1
|
Kim J, Park S, Lee JH, Lee JY, Shin JH. Zinc finger protein 184 prevents α-synuclein preformed fibril-mediated neurodegeneration through the interleukin enhancer binding factor 3-microRNA-7 pathway. PLoS One 2025; 20:e0323279. [PMID: 40333790 PMCID: PMC12057860 DOI: 10.1371/journal.pone.0323279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of dopaminergic neurons. Recent studies suggested the association of zinc finger protein 184 (ZNF184) with PD. However, the functional role of ZNF184 in PD pathogenesis remains unclear. Therefore, we aimed to confirm this association and the effects of ZNF184 in a mouse model of PD and human patients with PD. We found that ZNF184 levels were decreased in the substantia nigra (SN) of α-synuclein preformed fibril (α-syn PFF)-injected mice and cells treated with PD toxins. Furthermore, ZNF184 was reduced in the cortex and SN of patients with PD, suggesting an association between ZNF184 and PD pathogenesis. In ZNF184-overexpressing cells, RNA-sequencing analysis revealed significant alterations in several protein-coding genes including interleukin enhancer binding factor 3 (ILF3). Bioinformatic analysis identified potential ZNF184 binding motifs within the ILF3 promoter, and ZNF184 occupancy was confirmed. Since ILF3 inhibits the biogenesis of microRNA-7 (miR-7), which regulates α-synuclein aggregation, we administered the miR-7 inducer, scutellarin to α-syn PFF-injected mice, preventing dopaminergic neuron and reinstating motor abilities. Our findings suggest that ZNF184 promotes miR-7 upregulation by suppressing ILF3 transcription, revealing a novel pathway that could serve as a promising therapeutic target for the treatment of PD.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Soojeong Park
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jee-Ho Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Ji-Yeong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
2
|
Winterbourne S, Jayachandran U, Zou J, Rappsilber J, Granneman S, Cook AG. Integrative structural analysis of NF45-NF90 heterodimers reveals architectural rearrangements and oligomerization on binding dsRNA. Nucleic Acids Res 2025; 53:gkaf204. [PMID: 40156862 PMCID: PMC11952958 DOI: 10.1093/nar/gkaf204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Abstract
Complexes of nuclear factors 45 and 90 (NF45-NF90) play a multitude of roles in co- and post-transcriptional RNA processing, including regulating adenosine-to-inosine editing, cassette exon and back splicing, and splicing fidelity. NF45-NF90 complexes recognize double-stranded RNA (dsRNA) and, in human cells, primarily interact with Alu inverted repeats (AluIRs) that are commonly inserted into introns and other non-coding RNA regions. Intronic AluIRs of ∼300 bp can regulate splicing outcomes, such as generation of circular RNAs. We examined domain reorganization of NF45-NF90 domains on dsRNAs exceeding 50 bp to gain insight into its RNA recognition properties on longer dsRNAs. Using a combination of phylogenetic analysis, solution methods (including small angle X-ray scattering and quantitative cross-linking mass spectrometry), machine learning, and negative stain electron microscopy, we generated a model of NF45-NF90 complex formation on dsRNA. Our data reveal that different interactions of NF45-NF90 complexes allow these proteins to coat long stretches of dsRNA. This property of the NF45-NF90 complex has important implications for how long, nuclear dsRNAs are recognized in the nucleus and how this might promote (co)-regulation of specific RNA splicing and editing events that shape the mammalian transcriptome.
Collapse
Affiliation(s)
- Sophie Winterbourne
- Institute of Quantitative Biology, Biochemistry and Biotechnology, Max Born Crescent, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Uma Jayachandran
- Institute of Quantitative Biology, Biochemistry and Biotechnology, Max Born Crescent, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Juan Zou
- Institute of Cell Biology, Max Born Crescent, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Juri Rappsilber
- Institute of Cell Biology, Max Born Crescent, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Sander Granneman
- Institute of Quantitative Biology, Biochemistry and Biotechnology, Max Born Crescent, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Centre for Engineering Biology, Max Born Crescent, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Atlanta G Cook
- Institute of Quantitative Biology, Biochemistry and Biotechnology, Max Born Crescent, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
3
|
Hu Y, Cai ZR, Huang RZ, Wang DS, Ju HQ, Chen DL. Circular RNA circPHLPP2 promotes tumor growth and anti-PD-1 resistance through binding ILF3 to regulate IL36γ transcription in colorectal cancer. Mol Cancer 2024; 23:272. [PMID: 39695693 DOI: 10.1186/s12943-024-02192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Most Colorectal Cancer (CRC) patients exhibit limited responsiveness to anti-programmed cell death protein 1 (PD-1) therapy, with the underlying mechanisms remaining elusive. Circular RNAs (circRNAs) play a significant role in tumorigenesis and development, with potential applications in tumor screening and predicting treatment efficacy. However, there are few studies exploring the role of circRNAs in CRC immune evasion. METHODS circRNA microarrays were used to identify circPHLPP2. RT-qPCR was used to examine the associations between the expression level of circPHLPP2 and the clinical characteristics of CRC patients. MTS assay, clone formation experiment, subcutaneous tumor implantation and multicolor flow cytometry were used to confirm the biological function of circPHLPP2. RAN-seq, RT-qPCR, and WB experiments were performed to investigate the downstream signaling pathways involved in circPHLPP2. RNA pull-down, RNA immunoprecipitation (RIP) and immunofluorescence staining were performed to identify the proteins associated with circPHLPP2. RESULTS circPHLPP2 is up-regulated in CRC patients who exhibit resistance to anti-PD-1 based therapy. circPHLPP2 significantly promotes the proliferation and tumor growth of CRC cells. Knockdown of circPhlpp2 enhances the efficacy of anti-PD-1 in vivo. Mechanistically, the specific interaction between circPHLPP2 and ILF3 facilitates the nuclear accumulation of ILF3, which subsequently enhances the transcription of IL36γ. This process reduces NK cell infiltration and impairs NK cells' granzyme B and IFN-γ production, thereby promoting tumor progression. CONCLUSIONS Overall, our findings reveal a novel mechanism by which circRNA regulates CRC immune evasion. circPHLPP2 may serve as a prognostic biomarker and potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Yan Hu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dong Feng East Road, Guangzhou, 510060, P. R. China
| | - Ze-Rong Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dong Feng East Road, Guangzhou, 510060, P. R. China
| | - Ren-Ze Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dong Feng East Road, Guangzhou, 510060, P. R. China
| | - De-Shen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dong Feng East Road, Guangzhou, 510060, P. R. China
| | - Huai-Qiang Ju
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dong Feng East Road, Guangzhou, 510060, P. R. China
| | - Dong-Liang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dong Feng East Road, Guangzhou, 510060, P. R. China.
| |
Collapse
|
4
|
Yamashita A, Shichino Y, Fujii K, Koshidaka Y, Adachi M, Sasagawa E, Mito M, Nakagawa S, Iwasaki S, Takao K, Shiina N. ILF3 prion-like domain regulates gene expression and fear memory under chronic stress. iScience 2023; 26:106229. [PMID: 36876121 PMCID: PMC9982275 DOI: 10.1016/j.isci.2023.106229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The prion-like domain (PrLD) is a class of intrinsically disordered regions. Although its propensity to form condensates has been studied in the context of neurodegenerative diseases, the physiological role of PrLD remains unclear. Here, we investigated the role of PrLD in the RNA-binding protein NFAR2, generated by a splicing variant of the Ilf3 gene. Removal of the PrLD in mice did not impair the function of NFAR2 required for survival, but did affect the responses to chronic water immersion and restraint stress (WIRS). The PrLD was required for WIRS-sensitive nuclear localization of NFAR2 and WIRS-induced changes in mRNA expression and translation in the amygdala, a fear-related brain region. Consistently, the PrLD conferred resistance to WIRS in fear-associated memory formation. Our study provides insights into the PrLD-dependent role of NFAR2 for chronic stress adaptation in the brain.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kazuki Fujii
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Mayumi Adachi
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Eri Sasagawa
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo Hokkaido 060-0812, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Corresponding author
| |
Collapse
|
5
|
Li P, Mi Q, Yan S, Xie Y, Cui Z, Zhang S, Wang Y, Gao H, Wang Y, Li J, Du L, Wang C. Characterization of circSCL38A1 as a novel oncogene in bladder cancer via targeting ILF3/TGF-β2 signaling axis. Cell Death Dis 2023; 14:59. [PMID: 36697384 PMCID: PMC9876890 DOI: 10.1038/s41419-023-05598-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
The regulatory role of circRNAs in cancer metastasis has become a focused issue in recent years. To date, however, the discovery of novel functional circRNAs and their regulatory mechanisms via binding with RBPs in bladder cancer (BC) are still lacking. Here, we screened out circSLC38A1 based on our sequencing data and followed validation with clinical tissue samples and cell lines. Functional assays showed that circSLC38A1 promoted BC cell invasion in vitro and lung metastasis of mice in vivo. By conducting RNA pull-down, mass spectrum, and RIP assays, circSLC38A1 was found to interact with Interleukin enhancer-binding factor 3 (ILF3), and stabilize ILF3 protein via modulating the ubiquitination process. By integrating our CUT&Tag-seq and RNA-seq data, TGF-β2 was identified as the functional target of the circSLC38A1-ILF3 complex. In addition, m6A methylation was enriched in circSLC38A1 and contributed to its upregulation. Clinically, circSLC38A1 was identified in serum exosomes of BC patients and could distinguish BC patients from healthy individuals with a diagnostic accuracy of 0.878. Thus, our study revealed an essential role and clinical significance of circSLC38A1 in BC via activating the transcription of TGF-β2 in an ILF3-dependent manner, extending the understanding of the importance of circRNA-mediated transcriptional regulation in BC metastasis.
Collapse
Affiliation(s)
- Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
| | - Qi Mi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Suzhen Yan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
| | - Yan Xie
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Zilian Cui
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Shujun Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Yifan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China.
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China.
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China.
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China.
