1
|
Prato CA, Borbolla LV, Lizarraga L, Campetella O, Tribulatti MV. The interaction of Galectin-8 C-terminal domain with cell surface glycoconjugates modulates membrane elasticity to stimulate antigen uptake and presentation to CD4 T cells. J Leukoc Biol 2025; 117:qiae214. [PMID: 39365278 PMCID: PMC11879003 DOI: 10.1093/jleuko/qiae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
Galectins constitute a family of soluble lectins with unique capacity to induce macroscale rearrangements upon interacting with cell membrane glycoconjugates. Galectin-8 is acknowledged for its role in facilitating antigen uptake and processing upon engaging with cell surface glycoconjugates on antigen-presenting cells. Galectin-8 consists of two covalently fused N- and C-terminal carbohydrate recognition domains, each exhibiting distinct glycan specificity. In this study, we utilized single N- and C-carbohydrate recognition domains recombinant proteins to dissect the nature of Galectin-8-glycan interactions during antigen internalization enhancement. Single C-carbohydrate recognition domain was able to replicate the effect of full-length Galectin-8 on antigen internalization in bone marrow-derived dendritic cells. Antigen uptake enhancement was diminished in the presence of lactose or when N-glycosylation-deficient macrophages served as antigen-presenting cells, underscoring the significance of glycan recognition. Measurement of the elastic modulus using Atomic Force Microscopy unveiled that full-length Galectin-8- and C-carbohydrate recognition domain-stimulated macrophages exhibited heightened membrane stiffness compared to untreated cells, providing a plausible mechanism for their involvement in endocytosis. C-carbohydrate recognition domain proved to be as efficient as full-length Galectin-8 in promoting antigen degradation, suggesting its implication in antigen-processing induction. Lastly, C-carbohydrate recognition domain was able to replicate full-length Galectin-8-induced antigen presentation in the major histocompatibility complex class II (MHC-II) context both in vitro and in vivo. Our findings support the notion that Galectin-8 binds through its C-carbohydrate recognition domain to cell surface N-glycans, thereby altering membrane mechanical forces conducive to soluble antigen endocytosis, processing, and presentation to cognate CD4 T cells. These findings contribute to a deeper comprehension of Galectin-8 and its mechanisms of action, paving the way for the development of more efficacious immunotherapies.
Collapse
Affiliation(s)
- Cecilia A Prato
- Instituto de Investigaciones Biotecnológicas (IIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Avenida 25 de mayo y Francia, B1650HMP, San Martín, Buenos Aires, Argentina
| | - Laura V Borbolla
- Instituto de Investigaciones Biotecnológicas (IIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Avenida 25 de mayo y Francia, B1650HMP, San Martín, Buenos Aires, Argentina
| | - Leonardo Lizarraga
- Centro de Investigaciones en Bionanociencias (CIBION), CONICET, Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas (IIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Avenida 25 de mayo y Francia, B1650HMP, San Martín, Buenos Aires, Argentina
| | - María V Tribulatti
- Instituto de Investigaciones Biotecnológicas (IIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM), Avenida 25 de mayo y Francia, B1650HMP, San Martín, Buenos Aires, Argentina
| |
Collapse
|
2
|
Beyer S, Wehrmann M, Meister S, Trillsch F, Ganster F, Schmoeckel E, Corradini S, Mahner S, Jeschke U, Kessler M, Burges A, Kolben T. Expression of Intracellular Galectin-8 and -9 in Endometrial Cancer. Int J Mol Sci 2024; 25:6907. [PMID: 39000016 PMCID: PMC11241125 DOI: 10.3390/ijms25136907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Endometrial cancer (EC) is a common gynecological cancer worldwide. Treatment has been improved in recent years; however, in advanced stages, therapeutic options are still limited. The expression of galectins is increased in several tumor types and that they are involved in important cell processes. Large studies on endometrial cancer are still pending; Specimens of 225 patients with EC were immunohistochemically stained with antibodies for Gal-8 and Gal-9. Expression was correlated with histopathological variables. The cytosolic expression of both galectins is associated with grading and survival. Cytosolic Galectin-8 expression is a positive prognostic factor for overall survival (OS) and progression-free survival (PFS), while nuclear Gal-8 expression correlates only to OS. The cytosolic presence of Galectin-9 is correlated with a better prognosis regarding OS. Our results suggest that expression of both galectins is associated with OS and PFS in EC. Further studies are needed to understand the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Maya Wehrmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Franziska Ganster
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Elisa Schmoeckel
- Institute of Pathology, TUM School of Medicine and Health, Trogerstraße 18, 81675 Munich, Germany;
| | - Stefanie Corradini
- Department of Radiation-Oncology, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
- Department of Obstetrics and Gynecology, University Hospital, Universitätsklinikum Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| |
Collapse
|
3
|
Cinkir U, Bir LS, Tekin S, Karagulmez AM, Avci Cicek E, Senol H. Investigation of anti-galectin-8 levels in patients with multiple sclerosis: A consort-clinical study. Medicine (Baltimore) 2023; 102:e32621. [PMID: 36607856 PMCID: PMC9829274 DOI: 10.1097/md.0000000000032621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Galectins are a family of endogenous mammalian lectins involved in pathogen recognition, killing, and facilitating the entry of microbial pathogens and parasites into the host. They are the intermediators that decipher glycan-containing information about the host immune cells and microbial structures to modulate signaling events that cause cellular proliferation, chemotaxis, cytokine secretion, and cell-to-cell communication. They have subgroups that take place in different roles in the immune system. The effect of galectin-8 on multiple sclerosis disease (MS) has been studied in the literature, but the results seemed unclear. In this study, we aimed to determine anti-galectin-8 (anti-Gal-8) levels in MS and their potential use as biomarkers. METHODS In this experimental study, 45 MS patients diagnosed according to McDonald criteria were included in the patient group. The healthy control group contained 45 people without MS diagnosis and any risk factors. Demographic data, height, weight, body mass index, blood glucose, thyroid-stimulating hormone, alanine transaminase, aspartate transaminase, creatinine, low-density lipoprotein, anti-Gal-8 levels, the prevalence of hypertension, diabetes mellitus and coronary artery disease were recorded. In addition, the expanded disability status scale and disease duration were evaluated in the patient group. Data were presented as mean ± standard deviations. RESULTS The mean blood anti-galectin-8 value of the patient group was 4.84 ± 4.53 ng/mL, while it was 4.67 ± 3.40 ng/mL in the control group, and the difference in these values was found statistically insignificant (P > .05). Moreover, body mass index, glucose, alanine transaminase, aspartate transaminase, thyroid-stimulating hormone, and low-density lipoprotein levels were also statistically insignificant (P > .05). CONCLUSION This study examined anti-Gal-8 levels in MS patients. The relationship between MS and galectin-8 and anti-Gal-8 levels in patients needs further clarification. As a result, the study's results could help elucidate the pathogenesis of MS and give more evidence for diagnosis.
