1
|
Maher S, Scott L, Zhang S, Baranchuk A. Animal models of Lyme carditis. Understanding how to study a complex disease. Curr Probl Cardiol 2024; 49:102468. [PMID: 38369203 DOI: 10.1016/j.cpcardiol.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Lyme carditis, a well-established manifestation of Lyme disease, has been studied in animal models to improve understanding of its pathogenesis. This review synthesizes existing literature on these models and associated disease mechanisms. Searches in MEDLINE, Embase, BIOSIS, and Web of Science yielded 53 articles (47 mice models and 6 other animal models). Key findings include: 1) Onset of carditis correlates with spirochete localization in the heart; 2) Carditis occurs within 10 days of infection, progressing to peak inflammation within 30 days; 3) Infiltrates were predominantly composed of Mac-1+ macrophages and were associated with increases in TNF-α, IL-1 and IL-12 cytokines; 4) Resolution of inflammation was primarily mediated by lymphocytes; 5) Immune system is a double-edged sword: it can play a role in the progression and severity of carditis, but can also have a protective effect. Animal models offer valuable insights into the evolution and pathophysiologic mechanisms of Lyme carditis.
Collapse
Affiliation(s)
- Samer Maher
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada
| | - Laura Scott
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada.
| |
Collapse
|
2
|
Adkison H, Embers ME. Lyme disease and the pursuit of a clinical cure. Front Med (Lausanne) 2023; 10:1183344. [PMID: 37293310 PMCID: PMC10244525 DOI: 10.3389/fmed.2023.1183344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the United States. Many aspects of the disease are still topics of controversy within the scientific and medical communities. One particular point of debate is the etiology behind antibiotic treatment failure of a significant portion (10-30%) of Lyme disease patients. The condition in which patients with Lyme disease continue to experience a variety of symptoms months to years after the recommended antibiotic treatment is most recently referred to in the literature as post treatment Lyme disease syndrome (PTLDS) or just simply post treatment Lyme disease (PTLD). The most commonly proposed mechanisms behind treatment failure include host autoimmune responses, long-term sequelae from the initial Borrelia infection, and persistence of the spirochete. The aims of this review will focus on the in vitro, in vivo, and clinical evidence that either validates or challenges these mechanisms, particularly with regard to the role of the immune response in disease and resolution of the infection. Next generation treatments and research into identifying biomarkers to predict treatment responses and outcomes for Lyme disease patients are also discussed. It is essential that definitions and guidelines for Lyme disease evolve with the research to translate diagnostic and therapeutic advances to patient care.
Collapse
Affiliation(s)
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
3
|
Casselli T, Tourand Y, Gura K, Stevenson B, Zückert WR, Brissette CA. Endogenous Linear Plasmids lp28-4 and lp25 Are Required for Infectivity and Restriction Protection in the Lyme Disease Spirochete Borrelia mayonii. Infect Immun 2023; 91:e0006123. [PMID: 36853005 PMCID: PMC10016076 DOI: 10.1128/iai.00061-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Borrelia mayonii is a newly recognized causative agent of Lyme disease in the Upper Midwestern United States, with distinct clinical presentations compared to classical Lyme disease caused by other Lyme Borrelia species. However, little is known about the B. mayonii genetic determinants required for establishing infection or perpetuating disease in mammals. Extrachromosomal plasmids in Borrelia species often encode proteins necessary for infection and pathogenesis, and spontaneous loss of these plasmids can lead to the identification of virulence determinant genes. Here, we describe infection of Lyme disease-susceptible C3H mice with B. mayonii, and show bacterial dissemination and persistence in peripheral tissues. Loss of endogenous plasmids, including lp28-4, lp25, and lp36 correlated with reduced infectivity in mice. The apparent requirement for lp28-4 during murine infection suggests the presence of a novel virulence determinant, as this plasmid does not encode homologs of any known virulence determinant. We also describe transformation and stable maintenance of a self-replicating shuttle vector in B. mayonii, and show that loss of either lp25 or lp28-4 correlated with increased transformation competency. Finally, we demonstrate that linear plasmids lp25 and lp28-4 each encode functional restriction modification systems with distinct but partially overlapping target modification sequences, which likely accounts for the observed decrease in transformation efficiency when those plasmids are present. Taken together, this study describes a role for endogenous plasmids in mammalian infection and restriction protection in the Lyme disease spirochete Borrelia mayonii.
Collapse
Affiliation(s)
- Timothy Casselli
- Department of Biological Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yvonne Tourand
- Department of Biological Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Kaitlyn Gura
- Department of Biological Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, School of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Catherine A. Brissette
- Department of Biological Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
4
|
Li J, Ma Y, Paquette JK, Richards AC, Mulvey MA, Zachary JF, Teuscher C, Weis JJ. The Cdkn2a gene product p19 alternative reading frame (p19ARF) is a critical regulator of IFNβ-mediated Lyme arthritis. PLoS Pathog 2022; 18:e1010365. [PMID: 35324997 PMCID: PMC8946740 DOI: 10.1371/journal.ppat.1010365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Type I interferon (IFN) has been identified in patients with Lyme disease, and its abundant expression in joint tissues of C3H mice precedes development of Lyme arthritis. Forward genetics using C3H mice with severe Lyme arthritis and C57BL/6 (B6) mice with mild Lyme arthritis identified the Borrelia burgdorferi arthritis-associated locus 1 (Bbaa1) on chromosome 4 (Chr4) as a regulator of B. burgdorferi-induced IFNβ expression and Lyme arthritis severity. B6 mice introgressed with the C3H allele for Bbaa1 (B6.C3-Bbaa1 mice) displayed increased severity of arthritis, which is initiated by myeloid lineage cells in joints. Using advanced congenic lines, the physical size of the Bbaa1 interval has been reduced to 2 Mbp, allowing for identification of potential genetic regulators. Small interfering RNA (siRNA)-mediated silencing identified Cdkn2a as the gene responsible for Bbaa1 allele-regulated induction of IFNβ and IFN-stimulated genes (ISGs) in bone marrow-derived macrophages (BMDMs). The Cdkn2a-encoded p19 alternative reading frame (p19ARF) protein regulates IFNβ induction in BMDMs as shown by siRNA silencing and overexpression of ARF. In vivo studies demonstrated that p19ARF contributes to joint-specific induction of IFNβ and arthritis severity in B. burgdorferi-infected mice. p19ARF regulates B. burgdorferi-induced IFNβ in BMDMs by stabilizing the tumor suppressor p53 and sequestering the transcriptional repressor BCL6. Our findings link p19ARF regulation of p53 and BCL6 to the severity of IFNβ-induced Lyme arthritis in vivo and indicate potential novel roles for p19ARF, p53, and BCL6 in Lyme disease and other IFN hyperproduction syndromes. Lyme disease is caused by infection with the tick-transmitted bacterium Borrelia burgdorferi. Although different isolates of B. burgdorferi have distinct potential for dissemination and tissue invasion, factors intrinsic to the infected host also play an important role in directing the severity of Lyme disease. In the animal model, infected C3H mice develop severe Lyme arthritis following elevation of type I IFN in joint tissue, while in C57BL/6 (B6) mice arthritis is mild and not associated with type I IFN. We demonstrated that the Borrelia burgdorferi arthritis-associated locus 1 (Bbaa1) on chromosome 4 (Chr4) intrinsically controls the magnitude of IFNβ production and the severity of Lyme arthritis in C3H vs B6 mice. The Cdkn2a gene was positionally identified as the regulator of IFNβ within Bbaa1, and determined to function through its protein product p19 alternative reading frame (p19ARF). ARF regulates IFNβ expression and Lyme arthritis severity by modulating the activities of the tumor suppressor p53 and transcriptional repressor BCL6. Our study provides new insight and potential therapeutic targets for the investigation of type I IFN-dependent Lyme arthritis and other IFN-driven diseases.
