1
|
Abstract
Wheat grain development is an important biological process to determine grain yield and quality, which is controlled by the interplay of genetic, epigenetic, and environmental factors. Wheat grain development has been extensively characterized at the phenotypic and genetic levels. The advent of innovative molecular technologies allows us to characterize genes, proteins, and regulatory factors involved in wheat grain development, which have enhanced our understanding of the wheat seed development process. However, wheat is an allohexaploid with a large genome size, the molecular mechanisms underlying the wheat grain development have not been well understood as those in diploids. Understanding grain development, and how it is regulated, is of fundamental importance for improving grain yield and quality through conventional breeding or genetic engineering. Herein, we review the current discoveries on the molecular mechanisms underlying wheat grain development. Notably, only a handful of genes that control wheat grain development have, thus far, been well characterized, their interplay underlying the grain development remains elusive. The synergistic network-integrated genomics and epigenetics underlying wheat grain development and how the subgenome divergence dynamically and precisely regulates wheat grain development are unknown.
Collapse
Affiliation(s)
- Yiling Wang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Canada
| |
Collapse
|
2
|
Fan X, Liu X, Feng B, Zhou Q, Deng G, Long H, Cao J, Guo S, Ji G, Xu Z, Wang T. Construction of a novel Wheat 55 K SNP array-derived genetic map and its utilization in QTL mapping for grain yield and quality related traits. Front Genet 2022; 13:978880. [PMID: 36092872 PMCID: PMC9462458 DOI: 10.3389/fgene.2022.978880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat is one of the most important staple crops for supplying nutrition and energy to people world. A new genetic map based on the Wheat 55 K SNP array was constructed using recombinant inbred lines derived from a cross between Zhongkemai138 and Kechengmai2 to explore the genetic foundation for wheat grain features. This new map covered 2,155.72 cM across the 21 wheat chromosomes with 11,455 markers. And 2,846 specific markers for this genetic map and 148 coincident markers among different maps were documented, which was helpful for improving and updating wheat genetic and genomic information. Using this map, a total of 68 additive QTLs and 82 pairs of epistatic QTLs were detected for grain features including yield, nutrient composition, and quality-related traits by QTLNetwork 2.1 and IciMapping 4.1 software. Fourteen additive QTLs and one pair of epistatic QTLs could be detected by both software programs and thus regarded as stable QTLs here, all of which explained higher phenotypic variance and thus could be utilized for wheat grain improvement. Additionally, thirteen additive QTLs were clustered into three genomic intervals (C4D.2, C5D, and C6D2), each of which had at least two stable QTLs. Among them, C4D.2 and C5D have been attributed to the famous dwarfing gene Rht2 and the hardness locus Pina, respectively, while endowed with main effects on eight grain yield/quality related traits and epistatically interacted with each other to control moisture content, indicating that the correlation of involved traits was supported by the pleotropic of individual genes but also regulated by the gene interaction networks. Additionally, the stable additive effect of C6D2 (QMc.cib-6D2 and QTw.cib-6D2) on moisture content was also highlighted, potentially affected by a novel locus, and validated by its flanking Kompetitive Allele-Specific PCR marker, and TraesCS6D02G109500, encoding aleurone layer morphogenesis protein, was deduced to be one of the candidate genes for this locus. This result observed at the QTL level the possible contribution of grain water content to the balances among yield, nutrients, and quality properties and reported a possible new locus controlling grain moisture content as well as its linked molecular marker for further grain feature improvement.
Collapse
Affiliation(s)
- Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jun Cao
- Yibin University, Yibin, China
| | - Shaodan Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhibin Xu, ; Tao Wang,
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhibin Xu, ; Tao Wang,
| |
Collapse
|
3
|
Zi Y, Cheng D, Li H, Guo J, Ju W, Wang C, Humphreys DG, Liu A, Cao X, Liu C, Liu J, Zhao Z, Song J. Effects of the different waxy proteins on starch biosynthesis, starch physicochemical properties and Chinese noodle quality in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:23. [PMID: 37309456 PMCID: PMC10248619 DOI: 10.1007/s11032-022-01292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Noodles are an important food in Asia. Wheat starch is the most important component in Chinese noodles. Loss of the waxy genes leads to lower activity of starch synthesis enzymes and decreased amylose content that further affects starch properties and noodle quality. To study the effects of different waxy (Wx) protein subunits on starch biosynthesis and processing quality, the high-yielding wheat cultivar Jimai 22 was treated with the mutagen ethyl methane sulfonate (EMS) to produce a population of Wx lines and chosen 7 Wx protein combinations. The amylose content increased but swelling power decreased as the number of Wx proteins increased. Both GBSS activity and gene expression were the lowest for the waxy mutant, followed by the mutants with 1 Wx protein. The combinations of these mutant alleles lead to reductions in both RNA expression and protein levels. Noodles made from materials with 2 Wx protein subunits had the highest score, which agreed with peak viscosity. The influence of the Wx-B1 protein on amylose synthesis and noodle quality was the highest, whereas the influence of Wx-A1 protein was the lowest. Mutants with lower amylose content caused by the absence of 1 subunit, especially the Wx-B1 subunit, had superior noodle quality. Additionally, the identified mutant lines can be used as intermediate materials to improve wheat quality. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01292-x.
Collapse
Affiliation(s)
- Yan Zi
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Dungong Cheng
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Haosheng Li
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Jun Guo
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Wei Ju
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Canguo Wang
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - D. G. Humphreys
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, K.W. Neatby Building, 960 Carling Avenue, Ottawa, K1A 06C ON UK
| | - Aifeng Liu
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Xinyou Cao
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Cheng Liu
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Jianjun Liu
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Zhendong Zhao
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| | - Jianmin Song
- National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 Shandong China
| |
Collapse
|
4
|
Kim KH, Kim JY. Understanding Wheat Starch Metabolism in Properties, Environmental Stress Condition, and Molecular Approaches for Value-Added Utilization. PLANTS (BASEL, SWITZERLAND) 2021; 10:2282. [PMID: 34834645 PMCID: PMC8624758 DOI: 10.3390/plants10112282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/19/2023]
Abstract
Wheat starch is one of the most important components in wheat grain and is extensively used as the main source in bread, noodles, and cookies. The wheat endosperm is composed of about 70% starch, so differences in the quality and quantity of starch affect the flour processing characteristics. Investigations on starch composition, structure, morphology, molecular markers, and transformations are providing new and efficient techniques that can improve the quality of bread wheat. Additionally, wheat starch composition and quality are varied due to genetics and environmental factors. Starch is more sensitive to heat and drought stress compared to storage proteins. These stresses also have a great influence on the grain filling period and anthesis, and, consequently, a negative effect on starch synthesis. Sucrose metabolizing and starch synthesis enzymes are suppressed under heat and drought stress during the grain filling period. Therefore, it is important to illustrate starch and sucrose mechanisms during plant responses in the grain filling period. In recent years, most of these quality traits have been investigated through genetic modification studies. This is an attractive approach to improve functional properties in wheat starch. The new information collected from hybrid and transgenic plants is expected to help develop novel starch for understanding wheat starch biosynthesis and commercial use. Wheat transformation research using plant genetic engineering technology is the main purpose of continuously controlling and analyzing the properties of wheat starch. The aim of this paper is to review the structure, biosynthesis mechanism, quality, and response to heat and drought stress of wheat starch. Additionally, molecular markers and transformation studies are reviewed to elucidate starch quality in wheat.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea;
| | - Jae-Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
5
|
Jiang Z, Liu Q, Zhou X, Li X, Wang F, Liu Y. Identification of characteristic starch properties of wheat varieties used to commercially produce dried noodles. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zongyuan Jiang
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha410114 Hunan Province China
| | - Qingjing Liu
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha410114 Hunan Province China
| | - Xiaoling Zhou
- Hunan Kemen Noodle Manufacturing Co., Ltd Changsha410114 Hunan Province China
| | - Xianghong Li
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha410114 Hunan Province China
| | - Faxiang Wang
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha410114 Hunan Province China
| | - Yongle Liu
- School of Chemistry and Food Engineering Changsha University of Science & Technology Changsha410114 Hunan Province China
| |
Collapse
|
6
|
Genetic and Environmental Variation in Starch Content, Starch Granule Distribution and Starch Polymer Molecular Characteristics of French Bread Wheat. Foods 2021; 10:foods10020205. [PMID: 33498368 PMCID: PMC7909431 DOI: 10.3390/foods10020205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/08/2023] Open
Abstract
This study investigates genetic and environmental variation in starch content and characteristics of 14 French bread cultivars. Understanding the impact of these factors on wheat quality is important for processors and especially bakers to maintain and meet the requirements of industrial specifications. Different traits were evaluated: starch content, distribution of starch granules, percentage of amylose and amylopectin and their molecular characteristics (weight-average molar mass, number-average molar mass, polydispersity and gyration radius). Genetic, environment and their interaction had significant effects on all parameters. The relative magnitude of variance attributed to growth conditions, for most traits, was substantially higher (21% to 95%) than that attributed to either genotype (2% to 73%) or G × E interaction (2% to 17%). The largest environmental contribution (95%) to total variance was found for starch dispersity. The highest genetic influence was found for the percentage of A-type starch granules. G × E interaction had relatively little influence (≈7%) on total phenotypic variance. All molecular characteristics were much more influenced by environment than the respective percentages of amylose and amylopectin were. This huge difference in variance between factors obviously revealed the importance of the effect of growing conditions on characteristics of cultivars.