- Shandong Technology Innovation Center for Big Data and Precision Medicine of Cancer, Jinan, 250033, Shandong, China.
| |
Collapse
|
6
|
Smith MR, Costa G. RNA-binding proteins and translation control in angiogenesis. FEBS J 2022; 289:7788-7809. [PMID: 34796614 DOI: 10.1111/febs.16286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 01/14/2023]
Abstract
Tissue vascularization through the process of angiogenesis ensures adequate oxygen and nutrient supply during development and regeneration. The complex morphogenetic events involved in new blood vessel formation are orchestrated by a tightly regulated crosstalk between extra and intracellular factors. In this context, RNA-binding protein (RBP) activity and protein translation play fundamental roles during the cellular responses triggered by particular environmental cues. A solid body of work has demonstrated that key RBPs (such as HuR, TIS11 proteins, hnRNPs, NF90, QKIs and YB1) are implicated in both physiological and pathological angiogenesis. These RBPs are critical for the metabolism of messenger (m)RNAs encoding angiogenic modulators and, importantly, strong evidence suggests that RBP-mRNA interactions can be altered in disease. Lesser known, but not less important, the mechanistic aspects of protein synthesis can also regulate the generation of new vessels. In this review, we outline the key findings demonstrating the implications of RBP-mediated RNA regulation and translation control in angiogenesis. Furthermore, we highlight how these mechanisms of post-transcriptional control of gene expression have led to promising therapeutic strategies aimed at targeting undesired blood vessel formation.
Collapse
Affiliation(s)
- Madeleine R Smith
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Guilherme Costa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
7
|
The Polyvalent Role of NF90 in RNA Biology. Int J Mol Sci 2022; 23:ijms232113584. [DOI: 10.3390/ijms232113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Double-stranded RNA-binding proteins (dsRBPs) are major players in the regulation of gene expression patterns. Among them, Nuclear Factor 90 (NF90) has a plethora of well-known functions in viral infection, transcription, and translation as well as RNA stability and degradation. In addition, NF90 has been identified as a regulator of microRNA (miRNA) maturation by competing with Microprocessor for the binding of pri-miRNAs in the nucleus. NF90 was recently shown to control the biogenesis of a subset of human miRNAs, which ultimately influences, not only the abundance, but also the expression of the host gene and the fate of the mRNA target repertoire. Moreover, recent evidence suggests that NF90 is also involved in RNA-Induced Silencing Complex (RISC)-mediated silencing by binding to target mRNAs and controlling their translation and degradation. Here, we review the many, and growing, functions of NF90 in RNA biology, with a focus on the miRNA pathway and RISC-mediated gene silencing.
Collapse
|
8
|
Shang R, Kretov DA, Adamson SI, Treiber T, Treiber N, Vedanayagam J, Chuang J, Meister G, Cifuentes D, Lai E. Regulated dicing of pre-mir-144 via reshaping of its terminal loop. Nucleic Acids Res 2022; 50:7637-7654. [PMID: 35801921 PMCID: PMC9303283 DOI: 10.1093/nar/gkac568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Although the route to generate microRNAs (miRNAs) is often depicted as a linear series of sequential and constitutive cleavages, we now appreciate multiple alternative pathways as well as diverse strategies to modulate their processing and function. Here, we identify an unusually profound regulatory role of conserved loop sequences in vertebrate pre-mir-144, which are essential for its cleavage by the Dicer RNase III enzyme in human and zebrafish models. Our data indicate that pre-mir-144 dicing is positively regulated via its terminal loop, and involves the ILF3 complex (NF90 and its partner NF45/ILF2). We provide further evidence that this regulatory switch involves reshaping of the pre-mir-144 apical loop into a structure that is appropriate for Dicer cleavage. In light of our recent findings that mir-144 promotes the nuclear biogenesis of its neighbor mir-451, these data extend the complex hierarchy of nuclear and cytoplasmic regulatory events that can control the maturation of clustered miRNAs.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Dmitry A Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott I Adamson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Thomas Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Jeffrey Vedanayagam
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| |
Collapse
|
9
|
Che Y, Fu L. Aberrant expression and regulatory network of splicing factor-SRSF3 in tumors. J Cancer 2020; 11:3502-3511. [PMID: 32284746 PMCID: PMC7150454 DOI: 10.7150/jca.42645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing facilitates the splicing of precursor RNA into different isoforms. Alternatively spliced transcripts often exhibit antagonistic functions or differential temporal or spatial expression patterns. There is increasing evidence that alternative splicing, especially by the serine-arginine rich (SR) protein family, leads to abnormal expression patterns and is closely related to the development of cancer. SRSF3, also known as SRp20, is a splicing factor. Through alternative splicing, it plays important roles in regulating various biological functions, such as cell cycle, cell proliferation, migration and invasion, under pathological and physiological conditions. Deregulation of SRSF3 is an essential feature of cancers. SRSF3 is also considered a candidate therapeutic target. Therefore, the involvement of abnormal splicing in tumorigenesis and the regulation of splicing factors deserve further analysis and discussion. Here, we summarize the function of SRSF3-regulated alternative transcripts in cancer cell biology at different stages of tumor development and the regulation of SRSF3 in tumorigenesis.
Collapse
Affiliation(s)
- Yingying Che
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| |
Collapse
|
10
|
Xu Z, Huang H, Li X, Ji C, Liu Y, Liu X, Zhu J, Wang Z, Zhang H, Shi J. High expression of interleukin-enhancer binding factor 3 predicts poor prognosis in patients with lung adenocarcinoma. Oncol Lett 2020; 19:2141-2152. [PMID: 32194712 PMCID: PMC7039148 DOI: 10.3892/ol.2020.11330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Interleukin-enhancer binding factor 3 (ILF3) is a double-stranded RNA-binding protein that has been reported to contribute to the occurrence and progression of various malignant tumors. The aim of the present study was to evaluate the prognostic value of ILF3 and to apply this knowledge to avoid excessive medical treatment in patients with lung adenocarcinoma (LUAD). ILF3 expression in a discovery set consisting of tumor and peri-tumor tissue microarrays was analyzed using immunohistochemical methods. The mRNA level of ILF3 was subsequently analyzed in a validation set downloaded from The Cancer Genome Atlas. The Kaplan-Meier method, univariate and multivariate Cox analyses, decision curve analysis and nomogram models were used to evaluate the prognostic value of ILF3. ILF3 expression was upregulated in tumor tissues compared with peri-tumor tissues and was negatively associated with the overall survival time of patients with LUAD in the discovery and validation sets. Moreover, ILF3 expression was used for risk stratification in patients with tumor-node-metastasis stages II-IV and poor-to-moderate tumor differentiation. ILF3 expression was identified as an independent predictor of adverse prognosis for patients with LUAD in the discovery and validation sets. Finally, nomogram models for the 3- and 5 year survival time of patients with LUAD revealed that ILF3 expression may be used to improve the predictive accuracy of the prognosis and to avoid excessive medical treatment for certain patients with the disease. Overall, the data obtained in the current study revealed that high ILF3 expression was associated with poor prognosis, and demonstrated that ILF3, as a potential independent risk factor, may improve the hierarchical postoperative management of patients with LUAD.
Collapse
Affiliation(s)
- Zhangyan Xu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xing Li
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Cheng Ji
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jun Zhu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhendong Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haijian Zhang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
11
|
Cascarina SM, Ross ED. Natural and pathogenic protein sequence variation affecting prion-like domains within and across human proteomes. BMC Genomics 2020; 21:23. [PMID: 31914925 PMCID: PMC6947906 DOI: 10.1186/s12864-019-6425-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Impaired proteostatic regulation of proteins with prion-like domains (PrLDs) is associated with a variety of human diseases including neurodegenerative disorders, myopathies, and certain forms of cancer. For many of these disorders, current models suggest a prion-like molecular mechanism of disease, whereby proteins aggregate and spread to neighboring cells in an infectious manner. The development of prion prediction algorithms has facilitated the large-scale identification of PrLDs among "reference" proteomes for various organisms. However, the degree to which intraspecies protein sequence diversity influences predicted prion propensity has not been systematically examined. RESULTS Here, we explore protein sequence variation introduced at genetic, post-transcriptional, and post-translational levels, and its influence on predicted aggregation propensity for human PrLDs. We find that sequence variation is relatively common among PrLDs and in some cases can result in relatively large differences in predicted prion propensity. Sequence variation introduced at the post-transcriptional level (via alternative splicing) also commonly affects predicted aggregation propensity, often by direct inclusion or exclusion of a PrLD. Finally, analysis of a database of sequence variants associated with human disease reveals a number of mutations within PrLDs that are predicted to increase prion propensity. CONCLUSIONS Our analyses expand the list of candidate human PrLDs, quantitatively estimate the effects of sequence variation on the aggregation propensity of PrLDs, and suggest the involvement of prion-like mechanisms in additional human diseases.
Collapse
Affiliation(s)
- Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
12
|
Liu Y, Wang JX, Nie ZY, Wen Y, Jia XJ, Zhang LN, Duan HJ, Shi YH. Upregulation of ERp57 promotes clear cell renal cell carcinoma progression by initiating a STAT3/ILF3 feedback loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:439. [PMID: 31747963 PMCID: PMC6864981 DOI: 10.1186/s13046-019-1453-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/16/2019] [Indexed: 01/09/2023]
Abstract
Background ERp57 dysfunction has been shown to contribute to tumorigenesis in multiple malignances. However, the role of ERp57 in clear cell renal carcinoma (ccRCC) remains unclear. Methods Cell proliferation ability was measured by MTT and colony forming assays. Western blotting and quantitative real-time PCR (qRT-PCR) were performed to measure protein and mRNA expression. Co-immunoprecipitation (CoIP) and proximity ligation assay (PLA) were performed to detect protein-protein interaction. Chromatin immunoprecipitation (ChIP), ribonucleoprotein immunoprecipitation (RIP), and oligo pull-down were used to confirm DNA–protein and RNA–protein interactions. Promoter luciferase analysis was used to detect transcription factor activity. Results Here we found ERp57 was overexpressed in ccRCC tissues, and the higher levels of ERp57 were correlated with poor survival in patients with ccRCC. In vivo and in vitro experiments showed that ccRCC cell proliferation was enhanced by ERp57 overexpression and inhibited by ERp57 deletion. Importantly, we found ERp57 positively regulated ILF3 expression in ccRCC cells. Mechanically, ERp57 was shown to bind to STAT3 protein and enhance the STAT3-mediated transcriptional activity of ILF3. Furthermore, ILF3 levels were increased in ccRCC tissues and associated with poor prognosis. Interestingly, we revealed that ILF3 could bind to ERp57 and positively regulate its expression by enhancing its mRNA stability. Furthermore, ccRCC cell proliferation was moderated via the ERp57/STAT3/ILF3 feedback loop. Conclusions In summary, our results indicate that the ERp57/STAT3/ILF3 feedback loop plays a key role in the oncogenesis of ccRCC and provides a potential therapeutic target for ccRCC treatment.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.,Department of Anesthesiology, The 4th Hospital of Hebei Medical University, 169 Tianshan Street , 050000, Shijiazhuang, People's Republic of China
| | - Jian-Xing Wang
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.,Department of Otolaryngology, The Second Hospital of Hebei Medical University, 215 Heping West Road Shijiazhuang, 050000, Shijiazhuang, People's Republic of China
| | - Zi-Yuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping West Road Shijiazhuang, 050000, Shijiazhuang, People's Republic of China
| | - Yue Wen
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Xin-Ju Jia
- Department of Endocrinology, The First Hospital of Hebei Medical University, 89 Donggang Road Shijiazhuang, 050000, Shijiazhuang, People's Republic of China
| | - Li-Na Zhang
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China
| | - Hui-Jun Duan
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.