Collapse
Affiliation(s)
- Jinze Li
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ying Ma
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jackie K. Paquette
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Amanda C. Richards
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - James F. Zachary
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Cory Teuscher
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, Vermont, United States of America
| | - Janis J. Weis
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
5
|
Woitzik P, Linder S. Molecular Mechanisms of Borrelia burgdorferi Phagocytosis and Intracellular Processing by Human Macrophages. BIOLOGY 2021; 10:567. [PMID: 34206480 PMCID: PMC8301104 DOI: 10.3390/biology10070567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/21/2022]
Abstract
Lyme disease is the most common vector-borne illness in North America and Europe. Its causative agents are spirochetes of the Borrelia burgdorferi sensu latu complex. Infection with borreliae can manifest in different tissues, most commonly in the skin and joints, but in severe cases also in the nervous systems and the heart. The immune response of the host is a crucial factor for preventing the development or progression of Lyme disease. Macrophages are part of the innate immune system and thus one of the first cells to encounter infecting borreliae. As professional phagocytes, they are capable of recognition, uptake, intracellular processing and final elimination of borreliae. This sequence of events involves the initial capture and internalization by actin-rich cellular protrusions, filopodia and coiling pseudopods. Uptake into phagosomes is followed by compaction of the elongated spirochetes and degradation in mature phagolysosomes. In this review, we discuss the current knowledge about the processes and molecular mechanisms involved in recognition, capturing, uptake and intracellular processing of Borrelia by human macrophages. Moreover, we highlight interactions between macrophages and other cells of the immune system during these processes and point out open questions in the intracellular processing of borreliae, which include potential escape strategies of Borrelia.
Collapse
Affiliation(s)
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
6
|
Casselli T, Divan A, Vomhof-DeKrey EE, Tourand Y, Pecoraro HL, Brissette CA. A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog 2021; 17:e1009256. [PMID: 33524035 PMCID: PMC7877756 DOI: 10.1371/journal.ppat.1009256] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/11/2021] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Lyme disease, which is caused by infection with Borrelia burgdorferi and related species, can lead to inflammatory pathologies affecting the joints, heart, and nervous systems including the central nervous system (CNS). Inbred laboratory mice have been used to define the kinetics of B. burgdorferi infection and host immune responses in joints and heart, however similar studies are lacking in the CNS of these animals. A tractable animal model for investigating host-Borrelia interactions in the CNS is key to understanding the mechanisms of CNS pathogenesis. Therefore, we characterized the kinetics of B. burgdorferi colonization and associated immune responses in the CNS of mice during early and subacute infection. Using fluorescence-immunohistochemistry, intravital microscopy, bacterial culture, and quantitative PCR, we found B. burgdorferi routinely colonized the dura mater of C3H mice, with peak spirochete burden at day 7 post-infection. Dura mater colonization was observed for several Lyme disease agents including B. burgdorferi, B. garinii, and B. mayonii. RNA-sequencing and quantitative RT-PCR showed that B. burgdorferi infection was associated with increased expression of inflammatory cytokines and a robust interferon (IFN) response in the dura mater. Histopathologic changes including leukocytic infiltrates and vascular changes were also observed in the meninges of infected animals. In contrast to the meninges, we did not detect B. burgdorferi, infiltrating leukocytes, or large-scale changes in cytokine profiles in the cerebral cortex or hippocampus during infection; however, both brain regions demonstrated similar changes in expression of IFN-stimulated genes as observed in peripheral tissues and meninges. Taken together, B. burgdorferi is capable of colonizing the meninges in laboratory mice, and induces localized inflammation similar to peripheral tissues. A sterile IFN response in the absence of B. burgdorferi or inflammatory cytokines is unique to the brain parenchyma, and provides insight into the potential mechanisms of CNS pathology associated with this important pathogen.
Collapse
Affiliation(s)
- Timothy Casselli
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- * E-mail: (TC); (CAB)
| | - Ali Divan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Emilie E. Vomhof-DeKrey
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- Department of Surgery, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Yvonne Tourand
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Heidi L. Pecoraro
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, North Dakota, United States of America
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- * E-mail: (TC); (CAB)
| |
Collapse
|
7
|
Chaconas G, Moriarty TJ, Skare J, Hyde JA. Live Imaging. Curr Issues Mol Biol 2020; 42:385-408. [PMID: 33310914 PMCID: PMC7946808 DOI: 10.21775/cimb.042.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Being able to vizualize a pathogen at a site of interaction with a host is an aesthetically appealing idea and the resulting images can be both informative as well as enjoyable to view. Moreover, the approaches used to derive these images can be powerful in terms of offering data unobtainable by other methods. In this article, we review three primary modalities for live imaging Borrelia spirochetes: whole animal imaging, intravital microscopy and live cell imaging. Each method has strengths and weaknesses, which we review, as well as specific purposes for which they are optimally utilized. Live imaging borriliae is a relatively recent development and there was a need of a review to cover the area. Here, in addition to the methods themselves, we also review areas of spirochete biology that have been significantly impacted by live imaging and present a collection of images associated with the forward motion in the field driven by imaging studies.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tara J. Moriarty
- Faculties of Dentistry and Medicine (Laboratory Medicine and Pathobiology), University of Toronto, Toronto, Ontario, M5G 1G6, Canada
| | - Jon Skare
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, 77807, USA
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, 77807, USA
| |
Collapse
|
8
|
Brouwer MAE, van de Schoor FR, Vrijmoeth HD, Netea MG, Joosten LAB. A joint effort: The interplay between the innate and the adaptive immune system in Lyme arthritis. Immunol Rev 2020; 294:63-79. [PMID: 31930745 PMCID: PMC7065069 DOI: 10.1111/imr.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Articular joints are a major target of Borrelia burgdorferi, the causative agent of Lyme arthritis. Despite antibiotic treatment, recurrent or persistent Lyme arthritis is observed in a significant number of patients. The host immune response plays a crucial role in this chronic arthritic joint complication of Borrelia infections. During the early stages of B. burgdorferi infection, a major hinder in generating a proper host immune response is the lack of induction of a strong adaptive immune response. This may lead to a delayed hyperinflammatory reaction later in the disease. Several mechanisms have been suggested that might be pivotal for the development of Lyme arthritis and will be highlighted in this review, from molecular mimicry of matrix metallopeptidases and glycosaminoglycans, to autoimmune responses to live bacteria, or remnants of Borrelia spirochetes in joints. Murine studies have suggested that the inflammatory responses are initiated by innate immune cells, but this does not exclude the involvement of the adaptive immune system in this dysregulated immune profile. Genetic predisposition, via human leukocyte antigen-DR isotype and microRNA expression, has been associated with the development of antibiotic-refractory Lyme arthritis. Yet the ultimate cause for (antibiotic-refractory) Lyme arthritis remains unknown. Complex processes of different immune cells and signaling cascades are involved in the development of Lyme arthritis. When these various mechanisms are fully been unraveled, new treatment strategies can be developed to target (antibiotic-refractory) Lyme arthritis more effectively.
Collapse
Affiliation(s)
- Michelle A. E. Brouwer
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Freek R. van de Schoor
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Hedwig D. Vrijmoeth
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Mihai G. Netea
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
- Department for Genomics & ImmunoregulationLife and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Leo A. B. Joosten
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
9
|
Christodoulides A, Boyadjian A, Kelesidis T. Spirochetal Lipoproteins and Immune Evasion. Front Immunol 2017; 8:364. [PMID: 28424696 PMCID: PMC5372817 DOI: 10.3389/fimmu.2017.00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Spirochetes are a major threat to public health. However, the exact pathogenesis of spirochetal diseases remains unclear. Spirochetes express lipoproteins that often determine the cross talk between the host and spirochetes. Lipoproteins are pro-inflammatory, modulatory of immune responses, and enable the spirochetes to evade the immune system. In this article, we review the modulatory effects of spirochetal lipoproteins related to immune evasion. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate pathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and treatment.
Collapse
Affiliation(s)
- Alexei Christodoulides
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ani Boyadjian
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Abstract
Lipoproteins are lipid-modified proteins that dominate the spirochetal proteome. While found in all bacteria, spirochetal lipoproteins have unique features and play critical roles in spirochete biology. For this reason, considerable effort has been devoted to determining how the lipoproteome is generated. Essential features of the structural elements of lipoproteins are now understood with greater clarity, enabling greater confidence in identification of lipoproteins from genomic sequences. The journey from the ribosome to the outer membrane, and in some cases, to the cellular surface has been defined, including secretion, lipidation, sorting, and export across the outer membrane. Given their abundance and importance, it is not surprising that spirochetes have developed a number of strategies for regulating the spatiotemporal expression of lipoproteins. In some cases, lipoprotein expression is tied to various environmental cues, while in other cases, it is linked to growth rate. This regulation enables spirochetes to express certain lipoproteins at high levels in one phase of the spirochete lifecycle, while dramatically downregulating the same lipoproteins in other phases. The mammalian host has developed specialized mechanisms for recognizing lipoproteins and triggering an immune response. Evasion of that immune response is essential for spirochete persistence. For this reason, spirochetes have developed mechanisms for altering lipoproteins. Lipoproteins recognized by antibodies formed during infection are key serodiagnostic antigens. In addition, lipoprotein vaccines have been developed for generating an immune response to control or prevent a spirochete infection. This chapter summarizes our current understanding of lipoproteins in interactions of spirochetes with their hosts.