Collapse
|
7
|
Netsvetaev VP, Kozelets YO, Ashcheulova AP, Nerubenko OE, Akinshina OV. Parameters of Grain Quality in Winter Common Wheat and the Effect of Hereditary Factors Associated with the Endosperm Carbohydrate Complex. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542012011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Development and identification of three functional markers associated with starch content in lotus (Nelumbo nucifera). Sci Rep 2020; 10:4242. [PMID: 32144321 PMCID: PMC7060276 DOI: 10.1038/s41598-020-60736-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/17/2020] [Indexed: 11/15/2022] Open
Abstract
It have been significantly demonstrated that Hexokinase (HXK), Granule-bound starch synthase (GBSS) and ADP-glucose pyrophosphorylase (AGPase) are three critical enzymes in the starch biosynthetic pathway and are related to starch (amylose, amylopectin and total starch) content in lotus. It is important to develop functional markers in marker-assisted selection of lotus breeding. So far there have been few reports about lotus functional markers. In this study, based on insertion-deletions (INDELs) and single-nucleotide polymorphisms (SNPs), we developed three functional markers, FMHXK-E1, FMGBSS-I8 and FMAGPL-I1. FMHXK-E1 was developed based on polymorphisms of two haplotypes of NnHXK. 26 lotus cultivars that the 320-bp fragment presented in NnHXK had a lower content of amylose and a higher content of amylopectin. FMGBSS-I8 was developed based on polymorphisms of two haplotypes of NnGBSS. The group containing 32 lotus cultivars with the 210-bp fragment had less amylose content and more amylopectin content. FMAGPL-I1 was developed based on polymorphisms of two haplotypes of NnAGPL (ADP-glucose pyrophosphorylase large subunit gene). The group containing 40 lotus cultivars with the 362-bp fragment had less amylopectin, total starch content and more amylose content. According to the study, FMHXK-E1, FMGBSS-I8 and FMAGPL-I1 are closely related to lotus starch content. It could be provided research basis for molecular assisted selection of lotus starch content improve breeding efficiency.
Collapse
|
9
|
Ma G, Zhang W, Liu L, Chao WS, Gu YQ, Qi L, Xu SS, Cai X. Cloning and characterization of the homoeologous genes for the Rec8-like meiotic cohesin in polyploid wheat. BMC PLANT BIOLOGY 2018; 18:224. [PMID: 30305022 PMCID: PMC6180652 DOI: 10.1186/s12870-018-1442-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/27/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Meiosis is a specialized cell division critical for gamete production in the sexual reproduction of eukaryotes. It ensures genome integrity and generates genetic variability as well. The Rec8-like cohesin is a cohesion protein essential for orderly chromosome segregation in meiotic cell division. The Rec8-like genes and cohesins have been cloned and characterized in diploid models, but not in polyploids. The present study aimed to clone the homoeologous genes (homoeoalleles) for Rec8-like cohesin in polyploid wheat, an important food crop for humans, and to characterize their structure and function under a polyploid condition. RESULTS We cloned two Rec8-like homoeoalleles from tetraploid wheat (TtRec8-A1 and TtRec8-B1) and one from hexaploid wheat (TaRec8-D1), and performed expression and functional analyses of the homoeoalleles. Also, we identified other two Rec8 homoeoalleles in hexaploid wheat (TaRec8-A1 and TaRec8-B1) and the one in Aegilops tauschii (AetRec8-D1) by referencing the DNA sequences of the Rec8 homoeoalleles cloned in this study. The coding DNA sequences (CDS) of these six Rec8 homoeoalleles are all 1,827 bp in length, encoding 608 amino acids. They differed from each other primarily in introns although single nucleotide polymorphisms were detected in CDS. Substantial difference was observed between the homoeoalleles from the subgenome B (TtRec8-B1 and TaRec8-B1) and those from the subgenomes A and D (TtRec8-A1, TaRec8-A1, and TaRec8-D1). TtRec8-A1 expressed dominantly over TtRec8-B1, but comparably to TaRec8-D1, in polyploid wheat. In addition, we developed the antibody against wheat Rec8 and used the antibody to detect Rec8 cohesin in the Western blotting and subcellular localization analyses. CONCLUSIONS The Rec8 homoeoalleles from the subgenomes A and D are transcriptionally more active than the one from the subgenome B in polyploid wheat. The structural variation and differential expression of the Rec8 homoeoalleles indicate a unique cross-genome coordination of the homoeologous genes in polyploid wheat, and imply the distinction of the wheat subgenome B from the subgenomes A and D in the origin and evolution.
Collapse
Affiliation(s)
- Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
| | - Liwang Liu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
- Present address: National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Wun S. Chao
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND 58102 USA
| | - Yong Qiang Gu
- USDA-ARS, Western Regional Research Center, Albany, CA 94710 USA
| | - Lili Qi
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND 58102 USA
| | - Steven S. Xu
- USDA-ARS, Red River Valley Agricultural Research Center, Fargo, ND 58102 USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108 USA
- North Dakota State University, NDSU Dept. 7670, P.O. Box 6050, Fargo, ND 58108 USA
| |
Collapse
|
10
|
Li J, Rasheed A, Guo Q, Dong Y, Liu J, Xia X, Zhang Y, He Z. Genome-wide association mapping of starch granule size distribution in common wheat. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Liu Z, Fang Z, Zhuang M, Zhang Y, Lv H, Liu Y, Li Z, Sun P, Tang J, Liu D, Zhang Z, Yang L. Fine-Mapping and Analysis of Cgl1, a Gene Conferring Glossy Trait in Cabbage ( Brassica oleracea L. var. capitata). FRONTIERS IN PLANT SCIENCE 2017; 8:239. [PMID: 28265282 PMCID: PMC5316545 DOI: 10.3389/fpls.2017.00239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Cuticular waxes covering the outer plant surface impart a whitish appearance. Wax-less cabbage mutant shows glossy in leaf surface and plays important roles in riching cabbage germplasm resources and breeding brilliant green cabbage. This is the first report describing the characterization and fine-mapping of a wax biosynthesis gene using a novel glossy Brassica oleracea mutant. In the present paper, we identified a glossy cabbage mutant (line10Q-961) with a brilliant green phenotype. Genetic analyses indicated that the glossy trait was controlled by a single recessive gene. Preliminary mapping results using an F2 population containing 189 recessive individuals revealed that the Cgl1 gene was located at the end of chromosome C08. Several new markers closely linked to the target gene were designed according to the cabbage reference genome sequence. Another population of 1,172 recessive F2 individuals was used to fine-map the Cgl1 gene to a 188.7-kb interval between the C08SSR61 simple sequence repeat marker and the end of chromosome C08. There were 33 genes located in this region. According to gene annotation and homology analyses, the Bol018504 gene, which is a homolog of CER1 in Arabidopsis thaliana, was the most likely candidate for the Cgl1 gene. Its coding and promoter regions were sequenced, which indicated that the RNA splice site was altered because of a 2,722-bp insertion in the first intron of Bol018504 in the glossy mutant. Based on the FGENESH 2.6 prediction and sequence alignments, the PLN02869 domain, which controls fatty aldehyde decarbonylase activity, was absent from the Bol018504 gene of the 10Q-961 glossy mutant. We inferred that the inserted sequence in Bol018504 may result in the glossy cabbage mutant. This study represents the first step toward the characterization of cuticular wax biosynthesis in B. oleracea, and may contribute to the breeding of new cabbage varieties exhibiting a brilliant green phenotype.