Collapse
Affiliation(s)
- Ufuk Cinkir
- T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Communication, T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Istanbul, Turkey
- * Correspondence: Ufuk Cinkir, T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Communication, T.C. Saglik Bakanligi Başakşehir Cam Ve Sakura Sehir Hastanesi, Istanbul 34480, Turkey (e-mail: )
| | - Levent Sinan Bir
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Selma Tekin
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Ahmet Magrur Karagulmez
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Esin Avci Cicek
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Hande Senol
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| |
Collapse
|
4
|
Beyer S, Wehrmann M, Meister S, Kolben TM, Trillsch F, Burges A, Czogalla B, Schmoeckel E, Mahner S, Jeschke U, Kolben T. Galectin-8 and -9 as prognostic factors for cervical cancer. Arch Gynecol Obstet 2022; 306:1211-1220. [PMID: 35377045 PMCID: PMC9470666 DOI: 10.1007/s00404-022-06449-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/09/2022] [Indexed: 11/21/2022]
Abstract
Purpose Galectins are carbohydrate-binding proteins with multiple effects on cell biology. Research shows that they play an important role in tumor development and progression. Therefore, in this study, the presence of Galectin-8 and -9 (Gal), both already known as prognostic factors in other tumor entities, were investigated in cervical cancer. Our aim was to examine the association of Gal-8 and -9 expression with histopathological markers and survival of the patients. Methods Gal-8 and -9 expression was investigated in 250 cervical cancer samples by immunohistochemistry. The staining was evaluated using the immunoreactive score (IRS). The results were correlated to clinical and pathological data. The correlation of Gal-8 and -9 expression with overall and relapse-free survival was analyzed. Results Expression of Gal-8 was associated with negative N-status and lower FIGO status. Detection of Gal-9 was connected to negative N-status and lower grading regarding all specimens. A correlation of Gal-9 with lower FIGO status was detected for squamous cell carcinoma (SCC) only. Expression of Gal-8 was associated with relapse-free survival of SCC patients in a positive manner. Gal-9 expression was associated with better overall survival. Conclusion Our results suggest that expression of both galectins is inversely associated with tumor stage and progression. Gal-8 expression is associated with relapse-free survival of patients with SCC, while presence of Gal-9 in cervical cancer is associated with a better prognosis in regard of overall survival. Supplementary Information The online version contains supplementary material available at 10.1007/s00404-022-06449-9.
Collapse
Affiliation(s)
- Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Maya Wehrmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Theresa M Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital, Universitätsklinikum Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
5
|
García Caballero G, Kaltner H, Kutzner TJ, Ludwig AK, Manning JC, Schmidt S, Sinowatz F, Gabius HJ. How galectins have become multifunctional proteins. Histol Histopathol 2020; 35:509-539. [PMID: 31922250 DOI: 10.14670/hh-18-199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Having identified glycans of cellular glycoconjugates as versatile molecular messages, their recognition by sugar receptors (lectins) is a fundamental mechanism within the flow of biological information. This type of molecular interplay is increasingly revealed to be involved in a wide range of (patho)physiological processes. To do so, it is a vital prerequisite that a lectin (and its expression) can develop more than a single skill, that is the general ability to bind glycans. By studying the example of vertebrate galectins as a model, a total of five relevant characteristics is disclosed: i) access to intra- and extracellular sites, ii) fine-tuned gene regulation (with evidence for co-regulation of counterreceptors) including the existence of variants due to alternative splicing or single nucleotide polymorphisms, iii) specificity to distinct glycans from the glycome with different molecular meaning, iv) binding capacity also to peptide motifs at different sites on the protein and v) diversity of modular architecture. They combine to endow these lectins with the capacity to serve as multi-purpose tools. Underscoring the arising broad-scale significance of tissue lectins, their numbers in terms of known families and group members have steadily grown by respective research that therefore unveiled a well-stocked toolbox. The generation of a network of (ga)lectins by evolutionary diversification affords the opportunity for additive/synergistic or antagonistic interplay in situ, an emerging aspect of (ga)lectin functionality. It warrants close scrutiny. The realization of the enormous potential of combinatorial permutations using the five listed features gives further efforts to understand the rules of functional glycomics/lectinomics a clear direction.
Collapse
Affiliation(s)
- Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tanja J Kutzner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sebastian Schmidt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fred Sinowatz
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
6
|
Tribulatti MV, Carabelli J, Prato CA, Campetella O. Galectin-8 in the onset of the immune response and inflammation. Glycobiology 2019; 30:134-142. [DOI: 10.1093/glycob/cwz077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract
Galectins (Gals), a family of mammalian lectins, have emerged as key regulators of the immune response, being implicated in several physiologic and pathologic conditions. Lately, there is increasing data regarding the participation of Galectin-8 (Gal-8) in both the adaptive and innate immune responses, as well as its high expression in inflammatory disorders. Here, we focus on the pro- and anti-inflammatory properties of Gal-8 and discuss the potential use of this lectin in order to shape the immune response, according to the context.
Collapse
Affiliation(s)
- María V Tribulatti
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julieta Carabelli
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cecilia A Prato
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Oscar Campetella
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
7
|
Ferragut F, Cagnoni AJ, Colombo LL, Sánchez Terrero C, Wolfenstein-Todel C, Troncoso MF, Vanzulli SI, Rabinovich GA, Mariño KV, Elola MT. Dual knockdown of Galectin-8 and its glycosylated ligand, the activated leukocyte cell adhesion molecule (ALCAM/CD166), synergistically delays in vivo breast cancer growth. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1338-1352. [PMID: 30905597 DOI: 10.1016/j.bbamcr.2019.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
Abstract
Galectin-8 (Gal-8), a 'tandem-repeat'-type galectin, has been described as a modulator of cellular functions including adhesion, spreading, growth arrest, apoptosis, pathogen recognition, autophagy, and immunomodulation. We have previously shown that activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, serves as a receptor for endogenous Gal-8. ALCAM is a member of the immunoglobulin superfamily involved in cell-cell adhesion through homophilic (ALCAM-ALCAM) and heterophilic (i.e. ALCAM-CD6) interactions in different tissues. Here we investigated the physiologic relevance of ALCAM-Gal-8 association and glycosylation-dependent mechanisms governing these interactions. We found that silencing of ALCAM in MDA-MB-231 triple negative breast cancer cells decreases cell adhesion and migration onto Gal-8-coated surfaces in a glycan-dependent fashion. Remarkably, either Gal-8 or ALCAM silencing also disrupted cell-cell adhesion, and led to reduced tumor growth in a murine model of triple negative breast cancer. Moreover, structural characterization of endogenous ALCAM N-glycosylation showed abundant permissive structures for Gal-8 binding. Importantly, we also found that cell sialylation controls Gal-8-mediated cell adhesion. Altogether, these findings demonstrate a central role of either ALCAM or Gal-8 (or both) in controlling triple negative breast cancer.