Collapse
|
11
|
Lasky CE, Pratt CL, Hilliard KA, Jones JL, Brown CR. T Cells Exacerbate Lyme Borreliosis in TLR2-Deficient Mice. Front Immunol 2016; 7:468. [PMID: 27857714 PMCID: PMC5093308 DOI: 10.3389/fimmu.2016.00468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/18/2016] [Indexed: 12/02/2022] Open
Abstract
Infection of humans with the spirochete, Borrelia burgdorferi, causes Lyme borreliosis and can lead to clinical manifestations such as arthritis, carditis, and neurological conditions. Experimental infection of mice recapitulates many of these symptoms and serves as a model system for the investigation of disease pathogenesis and immunity. Innate immunity is known to drive the development of Lyme arthritis and carditis, but the mechanisms driving this response remain unclear. Innate immune cells recognize B. burgdorferi surface lipoproteins primarily via toll-like receptor (TLR)2; however, previous work has demonstrated TLR2−/− mice had exacerbated disease and increased bacterial burden. We demonstrate increased CD4 and CD8 T cell infiltrates in B. burgdorferi-infected joints and hearts of C3H TLR2−/− mice. In vivo depletion of either CD4 or CD8 T cells reduced Borrelia-induced joint swelling and lowered tissue spirochete burden, whereas depletion of CD8 T cells alone reduced disease severity scores. Exacerbation of Lyme arthritis correlated with increased production of CXCL9 by synoviocytes, and this was reduced with CD8 T cell depletion. These results demonstrate T cells can exacerbate Lyme disease pathogenesis and prolong disease resolution possibly through dysregulation of inflammatory responses and inhibition of bacterial clearance.
Collapse
Affiliation(s)
- Carrie E Lasky
- Department of Veterinary Pathobiology, University of Missouri , Columbia, MO , USA
| | - Carmela L Pratt
- Department of Veterinary Pathobiology, University of Missouri , Columbia, MO , USA
| | - Kinsey A Hilliard
- Department of Veterinary Pathobiology, University of Missouri , Columbia, MO , USA
| | - John L Jones
- Department of Veterinary Pathobiology, University of Missouri , Columbia, MO , USA
| | - Charles R Brown
- Department of Veterinary Pathobiology, University of Missouri , Columbia, MO , USA
| |
Collapse
|
12
|
Rahman S, Shering M, Ogden NH, Lindsay R, Badawi A. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease. J Inflamm Res 2016; 9:91-102. [PMID: 27330321 PMCID: PMC4898433 DOI: 10.2147/jir.s104790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages.
Collapse
Affiliation(s)
- Shusmita Rahman
- National Microbiology Laboratory, Public Health Agency of Canada, Toronto, ON, Canada
| | - Maria Shering
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Ogden
- National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Alaa Badawi
- National Microbiology Laboratory, Public Health Agency of Canada, Toronto, ON, Canada
| |
Collapse
|
13
|
Actin-Dependent Regulation of Borrelia burgdorferi Phagocytosis by Macrophages. Curr Top Microbiol Immunol 2016; 399:133-154. [DOI: 10.1007/82_2016_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Mason LM, Herkes EA, Krupna-Gaylord MA, Oei A, Poll TVD, Wormser GP, Schwartz I, Petzke MM, Hovius JW. Borrelia burgdorferi clinical isolates induce human innate immune responses that are not dependent on genotype. Immunobiology 2015; 220:1141-50. [DOI: 10.1016/j.imbio.2015.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022]
|
15
|
Naj X, Linder S. ER-Coordinated Activities of Rab22a and Rab5a Drive Phagosomal Compaction and Intracellular Processing of Borrelia burgdorferi by Macrophages. Cell Rep 2015; 12:1816-30. [DOI: 10.1016/j.celrep.2015.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/24/2015] [Accepted: 08/08/2015] [Indexed: 01/26/2023] Open
|
16
|
Abstract
Borrelia burgdorferi is the tick-borne etiologic agent of Lyme disease. The spirochete must negotiate numerous barriers in order to establish a disseminated infection in a mammalian host. These barriers include migration from the feeding tick midgut to the salivary glands, deposition in skin, manipulation or evasion of the localized host immune response, adhesion to and extravasation through an endothelial barrier, hematogenous dissemination, and establishment of infection in distal tissue sites. Borrelia burgdorferi proteins that mediate many of these processes and the nature of the host response to infection are described.
Collapse
Affiliation(s)
- Mary Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
17
|
Kanagawa H, Niki Y, Kobayashi T, Sato Y, Katsuyama E, Fujie A, Hao W, Miyamoto K, Tando T, Watanabe R, Morita M, Morioka H, Matsumoto M, Toyama Y, Miyamoto T. Mycobacterium tuberculosis promotes arthritis development through Toll-like receptor 2. J Bone Miner Metab 2015; 33:135-41. [PMID: 24633489 DOI: 10.1007/s00774-014-0575-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/26/2014] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a multifactorial disease caused by genetic and environmental factors: however, precise molecular mechanisms underlying its pathogenesis remain largely unknown. Treatment of RA patients with disease-modifying biological agents occasionally promotes Mycobacterium tuberculosis infection or recurrence of M. tuberculosis, although how infection promotes arthritis has not been characterized. Here, we found that arthritis phenotypes in a collagen-induced mouse model were evident only when killed M. tuberculosis was co-administered. Treatment of cultured macrophages with killed M. tuberculosis promoted production of IL-6, a major inflammatory cytokine in RA patients, while similar treatment of TLR2-deficient macrophages failed to induce IL-6 expression. Arthritis scores, joint destruction, and serum IL-6 levels were all significantly ameliorated in TLR2-deficient compared with wild-type mice, even in animals treated with killed M. tuberculosis. These results suggest that M. tuberculosis infection enhances arthritis development and that TLR2 could serve as a therapeutic target for some forms of the disease.
Collapse
Affiliation(s)
- Hiroya Kanagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kelesidis T. The Cross-Talk between Spirochetal Lipoproteins and Immunity. Front Immunol 2014; 5:310. [PMID: 25071771 PMCID: PMC4075078 DOI: 10.3389/fimmu.2014.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022] Open
Abstract
Spirochetal diseases such as syphilis, Lyme disease, and leptospirosis are major threats to public health. However, the immunopathogenesis of these diseases has not been fully elucidated. Spirochetes interact with the host through various structural components such as lipopolysaccharides (LPS), surface lipoproteins, and glycolipids. Although spirochetal antigens such as LPS and glycolipids may contribute to the inflammatory response during spirochetal infections, spirochetes such as Treponema pallidum and Borrelia burgdorferi lack LPS. Lipoproteins are most abundant proteins that are expressed in all spirochetes and often determine how spirochetes interact with their environment. Lipoproteins are pro-inflammatory, may regulate responses from both innate and adaptive immunity and enable the spirochetes to adhere to the host or the tick midgut or to evade the immune system. However, most of the spirochetal lipoproteins have unknown function. Herein, the immunomodulatory effects of spirochetal lipoproteins are reviewed and are grouped into two main categories: effects related to immune evasion and effects related to immune activation. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate immunopathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and to inflammatory events associated with spirochetal diseases.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
19
|
Lochhead RB, Ma Y, Zachary JF, Baltimore D, Zhao JL, Weis JH, O'Connell RM, Weis JJ. MicroRNA-146a provides feedback regulation of lyme arthritis but not carditis during infection with Borrelia burgdorferi. PLoS Pathog 2014; 10:e1004212. [PMID: 24967703 PMCID: PMC4072785 DOI: 10.1371/journal.ppat.1004212] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/13/2014] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs have been shown to be important regulators of inflammatory and immune responses and are implicated in several immune disorders including systemic lupus erythematosus and rheumatoid arthritis, but their role in Lyme borreliosis remains unknown. We performed a microarray screen for expression of miRNAs in joint tissue from three mouse strains infected with Borrelia burgdorferi. This screen identified upregulation of miR-146a, a key negative regulator of NF-κB signaling, in all three strains, suggesting it plays an important role in the in vivo response to B. burgdorferi. Infection of B6 miR-146a-/- mice with B. burgdorferi revealed a critical nonredundant role of miR-146a in modulating Lyme arthritis without compromising host immune response or heart inflammation. The impact of miR-146a was specifically localized to the joint, and did not impact lesion development or inflammation in the heart. Furthermore, B6 miR-146a-/- mice had elevated levels of NF-κB-regulated products in joint tissue and serum late in infection. Flow cytometry analysis of various lineages isolated from infected joint tissue of mice showed that myeloid cell infiltration was significantly greater in B6 miR-146a-/- mice, compared to B6, during B. burgdorferi infection. Using bone marrow-derived macrophages, we found that TRAF6, a known target of miR-146a involved in NF-κB activation, was dysregulated in resting and B. burgdorferi-stimulated B6 miR-146a-/- macrophages, and corresponded to elevated IL-1β, IL-6 and CXCL1 production. This dysregulated protein production was also observed in macrophages treated with IL-10 prior to B. burgdorferi stimulation. Peritoneal macrophages from B6 miR-146a-/- mice also showed enhanced phagocytosis of B. burgdorferi. Together, these data show that miR-146a-mediated regulation of TRAF6 and NF-κB, and downstream targets such as IL-1β, IL-6 and CXCL1, are critical for modulation of Lyme arthritis during chronic infection with B. burgdorferi.