Collapse
Affiliation(s)
- Zezhou Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Yumei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Peitian Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Jun Tang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Dongming Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhenxian Zhang
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers – Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
12
|
Guzmán C, Alvarez JB. Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1-16. [PMID: 26276148 DOI: 10.1007/s00122-015-2595-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/05/2015] [Indexed: 05/21/2023]
Abstract
The starch fraction, comprising about 70% of the total dry matter in the wheat grain, can greatly affect the end-use quality of products made from wheat kernels, especially Asian noodles. Starch is associated with the shelf life and nutritional value (glycaemic index) of different wheat products. Starch quality is closely associated with the ratio of amylose to amylopectin, the two main macromolecules forming starch. In this review, we briefly summarise the discovery of waxy proteins-shown to be the sole enzymes responsible for amylose synthesis in wheat. The review particularly focuses on the different variants of these proteins, together with their molecular characterisation and evaluation of their effects on starch composition. There have been 19 different waxy protein variants described using protein electrophoresis; and at a molecular level 19, 15 and seven alleles described for Wx-A1, Wx-B1 and Wx-D1, respectively. This large variability, found in modern wheat and genetic resources such as wheat ancestors and wild relatives, is in some cases not properly ordered. The proper ordering of all the data generated is the key to enhancing use in breeding programmes of the current variability described, and thus generating wheat with novel starch properties to satisfy the demand of industry and consumers for novel high-quality processed food.
Collapse
Affiliation(s)
- Carlos Guzmán
- CIMMYT. Global Wheat Program, Km 45 Carretera México-Veracruz, El Batán, C.P. 56237, Texcoco, Estado De México, Mexico.
| | - Juan B Alvarez
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
13
|
Maryami Z, Fazeli A. Molecular diversity and detection ofWaxygenes in the Iranian wheat populations by multiplex PCR. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1045940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
14
|
Higgins JE, Kosar-Hashemi B, Li Z, Howitt CA, Larroque O, Flanagan B, Morell MK, Rahman S. Characterization of starch phosphorylases in barley grains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2137-2145. [PMID: 23288583 DOI: 10.1002/jsfa.6019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Starch is synthesized in both leaves and storage tissues of plants. The role of starch syntheses and branching enzymes is well understood; however, the role of starch phosphorylase is not clear. RESULTS A gene encoding Pho1 from barley was characterized and starch phosphorylases from both developing and germinating grain were characterized and purified. Two activities were detected: one with a molecular mass of 110 kDa and the other of 95 kDa. It was demonstrated through the use of antisera that the 110 kDa activity was located in the amyloplast and could correspond to the polypeptide encoded by the Pho1 gene cloned. The 95 kDa activity was localized to the cytoplasm, most strongly expressed in germinating grain, and was classified as a Pho2-type sequence. Using RNAi technology to reduce the content of Pho1 in the grain to less than 30% of wild type did not lead to any visible phenotype, and no dramatic alterations in the structure of the starch were observed. CONCLUSION Two starch phosphorylase activities were identified and characterized in barley grains, and shown to be present during starch synthesis. However, their role in starch synthesis still remains to be elucidated.
Collapse
|
15
|
Genetic dissection reveals effects of interaction between high-molecular-weight glutenin subunits and waxy alleles on dough-mixing properties in common wheat. J Genet 2013; 92:69-79. [PMID: 23640407 DOI: 10.1007/s12041-013-0232-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The glutenin and waxy loci of wheat are important determinants of dough quality. This study was conducted to evaluate the effects of high-molecular-weight glutenin (HMW-GS) and waxy alleles on dough-mixing properties. Molecular mapping was used to investigate these effects on Mixograph properties in a population of 290 (Nuomai1 x Gaocheng8901) recombinant inbred lines (RILs) from three environments in the harvest years 2008, 2009 and 2011. The results indicated the following: (i) the Glu-A1 and Glu-D1 loci have greater impacts on Mixograph properties compared to the Wx-1 loci and the effects of Glu-D1d and Glu-D1h on dough mixing are better than those of Glu-D1f and Glu-D1new1 in this population; (ii) the interactions between the Glu-1 and Wx-1 loci affected some traits, especially the midline peak value (MPV), and the lack of Wx-B1 or Wx-D1 led to increased MPV for all types of Glu-1 loci; and (iii) 30 quantitative-trait loci (QTL) over nine wheat chromosomes were identified with ICIM analysis based on the genetic map of 498 loci. Eight major QTL and 16 QTL in the Glu-1 loci from the three environments were found. The major QTL clusters were associated with the Glu-1 loci, and also were found in two regions on chromosome 3B and one region on chromosome 6A, which is one of the novel chromosome regions influencing dough-mixing strength. The two QTL for MPV are located around Wx-B1 on chromosome 4A. QMPT-1D.1, QMPI-1D.1 and Q8MW-1D.1 were stable in different environments and could potentially be used in molecular marker-assisted breeding.
Collapse
|
16
|
Guzmán C, Caballero L, Martín LM, Alvarez JB. Waxy genes from spelt wheat: new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species. ANNALS OF BOTANY 2012; 110:1161-71. [PMID: 22984164 PMCID: PMC3478059 DOI: 10.1093/aob/mcs201] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Waxy proteins are responsible for amylose synthesis in wheat seeds, being encoded by three waxy genes (Wx-A1, Wx-B1 and Wx-D1) in hexaploid wheat. In addition to their role in starch quality, waxy loci have been used to study the phylogeny of wheat. The origin of European spelt (Triticum aestivum ssp. spelta) is not clear. This study compared waxy gene sequences of a Spanish spelt collection with their homologous genes in emmer (T. turgidum ssp. dicoccum), durum (T. turgidum ssp. durum) and common wheat (T. aestivum ssp. aestivum), together with other Asian and European spelt that could be used to determine the origin of European spelt. METHODS waxy genes were amplified and sequenced. Geneious Pro software, DNAsp and MEGA5 were used for sequence, nucleotide diversity and phylogenetic analysis, respectively. KEY RESULTS Three, four and three new alleles were described for the Wx-A1, Wx-B1 and Wx-D1 loci, respectively. Spelt accessions were classified into two groups based on the variation in Wx-B1, which suggests that there were two different origins for the emmer wheat that has been found to be part of the spelt genetic make-up. One of these groups was only detected in Iberian material. No differences were found between the rest of the European spelt and the Asiatic spelt, which suggested that the Iberian material had a different origin from the other spelt sources. CONCLUSIONS The results suggested that the waxy gene variability present in wheat is undervalued. The evaluation of this variability has permitted the detection of ten new waxy alleles that could affect starch quality and thus could be used in modern wheat breeding. In addition, two different classes of Wx-B1 were detected that could be used for evaluating the phylogenetic relationships and the origins of different types of wheat.
