nicotine-seeking behavior. Further, acute CGP44532 administration (0.125 and 0.25 mg/kg) decreased cue-induced reinstatement of nicotine-seeking behavior. In summary, the present results indicated that 0.25 mg/kg/day CGP44532 selectively decreased nicotine self-administration compared to food-maintained responding, and acute administration of CGP44532 (0.125 and 0.25 mg/kg) dose-dependently decreased cue-induced reinstatement of nicotine-seeking behavior.
Collapse
Affiliation(s)
- Neil E Paterson
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
44
|
Judge SJ, Ingram CD, Gartside SE. GABA receptor modulation of 5-HT neuronal firing: characterization and effect of moderate in vivo variations in glucocorticoid levels. Neurochem Int 2004; 45:1057-65. [PMID: 15337305 DOI: 10.1016/j.neuint.2004.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Evidence from electrophysiological studies suggests that 5-HT neuronal firing in the dorsal raphe nucleus (DRN) may be regulated by both GABA(A) and GABA(B) receptors. Here, we addressed the question of whether the activity of individual 5-HT neurons is regulated by both GABA(A) and GABA(B) receptors. In addition, we examined the concentration-response relationships of GABA(A) and GABA(B) receptor activation and determined if GABA receptor regulation of 5-HT neuronal firing is altered by moderate alterations in circulating corticosterone. The activity of 5-HT neurons in the DRN of the rat was examined using in vitro extracellular electrophysiology. The firing of all individual neurons tested was inhibited by both the GABA(A) receptor agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]-pyridin-3-ol hydrochloride (THIP) (25 microM) and the GABA(B) receptor agonist baclofen (1 microM). Responses to THIP (5, 10, 25 microM) and baclofen (1, 3, 10 microM) were concentration dependent and attenuated by the GABA(A) and GABA(B) receptor antagonists, bicuculline (50 microM) and phaclofen (200 microM), respectively. To examine the effects of corticosterone on the sensitivity of 5-HT neurons to GABA receptor activation, experiments were conducted on adrenalectomized animals with corticosterone maintained for two weeks at either a low or moderate level within the normal diurnal range. These changes in corticosterone levels had no significant effects on the 5-HT neuronal response to either GABA(A) or GABA(B) receptor activation. The data indicate that the control of 5-HT neuronal activity by GABA is mediated by both GABA(A) and GABA(B) receptors and that this control is insensitive to moderate changes in circulating glucocorticoid levels.
Collapse
Affiliation(s)
- Sarah J Judge
- Psychobiology Research Group, School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, NE2 4HH, UK.
| | | | | |
Collapse
|
45
|
Febo M, Segarra AC. Cocaine alters GABA(B)-mediated G-protein activation in the ventral tegmental area of female rats: modulation by estrogen. Synapse 2004; 54:30-6. [PMID: 15300882 DOI: 10.1002/syn.20063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In female rats, estrogen has been reported to enhance cocaine sensitization. Here we investigated the effect of estrogen and cocaine treatments on GABA(B)-stimulated [(35)S]GTPgammaS binding. Ovariectomized rats without (OVX) and with estrogen treatment (OVX-EB) were pretreated with saline or cocaine (15 mg/kg, i.p.) for 5 days and after 1 week of withdrawal challenged with cocaine. One hour after the final injection, animals were sacrificed, brains immediately frozen, and stored at -70 degrees C for subsequent cryosectioning. In vitro functional autoradiography was performed using baclofen (300 microM), a GABA(B) receptor agonist, to stimulate [(35)S]GTPgammaS binding in tissue sections at the level of the ventral tegmental area (VTA). OVX-EB rats showed lower levels of [(35)S]GTPgammaS binding in the VTA (-15%) and entorhinal cortex (EC) (-60%). The effect of cocaine on GABA(B)-mediated G-protein activation varied with the presence of estrogen. Repeated cocaine administration reduced [(35)S]GTPgammaS binding in the VTA and EC of OVX rats and increased it in OVX-EB. Thus, our data suggest that estrogen reduces GABA(B)-mediated G-protein activation in female rats. The results also show that estrogen strongly influences cocaine-induced alterations in GABA(B) function in the VTA and EC of female rats.