Collapse
Affiliation(s)
- Fátima Ferragut
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Lucas L Colombo
- Área de Investigación, Instituto de Oncología Ángel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clara Sánchez Terrero
- Centro Oncológico de Medicina Nuclear, Comisión Nacional de Energía Atómica-Hospital Oncológico Ángel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlota Wolfenstein-Todel
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María F Troncoso
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia I Vanzulli
- Instituto de Investigaciones Hematológicas (IIHEMA), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María T Elola
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Bohari MH, Yu X, Kishor C, Patel B, Go RM, Eslampanah Seyedi HA, Vinik Y, Grice ID, Zick Y, Blanchard H. Structure-Based Design of a Monosaccharide Ligand Targeting Galectin-8. ChemMedChem 2018; 13:1664-1672. [DOI: 10.1002/cmdc.201800224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/12/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammad H. Bohari
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | - Xing Yu
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | - Chandan Kishor
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | - Brijesh Patel
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | - Rob Marc Go
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | | | - Yaron Vinik
- Department of Molecular Cell Biology; Weizmann Institute of Science; Herzl Street 234 Rehovot Israel
| | - I. Darren Grice
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
- School of Medical Science; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | - Yehiel Zick
- Department of Molecular Cell Biology; Weizmann Institute of Science; Herzl Street 234 Rehovot Israel
| | - Helen Blanchard
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| |
Collapse
|
9
|
Sherman SE, Xiao Q, Percec V. Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and Glycodendrimersomes. Chem Rev 2017; 117:6538-6631. [PMID: 28417638 DOI: 10.1021/acs.chemrev.7b00097] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synthetic vesicles have been assembled and coassembled from phospholipids, their modified versions, and other single amphiphiles into liposomes, and from block copolymers into polymersomes. Their time-consuming synthesis and preparation as stable, monodisperse, and biocompatible liposomes and polymersomes called for the elaboration of new synthetic methodologies. Amphiphilic Janus dendrimers (JDs) and glycodendrimers (JGDs) represent the most recent self-assembling amphiphiles capable of forming monodisperse, stable, and multifunctional unilamellar and multilamellar onion-like vesicles denoted dendrimersomes (DSs) and glycodendrimersomes (GDSs), dendrimercubosomes (DCs), glycodendrimercubosomes (GDCs), and other complex architectures. Amphiphilic JDs consist of hydrophobic dendrons connected to hydrophilic dendrons and can be thought of as monodisperse oligomers of a single amphiphile. They can be functionalized with a variety of molecules such as dyes, and, in the case of JGDs, with carbohydrates. Their iterative modular synthesis provides efficient access to sequence control at the molecular level, resulting in topologies with specific epitope sequence and density. DSs, GDSs, and other architectures from JDs and JGDs serve as powerful tools for mimicking biological membranes and for biomedical applications such as targeted drug and gene delivery and theranostics. This Review covers all aspects of the synthesis of JDs and JGDs and their biological activity and applications after assembly in aqueous media.
Collapse
Affiliation(s)
- Samuel E Sherman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
10
|
Bohari MH, Yu X, Zick Y, Blanchard H. Structure-based rationale for differential recognition of lacto- and neolacto- series glycosphingolipids by the N-terminal domain of human galectin-8. Sci Rep 2016; 6:39556. [PMID: 28000747 PMCID: PMC5175137 DOI: 10.1038/srep39556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022] Open
Abstract
Glycosphingolipids are ubiquitous cell surface molecules undertaking fundamental cellular processes. Lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are the representative core structures for lacto- and neolacto-series glycosphingolipids. These glycolipids are the carriers to the blood group antigen and human natural killer antigens mainly found on blood cells, and are also principal components in human milk, contributing to infant health. The β-galactoside recognising galectins mediate various cellular functions of these glycosphingolipids. We report crystallographic structures of the galectin-8 N-terminal domain (galectin-8N) in complex with LNT and LNnT. We reveal the first example in which the non-reducing end of LNT binds to the primary binding site of a galectin, and provide a structure-based rationale for the significant ten-fold difference in binding affinities of galectin-8N toward LNT compared to LNnT, such a magnitude of difference not being observed for any other galectin. In addition, the LNnT complex showed that the unique Arg59 has ability to adopt a new orientation, and comparison of glycerol- and lactose-bound galectin-8N structures reveals a minimum atomic framework for ligand recognition. Overall, these results enhance our understanding of glycosphingolipids interactions with galectin-8N, and highlight a structure-based rationale for its significantly different affinity for components of biologically relevant glycosphingolipids.
Collapse
Affiliation(s)
- Mohammad H. Bohari
- Institute for Glycomics, Griffith University, Gold Coast Campus, 4222, Australia
| | - Xing Yu
- Institute for Glycomics, Griffith University, Gold Coast Campus, 4222, Australia
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, 4222, Australia
| |
Collapse
|
11
|
Fernández MM, Ferragut F, Cárdenas Delgado VM, Bracalente C, Bravo AI, Cagnoni AJ, Nuñez M, Morosi LG, Quinta HR, Espelt MV, Troncoso MF, Wolfenstein-Todel C, Mariño KV, Malchiodi EL, Rabinovich GA, Elola MT. Glycosylation-dependent binding of galectin-8 to activated leukocyte cell adhesion molecule (ALCAM/CD166) promotes its surface segregation on breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:2255-2268. [PMID: 27130882 DOI: 10.1016/j.bbagen.2016.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/27/2016] [Accepted: 04/23/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously demonstrated that the activated leukocyte cell adhesion molecule (ALCAM/CD166) can interact with galectin-8 (Gal-8) in endothelial cells. ALCAM is a member of the immunoglobulin superfamily that promotes homophilic and heterophilic cell-cell interactions. Gal-8 is a "tandem-repeat"-type galectin, known as a matricellular protein involved in cell adhesion. Here, we analyzed the physical interaction between both molecules in breast cancer cells and the functional relevance of this phenomenon. METHODS We performed binding assays by surface plasmon resonance to study the interaction between Gal-8 and the recombinant glycosylated ALCAM ectodomain or endogenous ALCAM from MDA-MB-231 breast cancer cells. We also analyzed the binding of ALCAM-silenced or control breast cancer cells to immobilized Gal-8 by SPR. In internalization assays, we evaluated the influence of Gal-8 on ALCAM surface localization. RESULTS We showed that recombinant glycosylated ALCAM and endogenous ALCAM from breast carcinoma cells physically interacted with Gal-8 in a glycosylation-dependent fashion displaying a differential behavior compared to non-glycosylated ALCAM. Moreover, ALCAM-silenced breast cancer cells exhibited reduced binding to Gal-8 relative to control cells. Importantly, exogenously added Gal-8 provoked ALCAM segregation, probably trapping this adhesion molecule at the surface of breast cancer cells. CONCLUSIONS Our data indicate that Gal-8 interacts with ALCAM at the surface of breast cancer cells through glycosylation-dependent mechanisms. GENERAL SIGNIFICANCE A novel heterophilic interaction between ALCAM and Gal-8 is demonstrated here, suggesting its physiologic relevance in the biology of breast cancer cells.
Collapse
Affiliation(s)
- Marisa M Fernández
- Institute of Studies in Humoral Immunology, University of Buenos Aires (UBA) and National Council Research (CONICET), Microbiology, Immunology and Biotechnology Department, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fátima Ferragut
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Víctor M Cárdenas Delgado
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Candelaria Bracalente
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Alicia I Bravo
- Molecular Pathology Department, "Eva Perón" HIGA Hospital, Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratory of Functional and Molecular Glycomics, Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Myriam Nuñez
- Department of Mathematics and Statistics, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Luciano G Morosi
- Laboratory of Functional and Molecular Glycomics, Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina; Laboratory of Immunopathology, IBYME, CONICET, Buenos Aires, Argentina
| | - Héctor R Quinta
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - María V Espelt
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - María F Troncoso
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Carlota Wolfenstein-Todel
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratory of Functional and Molecular Glycomics, Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Institute of Studies in Humoral Immunology, University of Buenos Aires (UBA) and National Council Research (CONICET), Microbiology, Immunology and Biotechnology Department, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, IBYME, CONICET, Buenos Aires, Argentina; Faculty of Exact and Natural Sciences, UBA, Buenos Aires, Argentina
| | - María T Elola
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Unraveling functional significance of natural variations of a human galectin by glycodendrimersomes with programmable glycan surface. Proc Natl Acad Sci U S A 2015; 112:5585-90. [PMID: 25902539 DOI: 10.1073/pnas.1506220112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surface-presented glycans (complex carbohydrates) are docking sites for adhesion/growth-regulatory galectins within cell-cell/matrix interactions. Alteration of the linker length in human galectin-8 and single-site mutation (F19Y) are used herein to illustrate the potential of glycodendrimersomes with programmable glycan displays as a model system to reveal the functional impact of natural sequence variations in trans recognition. Extension of the linker length slightly reduces lectin capacity as agglutinin and slows down aggregate formation at low ligand surface density. The mutant protein is considerably less active as agglutinin and less sensitive to low-level ligand presentation. The present results suggest that mimicking glycan complexity and microdomain occurrence on the glycodendrimersome surface can provide key insights into mechanisms to accomplish natural selectivity and specificity of lectins in structural and topological terms.