Collapse
Affiliation(s)
- Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, ES-14071 Córdoba, Spain.
| | | | | | | |
Collapse
|
17
|
Guzmán C, Caballero L, Yamamori M, Alvarez JB. Molecular characterization of a new waxy allele with partial expression in spelt wheat. PLANTA 2012; 235:1331-9. [PMID: 22203323 DOI: 10.1007/s00425-011-1577-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/16/2011] [Indexed: 05/21/2023]
Abstract
Starch composition which is dependent on the waxy protein, the enzyme responsible for amylose synthesis in the grain, is an important aspect of the wheat quality. In this report, we describe the characterization of a novel Wx-A1 allele (Wx-A1g formerly known as -Wx-A1a) in Spanish spelt wheat lines which is responsible for a remarkable decline in the concentration of Wx-A1 protein found in the endosperm. Comparison of the DNA sequences in the Wx-A1a and Wx-A1g alleles showed the presence of a 160-bp insertion within the fourth intron in the latter. This insertion had some characteristics of a transposable-like element. RT-PCR analysis showed the presence of normal and aberrant mRNA transcripts in the Wx-A1g lines, indicating that the aberrant transcripts are un-spliced and contained the longer fourth intron. This may be related to the low level of Wx-A1 protein in these lines. In addition, a simple and fast PCR assay was designed for differentiating among different Wx-A1 alleles (a, b, f and g). The mutation described here is not related to either of the Wx-A1 mutations identified previously in common and durum wheats and could help to extend the range of amylose content of wheats.
Collapse
Affiliation(s)
- Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | | | | | | |
Collapse
|
18
|
Yamamori M, Yamamoto K. Effects of two novel Wx-A1 alleles of common wheat (Triticum aestivum L.) on amylose and starch properties. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2011.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Analyses of albumins, globulins and amphiphilic proteins by proteomic approach give new insights on waxy wheat starch metabolism. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2010.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wang J, Qi P, Wei Y, Liu D, Fedak G, Zheng Y. Molecular characterization and functional analysis of elite genes in wheat and its related species. J Genet 2011; 89:539-54. [PMID: 21273706 DOI: 10.1007/s12041-010-0074-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The tribe Triticeae includes major cereal crops (bread wheat, durum wheat, triticale, barley and rye), as well as abundant forage and lawn grasses. Wheat and its wild related species possess numerous favourable genes for yield improvement, grain quality enhancement, biotic and abiotic stress resistance, and constitute a giant gene pool for wheat improvement. In recent years, significant progress on molecular characterization and functional analysis of elite genes in wheat and its related species have been achieved. In this paper, we review the cloned functional genes correlated with grain quality, biotic and abiotic stress resistance, photosystem and nutrition utilization in wheat and its related species.
Collapse
Affiliation(s)
- Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Yaan 625014, Sichuan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Ma J, Jiang QT, Wei YM, Andre L, Lu ZX, Chen GY, Liu YX, Zheng YL. Molecular characterization and comparative analysis of two waxy alleles in barley. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0062-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Debiton C, Bancel E, Chambon C, Rhazi L, Branlard G. Effect of the three waxy null alleles on enzymes associated to wheat starch granules using proteomic approach. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Jonnala RS, MacRitchie F, Smail VW, Seabourn BW, Tilley M, Lafiandra D, Urbano M. Protein and Quality Characterization of Complete and Partial Near-Isogenic Lines of Waxy Wheat. Cereal Chem 2010. [DOI: 10.1094/cchem-07-09-0102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ramakanth S. Jonnala
- Kansas State University, Dept. of Grain Science and Industry, Manhattan, KS 66506
- Corresponding author. Phone: +01 (405)-880-2684. E-mail:
| | - Finlay MacRitchie
- Kansas State University, Dept. of Grain Science and Industry, Manhattan, KS 66506
| | - Virgil W. Smail
- Kansas State University, Dept. of Grain Science and Industry, Manhattan, KS 66506
| | - Bradford W. Seabourn
- USDA-ARS, Center for Grain & Animal Health Research, Hard Winter Wheat Quality Laboratory, Manhattan, KS 66502. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| | - Michael Tilley
- USDA-ARS, Center for Grain & Animal Health Research, Hard Winter Wheat Quality Laboratory, Manhattan, KS 66502. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| | - Domenico Lafiandra
- Dept. of Agrobiology and Agrochemistry, University of Tuscia, Viterbo, Italy
| | | |
Collapse
|
24
|
Huang XQ, Brûlé-Babel A. Development of genome-specific primers for homoeologous genes in allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples. BMC Res Notes 2010; 3:140. [PMID: 20497560 PMCID: PMC2890506 DOI: 10.1186/1756-0500-3-140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In allopolypoid crops, homoeologous genes in different genomes exhibit a very high sequence similarity, especially in the coding regions of genes. This makes it difficult to design genome-specific primers to amplify individual genes from different genomes. Development of genome-specific primers for agronomically important genes in allopolypoid crops is very important and useful not only for the study of sequence diversity and association mapping of genes in natural populations, but also for the development of gene-based functional markers for marker-assisted breeding. Here we report on a useful approach for the development of genome-specific primers in allohexaploid wheat. FINDINGS In the present study, three genome-specific primer sets for the waxy (Wx) genes and four genome-specific primer sets for the starch synthase II (SSII) genes were developed mainly from single nucleotide polymorphisms (SNPs) and/or insertions or deletions (Indels) in introns and intron-exon junctions. The size of a single PCR product ranged from 750 bp to 1657 bp. The total length of amplified PCR products by these genome-specific primer sets accounted for 72.6%-87.0% of the Wx genes and 59.5%-61.6% of the SSII genes. Five genome-specific primer sets for the Wx genes (one for Wx-7A, three for Wx-4A and one for Wx-7D) could distinguish the wild type wheat and partial waxy wheat lines. These genome-specific primer sets for the Wx and SSII genes produced amplifications in hexaploid wheat, cultivated durum wheat, and Aegilops tauschii accessions, but failed to generate amplification in the majority of wild diploid and tetraploid accessions. CONCLUSIONS For the first time, we report on the development of genome-specific primers from three homoeologous Wx and SSII genes covering the majority of the genes in allohexaploid wheat. These genome-specific primers are being used for the study of sequence diversity and association mapping of the three homoeologous Wx and SSII genes in natural populations of both hexaploid wheat and cultivated tetraploid wheat. The strategies used in this paper can be used to develop genome-specific primers for homoeologous genes in any allopolypoid species. They may be also suitable for (i) the development of gene-specific primers for duplicated paralogous genes in any diploid species, and (ii) the development of allele-specific primers at the same gene locus.
Collapse
Affiliation(s)
- Xiu-Qiang Huang
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, Manitoba R3T 2N2, Canada.
| | | |
Collapse
|
25
|
Xu J, Frick M, Laroche A, Ni ZF, Li BY, Lu ZX. Isolation and characterization of the rye Waxy gene. Genome 2009; 52:658-64. [PMID: 19767896 DOI: 10.1139/g09-036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complete genomic and cDNA sequences of the Waxy gene encoding granule-bound starch synthase I (GBSSI) were isolated from the rye genome and characterized. The full-length rye Waxy genomic DNA and cDNA are 2767 bp and 1815 bp, respectively. The genomic sequence has 11 exons interrupted by 10 introns. The rye Waxy gene is GC-rich, with a higher GC frequency in the coding region, especially in the third position of the codons. Exon regions of the rye Waxy gene are more conserved than intron regions when compared with the homologous sequences of other cereals. The mature rye GBSSI proteins share more than 95% sequence identity with their homologs in wheat and barley. A phylogenetic tree based on sequence comparisons of available plant GBSSI proteins shows the evolutionary relationship among Waxy genes from rye and other plant genomes. The identification of the rye Waxy gene will enable the manipulation of starch metabolism in rye and triticale.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Crop Genomics and Genetic Improvement, College of Agriculture, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | |
Collapse
|
26
|
Lu LD, Hou CL, Chen L, Yin GH, Deng CL, Gao WJ, Yang XQ, Tan GX. [Molecular identification on Waxy genes in wheat using multiple-PCR]. YI CHUAN = HEREDITAS 2009; 31:844-8. [PMID: 19689946 DOI: 10.3724/sp.j.1005.2009.00844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Multiple-PCR was conducted to establish a stable PCR system for identifying the three Wx genes in wheat. Two pairs of primers were employed to amplify Wx-A1, Wx-B1, and Wx-D1 genes of wheat, with the target sequences of 230 bp/265 bp, 854 bp, and 204 bp, respectively. The results showed that Wx-A1, Wx-B1, and Wx-D1 can be detected simultaneously in a single reaction. This method proved to be repeatable and low cost for evaluation of wheat quality properties in breeding program. This multiple-PCR technique can be efficiently used in marker-assisted selection for Wx genes, which will improve selection procedure for waxy wheat.