| | - Yong-Hong Shi
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
13
|
Jia R, Ajiro M, Yu L, McCoy P, Zheng ZM. Oncogenic splicing factor SRSF3 regulates ILF3 alternative splicing to promote cancer cell proliferation and transformation. RNA (NEW YORK, N.Y.) 2019; 25:630-644. [PMID: 30796096 PMCID: PMC6467003 DOI: 10.1261/rna.068619.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/21/2019] [Indexed: 05/28/2023]
Abstract
Alternative RNA splicing is an important focus in molecular and clinical oncology. We report here that SRSF3 regulates alternative RNA splicing of interleukin enhancer binding factor 3 (ILF3) and production of this double-strand RNA-binding protein. An increased coexpression of ILF3 isoforms and SRSF3 was found in various types of cancers. ILF3 isoform-1 and isoform-2 promote cell proliferation and transformation. Tumor cells with reduced SRSF3 expression produce aberrant isoform-5 and -7 of ILF3. By binding to RNA sequence motifs, SRSF3 regulates the production of various ILF3 isoforms by exclusion/inclusion of ILF3 exon 18 or by selection of an alternative 3' splice site within exon 18. ILF3 isoform-5 and isoform-7 suppress tumor cell proliferation and the isoform-7 induces cell apoptosis. Our data indicate that ILF3 isoform-1 and isoform-2 are two critical factors for cell proliferation and transformation. The increased SRSF3 expression in cancer cells plays an important role in maintaining the steady status of ILF3 isoform-1 and isoform-2.
Collapse
Affiliation(s)
- Rong Jia
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Ke Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Masahiko Ajiro
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Lulu Yu
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
14
|
Idda ML, Lodde V, Galleri G, Martindale JL, Munk R, Abdelmohsen K, Cucca F, Gorospe M. NF90 regulation of immune factor expression in response to malaria antigens. Cell Cycle 2019; 18:708-722. [PMID: 30784348 DOI: 10.1080/15384101.2019.1580496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Nuclear factor 90 (NF90) is a dual DNA- and RNA-binding protein expressed ubiquitously in mammalian cells, including monocytes. Here, to elucidate the function of NF90 in the immune response, we analyzed systematically its influence on gene expression programs in the human monocytic cell line THP-1 expressing normal or reduced NF90 levels. RNA sequencing analysis revealed many mRNAs showing differential abundance in NF90-silenced cells, many of them encoding proteins implicated in the response to immune stimuli and malaria infection. The transcription of some of them (e.g. TNF, LILRB1, and CCL2 mRNAs) was modulated by silencing NF90. Ribonucleoprotein immunoprecipitation (RIP) analysis further revealed that a subset of these mRNAs associated directly with NF90. To understand how NF90 influenced globally the immune response to malaria infection, lysates of red blood cells infected with Plasmodium falciparum (iRBC lysates) or uninfected/mock-infected (uRBC lysates) were used to treat THP-1 cells as a surrogate of malaria infection. NF90 affected the stability of a few target mRNAs, but influenced more generally the translation and secretion of the encoded cytokines after treatment with either uRBC or iRBC lysates. Taken together, these results indicate that NF90 contributes to repressing the immune response in cells responding to P. falciparum infection and suggest that NF90 can be a therapeutic target in malaria.
Collapse
Affiliation(s)
- M Laura Idda
- a Laboratory of Genetics and Genomics , National Institute on Aging Intramural Research Program, National Institutes of Health , Baltimore , MD , USA.,b Istituto di Ricerca Genetica e Biomedica , Consiglio Nazionale delle Ricerche (CNR) , Cagliari , Italy
| | - Valeria Lodde
- b Istituto di Ricerca Genetica e Biomedica , Consiglio Nazionale delle Ricerche (CNR) , Cagliari , Italy.,c Department of Biomedical Sciences , University of Sassari , Sassari , Italy
| | - Grazia Galleri
- c Department of Biomedical Sciences , University of Sassari , Sassari , Italy
| | - Jennifer L Martindale
- a Laboratory of Genetics and Genomics , National Institute on Aging Intramural Research Program, National Institutes of Health , Baltimore , MD , USA
| | - Rachel Munk
- a Laboratory of Genetics and Genomics , National Institute on Aging Intramural Research Program, National Institutes of Health , Baltimore , MD , USA
| | - Kotb Abdelmohsen
- a Laboratory of Genetics and Genomics , National Institute on Aging Intramural Research Program, National Institutes of Health , Baltimore , MD , USA
| | - Francesco Cucca
- b Istituto di Ricerca Genetica e Biomedica , Consiglio Nazionale delle Ricerche (CNR) , Cagliari , Italy.,c Department of Biomedical Sciences , University of Sassari , Sassari , Italy
| | - Myriam Gorospe
- a Laboratory of Genetics and Genomics , National Institute on Aging Intramural Research Program, National Institutes of Health , Baltimore , MD , USA
| |
Collapse
|
15
|
Nuclear factor 90 promotes angiogenesis by regulating HIF-1α/VEGF-A expression through the PI3K/Akt signaling pathway in human cervical cancer. Cell Death Dis 2018; 9:276. [PMID: 29449553 PMCID: PMC5833414 DOI: 10.1038/s41419-018-0334-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
Abstract
Vascular endothelial growth factor A (VEGF-A), a fundamental component of angiogenesis, provides nutrients and oxygen to solid tumors, and enhances tumor cell survival, invasion, and migration. Nuclear factor 90 (NF90), a double-stranded RNA-binding protein, is strongly expressed in several human cancers, promotes tumor growth by reducing apoptosis, and increasing cell cycle process. The mechanisms by which cervical cancer cells inducing VEGF-A expression and angiogenesis upon NF90 upregulation remain to be fully established. We demonstrated that NF90 is upregulated in human cervical cancer specimens and the expression of NF90 is paralleled with that of VEGF-A under hypoxia. The expressions of hypoxia inducible factor-1α (HIF-1α) and VEGF-A are downregulated upon NF90 knockdown, which can be rescued by ectopic expression of NF90. Suppression of NF90 decreases the tube formation and cell migration of HUVECs. Moreover, the PI3K/Akt signaling pathway participates in the regulation. Knockdown of NF90 also reduces the tumor growth and angiogenesis of cervical cancer cell line in the mouse xenograft model. Taken together, suppression of NF90 in cervical cancer cell lines can decrease VEGF-A expression, inhibit angiogenesis, and reduce tumorigenic capacity in vivo.
Collapse
|
16
|
Interleukin enhancer-binding factor 3 and HOXC8 co-activate cadherin 11 transcription to promote breast cancer cells proliferation and migration. Oncotarget 2017; 8:107477-107491. [PMID: 29296180 PMCID: PMC5746082 DOI: 10.18632/oncotarget.22491] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Cadherin 11 (CDH11) expression is detected only in invasive breast cancer cells and aggressive breast cancer specimens. However, little is known about the molecular mechanisms of CDH11 transcriptional regulation. Here, we report that interleukin enhancer binding factor 3 (ILF3) interacts with Homeobox C8 (HOXC8) to activate CDH11 transcription in breast cancer cells. Using co-immunoprecipitation and mass spectrometry analyses, ILF3 is shown to interact with HOXC8 in breast cancer cells. We demonstrate that ILF3 binds to the CDH11 promoter on nucleotides –2982 ~ –2978 and –2602 ~ 2598 and interacts with HOXC8 to co-activate CDH11 transcription. We further show that ILF3 promotes proliferation and migration, at least partially, by facilitating CDH11 expression in breast cancer cells. Moreover, immunohistochemistry (IHC) shows that expression of CDH11, ILF3 and HOXC8 are all upregulated in breast cancer specimens compared to normal breast tissues. Importantly, the expression levels of CDH11, ILF3 and HOXC8 are elevated in the advanced stages of breast cancer, and high expression of CDH11, ILF3 and HOXC8 is associated with poor distant metastasis-free survival (DMFS) for breast cancer patients.
Collapse
|
17
|
The properties of the RNA-binding protein NF90 are considerably modulated by complex formation with NF45. Biochem J 2016; 474:259-280. [PMID: 28062840 DOI: 10.1042/bcj20160790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Nuclear factor 90 (NF90) is an RNA-binding protein (RBP) that regulates post-transcriptionally the expression of various mRNAs. NF90 was recently shown to be capable of discriminating between different RNA substrates. This is mediated by an adaptive and co-operative interplay between three RNA-binding motifs (RBMs) in the protein's C-terminus. In many cell types, NF90 exists predominantly in a complex with NF45. Here, we compared the RNA-binding properties of the purified NF90 monomer and the NF90-NF45 heterodimer by biophysical and biochemical means, and demonstrate that the interaction with NF45 considerably affects the characteristics of NF90. Along with a thermodynamic stabilization, complex formation substantially improves the RNA-binding capacity of NF90 by modulating its binding mode and by enhancing its affinity for single- and double-stranded RNA substrates. Our data suggest that features of both the N- and C-termini of NF90 participate in the heterodimerization with NF45 and that the formation of NF90-NF45 changes the conformation of NF90's RBMs to a status in which the co-operative interplay of the RBMs is optimal. NF45 is considered to act as a conformational scaffold for NF90's RBMs, which alters the RNA-binding specificity of NF90. Accordingly, the monomeric NF90 and the NF90-NF45 heterodimer may exert different functions in the cell.