Collapse
Affiliation(s)
- Robert B. Lochhead
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ying Ma
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - James F. Zachary
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - David Baltimore
- Department of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Jimmy L. Zhao
- Department of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - John H. Weis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ryan M. O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Janis J. Weis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
20
|
Hoffmann AK, Naj X, Linder S. Daam1 is a regulator of filopodia formation and phagocytic uptake of Borrelia burgdorferi by primary human macrophages. FASEB J 2014; 28:3075-89. [PMID: 24696301 DOI: 10.1096/fj.13-247049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease, an infectious disease that primarily affects the skin, nervous system, and joints. Uptake of borreliae by immune cells is decisive for the course of the infection, and remodelling of the host actin cytoskeleton is crucial in this process. In this study, we showed that the actin-regulatory formin Daam1 is important in Borrelia phagocytosis by primary human macrophages. Uptake of borreliae proceeds preferentially through capture by filopodia and formation of coiling pseudopods that enwrap the spirochetes. Using immunofluorescence, we localized endogenous and overexpressed Daam1 to filopodia and to F-actin-rich uptake structures. Live-cell imaging further showed that Daam1 is enriched at coiling pseudopods that arise from the macrophage surface. This filopodia-independent step was corroborated by control experiments of phagocytic cup formation with latex beads. Moreover, siRNA-mediated knockdown of Daam1 led to a 65% reduction of borreliae-induced filopodia, and, as shown by the outside-inside staining technique, to a 50% decrease in phagocytic uptake of borreliae, as well as a 37% reduction in coiling pseudopod formation. Collectively, we showed that Daam1 plays a dual role in the phagocytic uptake of borreliae: first, as a regulator of filopodia, which are used for capturing spirochetes, and second, in the formation of the coiling pseudopod that enwraps the bacterial cell. These data identify Daam1 as a novel regulator of B. burgdorferi phagocytosis. At the same time, this is the first demonstration of a role for Daam1 in phagocytic processes in general.-Hoffmann, A.-K., Naj, X., Linder, S. Daam1 is a regulator of filopodia formation and phagocytic uptake of Borrelia burgdorferi by primary human macrophages.
Collapse
Affiliation(s)
- Ann-Kathrin Hoffmann
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Xenia Naj
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Dulebohn DP, Hayes BM, Rosa PA. Global repression of host-associated genes of the Lyme disease spirochete through post-transcriptional modulation of the alternative sigma factor RpoS. PLoS One 2014; 9:e93141. [PMID: 24671196 PMCID: PMC3966842 DOI: 10.1371/journal.pone.0093141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/28/2014] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, is a vector-borne pathogen that transits between Ixodes ticks and vertebrate hosts. During the natural infectious cycle, spirochetes must globally adjust their transcriptome to survive in these dissimilar environments. One way B. burgdorferi accomplishes this is through the use of alternative sigma factors to direct transcription of specific genes. RpoS, one of only three sigma factors in B. burgdorferi, controls expression of genes required during tick-transmission and infection of the mammalian host. How spirochetes switch between different sigma factors during the infectious cycle has remained elusive. Here we establish a role for a novel protein, BBD18, in the regulation of the virulence-associated sigma factor RpoS. Constitutive expression of BBD18 repressed transcription of RpoS-dependent genes to levels equivalent to those observed in an rpoS mutant. Consistent with the global loss of RpoS-dependent transcripts, we were unable to detect RpoS protein. However, constitutive expression of BBD18 did not diminish the amount of rpoS transcript, indicating post-transcriptional regulation of RpoS by BBD18. Interestingly, BBD18-mediated repression of RpoS is independent of both the rpoS promoter and the 5’ untranslated region, suggesting a mechanism of protein destabilization rather than translational control. We propose that BBD18 is a novel regulator of RpoS and its activity likely represents a first step in the transition from an RpoS-ON to an RpoS-OFF state, when spirochetes transition from the host to the tick vector.
Collapse
Affiliation(s)
- Daniel P. Dulebohn
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| | - Beth M. Hayes
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Patricia A. Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
22
|
The formins FMNL1 and mDia1 regulate coiling phagocytosis of Borrelia burgdorferi by primary human macrophages. Infect Immun 2013; 81:1683-95. [PMID: 23460512 DOI: 10.1128/iai.01411-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Spirochetes of the Borrelia burgdorferi sensu lato complex are the causative agent of Lyme borreliosis, a tick-borne infectious disease primarily affecting the skin, nervous system, and joints. During infection, macrophages and dendritic cells are the first immune cells to encounter invading borreliae. Phagocytosis and intracellular processing of Borrelia by these cells is thus decisive for the eventual outcome of infection. Phagocytic uptake of Borrelia by macrophages proceeds preferentially through coiling phagocytosis, which is characterized by actin-rich unilateral pseudopods that capture and enwrap spirochetes. Actin-dependent growth of these pseudopods necessitates de novo nucleation of actin filaments, which is regulated by actin-nucleating factors such as Arp2/3 complex. Here, we demonstrate that, in addition, also actin-regulatory proteins of the formin family are important for uptake of borreliae by primary human macrophages. Using immunofluorescence, live-cell imaging, and ratiometric analysis, we find specific enrichment of the formins FMNL1 and mDia1 at macrophage pseudopods that are in contact with borreliae. Consistently, small interfering RNA (siRNA)-mediated knockdown of FMNL1 or mDia1 leads to decreased formation of Borrelia-induced pseudopods and to decreased internalization of borreliae by macrophages. Our results suggest that macrophage coiling phagocytosis is a complex process involving several actin nucleation/regulatory factors. They also point specifically to the formins mDia1 and FMNL1 as novel regulators of spirochete uptake by human immune cells.
Collapse
|
23
|
Oosting M, Buffen K, Malireddi SRK, Sturm P, Verschueren I, Koenders MI, van de Veerdonk FL, van der Meer JWM, Netea MG, Kanneganti TD, Joosten LAB. Murine Borrelia arthritis is highly dependent on ASC and caspase-1, but independent of NLRP3. Arthritis Res Ther 2012; 14:R247. [PMID: 23148704 PMCID: PMC3674595 DOI: 10.1186/ar4090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/08/2012] [Indexed: 01/07/2023] Open
Abstract
Introduction The protein platform called the NOD-like-receptor -family member (NLRP)-3 inflammasome needs to be activated to process intracellular caspase-1. Active caspase-1 is able to cleave pro-Interleukin (IL)-1β, resulting in bioactive IL-1β. IL-1β is a potent proinflammatory cytokine, and thought to play a key role in the pathogenesis of Lyme arthritis, a common manifestation of Borrelia burgdorferi infection. The precise pathways through which B. burgdorferi recognition leads to inflammasome activation and processing of IL-1β in Lyme arthritis has not been elucidated. In the present study, we investigated the contribution of several pattern recognition receptors and inflammasome components in a novel murine model of Lyme arthritis. Methods Lyme arthritis was elicited by live B. burgdorferi, injected intra-articularly in knee joints of mice. To identify the relevant pathway components, the model was applied to wild-type, NLRP3-/-, ASC-/-, caspase-1-/-, NOD1-/-, NOD2-/-, and RICK-/- mice. As a control, TLR2-/-, Myd88-/- and IL-1R-/- mice were used. Peritoneal macrophages and bone marrow-derived macrophages were used for in vitro cytokine production and inflammasome activation studies. Joint inflammation was analyzed in synovial specimens and whole knee joints. Mann-Whitney U tests were used to detect statistical differences. Results We demonstrate that ASC/caspase-1-driven IL-1β is crucial for induction of B. burgdorferi-induced murine Lyme arthritis. In addition, we show that B. burgdorferi-induced murine Lyme arthritis is less dependent on NOD1/NOD2/RICK pathways while the TLR2-MyD88 pathway is crucial. Conclusions Murine Lyme arthritis is strongly dependent on IL-1 production, and B. burgdorferi induces inflammasome-mediated caspase-1 activation. Next to that, murine Lyme arthritis is ASC- and caspase-1-dependent, but NLRP3, NOD1, NOD2, and RICK independent. Also, caspase-1 activation by B. burgdorferi is dependent on TLR2 and MyD88. Based on present results indicating that IL-1 is one of the major mediators in Lyme arthritis, there is a rationale to propose that neutralizing IL-1 activity may also have beneficial effects in chronic Lyme arthritis.