Collapse
|
13
|
Troncoso MF, Ferragut F, Bacigalupo ML, Cárdenas Delgado VM, Nugnes LG, Gentilini L, Laderach D, Wolfenstein-Todel C, Compagno D, Rabinovich GA, Elola MT. Galectin-8: a matricellular lectin with key roles in angiogenesis. Glycobiology 2014; 24:907-914. [PMID: 24939370 DOI: 10.1093/glycob/cwu054] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Galectin-8 (gal-8) is a "tandem-repeat"-type galectin, containing two carbohydrate recognition domains connected by a linker peptide. gal-8 is expressed both in the cytoplasm and nucleus in vascular endothelial cells (ECs) from normal and tumor-associated blood vessels, and in lymphatic endothelial cells. Herein, we describe a novel role for gal-8 in the regulation of vascular and lymphatic angiogenesis and provide evidence of its critical implications in tumor biology. Functional assays revealed central roles for gal-8 in the control of capillary-tube formation, EC migration and in vivo angiogenesis. So far, two endothelial ligands have been described for gal-8, namely podoplanin in lymphatic vessels and CD166 (ALCAM, activated leukocyte cell adhesion molecule) in vascular ECs. Other related gal-8 functions are also summarized here, including cell adhesion and migration, which collectively demonstrate the multi-functionality of this complex lectin. Thus, gal-8 is an important component of the angiogenesis network, and an essential molecule in the extracellular matrix by providing molecular anchoring to this surrounding matrix. The implications of gal-8 in tumor angiogenesis remain to be further explored, but it is exciting to speculate that modulating gal-8-glycan interactions could be used to block lymphatic-vascular connections vital for metastasis.
Collapse
Affiliation(s)
- María F Troncoso
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - Fátima Ferragut
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - María L Bacigalupo
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - Víctor M Cárdenas Delgado
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - Lorena G Nugnes
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - Lucas Gentilini
- Laboratorio de Glicómica Funcional, IQUIBICEN-CONICET, Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Laderach
- Laboratorio de Glicómica Funcional, IQUIBICEN-CONICET, Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlota Wolfenstein-Todel
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| | - Daniel Compagno
- Laboratorio de Glicómica Funcional, IQUIBICEN-CONICET, Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicómica Funcional, IQUIBICEN-CONICET, Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME - CONICET), Buenos Aires, Argentina
| | - María T Elola
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica
| |
Collapse
|
14
|
Copits BA, Vernon CG, Sakai R, Swanson GT. Modulation of ionotropic glutamate receptor function by vertebrate galectins. J Physiol 2014; 592:2079-96. [PMID: 24614744 DOI: 10.1113/jphysiol.2013.269597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AMPA and kainate receptors are glutamate-gated ion channels whose function is known to be altered by a variety of plant oligosaccharide-binding proteins, or lectins, but the physiological relevance of this activity has been uncertain because no lectins with analogous allosteric modulatory effects have been identified in animals. We report here that members of the prototype galectin family, which are β-galactoside-binding lectins, exhibit subunit-specific allosteric modulation of desensitization of recombinant homomeric and heteromeric AMPA and kainate receptors. Galectin modulation of GluK2 kainate receptors was dependent upon complex oligosaccharide processing of N-glycosylation sites in the amino-terminal domain and downstream linker region. The sensitivity of GluA4 AMPA receptors to human galectin-1 could be enhanced by supplementation of culture media with uridine and N-acetylglucosamine (GlcNAc), precursors for the hexosamine pathway that supplies UDP-GlcNAc for synthesis of complex oligosaccharides. Neuronal kainate receptors in dorsal root ganglia were sensitive to galectin modulation, whereas AMPA receptors in cultured hippocampal neurons were insensitive, which could be a reflection of differential N-glycan processing or receptor subunit selectivity. Because glycan content of integral proteins can be modified dynamically, we postulate that physiological or pathological conditions in the CNS could arise in which galectins alter excitatory neurotransmission or neuronal excitability through their actions on AMPA or kainate receptors.
Collapse
Affiliation(s)
- Bryan A Copits
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Claire G Vernon
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ryuichi Sakai
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Geoffrey T Swanson
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
15
|
Expression and function of galectins in the endometrium and at the human feto-maternal interface. Placenta 2013; 34:863-72. [PMID: 23911101 DOI: 10.1016/j.placenta.2013.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
Galectins are classified as lectins that share structural similarities and bind β-galactosides via a conserved carbohydrate recognition domain. So far 16 out of 19 identified galectins were shown to be present in humans and numerous studies revealed galectins as pivotal modulators of cell death, differentiation and growth. Galectins were highlighted to interact with both the adaptive and innate immune response. In the field of reproductive medicine and placenta research different roles for galectins have been proposed. Several galectins, being abundantly present at the human feto-maternal interphase and endometrium, were hypothesized to significantly contribute to endometrial receptivity and pregnancy physiology. Hence, this review outlines selected aspects of galectin action within endometrial function and at the feto-maternal interphase. Further current knowledge on galectins in reproductive and pregnancy disorders like endometriosis, abortion or preeclampsia is summarized.
Collapse
|
16
|
Heusschen R, Griffioen AW, Thijssen VL. Galectin-9 in tumor biology: a jack of multiple trades. Biochim Biophys Acta Rev Cancer 2013; 1836:177-85. [PMID: 23648450 DOI: 10.1016/j.bbcan.2013.04.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Abstract
Galectin family members have been shown to exert multiple roles in the context of tumor biology. Several recent findings support a similar multi-faceted role for galectin-9. Galectin-9 expression is frequently altered in cancer as compared to normal tissues. In addition, an increasing amount of evidence suggests that galectin-9 is involved in several aspects of tumor progression, including tumor cell adhesion and survival, immune escape and angiogenesis. Also, galectin-9 shows potential as a prognostic marker and a therapeutic target for several malignancies. In this review we summarize both the established and the emerging roles of galectin-9 in tumor biology and discuss the potential application of galectin-9 in anti-cancer therapy.
Collapse
Affiliation(s)
- Roy Heusschen
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
17
|
Huang YH, Wu HY, Wu KM, Liu TT, Liou RF, Tsai SF, Shiao MS, Ho LT, Tzean SS, Yang UC. Generation and analysis of the expressed sequence tags from the mycelium of Ganoderma lucidum. PLoS One 2013; 8:e61127. [PMID: 23658685 PMCID: PMC3642047 DOI: 10.1371/journal.pone.0061127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 03/07/2013] [Indexed: 12/24/2022] Open
Abstract
Ganoderma lucidum (G. lucidum) is a medicinal mushroom renowned in East Asia for its potential biological effects. To enable a systematic exploration of the genes associated with the various phenotypes of the fungus, the genome consortium of G. lucidum has carried out an expressed sequence tag (EST) sequencing project. Using a Sanger sequencing based approach, 47,285 ESTs were obtained from in vitro cultures of G. lucidum mycelium of various durations. These ESTs were further clustered and merged into 7,774 non-redundant expressed loci. The features of these expressed contigs were explored in terms of over-representation, alternative splicing, and natural antisense transcripts. Our results provide an invaluable information resource for exploring the G. lucidum transcriptome and its regulation. Many cases of the genes over-represented in fast-growing dikaryotic mycelium are closely related to growth, such as cell wall and bioactive compound synthesis. In addition, the EST-genome alignments containing putative cassette exons and retained introns were manually curated and then used to make inferences about the predominating splice-site recognition mechanism of G. lucidum. Moreover, a number of putative antisense transcripts have been pinpointed, from which we noticed that two cases are likely to reveal hitherto undiscovered biological pathways. To allow users to access the data and the initial analysis of the results of this project, a dedicated web site has been created at http://csb2.ym.edu.tw/est/.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biochemistry, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei City, Taiwan, R.O.C.
- Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei City, Taiwan, R.O.C.
| | - Hung-Yi Wu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan, R.O.C.
| | - Keh-Ming Wu
- VYM Genome Research Center, National Yang-Ming University, Taipei City, Taiwan, R.O.C.
| | - Tze-Tze Liu
- VYM Genome Research Center, National Yang-Ming University, Taipei City, Taiwan, R.O.C.
| | - Ruey-Fen Liou
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan, R.O.C.
| | - Shih-Feng Tsai
- VYM Genome Research Center, National Yang-Ming University, Taipei City, Taiwan, R.O.C.
| | - Ming-Shi Shiao
- Medical Research and Education Department, Taipei Veterans General Hospital, Taipei City, Taiwan, R.O.C.
| | - Low-Tone Ho
- Medical Research and Education Department, Taipei Veterans General Hospital, Taipei City, Taiwan, R.O.C.
| | - Shean-Shong Tzean
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan, R.O.C.
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, College of Life Science, National Yang-Ming University, Taipei City, Taiwan, R.O.C.
- Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei City, Taiwan, R.O.C.
| |
Collapse
|
18
|
Milnthorpe AT, Soloviev M. The use of EST expression matrixes for the quality control of gene expression data. PLoS One 2012; 7:e32966. [PMID: 22412959 PMCID: PMC3297614 DOI: 10.1371/journal.pone.0032966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 02/06/2012] [Indexed: 01/10/2023] Open
Abstract
EST expression profiling provides an attractive tool for studying differential gene expression, but cDNA libraries' origins and EST data quality are not always known or reported. Libraries may originate from pooled or mixed tissues; EST clustering, EST counts, library annotations and analysis algorithms may contain errors. Traditional data analysis methods, including research into tissue-specific gene expression, assume EST counts to be correct and libraries to be correctly annotated, which is not always the case. Therefore, a method capable of assessing the quality of expression data based on that data alone would be invaluable for assessing the quality of EST data and determining their suitability for mRNA expression analysis. Here we report an approach to the selection of a small generic subset of 244 UniGene clusters suitable for identification of the tissue of origin for EST libraries and quality control of the expression data using EST expression information alone. We created a small expression matrix of UniGene IDs using two rounds of selection followed by two rounds of optimisation. Our selection procedures differ from traditional approaches to finding "tissue-specific" genes and our matrix yields consistency high positive correlation values for libraries with confirmed tissues of origin and can be applied for tissue typing and quality control of libraries as small as just a few hundred total ESTs. Furthermore, we can pick up tissue correlations between related tissues e.g. brain and peripheral nervous tissue, heart and muscle tissues and identify tissue origins for a few libraries of uncharacterised tissue identity. It was possible to confirm tissue identity for some libraries which have been derived from cancer tissues or have been normalised. Tissue matching is affected strongly by cancer progression or library normalisation and our approach may potentially be applied for elucidating the stage of normalisation in normalised libraries or for cancer staging.
Collapse
Affiliation(s)
- Andrew T. Milnthorpe
- School of Biological Sciences, CBMS, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Mikhail Soloviev
- School of Biological Sciences, CBMS, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
19
|
Kramer MW, Waalkes S, Serth J, Hennenlotter J, Tezval H, Stenzl A, Kuczyk MA, Merseburger AS. Decreased galectin-8 is a strong marker for recurrence in urothelial carcinoma of the bladder. Urol Int 2011; 87:143-50. [PMID: 21757871 DOI: 10.1159/000328439] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/22/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate galectin-8 expression patterns in normal urothelium and bladder cancer specimens and to elucidate its prognostic value. MATERIALS AND METHODS 162 samples of non-muscle-invasive transitional cell carcinoma, 25 samples of muscle-invasive transitional cell carcinoma and 10 samples of normal urothelium were investigated by immunohistochemistry using tissue microarrays. Complete patient and tumor characteristics were compared with galectin-8 staining patterns. The likelihood of tumor recurrence and progression was analyzed based on a 3-year follow-up. RESULTS Loss of galectin-8 was associated with the likelihood of tumor recurrence in univariate (p < 0.05) and multivariate analyses (p < 0.01). No significance was observed for tumor progression. Patients whose specimens showed weak galectin-8 expression had a shorter recurrence-free interval (42 vs. 12 months; p < 0.01, log-rank test). All of the 10 normal urothelium samples showed high galectin-8 expression. Decreased staining was found to be associated with higher tumor stages and grades (p < 0.0001, one-way ANOVA). A significant difference was found comparing normal urothelium with any tumor stage (p < 0.01), pTa vs. pT1 tumors (p < 0.05) and non-muscle-invasive vs. muscle-invasive tumors (p < 0.0001). CONCLUSIONS Loss of galectin-8 might be an early step in the development of malignant lesions of the bladder and is a significant independent predictor of recurrence.
Collapse
Affiliation(s)
- Mario Wolfgang Kramer
- Department of Urology and Urologic Oncology, Medical School Hannover, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Milnthorpe AT, Soloviev M. Errors in CGAP xProfiler and cDNA DGED: the importance of library parsing and gene selection algorithms. BMC Bioinformatics 2011; 12:97. [PMID: 21496233 PMCID: PMC3094240 DOI: 10.1186/1471-2105-12-97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 04/15/2011] [Indexed: 12/03/2022] Open
Abstract
Background The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries. Results We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter. Conclusion Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used.
Collapse
Affiliation(s)
- Andrew T Milnthorpe
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| | | |
Collapse
|
21
|
Galectin-8 tandem-repeat structure is essential for T-cell proliferation but not for co-stimulation. Biochem J 2011; 434:153-60. [DOI: 10.1042/bj20101691] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gal (galectin)-8 is a tandem-repeat Gal containing N-CRDs (Nterminal carbohydrate-recognition domains) and C-CRDs (C-terminal carbohydrate-recognition domains) with differential glycan-binding specificity fused by a linker peptide. Gal-8 has two distinct effects on CD4 T-cells: at high concentrations it induces antigen-independent proliferation, whereas at low concentrations it co-stimulates antigen-specific responses. Associated Gal-8 structural requirements were dissected in the present study. Recombinant homodimers N–N (two N-terminal CRD chimaera) and C–C (two C-terminal CRD chimaera), but not single C-CRDs or N-CRDs, induced proliferation; however, single domains induced co-stimulation. These results indicate that the tandem-repeat structure was essential only for the proliferative effect, suggesting the involvement of lattice formation, whereas co-stimulation could be mediated by agonistic interactions. In both cases, C–C chimaeras displayed higher activity than Gal-8, indicating that the C-CRD was mainly involved, as was further supported by the strong inhibition of proliferation and co-stimulation in the presence of blood group B antigen, specifically recognized by this domain. Classic Gal inhibitors (lactose and thiodigalactoside) prevented proliferation but not co-stimulatory activity, which was inhibited by 3-O-β-D-galactopyranosyl-D-arabinose. Interestingly, Gal-8 induced proliferation of naïve human CD4 T-cells, varying from non- to high-responder individuals, whereas it promoted cell death of phytohaemagglutinin or CD3/CD28 pre-activated cells. The findings of the present study delineate the differential molecular requirements for Gal-8 activities on T-cells, and suggest a dual activity relying on activation state.