Collapse
|
18
|
Murphy J, Hall WW, Ratner L, Sheehy N. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology 2016; 494:129-42. [PMID: 27110706 DOI: 10.1016/j.virol.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023]
Abstract
The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells.
Collapse
Affiliation(s)
- Jane Murphy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Noreen Sheehy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
19
|
Schmidt T, Knick P, Lilie H, Friedrich S, Golbik RP, Behrens SE. Coordinated Action of Two Double-Stranded RNA Binding Motifs and an RGG Motif Enables Nuclear Factor 90 To Flexibly Target Different RNA Substrates. Biochemistry 2016; 55:948-59. [PMID: 26795062 DOI: 10.1021/acs.biochem.5b01072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms of how RNA binding proteins (RBP) bind to and distinguish different RNA molecules are yet uncertain. Here, we performed a comprehensive analysis of the RNA binding properties of multidomain RBP nuclear factor 90 (NF90) by investigating specifically the functional activities of two double-stranded RNA binding motifs (dsRBM) and an RGG motif in the protein's unstructured C-terminus. By comparison of the RNA binding affinities of several NF90 variants and their modes of binding to a set of defined RNA molecules, the activities of the motifs turned out to be very different. While dsRBM1 contributes little to RNA binding, dsRBM2 is essential for effective binding of double-stranded RNA. The protein's immediate C-terminus, including the RGG motif, is indispensable for interactions of the protein with single-stranded RNA, and the RGG motif decisively contributes to NF90's overall RNA binding properties. Conformational studies, which compared wild-type NF90 with a variant that contains a pseudophosphorylated residue in the RGG motif, suggest that the NF90 C-terminus is involved in conformational changes in the protein after RNA binding, with the RGG motif acting as a central regulatory element. In summary, our data propose a concerted action of all RNA binding motifs within the frame of the full-length protein, which may be controlled by regulation of the activity of the RGG motif, e.g., by phosphorylation. This multidomain interplay enables the RBP NF90 to discriminate RNA features by dynamic and adaptable interactions.
Collapse
Affiliation(s)
- Tobias Schmidt
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Paul Knick
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI), Section of Microbial Biotechnology, and ‡Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, D-06120 Halle/Saale, Germany
| |
Collapse
|
20
|
Jayachandran U, Grey H, Cook AG. Nuclear factor 90 uses an ADAR2-like binding mode to recognize specific bases in dsRNA. Nucleic Acids Res 2015; 44:1924-36. [PMID: 26712564 PMCID: PMC4770229 DOI: 10.1093/nar/gkv1508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023] Open
Abstract
Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the post-transcriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3′ untranslated regions of specific mRNAs and several non-coding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tandem dsRBDs of NF90 in complex with a synthetic dsRNA. This complex shows surprising similarity to the tandem dsRBDs from an adenosine-to-inosine editing enzyme, ADAR2 in complex with a substrate RNA. Residues involved in unusual base-specific recognition in the minor groove of dsRNA are conserved between NF90 and ADAR2. These data suggest that, like ADAR2, underlying sequences in dsRNA may influence how NF90 recognizes its target RNAs.
Collapse
Affiliation(s)
- Uma Jayachandran
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Heather Grey
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
21
|
The NF45/NF90 Heterodimer Contributes to the Biogenesis of 60S Ribosomal Subunits and Influences Nucleolar Morphology. Mol Cell Biol 2015; 35:3491-503. [PMID: 26240280 DOI: 10.1128/mcb.00306-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/21/2015] [Indexed: 01/06/2023] Open
Abstract
The interleukin enhancer binding factors ILF2 (NF45) and ILF3 (NF90/NF110) have been implicated in various cellular pathways, such as transcription, microRNA (miRNA) processing, DNA repair, and translation, in mammalian cells. Using tandem affinity purification, we identified human NF45 and NF90 as components of precursors to 60S (pre-60S) ribosomal subunits. NF45 and NF90 are enriched in nucleoli and cosediment with pre-60S ribosomal particles in density gradient analysis. We show that association of the NF45/NF90 heterodimer with pre-60S ribosomal particles requires the double-stranded RNA binding domains of NF90, while depletion of NF45 and NF90 by RNA interference leads to a defect in 60S biogenesis. Nucleoli of cells depleted of NF45 and NF90 have altered morphology and display a characteristic spherical shape. These effects are not due to impaired rRNA transcription or processing of the precursors to 28S rRNA. Consistent with a role of the NF45/NF90 heterodimer in nucleolar steps of 60S subunit biogenesis, downregulation of NF45 and NF90 leads to a p53 response, accompanied by induction of the cyclin-dependent kinase inhibitor p21/CIP1, which can be counteracted by depletion of RPL11. Together, these data indicate that NF45 and NF90 are novel higher-eukaryote-specific factors required for the maturation of 60S ribosomal subunits.
Collapse
|
22
|
Shiina N, Nakayama K. RNA granule assembly and disassembly modulated by nuclear factor associated with double-stranded RNA 2 and nuclear factor 45. J Biol Chem 2015; 289:21163-80. [PMID: 24920670 DOI: 10.1074/jbc.m114.556365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RNA granules are large messenger ribonucleoprotein complexes that regulate translation and mRNA translocation to control the timing and location of protein synthesis. The regulation of RNA granule assembly and disassembly is a structural basis of translational control, and its disorder is implicated in degenerative disease. Here, we used proteomic analysis to identify proteins associated with RNA granule protein 105 (RNG105)/caprin1, an RNA-binding protein in RNA granules. Among the identified proteins, we focused on nuclear factor (NF) 45 and its binding partner, nuclear factor associated with dsRNA 2 (NFAR2), and we demonstrated that NF45 promotes disassembly of RNA granules, whereas NFAR2 enhances the assembly of RNA granules in cultured cells. The GQSY domain of NFAR2 was required to associate with messenger ribonucleoprotein complexes containing RNG105/caprin1, and it was structurally and functionally related to the low complexity sequence domain of the fused in sarcoma protein, which drives the assembly of RNA granules. Another domain of NFAR2, the DZF domain, was dispensable for association with the RNG105 complex, but it was involved in positive and negative regulation of RNA granule assembly by being phosphorylated at double-stranded RNA-activated kinase sites and by association with NF45, respectively. These results suggest a novel molecular mechanism for the modulation of RNA granule assembly and disassembly by NFAR2, NF45, and phosphorylation at double-stranded RNA-activated kinase PKR sites.
Collapse
|
23
|
NF90 isoforms, a new family of cellular proteins involved in viral replication? Biochimie 2015; 108:20-4. [DOI: 10.1016/j.biochi.2014.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/26/2014] [Indexed: 01/09/2023]
|
24
|
Regulation of cell cycle of hepatocellular carcinoma by NF90 through modulation of cyclin E1 mRNA stability. Oncogene 2014; 34:4460-70. [PMID: 25399696 DOI: 10.1038/onc.2014.373] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/04/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Abstract
Activation of cyclin E1, a key regulator of the G1/S cell-cycle transition, has been implicated in many cancers including hepatocellular carcinoma (HCC). Although much is known about the regulation of cyclin E1 expression and stability, its post-transcriptional regulation mechanism remains incompletely understood. Here, we report that nuclear factor 90 (NF90), a double-stranded RNA (dsRNA) binding protein, regulates cyclin E1 in HCC. We demonstrate that NF90 is upregulated in HCC specimens and that suppression of NF90 decreases HCC cell growth and delays G1/S transition. We identified cyclin E1 as a new target of NF90 and found a significant correlation between NF90 and cyclin E1 expression in HCC. The mRNA and protein levels of cyclin E1 were downregulated upon NF90 knockdown. Suppression of NF90 caused a decrease in the half-life of cyclin E1 mRNA, which was rescued by ectopic expression of NF90. Furthermore, NF90 bound to the 3' untranslated regions (3'UTRs) of cyclin E1 mRNA in vitro and in vivo. Knockdown of NF90 also inhibited tumor growth of HCC cell lines in mouse xenograft model. Moreover, we showed that inhibition of NF90 sensitized HCC cells to the cyclin-dependent kinase 2 (CDK2) inhibitor, roscovitine. Taken together, downregulation of NF90 in HCC cell lines can delay cell-cycle progression, inhibit cell proliferation, and reduce tumorigenic capacity in vivo. These results suggest that NF90 has an important role in HCC pathogenesis and that it can serve as a novel therapeutic target for HCC.
Collapse
|
25
|
Castella S, Bernard R, Corno M, Fradin A, Larcher JC. Ilf3 and NF90 functions in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:243-56. [PMID: 25327818 DOI: 10.1002/wrna.1270] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022]
Abstract
Double-stranded RNA-binding proteins (DRBPs) are known to regulate many processes of RNA metabolism due, among others, to the presence of double-stranded RNA (dsRNA)-binding motifs (dsRBMs). Among these DRBPs, Interleukin enhancer-binding factor 3 (Ilf3) and Nuclear Factor 90 (NF90) are two ubiquitous proteins generated by mutually exclusive and alternative splicings of the Ilf3 gene. They share common N-terminal and central sequences but display specific C-terminal regions. They present a large heterogeneity generated by several post-transcriptional and post-translational modifications involved in their subcellular localization and biological functions. While Ilf3 and NF90 were first identified as activators of gene expression, they are also implicated in cellular processes unrelated to RNA metabolism such as regulation of the cell cycle or of enzymatic activites. The implication of Ilf3 and NF90 in RNA biology will be discussed with a focus on eukaryote transcription and translation regulation, on viral replication and translation as well as on noncoding RNA field.