Collapse
Affiliation(s)
- Long-Dou Lu
- College of Life Science, Henan Normal University, Xinxiang 453007, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Shapter F, Eggler P, Lee L, Henry R. Variation in Granule Bound Starch Synthase I (GBSSI) loci amongst Australian wild cereal relatives (Poaceae). J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2008.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Sado PE, Tessier D, Vasseur M, Elmorjani K, Guillon F, Saulnier L. Integrating genes and phenotype: a wheat-Arabidopsis-rice glycosyltransferase database for candidate gene analyses. Funct Integr Genomics 2008; 9:43-58. [PMID: 19005709 DOI: 10.1007/s10142-008-0100-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 10/20/2008] [Accepted: 10/20/2008] [Indexed: 11/28/2022]
Abstract
Glycosyltransferases (GTs) constitute a very large multi-gene superfamily, containing several thousand members identified in sequenced organisms especially in plants. GTs are key enzymes involved in various biological processes such as cell wall formation, storage polysaccharides biosynthesis, and glycosylation of various metabolites. GTs have been identified in rice (Oryza sativa) and Arabidopsis thaliana, but their precise function has been demonstrated biochemically for only a few. In this work we have established a repertoire of virtually all the wheat (Triticum aestivum) GT sequences, using the large publicly available banks of expressed sequences. Based on sequence similarity with Arabidopsis and rice GTs compiled in the carbohydrate active enzyme database (CAZY), we have identified and classified these wheat sequences. The results were used to feed a searchable database available on the web ( http://wwwappli.nantes.inra.fr:8180/GTIDB ) that can be used for initiating an exhaustive candidate gene survey in wheat applied to a particular biological process. This is illustrated through the identification of GT families which are expressed during cell wall formation in wheat grain maturation.
Collapse
Affiliation(s)
- Pierre-Etienne Sado
- INRA, Institut National de la Recherche Agronomique, Unité de Recherche Biopolymères, Interactions, Assemblages, 44316, Nantes Cedex 3, France.
| | | | | | | | | | | |
Collapse
|
29
|
Dong Y, Zhao X, Wang J, Yuan G, Zhang X. Improvement for Agronomic Traits of Partial Waxy Wheat by Combination of Backcrossing with a PCR-based DNA Marker. J Genet Genomics 2007; 34:836-41. [PMID: 17884693 DOI: 10.1016/s1673-8527(07)60094-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 03/19/2007] [Indexed: 10/22/2022]
Abstract
To improve agronomic traits of partial waxy wheat, crossing between Chinese Baihuomai and wheat cultivars PH85-16, Jinan 17, and Yannong 15 was performed. The progeny plants were further backcrossed to these cultivars as recurrent parents for five generations. To get homozygous plants with the null allele at the Wx-D1 locus, self-pollination was carried out in the BC(5)F(1) generation. Through another three generations, 6 partial waxy wheat lines were obtained, which had similar agronomic performance as their recurrent parents and carried the null allele at the Wx-D1 locus. In each generation, the Wx-D1 locus was identified by a PCR-based DNA marker and the agronomic traits were examined in progeny plants. The results from this study indicate that the use of backcrossing with a PCR-based DNA marker was useful in waxy wheat breeding. These partial waxy wheat lines can be used in field production.
Collapse
Affiliation(s)
- Yuxiu Dong
- Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | | | | | | | | |
Collapse
|
30
|
PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics 2007; 8:135. [PMID: 17535443 PMCID: PMC1904201 DOI: 10.1186/1471-2164-8-135] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 05/30/2007] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND EST-PCR markers normally represent specific products from target genes, and are therefore effective tools for genetic analysis. However, because wheat is an allohexaploid plant, PCR products derived from homoeologous genes are often simultaneously amplified. Such products may be easier to differentiate if they include intron sequences, which are more polymorphic than exon sequences. However, genomic sequence data for wheat are limited; therefore it is difficult to predict the location of introns. By using the similarities in gene structures between rice and wheat, we developed a system called PLUG (PCR-based Landmark Unique Gene) to design primers so that PCR products include intron sequences. We then investigated whether products amplified using such primers could serve as markers able to distinguish multiple products derived from homoeologous genes. RESULTS The PLUG system consists of the following steps: (1) Single-copy rice genes (Landmark Unique Gene loci; LUGs) exhibiting high degrees of homology to wheat UniGene sequences are extracted; (2) Alignment analysis is carried out using the LUGs and wheat UniGene sequences to predict exon-exon junctions, and LUGs which can be used to design wheat primers flanking introns (TaEST-LUGs) are extracted; and (3) Primers are designed in an interactive manner. From a total of 4,312 TaEST-LUGs, 24 loci were randomly selected and used to design primers. With all of these primer sets, we obtained specific, intron-containing products from the target genes. These markers were assigned to chromosomes using wheat nullisomic-tetrasomic lines. By PCR-RFLP analysis using agarose gel electrophoresis, 19 of the 24 markers were located on at least one chromosome. CONCLUSION In the development of wheat EST-PCR markers capable of efficiently sorting products derived from homoeologous genes, it is important to design primers able to amplify products that include intron sequences with insertion/deletion polymorphisms. Using the PLUG system, wheat EST sequences that can be used for marker development are selected based on comparative genomics with rice, and then primer sets flanking intron sequences are prepared in an interactive, semi-automatic manner. Hence, the PLUG system is an effective tool for large-scale marker development.
Collapse
|
31
|
Giersch TM, Wu MJ, Duncan L, Zhao X, Chin J. Detection of mutations in the 7A allele of wheat (Triticum aestivum) granule-bound starch synthase (Wx-7A) with a monoclonal antibody produced by targeted peptide immunisation. J Cereal Sci 2007. [DOI: 10.1016/j.jcs.2006.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
|
33
|
Lucyshyn D, Busch BL, Abolmaali S, Steiner B, Chandler E, Sanjarian F, Mousavi A, Nicholson P, Buerstmayr H, Adam G. Cloning and characterization of the ribosomal protein L3 (RPL3) gene family from Triticum aestivum. Mol Genet Genomics 2007; 277:507-17. [PMID: 17216491 DOI: 10.1007/s00438-006-0201-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/10/2006] [Accepted: 12/10/2006] [Indexed: 11/30/2022]
Abstract
Plant pathogenic fungi of the genus Fusarium can cause severe diseases on small grain cereals and maize. The contamination of harvested grain with Fusarium mycotoxins is a threat to human and animal health. In wheat production of the toxin deoxynivalenol (DON), which inhibits eukaryotic protein biosynthesis, is a virulence factor of Fusarium, and resistance against DON is considered to be part of Fusarium resistance. Previously, single amino acid changes in RPL3 (ribosomal protein L3) conferring DON resistance have been described in yeast. The goal of this work was to characterize the RPL3 gene family from wheat and to investigate the potential role of naturally existing RPL3 alleles in DON resistance by comparing Fusarium-resistant and susceptible cultivars. The gene family consists of three homoeologous alleles of both RPL3A and RPL3B, which are located on chromosomes 4A (RPL3-B2), 4B (RPL3-B1), 4D (RPL3-B3), 5A (RPL3-A3), 5B (RPL3-A2) and 5D (RPL3-A1). Alternative splicing was detected in the TaRPL3-A2 gene. Sequence comparison revealed no amino acid differences between cultivars differing in Fusarium resistance. While using developed SNP markers we nevertheless found that one of the genes, namely, TaRPL3-A3 mapped close to a Fusarium resistance QTL (Qfhs.ifa-5A). The potential role of the RPL3 gene family in DON resistance of wheat is discussed.