Collapse
|
24
|
Bockenstedt LK, Gonzalez DG, Haberman AM, Belperron AA. Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. J Clin Invest 2012; 122:2652-60. [PMID: 22728937 DOI: 10.1172/jci58813] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/24/2012] [Indexed: 11/17/2022] Open
Abstract
An enigmatic feature of Lyme disease is the slow resolution of musculoskeletal symptoms that can continue after treatment, with some patients developing an inflammatory arthritis that becomes refractory to antibiotic therapy. Using intravital microscopy and the mouse model of Lyme borreliosis, we observed that Borrelia burgdorferi antigens, but not infectious spirochetes, can remain adjacent to cartilage for extended periods after antibiotic treatment. B. burgdorferi was not recovered by culture or xenodiagnosis with ticks after antibiotic treatment of WT mice and all but one of the immunodeficient mice with heightened pathogen burden due to impaired TLR responsiveness. Amorphous GFP+ deposits were visualized by intravital microscopy in the entheses of antibiotic-treated mice infected with GFP-expressing spirochetes and on the ear cartilage surface in sites where immunofluorescence staining detected spirochete antigens. Naive mice were not infected by tissue transplants from antibiotic-treated mice even though transplants contained spirochete DNA. Tissue homogenates from antibiotic-treated mice induced IgG reactive with B. burgdorferi antigens after immunization of naive mice and stimulated TNF-α production from macrophages in vitro. This is the first direct demonstration that inflammatory B. burgdorferi components can persist near cartilaginous tissue after treatment for Lyme disease. We propose that these deposits could contribute to the development of antibiotic-refractory Lyme arthritis.
Collapse
Affiliation(s)
- Linda K Bockenstedt
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|
25
|
Wormser GP, Daniels TJ, Bittker S, Cooper D, Wang G, Pavia CS. Failure of topical antibiotics to prevent disseminated Borrelia burgdorferi infection following a tick bite in C3H/HeJ mice. J Infect Dis 2011; 205:991-4. [PMID: 21930606 DOI: 10.1093/infdis/jir382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A prior study in mice has shown that the timely application of topical antibiotics to the skin at the tick bite site could eradicate Borrelia burgdorferi infection. That study, however, did not evaluate antibiotic preparations that are considered suitable for use in humans. In this murine study, topical application of 2% erythromycin and 3% tetracycline preparations that are acceptable for use in humans was found to be ineffective in eliminating B. burgdorferi from the tick bite site or in preventing dissemination to other tissues. Reasons for the discrepant findings are discussed.
Collapse
Affiliation(s)
- Gary P Wormser
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Fikrig E, Narasimhan S, Neelakanta G, Pal U, Chen M, Flavell R. Toll-like receptors 1 and 2 heterodimers alter Borrelia burgdorferi gene expression in mice and ticks. J Infect Dis 2009; 200:1331-40. [PMID: 19754309 DOI: 10.1086/605950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, is recognized by Toll-like receptor (TLR) 1 and 2 heterodimers. Microarray analysis of in vivo B. burgdorferi gene expression in murine skin showed that several genes were altered in TLR1/2-deficient animals compared with wild-type mice. For example, expression of bbe21 (a gene involved in B. burgdorferi lp25 plasmid maintenance) and bb0665 (a gene encoding a glycosyl transferase) were higher in TLR1/2-deficient mice than in control animals. In contrast, messenger RNA levels for bb0731 (a spoJ-like gene) and bba74 (a gene encoding a periplasmic protein) were lower in TLR1/2-deficient mice than in wild-type animals. The expression profiles of some of these genes were altered similarly in B. burgdorferi-infected ticks fed on control or TLR1/2-deficient mice. Quantitative reverse-transcription polymerase chain reaction analysis supported the microarray analysis and suggested that spirochete gene expression is altered by the milieu created by specific host TLRs, both in the murine host and in the arthropod vector.
Collapse
Affiliation(s)
- Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, 2Howard Hughes Medical Institute, and 3Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | | | |
Collapse
|
27
|
Petzke MM, Brooks A, Krupna MA, Mordue D, Schwartz I. Recognition of Borrelia burgdorferi, the Lyme disease spirochete, by TLR7 and TLR9 induces a type I IFN response by human immune cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:5279-92. [PMID: 19794067 DOI: 10.4049/jimmunol.0901390] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Borrelia burgdorferi is the spirochetal agent of Lyme disease, a multisystemic disorder characterized by inflammation. Using global transcriptional profiling, we characterized the response of human PBMCs exposed to B. burgdorferi in an ex vivo coculture system. The expression profiles induced by B. burgdorferi were marked by the intense up-regulation of IFN-responsive transcripts and transcripts involved in the JAK/STAT signaling pathway. Transcript levels of IFN-alpha, IFN-beta, and IRF7, and protein concentrations of IFN-alpha, were significantly elevated relative to those in unstimulated PBMCs. The induction of IFN-alpha was completely dependent upon phagocytosis of B. burgdorferi. Addition of a soluble type I IFN receptor, B18R, did not abolish the induction of IFN-inducible genes, indicating that B. burgdorferi directly elicits enhanced expression of these genes independently of type I IFN feedback signaling. Inhibitors of either TLR7 or TLR9 significantly reduced B. burgdorferi-stimulated IFN-alpha protein expression and transcription of IFN-induced genes. Simultaneous inhibition of both TLR7 and TLR9 completely abrogated IFN-alpha induction. The IFN-alpha-producing populations in PBMCs were identified as plasmacytoid dendritic and CD14(+)CD11c(+) cells. These results reveal a TLR7/9-dependent signaling pathway used by human PBMCs to initiate a type I IFN response to the extracellular bacterium B. burgdorferi.
Collapse
Affiliation(s)
- Mary M Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Vanessa Petry
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
29
|
Ma Y, Miller JC, Crandall H, Larsen ET, Dunn DM, Weiss RB, Subramanian M, Weis JH, Zachary JF, Teuscher C, Weis JJ. Interval-specific congenic lines reveal quantitative trait Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12. Infect Immun 2009; 77:3302-11. [PMID: 19487472 PMCID: PMC2715682 DOI: 10.1128/iai.00396-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/09/2009] [Accepted: 05/24/2009] [Indexed: 01/24/2023] Open
Abstract
The observation that Borrelia burgdorferi-induced arthritis is severe in C3H mice and milder in C57BL/6 (B6) mice has allowed a forward genetics approach for the identification of genetic elements that regulate the arthritis response. Quantitative trait loci (QTL) on five chromosomes (Chr) were identified previously in segregating crosses between C3H and B6 mice and collectively designated B. burgdorferi arthritis-associated (Bbaa) QTL. Reciprocal interval-specific congenic lines (ISCL) that encompass Bbaa1, Bbaa2-Bbaa3, Bbaa4, Bbaa6, and Bbaa12 on Chr 4, 5, 11, 12, and 1, respectively, have now been generated. Bidirectional transfer of the arthritis severity phenotype in association with Bbaa2-Bbaa3 and Bbaa4 was observed, and unidirectional transfer with the B6 allele of Bbaa6 was noted. These findings confirm the existence of polymorphic loci within Bbaa2-Bbaa3, Bbaa4, and Bbaa6 that regulate the severity of B. burgdorferi-induced arthritis. ISCL were used to assess the regulation of a previously identified interferon transcriptional profile associated with severe disease in C3H mice. The regulation of this transcriptional signature was found to be independent of penetrant Bbaa QTL, both in joint tissues and in isolated macrophages. These results clearly demonstrate the utility of forward genetics for the discovery of novel genes and pathways involved in the regulation of the severity of Lyme arthritis and predict the involvement of regulatory elements not evident from other experimental approaches.