Collapse
Affiliation(s)
- Sandrine Castella
- Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, Sorbonne Universités, UPMC Univ Paris 06, Paris, France; Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, CNRS, UMR 7622, Paris, France
| | | | | | | | | |
Collapse
|
26
|
NF90 in posttranscriptional gene regulation and microRNA biogenesis. Int J Mol Sci 2013; 14:17111-21. [PMID: 23965975 PMCID: PMC3759954 DOI: 10.3390/ijms140817111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022] Open
Abstract
Gene expression patterns are effectively regulated by turnover and translation regulatory (TTR) RNA-binding proteins (RBPs). The TTR-RBPs control gene expression at posttranscriptional levels, such as pre-mRNA splicing, mRNA cytoplasmic export, turnover, storage, and translation. Double-stranded RNA binding proteins (DSRBPs) are known to regulate many processes of cellular metabolism, including transcriptional control, translational control, mRNA processing and localization. Nuclear factor 90 (NF90), one of the DSRBPs, is abundantly expressed in vertebrate tissue and participates in many aspects of RNA metabolism. NF90 was originally purified as a component of a DNA binding complex which binds to the antigen recognition response element 2 in the interleukin 2 promoter. Recent studies have provided us with interesting insights into its possible physiological roles in RNA metabolism, including transcription, degradation, and translation. In addition, it was shown that NF90 regulates microRNA expression. In this review, we try to focus on the function of NF90 in posttranscriptional gene regulation and microRNA biogenesis.
Collapse
|
27
|
Hu Q, Lu YY, Noh H, Hong S, Dong Z, Ding HF, Su SB, Huang S. Interleukin enhancer-binding factor 3 promotes breast tumor progression by regulating sustained urokinase-type plasminogen activator expression. Oncogene 2012; 32:3933-43. [PMID: 22986534 PMCID: PMC3819929 DOI: 10.1038/onc.2012.414] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 12/21/2022]
Abstract
Sustained urokinase-type plasminogen activator (uPA) expression is detected in aggressive breast tumors. Although uPA can be transiently upregulated by diverse extracellular stimuli, sustained, but not transiently upregulated uPA expression contributes to breast cancer invasion/metastasis. Unfortunately, how sustained uPA expression is achieved in invasive/metastatic breast cancer cells is unknown. Here, we show that sustained and transiently upregulated uPA expression are regulated by distinct mechanisms. Using a collection of transcription factor-targeted small-interfering RNAs, we discovered that interleukin enhancer-binding factor 3 (ILF3) is required for sustained uPA expression. Two discrete mechanisms mediate ILF3 action. The first is that ILF3 activates uPA transcription by binding to the CTGTT sequence in the nucleotides -1004∼-1000 of the uPA promoter; the second is that ILF3 inhibits the processing of uPA mRNA-targeting primary microRNAs (pri-miRNAs). Knockdown of ILF3 led to significant reduction in in vitro cell growth/migration/invasion and in vivo breast tumor development. Importantly, immunohistochemistry (IHC) showed that nuclear ILF3, but not cytoplasmic ILF3 staining correlates with elevated uPA level and higher grades of human breast tumor specimens. Nuclear localization of ILF3 highlights the role of ILF3 in sustained uPA expression as a transcription activator and pri-miRNA processing blocker. In conclusion, this study shows that ILF3 promotes breast tumorigenicity by regulating sustained uPA expression.
Collapse
Affiliation(s)
- Q Hu
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yamauchi T, Nakamura N, Hiramoto M, Yuri M, Yokota H, Naitou M, Takeuchi M, Yamanaka K, Kita A, Nakahara T, Kinoyama I, Matsuhisa A, Kaneko N, Koutoku H, Sasamata M, Kobori M, Katou M, Tawara S, Kawabata S, Furuichi K. Sepantronium bromide (YM155) induces disruption of the ILF3/p54(nrb) complex, which is required for survivin expression. Biochem Biophys Res Commun 2012; 425:711-6. [PMID: 22842455 DOI: 10.1016/j.bbrc.2012.07.103] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 12/01/2022]
Abstract
YM155, a small-molecule survivin suppressant, specifically binds to the transcription factor ILF3, which regulates the expression of survivin[1]. In this experiment we have demonstrated that p54(nrb) binds to the survivin promoter and regulates survivin expression. p54(nrb) forms a complex with ILF3, which directly binds to YM155. YM155 induces disruption of the ILF3/p54(nrb) complex, which results in a different subcellular localization between ILF3 and p54(nrb). Thus, identification of molecular targets of YM155 in suppression of the survivin pathway, might lead to development of its use as a novel potential target in cancers.
Collapse
Affiliation(s)
- Tomohiro Yamauchi
- Drug Discovery Research, Astellas Pharma, Inc., Tsukuba-shi, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wolkowicz UM, Cook AG. NF45 dimerizes with NF90, Zfr and SPNR via a conserved domain that has a nucleotidyltransferase fold. Nucleic Acids Res 2012; 40:9356-68. [PMID: 22833610 PMCID: PMC3467086 DOI: 10.1093/nar/gks696] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nuclear factors NF90 and NF45 form a complex involved in a variety of cellular processes and are thought to affect gene expression both at the transcriptional and translational level. In addition, this complex affects the replication of several viruses through direct interactions with viral RNA. NF90 and NF45 dimerize through their common 'DZF' domain (domain associated with zinc fingers). NF90 has additional double-stranded RNA-binding domains that likely mediate its association with target RNAs. We present the crystal structure of the NF90/NF45 dimerization complex at 1.9-Å resolution. The DZF domain shows structural similarity to the template-free nucleotidyltransferase family of RNA modifying enzymes. However, both NF90 and NF45 have lost critical catalytic residues during evolution and are therefore not functional enzymes. Residues on NF90 that make up its interface with NF45 are conserved in two related proteins, spermatid perinuclear RNA-binding protein (SPNR) and zinc-finger RNA-binding protein (Zfr). Using a co-immunoprecipitation assay and site-specific mutants, we demonstrate that NF45 is also able to recognize SPNR and Zfr through the same binding interface, revealing that NF45 is able to form a variety of cellular complexes with other DZF-domain proteins.
Collapse
Affiliation(s)
- Urszula M Wolkowicz
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, Midlothian EH9 3JR, UK
| | | |
Collapse
|
30
|
Shabman RS, Leung DW, Johnson J, Glennon N, Gulcicek EE, Stone KL, Leung L, Hensley L, Amarasinghe GK, Basler CF. DRBP76 associates with Ebola virus VP35 and suppresses viral polymerase function. J Infect Dis 2011; 204 Suppl 3:S911-8. [PMID: 21987769 DOI: 10.1093/infdis/jir343] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Zaire Ebola virus (EBOV) protein VP35 is multifunctional; it inhibits IFN-α/β production and functions as a cofactor of the viral RNA polymerase. Mass spectrometry identified the double stranded RNA binding protein 76 (DRBP76/NFAR-1/NF90) as a cellular factor that associates with the VP35 C-terminal interferon inhibitory domain (IID). DRBP76 is described to regulate host cell protein synthesis and play an important role in host defense. The VP35-IID-DRBP76 interaction required the addition of exogenous dsRNA, but full-length VP35 associated with DRBP76 in the absence of exogenous dsRNA. Cells infected with a Newcastle disease virus (NDV)-expressing VP35 redistributed DRBP76 from the nucleus to the cytoplasm, the compartment in which EBOV replicates. Overexpression of DRBP76 did not alter the ability of VP35 to inhibit type I IFN production but did impair the function of the EBOV transcription/replication complex. These data suggest that DRBP76, via its association with VP35, exerts an anti-EBOV function.
Collapse
Affiliation(s)
- Reed S Shabman
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hoque M, Shamanna RA, Guan D, Pe’ery T, Mathews MB. HIV-1 replication and latency are regulated by translational control of cyclin T1. J Mol Biol 2011; 410:917-32. [PMID: 21763496 PMCID: PMC3164259 DOI: 10.1016/j.jmb.2011.03.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) exploits cellular proteins during its replicative cycle and latent infection. The positive transcription elongation factor b (P-TEFb) is a key cellular transcription factor critical for these viral processes and is a drug target. During viral replication, P-TEFb is recruited via interactions of its cyclin T1 subunit with the HIV Tat (transactivator of transcription) protein and TAR (transactivation response) element. Through RNA silencing and over-expression experiments, we discovered that nuclear factor 90 (NF90), a cellular RNA binding protein, regulates P-TEFb expression. NF90 depletion reduced cyclin T1 protein levels by inhibiting translation initiation. Regulation was mediated by the 3' untranslated region of cyclin T1 mRNA independently of microRNAs. Cyclin T1 induction is involved in the escape of HIV-1 from latency. We show that the activation of viral replication by phorbol ester in latently infected monocytic cells requires the posttranscriptional induction of NF90 and cyclin T1, implicating NF90 in protein kinase C signaling pathways. This investigation reveals a novel mechanism of cyclin T1 regulation and establishes NF90 as a regulator of HIV-1 replication during both productive infection and induction from latency.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
| | - Raghavendra A. Shamanna
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
- Graduate School of Biomedical Sciences, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
| | - Deyu Guan
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
| | - Tsafi Pe’ery
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
- Department of Medicine, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
- Graduate School of Biomedical Sciences, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
| | - Michael B. Mathews
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
- Graduate School of Biomedical Sciences, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
| |
Collapse
|
32
|
Viranaicken W, Gasmi L, Chaumet A, Durieux C, Georget V, Denoulet P, Larcher JC. L-Ilf3 and L-NF90 traffic to the nucleolus granular component: alternatively-spliced exon 3 encodes a nucleolar localization motif. PLoS One 2011; 6:e22296. [PMID: 21811582 PMCID: PMC3139624 DOI: 10.1371/journal.pone.0022296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins.