Collapse
|
22
|
Kaltner H, Solís D, André S, Lensch M, Manning JC, Mürnseer M, Sáiz JL, Gabius HJ. Unique Chicken Tandem-Repeat-Type Galectin: Implications of Alternative Splicing and a Distinct Expression Profile Compared to Those of the Three Proto-Type Proteins. Biochemistry 2009; 48:4403-16. [DOI: 10.1021/bi900083q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Herbert Kaltner
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, D-80539 München, Germany
| | - Dolores Solís
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
- Ciber de Enfermedades Respiratorias (CIBERES), Bunyola, Mallorca, Illes Balears, Spain
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, D-80539 München, Germany
| | - Martin Lensch
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, D-80539 München, Germany
| | - Joachim C. Manning
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, D-80539 München, Germany
| | - Michael Mürnseer
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, D-80539 München, Germany
| | - José Luis Sáiz
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
- Ciber de Enfermedades Respiratorias (CIBERES), Bunyola, Mallorca, Illes Balears, Spain
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, D-80539 München, Germany
| |
Collapse
|
23
|
Tribulatti MV, Cattaneo V, Hellman U, Mucci J, Campetella O. Galectin-8 provides costimulatory and proliferative signals to T lymphocytes. J Leukoc Biol 2009; 86:371-80. [PMID: 19401394 DOI: 10.1189/jlb.0908529] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Galectin (Gal) constitute a family of carbohydrate-recognizing molecules ubiquitously expressed in mammals. In the immune system, they regulate many processes such as inflammation, adhesion, and apoptosis. Here, we report the expression in the spleen of the two same Gal-8 splice variants described previously in the thymus. Gal-8 was found to induce two separate biological activities on T lymphocytes: a robust naive CD4(+) T cell proliferation in the absence of antigen and notably, a costimulatory signal that synergized the cognate OVA peptide in DO11.10 mice transgenic for TCR(OVA). The antigen-independent proliferation induced by Gal-8 displayed increased expression of pro- and anti-inflammatory cytokines, thus suggesting the polyclonal expansion of Th1 and Th2 clones. The costimulatory effect on antigen-specific T cell activation was evidenced when the Gal and the peptide were assayed at doses suboptimal to induce T cell proliferation. By mass spectra analysis, several integrins and leukocyte surface markers, including CD45 isoforms, as well as other molecules specific to macrophages, neutrophils, and platelets, were identified as putative Gal-8 counter-receptors. Gal-8 triggered pZAP70 and pERK1/2. Moreover, pretreatment with specific inhibitors of CD45 phosphatase or ERK1/2 prevented its antigen-dependent and -independent T cell-proliferative activities. This seems to be associated with the agonistic binding to CD45, which lowers the activation threshold of the TCR signaling pathway. Taken together, our findings support a distinctive role for locally produced Gal-8 as an enhancer of otherwise borderline immune responses and also suggest that Gal-8 might fuel the reactivity at inflammatory foci.
Collapse
Affiliation(s)
- María Virginia Tribulatti
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, CONICET-Universidad Nacional de San Martín, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
24
|
Dong GW, Kim J, Park JH, Choi JY, Cho SI, Lim SC. Galectin-8 expression in laryngeal squamous cell carcinoma. Clin Exp Otorhinolaryngol 2009; 2:13-19. [PMID: 19434286 PMCID: PMC2671827 DOI: 10.3342/ceo.2009.2.1.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 12/09/2008] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Despite the ongoing development of treatment protocols for laryngeal squamous cell carcinoma (LSCC), the patients suffering with this malady have shown only a modestly improved outcome. This poor outcome has been attributed to the lack of therapy that's individualized to the tumor's biological properties. Various studies have showed that galectin-8 is widely expressed in tumor tissues as well as in normal tissues, and the level of the galectin-8 expression may correlate with the malignancy of human squamous cell carcinoma. The purpose of this study is to evaluate the expression of galectin-8 and to investigate its correlations with the primary stage, the nodal involvement, the clinical stage and the histologic grade of squamous cell carcinoma of the larynx. METHODS The paraffin-embedded tissue specimens from 77 patients who were diagnosed as LSCC between 1993 and 2007 were immunohistochemically stained for galectin-8. RESULTS Immunohistochemical analysis showed that a strong positive expression of galectin-8 was correlated with the T-stages, the nodal stages and the clinical stages. However, the histopathologic grades were not correlated with the galectin-8 expression in LSCC. CONCLUSION The expression of galectin-8 protein can be used as a prognostic factor for patients with LSCC.
Collapse
Affiliation(s)
- Geun Woo Dong
- Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Galectins are a family of animal lectins that bind beta-galactosides. Outside the cell, galectins bind to cell-surface and extracellular matrix glycans and thereby affect a variety of cellular processes. However, galectins are also detectable in the cytosol and nucleus, and may influence cellular functions such as intracellular signalling pathways through protein-protein interactions with other cytoplasmic and nuclear proteins. Current research indicates that galectins play important roles in diverse physiological and pathological processes, including immune and inflammatory responses, tumour development and progression, neural degeneration, atherosclerosis, diabetes, and wound repair. Some of these have been discovered or confirmed by using genetically engineered mice deficient in a particular galectin. Thus, galectins may be a therapeutic target or employed as therapeutic agents for inflammatory diseases, cancers and several other diseases.
Collapse
|
26
|
|
27
|
Thijssen VL, Hulsmans S, Griffioen AW. The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:545-53. [PMID: 18202194 DOI: 10.2353/ajpath.2008.070938] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We previously identified overexpression of galectin-1 in activated tumor endothelium. Currently, the tumor vasculature is a target for therapeutic approaches. Little is known about galectin expression and regulation in the tumor vasculature. Here, we report the expression of galectin-1/-3/-8/-9 in the endothelium as determined by quantitative PCR, Western blot, flow cytometry, and immunohistochemistry. Galectin-2/-4/-12 were detectable at the mRNA level, albeit very low. Galectin-8 and -9 displayed alternative splicing. Immunohistochemistry of normal tissues revealed a broad but low expression of galectin-1 in the vasculature, whereas the expression levels and localization of the other galectins varied. Endothelial cell activation in vitro significantly increased the expression of galectin-1 (5.32 +/- 1.97; P = 0.04) and decreased the expression of both galectin-8 (0.59 +/- 0.12; P < 0.04) and galectin-9 (0.32 +/- 0.06; P < 0.002). Galectin-3 expression was unaltered. Although a portion of these proteins is expressed intracellularly, the membrane protein level of galectin-1/-8/-9 was significantly increased on cell activation in vitro, 6-fold (P = 0.005), 3-fold (P = 0.002), and 1.4-fold (P = 0.04), respectively. Altered expression levels and cellular localization was also observed in vivo in the endothelium of human tumor tissue compared with normal tissue. These data show that endothelial cells express several members of the galectin family and that their expression and distribution changes on cell activation, resulting in a different profile in the tumor vasculature. This offers opportunities to develop therapeutic strategies that are independent of tumor type.