Collapse
Affiliation(s)
- Ying Ma
- Department of Pathology, University of Utah, Salt Lake City, 84112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Toll-like receptors mediate induction of hepcidin in mice infected with Borrelia burgdorferi. Blood 2009; 114:1913-8. [PMID: 19587376 DOI: 10.1182/blood-2009-03-209577] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepcidin is the major regulator of systemic iron homeostasis in mammals. Hepcidin is produced mainly by the liver and is increased by inflammation, leading to hypoferremia. We measured serum levels of bioactive hepcidin and its effects on serum iron levels in mice infected with Borrelia burgdorferi. Bioactive hepcidin was elevated in the serum of mice resulting in hypoferremia. Infected mice produced hepcidin in both liver and spleen. Both intact and sonicated B burgdorferi induced hepcidin expression in cultured mouse bone marrrow macrophages. Hepcidin production by cultured macrophages represents a primary transcriptional response stimulated by B burgdorferi and not a secondary consequence of cytokine elaboration. Hepcidin expression induced by B burgdorferi was mediated primarily by activation of Toll-like receptor 2.
Collapse
|
31
|
Salazar JC, Duhnam-Ems S, La Vake C, Cruz AR, Moore MW, Caimano MJ, Velez-Climent L, Shupe J, Krueger W, Radolf JD. Activation of human monocytes by live Borrelia burgdorferi generates TLR2-dependent and -independent responses which include induction of IFN-beta. PLoS Pathog 2009; 5:e1000444. [PMID: 19461888 PMCID: PMC2679197 DOI: 10.1371/journal.ppat.1000444] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/24/2009] [Indexed: 11/19/2022] Open
Abstract
It is widely believed that innate immune responses to Borrelia burgdorferi (Bb) are primarily triggered by the spirochete's outer membrane lipoproteins signaling through cell surface TLR1/2. We recently challenged this notion by demonstrating that phagocytosis of live Bb by peripheral blood mononuclear cells (PBMCs) elicited greater production of proinflammatory cytokines than did equivalent bacterial lysates. Using whole genome microarrays, we show herein that, compared to lysates, live spirochetes elicited a more intense and much broader transcriptional response involving genes associated with diverse cellular processes; among these were IFN-β and a number of interferon-stimulated genes (ISGs), which are not known to result from TLR2 signaling. Using isolated monocytes, we demonstrated that cell activation signals elicited by live Bb result from cell surface interactions and uptake and degradation of organisms within phagosomes. As with PBCMs, live Bb induced markedly greater transcription and secretion of TNF-α, IL-6, IL-10 and IL-1β in monocytes than did lysates. Secreted IL-18, which, like IL-1β, also requires cleavage by activated caspase-1, was generated only in response to live Bb. Pro-inflammatory cytokine production by TLR2-deficient murine macrophages was only moderately diminished in response to live Bb but was drastically impaired against lysates; TLR2 deficiency had no significant effect on uptake and degradation of spirochetes. As with PBMCs, live Bb was a much more potent inducer of IFN-β and ISGs in isolated monocytes than were lysates or a synthetic TLR2 agonist. Collectively, our results indicate that the enhanced innate immune responses of monocytes following phagocytosis of live Bb have both TLR2-dependent and -independent components and that the latter induce transcription of type I IFNs and ISGs. Lyme disease is a tick-borne infectious disorder caused by the spirochetal pathogen Borrelia burgdorferi (Bb). Innate immune responses to Bb are thought to be triggered by the spirochete's outer membrane lipoproteins signaling through cell surface toll-like receptors (TLR1/2). Using a whole genome microarray technique, we showed that live spirochetes elicited a more intense and broader immune response in human peripheral blood mononuclear cells (PBMCs) than could be explained simply by TLR1/2 cell surface stimulation. Of particular interest, live Bb also uniquely induced transcription of type I interferons. In similarly stimulated isolated human monocytes, live Bb generated a greater production of pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-10 and IL-1β), as well as interferon-β (IFN-β). Secreted IL-18, which like IL-1β requires cytosolic cleavage of its inactive form by activated caspase-1, was generated only in response to live Bb. The cytosolic responses occurred despite evidence that phagocytosed spirochetes were rapidly degraded in phagosomal vacuoles, and unable to escape unscathed into the cell cytosol. We conclude that the innate immune signals generated in human monocytes by phagocytosed spirochetes allow the host to control the bacterium through a number of non-exclusive pathways, that are both TLR2-dependent and -independent, and include a type I interferon response.
Collapse
Affiliation(s)
- Juan C. Salazar
- Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| | - Star Duhnam-Ems
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Carson La Vake
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Adriana R. Cruz
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Cali, Colombia
| | - Meagan W. Moore
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Leonor Velez-Climent
- Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Jonathan Shupe
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Winfried Krueger
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
32
|
Adenoviral delivery of interleukin-10 fails to attenuate experimental Lyme disease. Infect Immun 2008; 76:5500-7. [PMID: 18824530 DOI: 10.1128/iai.00808-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Production of interleukin-10 (IL-10) by C57BL/6 mice following infection with Borrelia burgdorferi has been proposed as a mechanism whereby resistance to the development of experimental Lyme arthritis is maintained. In the current study, we sought to determine the role of IL-10 during infection of arthritis- and carditis-susceptible C3H mice. Infection of C3H IL-10(-/-) mice led to increased joint swelling and arthritis severity scores over those of wild-type C3H mice. Measurement of B. burgdorferi numbers in joints or disseminated tissues indicated a more efficient clearance of spirochetes in the absence of IL-10, similar to that reported in C57BL/6 IL-10(-/-) mice. However, in contrast to previous in vitro work, infection of C3H IL-10(-/-) mice led to decreased in vivo expression of the cytokines KC, IL-1beta, IL-4, and IL-12p70 in the infected joints. Finally, adenoviral expression of IL-10 in the infected joints of C3H mice was unable to modulate the development of severe Lyme arthritis and had no effect on spirochete clearance or Borrelia-specific antibody production. Development of Lyme carditis appeared to be independent of modulation by IL-10. These results suggest that IL-10 limits the development of joint inflammation in both arthritis-resistant and -susceptible mouse strains infected with B. burgdorferi and that increased IL-10 production cannot rescue genetic susceptibility to development of pathology in this model.
Collapse
|
33
|
Wang G, Petzke MM, Iyer R, Wu H, Schwartz I. Pattern of proinflammatory cytokine induction in RAW264.7 mouse macrophages is identical for virulent and attenuated Borrelia burgdorferi. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:8306-15. [PMID: 18523297 PMCID: PMC2614377 DOI: 10.4049/jimmunol.180.12.8306] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lyme disease pathogenesis results from a complex interaction between Borrelia burgdorferi and the host immune system. The intensity and nature of the inflammatory response of host immune cells to B. burgdorferi may be a determining factor in disease progression. Gene array analysis was used to examine the expression of genes encoding cytokines, chemokines, and related factors in the joint tissue of infected C3H/HeJ mice and in a murine macrophage-like cell line in response to a disseminating or attenuated clinical isolate of B. burgdorferi. Both isolates elicited a robust proinflammatory response in RAW264.7 cells characterized by an increase in transcript levels of genes encoding CC and CXC chemokines, proinflammatory cytokines, and TNF superfamily members. Transcription of genes encoding IL-1beta, IL-6, MCP-1, MIP-1alpha, CXCR4, and TLR2 induced in RAW264.7 cells by either live or heat-killed spirochetes did not differ significantly at any time point over a 24-h period, nor was there a difference in the protein levels of IL-10, TNF-alpha, IL-6, and IL-12p70 in culture supernatants. Thus, induction of host macrophage expression of proinflammatory mediators by host macrophages does not contribute to the differential pathogenicity of different B. burgdorferi strains.