Collapse
Affiliation(s)
- Marcelo Febo
- Laboratory of Neuroendocrinology, Department of Physiology andZ Biophysics, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00936-5067
| | | |
Collapse
|
46
|
Adell A, Artigas F. The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neurosci Biobehav Rev 2004; 28:415-31. [PMID: 15289006 DOI: 10.1016/j.neubiorev.2004.05.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 05/12/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
The release of dopamine in the ventral tegmental area (VTA) plays an important role in the autoinhibition of the dopamine neurons of the mesocorticolimbic system through the activation of somatodendritic dopamine D2 autoreceptors. Accordingly, the intra-VTA application of dopamine D2 receptor agonists reduces the firing rate and release of dopamine in the VTA, and this control appears to possess a tonic nature because the corresponding antagonists enhance the somatodendritic release of the transmitter. In addition, the release of dopamine in the VTA is increased by potassium or veratridine depolarization and abolished by tetrodotoxin and calcium omission. Overall, it appears that the somatodendritic release of dopamine is consistently lower than that in nerve endings. Apart from intrinsic dopaminergic mechanisms, other transmitter systems such as serotonin, noradrenaline, acetylcholine, GABA and glutamate play a role in the control of the activity of dopaminergic neurons of the VTA, although the final action depends on the particular receptor involved as well as the neuronal type where it is localized. Given the involvement of the mesocorticolimbic dopaminergic systems in the pathogenesis of severe neuropsychiatric disorders such as schizophrenia, the knowledge of the factors that regulate the release of dopamine in the VTA could provide new insight into the ethiogenesis of the disease as well as its implication on the mechanisms of action of therapeutic drugs.
Collapse
Affiliation(s)
- Albert Adell
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), Carrer Rosselló 161, 6th floor, E-08036 Barcelona, Spain.
| | | |
Collapse
|
47
|
Mannoury la Cour C, Hanoun N, Melfort M, Hen R, Lesch KP, Hamon M, Lanfumey L. GABA(B) receptors in 5-HT transporter- and 5-HT1A receptor-knock-out mice: further evidence of a transduction pathway shared with 5-HT1A receptors. J Neurochem 2004; 89:886-96. [PMID: 15140188 DOI: 10.1111/j.1471-4159.2004.02367.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The functional properties of GABA(B) receptors were examined in the dorsal raphe nucleus (DRN) and the hippocampus of knock-out mice devoid of the 5-HT transporter (5-HTT-/-) or the 5-HT(1A) receptor (5-HT(1A)-/-). Electrophysiological recordings in brain slices showed that the GABA(B) receptor agonist baclofen caused a lower hyperpolarization and neuronal firing inhibition of DRN 5-HT cells in 5-HTT-/- versus 5-HTT+/+ mice. In addition, [(35)S]GTP-gamma-S binding induced by GABA(B) receptor stimulation in the DRN was approximately 40% less in these mutants compared with wild-type mice. In contrast, GABA(B) receptors appeared functionally intact in the hippocampus of 5-HTT-/-, and in both this area and the DRN of 5-HT(1A)-knock-out mice. The unique functional changes of DRN GABA(B) receptors closely resembled those of 5-HT(1A) autoreceptors in 5-HTT-/- mice, further supporting the idea that both receptor types are coupled to a common pool of G-proteins in serotoninergic neurons.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Autoradiography
- Binding, Competitive
- Carrier Proteins/genetics
- Female
- GABA Agonists/pharmacology
- GABA Antagonists/pharmacology
- GABA-B Receptor Agonists
- GABA-B Receptor Antagonists
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacokinetics
- Hippocampus/metabolism
- In Vitro Techniques
- Male
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Transport Proteins
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Nerve Tissue Proteins
- Neurons/drug effects
- Neurons/metabolism
- Patch-Clamp Techniques