Collapse
Affiliation(s)
- Victor L Thijssen
- Department of Pathology, Angiogenesis Laboratory Maastricht, School for Oncology and Developmental Biology-GROW, Maastricht University, Maastricht, the Netherlands
| | | | | |
Collapse
|
28
|
Tribulatti MV, Mucci J, Cattaneo V, Agüero F, Gilmartin T, Head SR, Campetella O. Galectin-8 induces apoptosis in the CD4(high)CD8(high) thymocyte subpopulation. Glycobiology 2007; 17:1404-12. [PMID: 17893094 DOI: 10.1093/glycob/cwm104] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the present work, we followed a microarray approach to analyze the expression of glycosylation-related genes on different cell populations obtained from mouse thymus. Among other genes, transcription of the two-domain type galectin-8 was detected both in thymocytes and thymic epithelial cells (TECs), which was confirmed by reverse transcriptase (RT)-PCR assays independently carried out on both cell populations. Two splice variants, differing solely in the presence of a nine amino acid insertion in the linker peptide region connecting the two carbohydrate recognition domains (CRDs), were identified from purified thymocytes. Expression of galectin-8 was verified at the protein level in total organ extracts by western-blots of lactosyl-Sepharose purified binders. To explore the possible biological roles of locally produced galectin-8, both splice variants were recombinantly expressed in bacteria and assayed over cultured thymocytes. In spite of their binding to all cell populations, addition of either isoform of galectin-8 to thymocyte cultures induced apoptosis only of the CD4(high)CD8(high) cells through caspases pathway activation. All of these effects were prevented by the addition of thiodigalactoside (TDG) or lactose, thus indicating that the proapoptotic activity of galectin-8 was due to the specific interaction of its CRDs with defined cell surface glycans. Together, our results demonstrate intrathymic expression of galectin-8 in mouse, and suggest an active role for this lectin in shaping the mature T cell repertoire.
Collapse
Affiliation(s)
- María Virginia Tribulatti
- Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, CONICET-UNSAM, (B1650WAB) San Martín, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
29
|
Ahmed H, Banerjee PP, Vasta GR. Differential expression of galectins in normal, benign and malignant prostate epithelial cells: silencing of galectin-3 expression in prostate cancer by its promoter methylation. Biochem Biophys Res Commun 2007; 358:241-6. [PMID: 17481580 DOI: 10.1016/j.bbrc.2007.04.114] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/16/2007] [Indexed: 11/23/2022]
Abstract
Galectins (gal), a family of soluble beta-galactoside-binding proteins present at the cell surface, are involved in cancer progression and metastasis. Here we investigated the expression of several galectins in normal (PrEC), benign (BPH-1), and malignant (LNCaP) prostate epithelial cells and found that all galectins, except gal1 are differentially expressed. The gal3, 7, and 9 are highly expressed in PrEC, but not in LNCaP cells. Out of seven isoforms of gal8, the proto isoform gal8e and our newly discovered proto isoform gal8g were upregulated in LNCaP cells compared to PrEC, whereas the two tandem-repeat isoforms gal8a and gal8b were equally expressed in these cells. To determine if the silencing of gal3 in LNCaP cells was due to promoter methylation, LNCaP cells were treated with azacytidine. Azacytidine treatment induced the expression of gal3 in LNCaP cells, indicating that the gal3 gene was silenced by methylation of its promoter. To examine further, we evaluated cytosine methylation in gal3 promoter in LNCaP, normal prostate and placenta DNA and observed that it is highly methylated in LNCaP but not in normal cells and azacytidine completely abolished this methylation in LNCaP cells. Similar to prostate cancer cells, gal3 promoter was highly methylated in human prostate cancer tissue but not in normal tissue. To our knowledge, this is the first report indicating that gal3 expression is regulated by promoter methylation in LNCaP cells and prostate tumors. The methylation of gal3 promoter may constitute a powerful tool for early diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Hafiz Ahmed
- University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA.
| | | | | |
Collapse
|
30
|
Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H. Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 2007; 17:663-76. [PMID: 17339281 DOI: 10.1093/glycob/cwm026] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Galectin-8 has two different carbohydrate recognition domains (CRDs), the N-terminal Gal-8N and the C-terminal Gal-8C linked by a peptide, and has various effects on cell adhesion and signaling. To understand the mechanism for these effects further, we compared the binding activities of galectin-8 in solution with its binding and activation of cells. We used glycan array analysis to broaden the specificity profile of the two galectin-8 CRDs, as well as intact galectin-8s (short and long linker), confirming the unique preference for sulfated and sialylated glycans of Gal-8N. Using a fluorescence anisotropy assay, we examined the solution affinities for a subset of these glycans, the highest being 50 nM for NeuAcalpha2,3Lac by Gal-8N. Thus, carbohydrate-protein interactions can be of high affinity without requiring multivalency. More importantly, using fluorescence polarization, we also gained information on how the affinity is built by multiple weak interactions between different fragments of the glycan and its carrier molecule and the galectin CRD subsites (A-E). In intact galectin-8 proteins, the two domains act independently of each other in solution, whereas at a surface they act together. Ligands with moderate or weak affinity for the isolated CRDs on the array are bound strongly by intact galectin-8s. Also galectin-8 binding and signaling at cell surfaces can be explained by combined binding of the two CRDs to low or medium affinity ligands, and their highest affinity ligands, such as sialylated galactosides, are not required.
Collapse
Affiliation(s)
- Susanne Carlsson
- Section of Microbiology Immunology and Glycobiology (MIG), Sölvegatan 23, 223 62, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nishi N, Itoh A, Shoji H, Miyanaka H, Nakamura T. Galectin-8 and galectin-9 are novel substrates for thrombin. Glycobiology 2006; 16:15C-20C. [PMID: 16868247 DOI: 10.1093/glycob/cwl028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Galectin-8 and galectin-9, which each consist of two carbohydrate recognition domains (CRDs) joined by a linker peptide, belong to the tandem-repeat-type subclass of the galectin family. Alternative splicing leads to the formation of at least two and three distinct splice variants (isoforms) of galectin-8 and galectin-9, respectively, with tandem-repeat-type structures. The isoforms share identical CRDs and differ only in the linker region. In a search for differences in biological activity among the isoforms, we found that their isoforms with the longest linker peptide, that is, galectin-8L and galectin-9L (G8L and G9L), are highly susceptible to thrombin cleavage, whereas the predominant isoforms, galectin-8M and galectin-9M (G8M and G9M), and other members of human galectin family so far examined were resistant to thrombin. Amino acid sequence analysis of proteolytic fragments and site-directed mutagenesis showed that the thrombin cleavage sites (-IAPRT- and -PRPRG- for G8L and G9L, respectively) resided within the linker peptides. Although intact G8L stimulated neutrophil adhesion to substrate more efficiently than G8M, the activity of G8L but not that of G8M decreased on thrombin digestion. Similarly, thrombin treatment almost completely abolished eosinophil chemoattractant (ECA) activity of G9L. These observations suggest that G8L and G9L play unique roles in relation to coagulation and inflammation.