Collapse
Affiliation(s)
- Guiqing Wang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Mary M. Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Hongyan Wu
- Department of Medicine, New York Medical College, Valhalla, NY 10595
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| |
Collapse
|
34
|
Abstract
The spirochete Borrelia burgdorferi is a tick-borne obligate parasite whose normal reservoir is a variety of small mammals. Although infection of these natural hosts does not lead to disease, infection of humans can result in Lyme disease as a consequence of the human immunopathologic response to B burgdorferi. Consistent with the pathogenesis of Lyme disease, bacterial products that allow B burgdorferi to replicate and survive seem to be primarily what is required for the bacterium to cause disease in a susceptible host. This article describes the basic biology of B burgdorferi and reviews some of the bacterial components required for infection of and survival in the mammalian and tick hosts.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South Fourth St., Hamilton, Montana 59840, Ph. 406-363-9239, FAX 406-375-9681,
| | - Patricia A. Rosa
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South Fourth St., Hamilton, Montana 59840, Ph. 406-363-9209, FAX 406-375-9681,
| | - Philip E. Stewart
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South Fourth St., Hamilton, Montana 59840, Ph. 406-363-9393, FAX 406-375-9681,
| |
Collapse
|
35
|
Wang X, Ma Y, Yoder A, Crandall H, Zachary JF, Fujinami RS, Weis JH, Weis JJ. T cell infiltration is associated with increased Lyme arthritis in TLR2-/- mice. ACTA ACUST UNITED AC 2007; 52:124-33. [PMID: 18081848 DOI: 10.1111/j.1574-695x.2007.00356.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
C57BL/6 mice deficient in TLR2 develop more severe arthritis following infection with Borrelia burgdorferi than do wild-type C57BL/6 mice, and this increase is suppressed by the simultaneous presence of the scid mutation. This suggested a requirement for lymphocytes in the development of subacute Lyme arthritis in TLR2(-/-) mice, a feature not commonly associated with this arthritis. The increased pathology of B. burgdorferi-infected TLR2(-/-) mice was also accompanied by an increase in mononuclear cell infiltration. In this study, T cells were found to be responsible for the increase in mononuclear cells in infected TLR2(-/-) C3H mice. Accordingly, transcripts for the IFN-inducible T cell chemokines, CXCL9 and CXCL10, were greatly enhanced in joint tissue from TLR2(-/-) mice, as were transcripts for a prototypical IFN-inducible gene IFN-gamma-induced GTPase (igtp). Treatment of murine synovial cells with sonicated B. burgdorferi resulted in induction of transcripts for chemokines and other IFN-inducible genes, irrespective of the presence of TLR2. The presence of T lymphocytes greatly enhanced the transcriptional response of synovial cells. These results suggest that the increased inflammatory cell infiltration in TLR2(-/-) C3H mice is the result of localized overproduction of T cell attracting chemokines.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Pathology, University of Utah, Salt Lake City, UT 84112-5650, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lyme arthritis: current concepts and a change in paradigm. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:21-34. [PMID: 18003815 DOI: 10.1128/cvi.00330-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Hoffmann O, Braun JS, Becker D, Halle A, Freyer D, Dagand E, Lehnardt S, Weber JR. TLR2 Mediates Neuroinflammation and Neuronal Damage. THE JOURNAL OF IMMUNOLOGY 2007; 178:6476-81. [PMID: 17475877 DOI: 10.4049/jimmunol.178.10.6476] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Innate immunity relies on pattern recognition receptors to detect the presence of infectious pathogens. In the case of Gram-positive bacteria, binding of bacterial lipopeptides to TLR2 is currently regarded as an important mechanism. In the present study, we used the synthetic bacterial lipopeptide Pam3CysSK4, a selective TLR2 agonist, to induce meningeal inflammation in rodents. In a 6-h rat model, intrathecal application of Pam3CysSK4 caused influx of leukocytes into the cerebrospinal fluid (CSF) and induced a marked increase of regional cerebral blood flow and intracranial pressure. In wild-type mice, we observed CSF pleocytosis and an increased number of apoptotic neurons in the dentate gyrus 24 h after intrathecal challenge. Inflammation and associated neuronal loss were absent in TLR2 knockout mice. In purified neurons, cytotoxicity of Pam3CysSK4 itself was not observed. Exposure of microglia to Pam3CysSK4 induced neurotoxic properties in the supernatant of wild-type, but not TLR2-deficient microglia. We conclude that TLR2-mediated signaling is sufficient to induce the host-dependent key features of acute bacterial meningitis. Therefore, synthetic lipopeptides are a highly specific tool to study mechanisms of TLR2-driven neurodegeneration in vivo.
Collapse
Affiliation(s)
- Olaf Hoffmann
- Department of Neurology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Crandall H, Dunn DM, Ma Y, Wooten RM, Zachary JF, Weis JH, Weiss RB, Weis JJ. Gene expression profiling reveals unique pathways associated with differential severity of lyme arthritis. THE JOURNAL OF IMMUNOLOGY 2007; 177:7930-42. [PMID: 17114465 DOI: 10.4049/jimmunol.177.11.7930] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The murine model of Lyme disease provides a unique opportunity to study the localized host response to similar stimulus, Borrelia burgdorferi, in the joints of mice destined to develop severe arthritis (C3H) or mild disease (C57BL/6). Pathways associated with the response to infection and the development of Lyme arthritis were identified by global gene expression patterns using oligonucleotide microarrays. A robust induction of IFN-responsive genes was observed in severely arthritic C3H mice at 1 wk of infection, which was absent from mildly arthritic C57BL/6 mice. In contrast, infected C57BL/6 mice displayed a novel expression profile characterized by genes involved in epidermal differentiation and wound repair, which were decreased in the joints of C3H mice. These expression patterns were associated with disease state rather than inherent differences between C3H and C57BL/6 mice, because C57BL/6-IL-10(-/-) mice infected with B. burgdorferi develop more severe arthritis than C57BL/6 mice and displayed an early gene expression profile similar to C3H mice. Gene expression profiles at 2 and 4 wk postinfection revealed a common response of all strains that was likely to be important for the host defense to B. burgdorferi and mediated by NF-kappaB-dependent signaling. The gene expression profiles identified in this study add to the current understanding of the host response to B. burgdorferi and identify two novel pathways that may be involved in regulating the severity of Lyme arthritis.
Collapse
Affiliation(s)
- Hillary Crandall
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, , Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cassiani-Ingoni R, Cabral ES, Lünemann JD, Garza Z, Magnus T, Gelderblom H, Munson PJ, Marques A, Martin R. Borrelia burgdorferi Induces TLR1 and TLR2 in human microglia and peripheral blood monocytes but differentially regulates HLA-class II expression. J Neuropathol Exp Neurol 2006; 65:540-8. [PMID: 16783164 DOI: 10.1097/00005072-200606000-00002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spirochete Borrelia burgdorferi is the agent of Lyme disease, which causes central nervous system manifestations in up to 20% of patients. We investigated the response of human brain microglial cells, glial progenitors, neurons, astrocytes, as well as peripheral blood monocytes to stimulation with B. burgdorferi. We used oligoarrays to detect changes in the expression of genes important for shaping adaptive and innate immune responses. We found that stimulation with B. burgdorferi lysate increased the expression of Toll-like receptors (TLRs) 1 and 2 in all cell types except neurons. However, despite similarities in global gene profiles of monocytes and microglia, only microglial cells responded to the stimulation with a robust increase in HLA-DR, HLA-DQ, and also coexpressed CD11-c, a dendritic cell marker. In contrast, a large number of HLA-related molecules were repressed at both the RNA and the protein levels in stimulated monocytes, whereas secretion of IL-10 and TNF-alpha was strongly induced. These results show that signaling through TLR1/2 in response to B. burgdorferi can elicit opposite immunoregulatory effects in blood and in brain immune cells, which could play a role in the different susceptibility of these compartments to infection.
Collapse
Affiliation(s)
- Riccardo Cassiani-Ingoni
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Lyme arthritis, the most common manifestation of late Lyme disease, has been associated with the presence of Borellia burgdorferi in the joint. However, it is still unclear whether the pathogen itself is able to elicit such a sustained inflammatory response, or whether an aberrant immunological reaction of the host is the main driving force. Borrelia antigens, including lipoproteins, flagellin and DNA, are ligands of Toll-like receptors, and can thus elicit a strong stimulation of host cells, such as neutrophils, mononuclear cells and resident tissue cells. Understanding the molecular basis of the signalling events caused by Borrelia lipoproteins will lead to a greater understanding of inflammation in Lyme arthritis and, hopefully, new treatment strategies for chronic antibiotic-resistant disease.
Collapse
Affiliation(s)
- S K Singh
- Pediatric Rheumatology, Immunology and Infectious Diseases, Children's Hospital, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
41
|
Bockenstedt LK, Liu N, Schwartz I, Fish D. MyD88 deficiency enhances acquisition and transmission of Borrelia burgdorferi by Ixodes scapularis ticks. Infect Immun 2006; 74:2154-60. [PMID: 16552045 PMCID: PMC1418887 DOI: 10.1128/iai.74.4.2154-2160.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/02/2006] [Accepted: 01/18/2006] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi strains exhibit various degrees of infectivity and pathogenicity in mammals, which may be due to their relative ability to evade initial host immunity. Innate immune cells recognize B. burgdorferi by Toll-like receptors (TLRs) that use the intracellular molecule MyD88 to mediate effector functions. To determine whether impaired TLR signaling enhances Ixodes scapularis acquisition of B. burgdorferi, we fed nymphs on wild-type (WT) and MyD88-/- mice previously infected with two clinical isolates of B. burgdorferi, BL206, a high-virulence strain, and B348, an attenuated strain. Seventy-three percent of the nymphs that fed on BL206-infected WT mice and 40% of the nymphs that fed on B348-infected WT mice acquired B. burgdorferi, whereas 100% of the nymphs that fed on MyD88-/- mice became infected, irrespective of B. burgdorferi strain. Ticks that acquired infection after feeding on MyD88-/- mice harbored more spirochetes than those that fed on WT mice, as assessed by quantitative PCR for B. burgdorferi DNA. Vector transmission of BL206 and B348 was also enhanced when MyD88-/- mice were the blood meal hosts, with the mean pathogen burden at the skin inoculation site significantly higher than levels in WT mice. These results show that the absence of MyD88 facilitates passage of both low- and high-infectivity B. burgdorferi strains between the tick vector and the mammal and enhances the infectivity of a low-infectivity B. burgdorferi strain.