Collapse
Affiliation(s)
- Wildriss Viranaicken
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Laila Gasmi
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Alexandre Chaumet
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Christiane Durieux
- Institut Jacques Monod, UMR7592 CNRS - Université Denis Diderot, Paris, France
| | - Virginie Georget
- UPMC Université Paris 06, IFR 83, Institut de Biologie Intégrative, Paris, France
| | - Philippe Denoulet
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Jean-Christophe Larcher
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Smith NL, Miskimins WK. Phosphorylation at serine 482 affects stability of NF90 and its functional role in mitosis. Cell Prolif 2011; 44:147-55. [PMID: 21401756 DOI: 10.1111/j.1365-2184.2011.00742.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES NF90 is a multifunctional double-strand RNA binding protein with documented roles in transcription, mRNA stability, translation, RNA processing and transport, and mitosis. It is a phosphoprotein that interacts with, and is a substrate for, several protein kinases. The study described here was initiated to gain better understanding of specific NF90 phosphorylation sites and their relationship to mechanisms by which NF90 performs its various functions. MATERIALS AND METHODS Phosphoproteomic studies have identified NF90 serine 482 (S482) as a major phosphorylation site in vivo. Site-specific mutations were introduced at this site and the mutated proteins were expressed in MCF7 cells by transfection. Western blotting was used to examine NF90 expression, stability, and responsiveness to protein kinase activators and inhibitors. Flow cytometry was used to examine effects of NF90 mutation on cell cycle progression. RESULTS Non-phosphorylatable mutant S482A was unstable compared to phosphomimetic S482E mutant. NF90-S482A expression was greatly enhanced by inhibiting proteasomal degradation or by activating PKC. Identical treatments had little effect on NF90-S482E. In contrast to WT NF90 or NF90-S482E, cells stably expressing NF90-S482A accumulated in M phase when treated with TPA. CONCLUSIONS Phosphorylation at S482 is important for NF90 stability and in regulating its functional role during mitosis. Based on the sequence surrounding S482, mitotic kinase PLK1 is a strong candidate for the enzyme that phosphorylates NF90 at this site.
Collapse
Affiliation(s)
- N L Smith
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | | |
Collapse
|
34
|
Parrott AM, Tsai M, Batchu P, Ryan K, Ozer HL, Tian B, Mathews MB. The evolution and expression of the snaR family of small non-coding RNAs. Nucleic Acids Res 2011; 39:1485-500. [PMID: 20935053 PMCID: PMC3045588 DOI: 10.1093/nar/gkq856] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/06/2010] [Accepted: 09/11/2010] [Indexed: 11/12/2022] Open
Abstract
We recently identified the snaR family of small non-coding RNAs that associate in vivo with the nuclear factor 90 (NF90/ILF3) protein. The major human species, snaR-A, is an RNA polymerase III transcript with restricted tissue distribution and orthologs in chimpanzee but not rhesus macaque or mouse. We report their expression in human tissues and their evolution in primates. snaR genes are exclusively in African Great Apes and some are unique to humans. Two novel families of snaR-related genetic elements were found in primates: CAS (catarrhine ancestor of snaR), limited to Old World Monkeys and apes; and ASR (Alu/snaR-related), present in all monkeys and apes. ASR and CAS appear to have spread by retrotransposition, whereas most snaR genes have spread by segmental duplication. snaR-A and snaR-G2 are differentially expressed in discrete regions of the human brain and other tissues, notably including testis. snaR-A is up-regulated in transformed and immortalized human cells, and is stably bound to ribosomes in HeLa cells. We infer that snaR evolved from the left monomer of the primate-specific Alu SINE family via ASR and CAS in conjunction with major primate speciation events, and suggest that snaRs participate in tissue- and species-specific regulation of cell growth and translation.
Collapse
Affiliation(s)
- Andrew M. Parrott
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Michael Tsai
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Priyanka Batchu
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Karen Ryan
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Harvey L. Ozer
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Michael B. Mathews
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| |
Collapse
|
35
|
Urcuqui-Inchima S, Patiño C, Zapata X, García MP, Arteaga J, Chamot C, Kumar A, Hernandez-Verdun D. Production of HIV particles is regulated by altering sub-cellular localization and dynamics of Rev induced by double-strand RNA binding protein. PLoS One 2011; 6:e16686. [PMID: 21364984 PMCID: PMC3043055 DOI: 10.1371/journal.pone.0016686] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/11/2011] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV)-1 encoded Rev is essential for export from the nucleus to the cytoplasm, of unspliced and singly spliced transcripts coding for structural and nonstructural viral proteins. This process is spatially and temporally coordinated resulting from the interactions between cellular and viral proteins. Here we examined the effects of the sub-cellular localization and dynamics of Rev on the efficiency of nucleocytoplasmic transport of HIV-1 Gag transcripts and virus particle production. Using confocal microscopy and fluorescence recovery after bleaching (FRAP), we report that NF90ctv, a cellular protein involved in Rev function, alters both the sub-cellular localization and dynamics of Rev in vivo, which drastically affects the accumulation of the viral protein p24. The CRM1–dependent nuclear export of Gag mRNA linked to the Rev Response Element (RRE) is dependent on specific domains of the NF90ctv protein. Taken together, our results demonstrate that the appropriate intracellular localization and dynamics of Rev could regulate Gag assembly and HIV-1 replication.
Collapse
Affiliation(s)
- Silvio Urcuqui-Inchima
- Grupo de Inmunoviología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Neplioueva V, Dobrikova EY, Mukherjee N, Keene JD, Gromeier M. Tissue type-specific expression of the dsRNA-binding protein 76 and genome-wide elucidation of its target mRNAs. PLoS One 2010; 5:e11710. [PMID: 20668518 PMCID: PMC2909144 DOI: 10.1371/journal.pone.0011710] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/29/2010] [Indexed: 11/29/2022] Open
Abstract
Background RNA-binding proteins accompany all steps in the life of mRNAs and provide dynamic gene regulatory functions for rapid adjustment to changing extra- or intracellular conditions. The association of RNA-binding proteins with their targets is regulated through changing subcellular distribution, post-translational modification or association with other proteins. Methodology We demonstrate that the dsRNA binding protein 76 (DRBP76), synonymous with nuclear factor 90, displays inherently distinct tissue type-specific subcellular distribution in the normal human central nervous system and in malignant brain tumors of glial origin. Altered subcellular localization and isoform distribution in malignant glioma indicate that tumor-specific changes in DRBP76-related gene products and their regulatory functions may contribute to the formation and/or maintenance of these tumors. To identify endogenous mRNA targets of DRBP76, we performed RNA-immunoprecipitation and genome-wide microarray analyses in HEK293 cells, and identified specific classes of transcripts encoding critical functions in cellular metabolism. Significance Our data suggest that physiologic DRBP76 expression, isoform distribution and subcellular localization are profoundly altered upon malignant transformation. Thus, the functional role of DRBP76 in co- or post-transcriptional gene regulation may contribute to the neoplastic phenotype.
Collapse
Affiliation(s)
- Valentina Neplioueva
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | | | | |
Collapse
|
37
|
Cazanove O, Batut J, Scarlett G, Mumford K, Elgar S, Thresh S, Neant I, Moreau M, Guille M. Methylation of Xilf3 by Xprmt1b Alters Its DNA, but Not RNA, Binding Activity. Biochemistry 2008; 47:8350-7. [DOI: 10.1021/bi7008486] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ophelie Cazanove
- Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, U.K., and Centre de Biologie du Développement, UMR 5547 CNRS/UPS, 118 Route de, Narbonne, 31062 Toulouse Cedex 04, France
| | - Julie Batut
- Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, U.K., and Centre de Biologie du Développement, UMR 5547 CNRS/UPS, 118 Route de, Narbonne, 31062 Toulouse Cedex 04, France
| | - Garry Scarlett
- Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, U.K., and Centre de Biologie du Développement, UMR 5547 CNRS/UPS, 118 Route de, Narbonne, 31062 Toulouse Cedex 04, France
| | - Katherine Mumford
- Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, U.K., and Centre de Biologie du Développement, UMR 5547 CNRS/UPS, 118 Route de, Narbonne, 31062 Toulouse Cedex 04, France
| | - Stuart Elgar
- Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, U.K., and Centre de Biologie du Développement, UMR 5547 CNRS/UPS, 118 Route de, Narbonne, 31062 Toulouse Cedex 04, France
| | - Sarah Thresh
- Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, U.K., and Centre de Biologie du Développement, UMR 5547 CNRS/UPS, 118 Route de, Narbonne, 31062 Toulouse Cedex 04, France
| | - Isabelle Neant
- Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, U.K., and Centre de Biologie du Développement, UMR 5547 CNRS/UPS, 118 Route de, Narbonne, 31062 Toulouse Cedex 04, France
| | - Marc Moreau
- Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, U.K., and Centre de Biologie du Développement, UMR 5547 CNRS/UPS, 118 Route de, Narbonne, 31062 Toulouse Cedex 04, France
| | - Matthew Guille
- Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, U.K., and Centre de Biologie du Développement, UMR 5547 CNRS/UPS, 118 Route de, Narbonne, 31062 Toulouse Cedex 04, France
| |
Collapse
|
38
|
Nuclear factor 45 (NF45) is a regulatory subunit of complexes with NF90/110 involved in mitotic control. Mol Cell Biol 2008; 28:4629-41. [PMID: 18458058 DOI: 10.1128/mcb.00120-08] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear factor 90 (NF90) and its C-terminally extended isoform, NF110, have been isolated as DNA- and RNA-binding proteins together with the less-studied protein NF45. These complexes have been implicated in gene regulation, but little is known about their cellular roles and whether they are redundant or functionally distinct. We show that heterodimeric core complexes, NF90-NF45 and NF110-NF45, exist within larger complexes that are more labile and contain multiple NF90/110 isoforms and additional proteins. Depletion of the NF45 subunit by RNA interference is accompanied by a dramatic decrease in the levels of NF90 and NF110. Reciprocally, depletion of NF90 but not of NF110 greatly reduces the level of NF45. Coregulation of NF90 and NF45 is a posttranscriptional phenomenon, resulting from protein destabilization in the absence of partners. Depletion of NF90-NF45 complexes retards cell growth by inhibition of DNA synthesis. Giant multinucleated cells containing nuclei attached by constrictions accumulate when either NF45 or NF90, but not NF110, is depleted. This study identified NF45 as an unstable regulatory subunit of NF90-NF45 complexes and uncovered their critical role in normal cell division. Furthermore, the study revealed that NF90 is functionally distinct from NF110 and is more important for cell growth.