Collapse
Affiliation(s)
- Nozomu Nishi
- Department of Endocrinology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Galectins are a protein family defined by their affinity for beta-galactosides and consensus sequences. They are pleiotropic regulators involved in a multitude of functions, both in and out of the cell. Extracellularly, they have the potential to bind to various surface receptors on a variety of cell types as well as extracellular matrix (ECM) proteins, thus causing cell activation or apoptosis, modulating cell adhesion and inducing cell migration. Intracellularly, they can regulate cell growth, apoptosis and cell cycle progression. Galectins are either pro-inflammatory or anti-inflammatory. Some, such as galectin-1, may be employed as anti-inflammatory agents, while others, such as galectin-3, are evidently suitable targets for anti-inflammatory drugs. The extracellular functions of galectins involve their lectin-carbohydrate interactions and thus their carbohydrate ligands or mimetics would be suitable inhibitors. While the intracellular functions of galectins do not appear to engage lectin-carbohydrate interactions, the carbohydrate-binding sites of these proteins may still be involved. Therefore, the same inhibitors may be used regardless of whether intracellular or extracellular galectins are to be targeted.
Collapse
Affiliation(s)
- Fu-Tong Liu
- Department of Dermatology, University of California-Davis, School of Medicine, Sacramento.
| |
Collapse
|
33
|
Nishi N, Itoh A, Fujiyama A, Yoshida N, Araya SI, Hirashima M, Shoji H, Nakamura T. Development of highly stable galectins: truncation of the linker peptide confers protease-resistance on tandem-repeat type galectins. FEBS Lett 2005; 579:2058-64. [PMID: 15811318 DOI: 10.1016/j.febslet.2005.02.054] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 01/26/2005] [Accepted: 02/20/2005] [Indexed: 11/22/2022]
Abstract
Galectin-9 and galectin-8, members of beta-galactoside-binding animal lectin family, are promising agents for the treatment of immune-related and neoplastic diseases. The proteins consist of two carbohydrate recognition domains joined by a linker peptide, which is highly susceptible to proteolysis. To increase protease resistance, we prepared mutant proteins by serial truncation of the linker peptide. As a result, mutant forms lacking the entire linker peptide were found to be highly stable against proteolysis and retained their biological activities. These mutant proteins might be useful tools for analyzing the biological functions and evaluating the therapeutic potential of galectin-9 and galectin-8.
Collapse
Affiliation(s)
- Nozomu Nishi
- Department of Endocrinology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wooters MA, Ropp SL, Erickson AK. Identification of galectin-4 isoforms in porcine small intestine. Biochimie 2005; 87:143-9. [PMID: 15760706 DOI: 10.1016/j.biochi.2004.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 12/13/2004] [Indexed: 01/31/2023]
Abstract
Lactose-binding proteins with molecular masses of 14-, 17-, 18-, 28-, and 34-kDa were identified in extracts from porcine small intestinal mucosa. Amino acid sequence analysis of peptides generated by CNBr cleavage of the 34-kDa protein, the most abundant of these proteins, identified this protein as porcine galectin-4. To determine if a porcine homolog of murine galectin-6 is expressed in small intestine, primers for a reverse transcriptase-polymerase chain reaction (RT-PCR) were developed that amplified across the linker region of galectin-4, which is the region that differs between murine galectins-4 and -6. Using these primers, this RT-PCR approach identified two galectin-4 isoforms that differed in the length of their linker region. The larger isoform, galectin-4.1, is nine amino acids longer in its linker region than the smaller isoform, galectin-4.2. Based on nucleotide sequence similarities, the two isoforms are likely splice variants of galectin-4 pre-mRNA and not products of separate genes like murine galectins-4 and -6.
Collapse
Affiliation(s)
- Melissa A Wooters
- Veterinary Science Department, South Dakota State University, North Campus Drive, PO Box 2175, Brookings, SD 57007, USA
| | | | | |
Collapse
|
35
|
Lahm H, André S, Hoeflich A, Kaltner H, Siebert HC, Sordat B, von der Lieth CW, Wolf E, Gabius HJ. Tumor galectinology: insights into the complex network of a family of endogenous lectins. Glycoconj J 2005; 20:227-38. [PMID: 15115907 DOI: 10.1023/b:glyc.0000025817.24297.17] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Beta-Galactosides of cell surface glycoconjugates are docking sites for endogenous lectins of the galectin family. In cancer cells, primarily galectins-1 and -3 have been studied to date. With the emergence of insights into their role in growth control, resistance to or induction of apoptosis and invasive behavior the notion is supported that they can be considered as functional tumor markers. In principle, the same might hold true for the other members of the galectin family. But their expression in tumors has hitherto been a subject of attention only to a very limited extent. Pursuing our concept to define the complexity of the galectin network in cancer cells and the degree of functional overlap/divergence with diagnostic/therapeutic implications, we have introduced comprehensive RT-PCR monitoring to map their galectin gene expression. The data on so far less appreciated galectins in this context such as galectins-4 and -8 vindicate this approach. They, too, attach value to extend the immunohistochemical panel accordingly. Our initial histopathological and cell biological studies, for example on colon cancer progression, prove the merit of this procedure. Aside from the detection of gene expression profiles by RT-PCR, the detailed molecular biological monitoring yielded further important information. We describe different levels of regulation of galectin production in colon cancer cells in the cases of the tandem-repeat-type galectins-8 and -9. Isoforms for them are present with insertions into the peptide linker sequence attributed to alternative splicing. Furthermore, variants with distinct amino acid substitutions (galectin-8, Po66-CBP, PCTA-1, CocaI/II and galectin-9/ecalectin) and generation of multiple mRNA species, notably those coding for truncated galectin-8 and -9 versions with only one lectin site, justify to portray these two family members not as distinct individuals but as groups. In aggregate, the ongoing work to thoroughly chart the galectin network and to disentangle the individual functional contributions is expected to make its mark on our understanding of the malignant phenotype in certain tumor types.
Collapse
Affiliation(s)
- Harald Lahm
- Immunology-Molecular Biology Laboratory (IML), Thoraxklinik Heidelberg gGmbH, Amalienstrasse 5, D-69126 Heidelberg.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Galectins are animal lectins that can specifically bind beta-galactosides. Thirteen galectins have already been described. This review focuses on a specific member of this family: galectin-8. This galectin was discovered in prostate cancer cells eight years ago and has been studied extensively in the last few years. The galectin-8 gene ( LGALS8) encodes numerous mRNAs by alternate splicing and the presence of three unusual polyadenylation signals. These mRNAs encode six different isoforms of galectin-8: three belong to the tandem-repeat galectin group (with two CRDs linked by a hinge peptide) and three to the prototype group (with one CRD). Various studies showed that galectin-8 is widely expressed in tumor tissues as well as in normal tissues. The level of galectin-8 expression may correlate with the malignancy of human colon cancers and the degree of differentiation of lung squamous cell carcinomas and neuro-endocrine tumors. Recently, the differences in galectin-8 expression levels between normal and tumor tissues have been used as a guide for the selection of strategies for the prevention and treatment of lung squamous cell carcinoma. These experiments are still under investigation, but demonstrate the potential of galectin-8 research to enhance our understanding of, and possibly prevent, the process of neoplastic transformation.
Collapse
Affiliation(s)
- Nathalie Bidon-Wagner
- Département de Médecine Nucléaire, UPRES EA 1794, Centre Eugène Marquis, CS 44229, 35042 Rennes Cedex, France
| | | |
Collapse
|
37
|
Lahm H, André S, Hoeflich A, Fischer JR, Sordat B, Kaltner H, Wolf E, Gabius HJ. Molecular biological fingerprinting of human lectin expression by RT-PCR. Methods Enzymol 2003; 362:287-97. [PMID: 12968371 DOI: 10.1016/s0076-6879(03)01020-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Harald Lahm
- Immunology-Molecular Biology Laboratory, Thoraxklinik Heidelberg gGmbHm, Amalienstrasse 5, Heidelberg D-69126, Germany
| | | | | | | | | | | | | | | |
Collapse
|