Collapse
Affiliation(s)
- Doris Lucyshyn
- Institute of Applied Genetics and Cell Biology, Department of Applied Plant Sciences and Plant Biotechnology, BOKU - University of Natural Resources and Applied Life Sciences, Muthgasse 18, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ravel C, Nagy IJ, Martre P, Sourdille P, Dardevet M, Balfourier F, Pont C, Giancola S, Praud S, Charmet G. Single nucleotide polymorphism, genetic mapping, and expression of genes coding for the DOF wheat prolamin-box binding factor. Funct Integr Genomics 2006; 6:310-21. [PMID: 16568337 DOI: 10.1007/s10142-006-0022-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 01/12/2006] [Accepted: 01/23/2006] [Indexed: 11/25/2022]
Abstract
Wheat prolamin-box binding factor (WPBF) was shown to be an activator of Triticum aestivum L. storage protein genes. Three homoeologous genes encoding this transcription factor were isolated from a bacterial artificial chromosome genomic library and sequenced. The genes all have two exons separated by an intron of approximately 1,000 bp where the second exon contains the entire coding sequence. Many differences were found between homoeologous sequences, but none of them is predicted to significantly alter the sequence of the putative encoded protein. The three homoeologous genes are specifically expressed in grain from 3 to 39 days after anthesis. The allelic variation of a genetically diverse collection of 27 bread wheat lines was assessed. One, five, and one single-nucleotide polymorphisms (SNPs) were detected in the wPbf genes for the A, B, and D genomes, respectively. Physical and genetic mapping utilizing some of the SNPs identified confirmed that wPbf genes are located close to the centromeres on the homoeologous group 5 chromosomes. The low level of allelic diversity found in wPbf genes may suggest that these genes play a key role and are thus constrained by selection.
Collapse
Affiliation(s)
- Catherine Ravel
- Institu National de la Recherche Agronomique (INRA), UMR1095, Amélioration et Santé des Plantes, 234 avenue du Brezet, Clermont-Ferrand 63039, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Boutrot F, Guirao A, Alary R, Joudrier P, Gautier MF. Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds. ACTA ACUST UNITED AC 2005; 1730:114-25. [PMID: 16061294 DOI: 10.1016/j.bbaexp.2005.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/31/2005] [Accepted: 06/23/2005] [Indexed: 11/23/2022]
Abstract
Nine cDNA clones encoding non-specific lipid transfer proteins (nsLTPs) were isolated from Triticum aestivum and Triticum durum cDNA libraries and characterized. One cDNA is predicted to encode a type 2 nsLTP (7 kDa) while others encode type 1 nsLTPs (9 kDa). All encoded proteins contain an N-terminal signal sequence and possess the characteristic features of nsLTPs. The genomic structures of the wheat nsLtp genes show that type 2 TaLtp7.1a, TaLtp7.2a and type 1 TaLtp9.2b genes lack introns while the other type 1 genes consist of one intron. Construction of a phylogenic tree of Poaceae nsLTPs shows that wheat nsLTPs can be divided into eleven distinct groups and are closely related to barley sequences. Using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, the expression patterns of nine nsLtp genes were studied during wheat seed development and germination. We identified three different profiles of nsLtp gene transcript accumulation. Whereas TdLtp7.1a, TdLtp9.4a and TdLtp9.7a transcripts were detected during all maturation stages, TdLtp7.2a, TdLtp9.2a, TdLtp9.3a, TdLtp9.5a and TdLtp9.6a transcripts were only present in the first and TdLtp9.1a in the last stages of seed development. Moreover, these nine wheat nsLtp genes are not seed-specific and are also expressed in the coleoptile of young seedlings. The present study revealed the complexity of the wheat nsLtp gene family and showed that the expression of nsLtp genes is developmentally regulated in the seeds, suggesting a specific function for each of the corresponding proteins.
Collapse
Affiliation(s)
- Freddy Boutrot
- INRA, UMR Polymorphismes d'Intérêt Agronomique, 2 place Viala, 34060 Montpellier Cedex 01, France
| | | | | | | | | |
Collapse
|
36
|
Monari AM, Simeone MC, Urbano M, Margiotta B, Lafiandra D. Molecular characterization of new waxy mutants identified in bread and durum wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:1481-1489. [PMID: 15834696 DOI: 10.1007/s00122-005-1983-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 02/26/2005] [Indexed: 05/24/2023]
Abstract
Recently, electrophoretic analyses of waxy proteins in several hexaploid and tetraploid wheat accessions from worldwide collections have permitted the identification of new variants at the waxy loci, including allelic forms with different mobilities and partial null types. In this paper, the molecular characterization of mutated waxy loci in four bread wheat cultivars (two lacking the Wx-B1 and two lacking the Wx-D1 protein, respectively) and in four durum wheat cultivars (one lacking Wx-A1 and the remainder with Wx-B1 proteins showing different electrophoretic mobilities) was conducted by means of PCR, Southern and DNA sequence analyses. Three primer pairs were developed that identified six of the above-mentioned mutations and allowed their molecular description, providing a useful tool for further germplasm screening or marker assisted progeny selection in breeding programs involving the newly identified material. We have found that a complete gene deletion is responsible for a null allele at the Wx-B1 locus in one bread wheat line, whereas sequencing of the corresponding fragments showed a 724 bp deletion in the Wx-D1 locus in one line of bread wheat and an insertion of 89 bp in the Wx-A1 locus in one line of durum wheat, respectively. In addition, nucleotide substitutions and various insertions/deletions ranging from 3 to 30 bp were detected in the PCR fragments of one durum wheat line with a Wx-B1 protein with a different electrophoretic mobility. A fourth primer set, specific for this mutation, was consequently derived.
Collapse
Affiliation(s)
- Anna Maria Monari
- Department of Agrobiology and Agrochemistry, University of Tuscia, Via SC De Lellis, 01100, Viterbo, Italy
| | | | | | | | | |
Collapse
|
37
|
Abstract
MAD2 (mitotic arrest deficient 2) is a highly conserved protein involving in spindle checkpoint control. MAD2 locates at spindle-unattached kinetochores during prophase and dissolves from spindle-attached kinetochores towards metaphase. In this study, we isolated homologous genes encoding for MAD2 from hexaploid wheat. The three homoeologous genes on the long arms of the group-2 chromosomes shared approximately 99% similarity of the nucleotide sequence in coding regions. The intron-exon structures of the three homoeologues were also conserved, showing high similarities to that of the Arabidopsis MAD2 gene. All three homoeologues were transcribed in roots and spikes but not in leaves. We generated antibodies against the polypeptides with amino acid sequences derived from the cDNA sequences of the wheat MAD2 homologues. Using these antibodies, we found MAD2 in wheat root-tip cells to change in location and amount through the cell cycle, similar to those reported for human MAD2. Intense immunostaining signals were observed at the centromeres of all metaphase chromosomes when root-tips were treated with colchicine, a microtubule-destabilizing drug, but no signals were observed in untreated chromosomes. Thus, the wheat MAD2 protein could be a good marker for the functional kinetochores of metaphase chromosomes in wheat.