Collapse
|
39
|
Agbottah ET, Traviss C, McArdle J, Karki S, St Laurent GC, Kumar A. Nuclear Factor 90(NF90) targeted to TAR RNA inhibits transcriptional activation of HIV-1. Retrovirology 2007; 4:41. [PMID: 17565699 PMCID: PMC1910605 DOI: 10.1186/1742-4690-4-41] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 06/12/2007] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Examination of host cell-based inhibitors of HIV-1 transcription may be important for attenuating viral replication. We describe properties of a cellular double-stranded RNA binding protein with intrinsic affinity for HIV-1 TAR RNA that interferes with Tat/TAR interaction and inhibits viral gene expression. RESULTS Utilizing TAR affinity fractionation, North-Western blotting, and mobility-shift assays, we show that the C-terminal variant of nuclear factor 90 (NF90ctv) with strong affinity for the TAR RNA, competes with Tat/TAR interaction in vitro. Analysis of the effect of NF90ctv-TAR RNA interaction in vivo showed significant inhibition of Tat-transactivation of HIV-1 LTR in cells expressing NF90ctv, as well as changes in histone H3 lysine-4 and lysine-9 methylation of HIV chromatin that are consistent with the epigenetic changes in transcriptionally repressed gene. CONCLUSION Structural integrity of the TAR element is crucial in HIV-1 gene expression. Our results show that perturbation Tat/TAR RNA interaction by the dsRNA binding protein is sufficient to inhibit transcriptional activation of HIV-1.
Collapse
Affiliation(s)
- Emmanuel T Agbottah
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Christine Traviss
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - James McArdle
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Sambhav Karki
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Georges C St Laurent
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| | - Ajit Kumar
- Department of Biochemistry & Molecular Biology, School of Medicine, The George Washington University, Washington D.C. USA
| |
Collapse
|
40
|
Parrott AM, Walsh MR, Mathews MB. Analysis of RNA:protein interactions in vivo: identification of RNA-binding partners of nuclear factor 90. Methods Enzymol 2007; 429:243-60. [PMID: 17913627 DOI: 10.1016/s0076-6879(07)29012-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ribonucleoprotein complexes (RNPs) perform a multitude of functions in the cell. Elucidating the composition of such complexes and unraveling their many interactions are current challenges in molecular biology. To stabilize complexes formed in cells and to preclude reassortment of their components during isolation, we employ chemical crosslinking of the RNA and protein moieties. Here we describe the identification of cellular RNAs bound to nuclear factor 90 (NF90), the founder member of a family of ubiquitous double-stranded RNA-binding proteins. Crosslinked RNA-NF90 complexes were immunoprecipitated from stable cell lines containing epitope-tagged NF90 protein isoforms. The bound RNA was released and identified through RNase H digestion and by various gene amplification techniques. We appraise the methods used by altering crosslinking conditions, and the binding profiles of different NF90 protein isoforms in synchronized and asynchronous cells are compared. This study discovers two novel RNA species and establishes NF90 as a multiclass RNA-binding protein, capable of binding representatives of all three classes of RNA.
Collapse
Affiliation(s)
- Andrew M Parrott
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | | | | |
Collapse
|
41
|
Urcuqui-Inchima S, Castaño ME, Hernandez-Verdun D, St-Laurent G, Kumar A. Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function. Retrovirology 2006; 3:83. [PMID: 17125513 PMCID: PMC1713252 DOI: 10.1186/1742-4690-3-83] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 11/24/2006] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The HIV Rev protein is known to facilitate export of incompletely spliced and unspliced viral transcripts to the cytoplasm, a necessary step in virus life cycle. The Rev-mediated nucleo-cytoplasmic transport of nascent viral transcripts, dependents on interaction of Rev with the RRE RNA structural element present in the target RNAs. The C-terminal variant of dsRNA-binding nuclear protein 90 (NF90ctv) has been shown to markedly attenuate viral replication in stably transduced HIV-1 target cell line. Here we examined a mechanism of interference of viral life cycle involving Rev-NF90ctv interaction. RESULTS Since Rev:RRE complex formations depend on protein:RNA and protein:protein interactions, we investigated whether the expression of NF90ctv might interfere with Rev-mediated export of RRE-containing transcripts. When HeLa cells expressed both NF90ctv and Rev protein, we observed that NF90ctv inhibited the Rev-mediated RNA transport. In particular, three regions of NF90ctv protein are involved in blocking Rev function. Moreover, interaction of NF90ctv with the RRE RNA resulted in the expression of a reporter protein coding sequences linked to the RRE structure. Moreover, Rev influenced the subcellular localization of NF90ctv, and this process is leptomycin B sensitive. CONCLUSION The dsRNA binding protein, NF90ctv competes with HIV Rev function at two levels, by competitive protein:protein interaction involving Rev binding to specific domains of NF90ctv, as well as by its binding to the RRE-RNA structure. Our results are consistent with a model of Rev-mediated HIV-1 RNA export that envisions Rev-multimerization, a process interrupted by NF90ctv.
Collapse
Affiliation(s)
- Silvio Urcuqui-Inchima
- Grupo de Inmunovirología, Corporación Biogénesis, Universidad de Antioquia, A.A. 1226, Medellín, Colombia
| | - Maria Eugenia Castaño
- Grupo de Inmunovirología, Corporación Biogénesis, Universidad de Antioquia, A.A. 1226, Medellín, Colombia
| | - Danièle Hernandez-Verdun
- Institut Jacques Monod, CNRS, University Paris VI and Paris VII, 2 place Jussieu, 75251 Paris Cedex 05, France
| | - Georges St-Laurent
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, D.C. 20037, USA
| | - Ajit Kumar
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, D.C. 20037, USA
| |
Collapse
|
42
|
Viranaicken W, Gasmi L, Chauvin C, Denoulet P, Larcher JC. Identification of a newly spliced exon in the mouse Ilf3 gene generating two long and short isoforms of Ilf3 and NF90. Genomics 2006; 88:622-32. [PMID: 16952437 DOI: 10.1016/j.ygeno.2006.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 04/14/2006] [Accepted: 08/09/2006] [Indexed: 11/24/2022]
Abstract
The mammalian IlF3 and NF90 proteins, involved in several cellular functions, have common N-terminal and central sequences and specific C-terminal regions. These proteins exhibit a large heterogeneity generated by posttranscriptional and posttranslational modifications. Part of their polymorphism is due to the alternative splicing of exon 3 located just downstream of the translation initiation codon. This 39-nucleotide-long exon, not described so far, codes for an N-terminal sequence of 13 residues (ALYHHHFITRRRR) also present in rat and human IlF3 or NF90. Four mRNAs are expressed in mouse brain, two for Ilf3 and two for NF90, differing in their 3' sequence to generate the specific Ilf3 and NF90 C-terminal domains and in the presence or the absence of exon 3 to generate long and short isoforms of both proteins. By RT-PCR, no other variants were found. Combining our results and GenBank sequences, we determined the exon-intron organization of the entire mouse Ilf3 gene divided into 22 exons.
Collapse
Affiliation(s)
- Wildriss Viranaicken
- Laboratoire de Biochimie Cellulaire, UMR 7098 CNRS, Université Pierre et Marie Curie, 9 Quai Saint-Bernard, Case 265, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
43
|
Merrill MK, Dobrikova EY, Gromeier M. Cell-type-specific repression of internal ribosome entry site activity by double-stranded RNA-binding protein 76. J Virol 2006; 80:3147-56. [PMID: 16537583 PMCID: PMC1440377 DOI: 10.1128/jvi.80.7.3147-3156.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Translation of picornavirus plus-strand RNA genomes occurs via internal ribosomal entry at highly structured 5' untranslated regions. In addition to canonical translation factors, translation rate is likely influenced by supplementary host and viral trans-acting factors. We previously reported that insertion of a heterologous human rhinovirus type 2 internal ribosomal entry site (IRES) into the poliovirus (PV) genome, generating the chimeric virus PV-RIPO, selectively abrogates viral translation and propagation in neurons, which eliminate poliovirus's signature neuropathogenicity. While severely deficient in cells of neuronal lineage, the rhinovirus IRES promotes efficient propagation of PV-RIPO in cancer cells. Tumor-specific IRES function can be therapeutically exploited to direct viral cytotoxicity to cancer cells. Neuron-glioma heterokaryon analysis implicates neuronal trans-dominant inhibition in this effect, suggesting that host trans-acting factors repress IRES function in a cell-type-specific manner. We identified a set of proteins from neuronal cells with affinity for the rhinovirus IRES, including double-stranded RNA-binding protein 76 (DRBP76). DRBP76 associates with the IRES in neuronal but not in malignant glioma cells. Moreover, DRBP76 depletion in neuronal cells enhances rhinovirus IRES-driven translation and virus propagation. Our observations suggest that cell-type-specific association of DRBP76 with the rhinovirus IRES represses PV-RIPO translation and propagation in neuronal cells.
Collapse
Affiliation(s)
- Melinda K Merrill
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
44
|
Nie Y, Ding L, Kao PN, Braun R, Yang JH. ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing. Mol Cell Biol 2005; 25:6956-63. [PMID: 16055709 PMCID: PMC1190226 DOI: 10.1128/mcb.25.16.6956-6963.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RNA-editing enzyme ADAR1 modifies adenosines by deamination and produces A-to-I mutations in mRNA. ADAR1 was recently demonstrated to function in host defense and in embryonic erythropoiesis during fetal liver development. The mechanisms for these phenotypic effects are not yet known. Here we report a novel function of ADAR1 in the regulation of gene expression by interacting with the nuclear factor 90 (NF90) proteins, known regulators that bind the antigen response recognition element (ARRE-2) and have been demonstrated to stimulate transcription and translation. ADAR1 upregulates NF90-mediated gene expression by interacting with the NF90 proteins, including NF110, NF90, and NF45. A knockdown of NF90 with small interfering RNA suppresses this function of ADAR1. Coimmunoprecipitation and double-stranded RNA (dsRNA) digestion demonstrate that ADAR1 is associated with NF110, NF90, and NF45 through the bridge of cellular dsRNA. Studies with ADAR1 deletions demonstrate that the dsRNA binding domain and a region covering the Z-DNA binding domain and the nuclear export signal comprise the complete function of ADAR1 in upregulating NF90-mediated gene expression. These data suggest that ADAR1 has the potential both to change information content through editing of mRNA and to regulate gene expression through interacting with the NF90 family proteins.