- Pyramidal Cells/drug effects
- Pyramidal Cells/metabolism
- Raphe Nuclei/metabolism
- Receptor, Serotonin, 5-HT1A/deficiency
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, GABA-B/metabolism
- Serotonin Plasma Membrane Transport Proteins
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Clotilde Mannoury la Cour
- INSERM U288, Neuropsychopharmacologie Moléculaire, Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Leite-Morris KA, Fukudome EY, Shoeb MH, Kaplan GB. GABA(B) receptor activation in the ventral tegmental area inhibits the acquisition and expression of opiate-induced motor sensitization. J Pharmacol Exp Ther 2004; 308:667-78. [PMID: 14610238 DOI: 10.1124/jpet.103.058412] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opiate-induced motor sensitization refers to the progressive and enduring motor response that develops after intermittent drug administration, and results from neuroadaptive changes in ventral tegmental area (VTA) and nucleus accumbens (NAc) neurons. Repeated activation of mu-opioid receptors localized on gamma-aminobutyric acid (GABA) neurons in the VTA enhances dopaminergic cell activity and stimulates dopamine release in the nucleus accumbens. We hypothesize that GABA(B) receptor agonist treatment in the VTA blocks morphine-induced motor stimulation, motor sensitization, and accumbal Fos immunoreactivity by inhibiting the activation of dopaminergic neurons. First, C57BL/6 mice were coadministered a single subcutaneous injection of morphine with intra-VTA baclofen, a GABA(B) receptor agonist. Baclofen produced a dose-dependent inhibition of opiate-induced motor stimulation that was attenuated by 2-hydroxysaclofen, a GABA(B) receptor antagonist. Next, morphine was administered on days 1, 3, 5, and 9 and mice demonstrated sensitization to its motor stimulant effects and concomitant induction of Fos immunoreactivity in the NAc shell (NAcS) but not NAc core. Intra-VTA baclofen administered during morphine pretreatment blocked the acquisition of morphine-induced motor sensitization and Fos activation in the NAcS. Intra-VTA baclofen administered only on day 9 blocked the expression of morphine-induced motor sensitization and Fos activation in the NAcS. A linear relationship was found between morphine-induced motor activity and accumbal Fos in single- and repeated-dose treatment groups. In conclusion, GABA(B) receptor stimulation in the VTA blocked opiate-induced motor stimulation and motor sensitization by inhibiting the activation of NAcS neurons. GABA(B) receptor agonists may be useful pharmacological treatments in altering the behavioral effects of opiates.
Collapse
Affiliation(s)
- Kimberly A Leite-Morris
- Center for Alcohol and Addiction Studies, Brown Medical School, Providence, Rhode Island, USA.
| | | | | | | |
Collapse
|
49
|
Hefco V, Yamada K, Hefco A, Hritcu L, Tiron A, Nabeshima T. Role of the mesotelencephalic dopamine system in learning and memory processes in the rat. Eur J Pharmacol 2003; 475:55-60. [PMID: 12954359 DOI: 10.1016/s0014-2999(03)02115-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of lesioning the ventral tegmental area or substantia nigra pars reticulata by means of bilateral microinjections of two doses of kainic acid (50 ng/250 nl and 100 ng/500 nl) or 6-hydroxydopamine (8 microg/4 microl) were investigated to clarify the role of the mesotelencephalic dopamine system in learning and memory processes. Our findings suggest that ventral tegmental area and substantia nigra dopaminergic neurons play an important role in retention of both short-term memory, tested in the Y-maze task and long-term memory evaluated with the multi-trial passive avoidance test, without affecting memory acquisition. As compared to short-term memory, long-term memory is more susceptible to the decreased dopamine level in nervous structures involved in processing and storage of information.
Collapse
Affiliation(s)
- Vasile Hefco
- Department of Physiology, AlI Cuza University, Blv Carol I, nr 11, 6600 Iasi, Romania.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|