Collapse
Affiliation(s)
- Junji Kimbara
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan
| | | | | |
Collapse
|
38
|
Morimoto R, Kosugi T, Nakamura C, Takumi S. Intragenic diversity and functional conservation of the three homoeologous loci of the KN1-type homeobox gene Wknox1 in common wheat. PLANT MOLECULAR BIOLOGY 2005; 57:907-24. [PMID: 15952073 DOI: 10.1007/s11103-005-3247-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 03/07/2005] [Indexed: 05/02/2023]
Abstract
Common wheat represents a typical allohexaploid species and provides a good experimental system for studying genomic alterations associated with allopolyploidization. We studied three homoeologous loci of wheat Wknox1 gene, which is highly homologous to the knotted1 (kn1)-like homeobox (KNOX) genes functioning at shoot apical meristems (SAM). Wknox1 transcripts were detected in SAM, and its overexpression caused abnormal leaf morphology with occasional ectopic leaves in transgenic tobacco plants. A comparative study of the three Wknox1 genomic sequences revealed accumulation of a large number of mutations including insertions and deletions, particularly in the fourth intron and the 5'-upstream region. Some structural mutations including MITE-insertions were allocated in the evolutionary lineage of the wheat genome, suggesting that they occurred at all stages of wheat evolution. A mutation rate was the highest in the Wknox1b locus, which is consistent with the known highest degree of differentiation in the B genome. Despite the structural differentiation, all three Wknox1 homoeologs showed an identical expression pattern in wheat and their promoter regions induced the conserved expression pattern in transgenic tobacco plants. A potential of the intragenic diversity in homoeologs of essential genes as a tool for studying the genome evolution associated with allopolyploidization was discussed.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Base Sequence
- Cloning, Molecular
- DNA Transposable Elements/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Exons/genetics
- Gene Expression Profiling
- Genes, Plant/genetics
- Genetic Variation
- Genome, Plant
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Introns/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Plant Proteins/genetics
- Plant Proteins/physiology
- Plants, Genetically Modified
- Polymorphism, Single Nucleotide
- Polyploidy
- Protein Isoforms/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Deletion
- Sequence Homology, Nucleic Acid
- Triticum/genetics
- Triticum/physiology
Collapse
Affiliation(s)
- Ryoko Morimoto
- Laboratory of Plant Genetics, Department of Biological and Environmental Science, Faculty of Agriculture, and Graduate School of Science and Technology, Kobe University, 657-8501, Rokkodai-cho, Nada-ku, Kobe, Japan
| | | | | | | |
Collapse
|
39
|
|
40
|
Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 2004; 23:75-81. [PMID: 15580263 DOI: 10.1038/nbt1043] [Citation(s) in RCA: 443] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 09/29/2004] [Indexed: 11/09/2022]
Abstract
We report the use of TILLING (targeting induced local lesions in genomes), a reverse genetic, nontransgenic method, to improve a quality trait in a polyploid crop plant. Waxy starches, composed mostly of amylopectin, have unique physiochemical properties. Wheat with only one or two functional waxy genes (granule-bound starch synthase I, or GBSSI) produces starch with intermediate levels of amylopectin. We have identified 246 alleles of the waxy genes by TILLING each homoeolog in 1,920 allohexaploid and allotetraploid wheat individuals. These alleles encode waxy enzymes ranging in activity from near wild type to null, and they represent more genetic diversity than had been described in the preceding 25 years. A line of bread wheat containing homozygous mutations in two waxy homoeologs created through TILLING and a preexisting deletion of the third waxy homoeolog displays a near-null waxy phenotype. This approach to creating and identifying genetic variation shows potential as a tool for crop improvement.
Collapse
Affiliation(s)
- Ann J Slade
- Anawah Inc., 1102 Columbia Street, Suite 600, Seattle, Washington 98104, USA.
| | | | | | | | | |
Collapse
|
41
|
Blake NK, Sherman JD, Dvorák J, Talbert LE. Genome-specific primer sets for starch biosynthesis genes in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:1295-1302. [PMID: 15340684 DOI: 10.1007/s00122-004-1743-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Common wheat (Triticum aestivum L.,2n=6x=42) is an allohexaploid composed of three closely related genomes, designated A, B, and D. Genetic analysis in wheat is complicated, as most genes are present in triplicated sets located in the same chromosomal regions of homoeologous chromosomes. The goal of this report was to use genomic information gathered from wheat-rice sequence comparison to develop genome-specific primer sets for five genes involved in starch biosynthesis. Intron locations in wheat were inferred through the alignment of wheat cDNA sequences with rice genomic sequence.Exon-anchored primers, which amplify across introns,allowed the sequencing of introns from the three genomes for each gene. Sequence variation within introns among the three wheat genomes provided the basis for genome-specific primer design. For three genes, ADP-glucose pyrophosphorylase (Agp-L), sucrose transporter (SUT),and waxy (Wx), genome-specific primer sets were developed for all three genomes. Genome-specific primers were developed for two of the three genomes for Agp-S and starch synthase I (Ssl). Thus, 13 of 15 possible genome-specific primer sets were developed using this strategy. Seven genome-specific primer combinations were used to amplify alleles in hexaploid wheat lines for sequence comparison. Three single nucleotide polymorphisms(SNPs) were identified in a comparison of 5,093 bp among a minimum of ten wheat accessions. Two of theseSNPs could be converted into cleaved amplified polymorphism sequence (CAPS) markers. Our results indicated that the design of genome-specific primer sets using intron-based sequence differences has a high probability of success, while the identification of polymorphism among alleles within a genome may be a challenge.
Collapse
Affiliation(s)
- N K Blake
- Plant Sciences Department, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
42
|
Schupp N, Ziegler P. The relation of starch phosphorylases to starch metabolism in wheat. PLANT & CELL PHYSIOLOGY 2004; 45:1471-1484. [PMID: 15564531 DOI: 10.1093/pcp/pch170] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tissues of wheat (Triticum aestivum L., var. Star) exhibit three starch phosphorylase activity forms resolved by non-denaturing polyacrylamide gel affinity electrophoresis (P1, P2 and P3). Compartmentation analysis of young leaf tissues showed that P3 is plastidic, whereas P1 and P2 are cytosolic. P1 exhibits a strong binding affinity to immobilized glycogen upon electrophoresis, whereas P2 and the chloroplastic P3 do not. Cytosolic leaf phosphorylase was purified to homogeneity by affinity chromatography. The single polypeptide product constituted both the P1 and P2 activity forms. Probes for the detection of phosphorylase transcripts were derived from cDNA sequences of cytosolic and plastidic phosphorylases, and these-together with activity assays and a cytosolic phosphorylase-specific antiserum-were used to monitor phosphorylase expression in leaves and seeds. Mature leaves contained only plastidic phosphorylase, which was also strongly evident in the endosperm of developing seeds at the onset of reserve starch accumulation. Germinating seeds contained only cytosolic phosphorylase, which was restricted to the embryo. Plastidic phosphorylase thus appears to be associated with transitory leaf starch metabolism and with the initiation of seed endosperm reserve starch accumulation, but it plays no role in the degradation of the reserve starch. Cytosolic phosphorylase may be involved in the processing of incoming carbohydrate during rapid tissue growth.