Collapse
Affiliation(s)
- Yongzhan Nie
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
45
|
Parrott AM, Walsh MR, Reichman TW, Mathews MB. RNA binding and phosphorylation determine the intracellular distribution of nuclear factors 90 and 110. J Mol Biol 2005; 348:281-93. [PMID: 15811368 DOI: 10.1016/j.jmb.2005.02.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 11/20/2022]
Abstract
Members of the nuclear factor 90 (NF90) family of human double-stranded RNA (dsRNA) binding proteins are phosphorylated and translocate into the cytoplasm with the onset of mitosis. We investigated the mechanism of translocation for NF90 and NF110, its larger splice variant. During interphase, NF90 is predominantly nuclear, NF110 is exclusively nuclear, and both are bound to RNA. About half of the NF90 is tethered in the nucleus by RNA bound to the protein's dsRNA-binding motifs. The nuclear localization of NF110 is also dependent on RNA binding but is independent of these motifs, and is governed by contacts made to the protein's unique C terminus. During mitosis, about half of the cytoplasmic NF90 becomes dissociated from RNA, but phosphorylation does not impair the binding affinity of either NF90 or NF110 for dsRNA. We conclude that NF90 and NF110 engage RNA differentially and translocate from the nucleus to the cytoplasm in mitosis because phosphorylation disturbs their interactions with other nuclear proteins.
Collapse
Affiliation(s)
- Andrew M Parrott
- Department of Biochemistry and Molecular Biology and New Jersey Medical School, UMDNJ, 185 South Orange Ave., P.O. Box 1709, Newark, NJ 07101-1709, USA
| | | | | | | |
Collapse
|
46
|
Xu YH, Grabowski GA. Translation modulation of acid beta-glucosidase in HepG2 cells: participation of the PKC pathway. Mol Genet Metab 2005; 84:252-64. [PMID: 15694175 DOI: 10.1016/j.ymgme.2004.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 10/08/2004] [Accepted: 10/11/2004] [Indexed: 11/26/2022]
Abstract
Acid beta-glucosidase (GCase) is the enzyme deficient in Gaucher disease, a prototypical inherited metabolic error for enzyme and gene therapy. An 80 kDa mammalian cytoplasmic translational control protein (TCP80) modulates GCase translation in vitro and ex vivo by interacting with the 5' coding region of GCase RNA. Ten predicted PKC phosphorylation sites (Ser- or Thr-) are in the TCP80 protein. Phosphorylation of TCP80 in vitro by PKC greatly enhanced its translational inhibitory function using in vitro translation assays; binding of GCase mRNA to TCP80 was unaltered. Conversely, de-phosphorylation of TCP80 reduced its translational inhibitory function. Phosphorylation-related modulation of GCase mRNA translation also was studied in HepG2 cells. GCase expression (protein and activity levels) in HepG2 cells increased (>2-fold) in cells treated with bisindolylmaleimide (BIM), a highly selective PKC specific inhibitor. This correlated with a 90% reduction in TCP80 phosphorylation in the presence of BIM. The amount of TCP80 protein in cytoplasm and its RNA-binding activity were unchanged. These experiments indicate that GCase mRNA translation is modulated by PKC signaling pathways that are mediated through TCP80. These findings indicate potential broader impacts of the TCP/PKC system on expression of this and other genes of therapeutic interest.
Collapse
Affiliation(s)
- You-Hai Xu
- Division of Human Genetics, The Children's Hospital Research Foundation, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
47
|
Scarlett GP, Elgar SJ, Cary PD, Noble AM, Orford RL, Kneale GG, Guille MJ. Intact RNA-binding domains are necessary for structure-specific DNA binding and transcription control by CBTF122 during Xenopus development. J Biol Chem 2004; 279:52447-55. [PMID: 15452137 DOI: 10.1074/jbc.m406107200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CBTF122 is a subunit of the Xenopus CCAAT box transcription factor complex and a member of a family of double-stranded RNA-binding proteins that function in both transcriptional and post-transcriptional control. Here we identify a region of CBTF122 containing the double-stranded RNA-binding domains that is capable of binding either RNA or DNA. We show that these domains bind A-form DNA in preference to B-form DNA and that the -59 to -31 region of the GATA-2 promoter (an in vivo target of CCAAT box transcription factor) adopts a partial A-form structure. Mutations in the RNA-binding domains that inhibit RNA binding also affect DNA binding in vitro. In addition, these mutations alter the ability of CBTF122 fusions with engrailed transcription repressor and VP16 transcription activator domains to regulate transcription of the GATA-2 gene in vivo. These data support the hypothesis that the double-stranded RNA-binding domains of this family of proteins are important for their DNA binding both in vitro and in vivo.
Collapse
Affiliation(s)
- Garry P Scarlett
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Larcher JC, Gasmi L, Viranaïcken W, Eddé B, Bernard R, Ginzburg I, Denoulet P. Ilf3 and NF90 associate with the axonal targeting element of Tau mRNA. FASEB J 2004; 18:1761-3. [PMID: 15364895 DOI: 10.1096/fj.04-1763fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In neurons, the selective translocation of Tau mRNA toward axons is due to the presence of a nucleotide sequence located in its 3' untranslated region and serving as axonal targeting element. Using this RNA sequence as a probe by a Northwestern approach, we have detected several proteins that interact with the targeting RNA element and could potentially be involved in Tau mRNA translocation, translation halting, and/or stabilization. Among them, two proteins were identified as the interleukin enhancer binding factor 3 (Ilf3) and NF90, two isoforms derived from a single gene product through alternative splicing. Each protein comprises two double-stranded RNA binding motifs that can interact with the predicted stem-loop secondary structure of the axonal targeting element. Specific antibodies raised against common or specific peptide sequences showed that both Ilf3 and NF90 are polymorphic proteins that are detected in neuronal nuclei and cell bodies, as well as in the proximal neuritic segments. This observation favors the idea that Ilf3 and NF90 are part of a protein complex that escorts Tau mRNA toward the axon.
Collapse
Affiliation(s)
- Jean-Christophe Larcher
- Biochimie Cellulaire-CNRS UMR 7098, Université Paris-6, 9 quai Saint-Bernard, Bâtiment C-Case 265, Paris 75252, Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
49
|
Xu YH, Leonova T, Grabowski GA. Cell cycle dependent intracellular distribution of two spliced isoforms of TCP/ILF3 proteins. Mol Genet Metab 2003; 80:426-36. [PMID: 14654356 DOI: 10.1016/j.ymgme.2003.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
TCP80 is an approximately 80kDa mammalian cytoplasmic protein that binds to a set of mRNAs and inhibits their translation in vitro and ex vivo. This protein has high sequence similarity to interleukin-2 enhancer-binding factors (NF90/ILF3) and the M-phase phosphoprotein (MPP4)/DRBP76. A 110kDa immunologic isoform of TCP80/NF90/MPP4/DRBP76, termed TCP110, also is present in cytoplasm and nuclei of many types of cells. A cDNA sequence coding for TCP110 was derived by 5(')RACE. The TCP110 sequence is identical to ILF3. The gene coding for TCP110/ILF3 mapped to human chromosome 19 and the gene organization was analyzed using TCP80 and TCP110/ILF3 cDNA sequences. The TCP/ILF3 gene spans >34.8kb and contains 21 exons. At least one alternatively spliced product involving exons 19-21 exists and predicts the formation of either TCP80 or TCP110/ILF3. However, the functional relationships of TCP80 and TCP110/ILF3 required elucidation. The metabolic turnover rates and subcellular distribution of TCP80 and TCP110/ILF3 during the cell cycle showed TCP80 to be relatively stable (t(1/2)=5 days) in the cytoplasmic compartment. In comparison, TCP110/ILF3 migrated between the cytoplasmic and nuclear compartments during the cell cycle. The TCP110 C-terminal segment contains an additional nuclear localizing signal that plays a role in its nuclear translocation. This study indicates that the multiple cellular functions, i.e., translation control, interleukin-2 enhancer binding, or cell division, of TCP/ILF3 are fulfilled by alternatively spliced isoforms.
Collapse
Affiliation(s)
- You Hai Xu
- The Children's Hospital Research Foundation, Division of Human Genetics, Cincinnati, OH 45229-3039, USA.
| | | | | |
Collapse
|
50
|
Gwizdek C, Ossareh-Nazari B, Brownawell AM, Evers S, Macara IG, Dargemont C. Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3. J Biol Chem 2003; 279:884-91. [PMID: 14570900 DOI: 10.1074/jbc.m306808200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The karyopherin-related nuclear transport factor exportin-5 preferentially recognizes and transports RNAs containing minihelix motif, a structural cis-acting export element that comprises a double-stranded stem (>14 nucleotides) with a base-paired 5' end and a 3-8-nucleotide protruding 3' end. This structural motif is present in various small cellular and viral polymerase III transcripts such as the adenovirus VA1 RNA (VA1). Here we show that the double-stranded RNA-binding protein, ILF3 (interleukin enhancer binding factor 3) preferentially binds minihelix motif. Gel retardation assays and glutathione S-transferase pull-down experiments revealed that ILF3, exportin-5, RanGTP, and VA1 RNA assembled in a quaternary complex in which the RNA moiety bridges the interaction between ILF3 and exportin-5. Formation of this complex is facilitated by the ability of both exportin-5 and ILF3 to mutually increase their apparent affinity for VA1 RNA. Using microinjection in the nucleus of HeLa cells and transfection experiments, we show here that formation of the cooperative RanGTP-dependent RNA/ILF3/exportin-5 complex promotes the co-transport of VA1 and ILF3 from the nucleus to the cytoplasm. Exportin-5 thus appears as the first example of a nuclear export receptor that mediates RNA export but also promotes transport of proteinaceous cargo through appropriate and specific RNA adaptors.
Collapse
Affiliation(s)
- Carole Gwizdek
- Institut Jacques Monod, Unité Mixte de Recherche 7592, CNRS, Universités Paris VI et VII, 2 Place Jussieu, Tour 43, Paris 75251 Cedex 05, France
| | | | | | | | | | | |
Collapse
|