Collapse
Affiliation(s)
- Linda K Bockenstedt
- S-525C TAC, Section of Rheumatology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8031, USA.
| | | | | | | |
Collapse
|
42
|
Salazar JC, Pope CD, Moore MW, Pope J, Kiely TG, Radolf JD. Lipoprotein-dependent and -independent immune responses to spirochetal infection. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:949-58. [PMID: 16085913 PMCID: PMC1182186 DOI: 10.1128/cdli.12.8.949-958.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we used the epidermal suction blister technique, in conjunction with multiparameter flow cytometry, to analyze the cellular and cytokine responses elicited by intradermal injection of human volunteers with synthetic analogs for spirochetal lipoproteins and compared the responses to findings previously reported from patients with erythema migrans (EM). Compared with peripheral blood (PB), lipopeptides derived from the N termini of the Borrelia burgdorferi outer surface protein C and the 17-kDa lipoprotein of Treponema pallidum (OspC-L and 17-L, respectively) elicited infiltrates enriched in monocytes/macrophages and dendritic cells (DCs) but also containing substantial percentages of neutrophils and T cells. Monocytoid (CD11c(+)) and plasmacytoid (CD11c(-)) DCs were selectively recruited to the skin in ratios similar to those in PB, but only the former expressed the activation/maturation surface markers CD80, CD83, and DC-SIGN. Monocytes/macrophages and monocytoid DCs, but not plasmacytoid DCs, displayed significant increases in surface expression of Toll-like receptor 1 (TLR1), TLR2, and TLR4. Staining for CD45RO and CD27 revealed that lipopeptides preferentially recruited antigen-experienced T-cell subsets; despite their lack of antigenicity, these agonists induced marked T-cell activation, as evidenced by surface expression of CD69, CD25, and CD71. Lipopeptides also induced significant increases in interleukin 12 (IL-12), IL-10, gamma interferon, and most notably IL-6 without corresponding increases in serum levels of these cytokines. Although lipopeptides and EM lesional infiltrates shared many similarities, differences were noted in a number of immunologic parameters. These studies have provided in situ evidence for a prominent "lipoprotein effect" during human infection while at the same time helping to pinpoint aspects of the cutaneous response that are uniquely driven by spirochetal pathogens.
Collapse
Affiliation(s)
- Juan C Salazar
- Division of Pediatric Infectious Diseases, Connecticut Children's Medical Center, 282 Washington Street, Hartford, Connecticut 06106, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Schröder NWJ, Diterich I, Zinke A, Eckert J, Draing C, von Baehr V, Hassler D, Priem S, Hahn K, Michelsen KS, Hartung T, Burmester GR, Göbel UB, Hermann C, Schumann RR. Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. THE JOURNAL OF IMMUNOLOGY 2005; 175:2534-40. [PMID: 16081826 DOI: 10.4049/jimmunol.175.4.2534] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lyme disease (LD) is caused by Borrelia burgdorferi and displays different stages, including localized, early disseminated, and persistent infection, all of which are associated with profound inflammatory reactions in the host. Induction of proinflammatory cytokines by B. burgdorferi is mainly mediated by outer surface proteins interacting with TLR-2/TLR-1 heterodimers. In this study, we show that TNF-alpha induction by Borrelia lysate was impaired in heterozygous TLR-2 knockout mice, while reactivity to lipoteichoic acid, another TLR-2 ligand signaling via TLR-2/TLR-6 heterodimers, was unaffected. Blood from individuals heterozygous for the TLR-2 polymorphism Arg753Gln was tested for cytokine release upon stimulation with Borrelia lysate, and induction of TNF-alpha and IFN-gamma was significantly lower as compared with individuals not exhibiting this variation. Overexpression of TLR-2 carrying the Arg753Gln polymorphism in HEK 293 cells led to a significantly stronger impairment of activation by TLR-2/TLR-1 ligands as compared with TLR-2/TLR-6 ligands. To study whether heterozygosity for the Arg753Gln variant of TLR-2 influenced susceptibility for LD, we analyzed 155 patients for this polymorphism. The Arg753Gln variant occurs at a significantly lower frequency in LD patients as compared with matched controls (5.8 vs 13.5%, odds ratio 0.393, 95% confidence interval 0.17-0.89, p = 0.033), with an even more pronounced difference when late stage disease was observed (2.3 vs 12.5%, odds ratio 0.163, 95% confidence interval 0.04-0.76, p = 0.018). These data suggest that Arg753Gln may protect from the development of late stage LD due to a reduced signaling via TLR-2/TLR-1.
Collapse
Affiliation(s)
- Nicolas W J Schröder
- Institut für Mikrobiologie und Hygiene, Charité University Medical Center, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Benhnia MREI, Wroblewski D, Akhtar MN, Patel RA, Lavezzi W, Gangloff SC, Goyert SM, Caimano MJ, Radolf JD, Sellati TJ. Signaling through CD14 attenuates the inflammatory response to Borrelia burgdorferi, the agent of Lyme disease. THE JOURNAL OF IMMUNOLOGY 2005; 174:1539-48. [PMID: 15661914 DOI: 10.4049/jimmunol.174.3.1539] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lyme disease is a chronic inflammatory disorder caused by the spirochetal bacterium, Borrelia burgdorferi. In vitro evidence suggests that binding of spirochetal lipoproteins to CD14, a pattern recognition receptor expressed on monocytes/macrophages and polymorphonuclear cells, is a critical requirement for cellular activation and the subsequent release of proinflammatory cytokines that most likely contribute to symptomatology and clinical manifestations. To test the validity of this notion, we assessed the impact of CD14 deficiency on Lyme disease in C3H/HeN mice. Contrary to an anticipated diminution in pathology, CD14(-/-) mice exhibited more severe and persistent inflammation than did CD14(+/+) mice. This disparity reflects altered gene regulation within immune cells that may engender the higher bacterial burden and serum cytokine levels observed in CD14(-/-) mice. Comparing their in vitro stimulatory activity, live spirochetes, but not lysed organisms, were a potent CD14-independent stimulus of cytokine production, triggering an exaggerated response by CD14(-/-) macrophages. Collectively, our in vivo and in vitro findings support the provocative notion that: 1) pattern recognition by CD14 is entirely dispensable for elaboration of an inflammatory response to B. burgdorferi, and 2) CD14-independent signaling pathways are inherently more destructive than CD14-dependent pathways. Continued study of CD14-independent signaling pathways may provide mechanistic insight into the inflammatory processes that underlie development of chronic inflammation.
Collapse
|
45
|
Wang G, Iyer R, Bittker S, Cooper D, Small J, Wormser GP, Schwartz I. Variations in Barbour-Stoenner-Kelly culture medium modulate infectivity and pathogenicity of Borrelia burgdorferi clinical isolates. Infect Immun 2004; 72:6702-6. [PMID: 15501807 PMCID: PMC523011 DOI: 10.1128/iai.72.11.6702-6706.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of variations in Barbour-Stoenner-Kelly (BSK) medium on the infectivity and pathogenicity of Borrelia burgdorferi clinical isolates were assessed by retrospective and prospective studies using a murine model of Lyme borreliosis. Thirty of 35 (86%) mice infected with any of six virulent B. burgdorferi clinical isolates grown in a BSK-H medium developed clinically apparent arthritis. By contrast, arthritis was observed in only 25 of 60 (42%) mice inoculated with two of these B. burgdorferi strains grown in a different lot of BSK-H medium (P < 0.001). In a prospective study, mice inoculated with a B. burgdorferi clinical isolate grown in a BSK medium prepared in-house produced significantly greater disease than those injected with the same isolate cultured in BSK-H medium (P < 0.05). The attenuated pathogenicity is not due to the loss of plasmids during in vitro cultivation. The data suggest that variations in BSK medium have a significant impact on the infectivity and pathogenicity of B. burgdorferi clinical isolates.
Collapse
Affiliation(s)
- Guiqing Wang
- Department of Microbiology & Immunology, New York Medical College, Valhalla 10595, USA.
| | | | | | | | | | | | | |
Collapse
|