Collapse
Affiliation(s)
- Nicole Schupp
- Institute of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | |
Collapse
|
43
|
Gale K, Blundell M, Hill A. Development of a simple, antibody-based test for granule-bound starch synthase Wx-B1b (Null-4A) wheat varieties. J Cereal Sci 2004. [DOI: 10.1016/j.jcs.2001.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:82-93. [PMID: 12974813 DOI: 10.1046/j.1365-313x.2003.01859.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The CONSTANS (CO) gene of Arabidopsis plays a key role in the photoperiodic flowering pathway. To investigate photoperiod responses in cereals in more detail, we isolated three kinds of CO/Hd1 (rice ortholog of CO) homolog from hexaploid wheat, derived from the A, B, and D genomes and designated as wheat ortholog of CO from A genome (TaHd1-1), TaHd1-2, and TaHd1-3, respectively. They were highly similar to each other and to Hd1, and in addition harbored two conserved regions: two zinc finger motifs and CONSTANS, CONSTANS-LIKE and TIMING OF CAB EXPRESSION 1 (CCT) domain like CO/Hd1. They were located on the long arm of the homoeologous chromosome 6. TaHd1-2 harbored a 63-bp deletion at the promoter region containing the GATA-1 box, and consequently, we detected no subsequent transcript. The TaHd1-1 genomic clone was introduced to a rice line deficient in Hd1 function. Transgenic plants complemented the functions of rice Hd1: they promoted heading under short-day (SD) conditions and delayed it under long-day (LD)/natural conditions, indicating that Hd1 proteins from SD and LD plants share common structures and functions.
Collapse
Affiliation(s)
- Yasue Nemoto
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|
45
|
Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J Cereal Sci 2003. [DOI: 10.1016/s0733-5210(03)00030-4] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Nakamura T, Vrinten P, Saito M, Konda M. Rapid classification of partial waxy wheats using PCR-based markers. Genome 2002; 45:1150-6. [PMID: 12502261 DOI: 10.1139/g02-090] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the three homeologous waxy loci Wx-A1, Wx-B1, and Wx-D1 of a waxy wheat line have previously been characterized at the molecular level. Using combinations of these mutations, six types of partial waxy wheat plus wild type and waxy wheat (types 1-8) can be produced. Here, we describe primer sets for all three loci that can be used under a single set of conditions, allowing 32 lines to be characterized as types 1-8 in a single PCR run using a 96-well plate. Using multiplex PCR, mutations at the Wx-B1 and Wx-D1 loci can be identified in a single PCR, reducing the number of reactions necessary to identify and select the desired partial waxy wheat line. A single multiplex PCR can be used to detect all three mutations when products are analyzed using capillary electrophoresis on a microchip device. The PCR conditions and primers are effective with a number of cultivars from other countries, indicating that the mutations found at the Wx-A1 and Wx-B1 loci of these cultivars likely have the same origins as the mutations in the corresponding loci of the waxy wheat line used in this study. The PCR selection method described here is an easy and effective alternative to the commonly used SDS-PAGE methods for identification of null alleles.
Collapse
Affiliation(s)
- T Nakamura
- Department of Plant Breeding, Tohoku National Agriculture Research Center, Akahira 4, Morioka 020-0198, Iwate, Japan.
| | | | | | | |
Collapse
|
47
|
Yan L, Bhave M. Characterization of waxy proteins and waxy genes of Triticum timopheevii and T. zhukovskyi and implications for evolution of wheat. Genome 2001; 44:582-8. [PMID: 11550891 DOI: 10.1139/g01-036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The granule-bound starch (GBSS I, waxy protein) in Triticum timopheevii (AtAtGG) and T. zhukovskyi (AtAtAzAzGG) and a diagnostic section of the genes encoding GBSS-I from the Wx-TtA and Wx-G loci of T. timopheevii and the Wx-TtA, Wx-G, and Wx-TzA loci of T. zhukovskyi were investigated in this study. The waxy proteins in these two polyploid wheats could not be separated into distinct bands, in contrast to those in the T. turgidum (AABB)-T. aestivum (AABBDD) lineage. Alignment of sequences of the section covering exon4-intron4-exon5 of the various waxy genes led to the identification of gene-specific sequences in intron 4. The sequences specific to the Wx-TtA and Wx-G genes of T. timopheevii were different from those of the Wx-A1 gene and Wx-B1 genes of T. turgidum and T. aestivum. A surprising observation was that the Wx-TzA of T. zhukovskyi did not match with the Wx-TmA of T. monococcum, a putative donor of the Az genome, but matched unexpectedly and perfectly with the Wx-B1 gene on chromosome 4A, which is proposed to have translocated from the chromosome 7B of T. aestivum. The possible genetic mechanism explaining these observations is discussed.
Collapse
Affiliation(s)
- L Yan
- Centre for Bioprocessing and Food Technology, Victoria University, Melbourne, Australia.
| | | |
Collapse
|
48
|
Takumi S, Kosugi T, Murai K, Mori N, Nakamura C. Molecular cloning of three homoeologous cDNAs encoding orthologs of the maize KNOTTED1 homeobox protein from young spikes of hexaploid wheat. Gene 2000; 249:171-81. [PMID: 10831851 DOI: 10.1016/s0378-1119(00)00164-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The plant knotted1 (kn1)-like homeobox genes are known to play important roles in the maintenance of shoot apical meristem (SAM), determination of cell fate and differentiation of vegetative tissues. To study structural diversity of the three homologous loci encoding a KN1-like homeobox protein in the hexaploid wheat genome, we isolated clones from a cDNA library of young spikes of Japanese common wheat cultivar 'Norin 26'. Three different but highly homologous cDNAs were isolated and their sequences were determined. The mean homology of the deduced amino acid sequences was 96% as compared to the barley ortholog KNOX3. The wheat kn1-like homeobox proteins named WKNOX1 are encoded by a single set of homologous genes on the homologous group 4 chromosomes in the three component genomes of common wheat, i.e. 4A, 4B and 4D. The nucleotide sequence data and the Southern blot pattern suggested that the three homologous loci of wknox1 genes are highly conserved through polyploid evolution of wheat. They were expressed in SAM-containing shoots and young spikes but not in developed leaves, glumes and lemmas and callus tissues. The ectopic expression of the wknox1 was observed in lemma of wheat Hooded (Hd) mutants. The result suggested that the Hd gene is a dominant allele of the wknox1 locus on chromosome 4A.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- Chromosome Mapping
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/genetics
- Exons
- Gene Expression Profiling
- Genes, Homeobox/genetics
- Genes, Plant/genetics
- Homeodomain Proteins/genetics
- Introns
- Molecular Sequence Data
- Mutation
- Phylogeny
- Plant Proteins
- Polymerase Chain Reaction
- Polymorphism, Genetic
- Polyploidy
- Protein Isoforms/genetics
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
- Triticum/genetics
- Zea mays/genetics
Collapse
Affiliation(s)
- S Takumi
- Department of Biological and Environmental Science, Kobe University, Nada-ku, Japan.
| | | | | | | | | |
Collapse
|
49
|
Yan L, Bhave M, Fairclough R, Konik C, Rahman S, Appels R. The genes encoding granule-bound starch synthases at the waxy loci of the A, B, and D progenitors of common wheat. Genome 2000; 43:264-72. [PMID: 10791814 DOI: 10.1139/g99-117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three genes encoding granule-bound starch synthase (wx-TmA, wx-TsB, and wx-TtD) have been isolated from Triticum monococcum (AA), and Triticum speltoides (BB), by the polymerase chain reaction (PCR) approach, and from Triticum tauschii (DD), by screening a genomic DNA library. Multiple sequence alignment indicated that the wx-TmA, wx-TsB, and wx-TtD genes had the same extron and (or) intron structure as the previously reported waxy gene from barley. The lengths of the three wx-TmA, wx-TsB, and wx-TtD genes were 2834 bp, 2826 bp, and 2893 bp, respectively, each covering 31 bp in the untranslated leader and the entire coding region consisting of 11 exons and 10 introns. The three genes had identical lengths of exons, except exonl, and shared over 95% identity with each other within the exon regions. The majority of introns were significantly variable in length and sequence, differing mainly in length (1-57 bp) as a result of insertion and (or) deletion events. The deduced amino acid sequence from these three genes indicated that the mature WX-TMA, -TSB, and -TTD proteins contained the same number of amino acids, but differed in predicted molecular weight and isoelectric point (pI) due to amino acid substitutions (13-18). The predicted physical characteristics of the WX proteins matched the respective proteins in wheat very closely, but the match was not perfect. Furthermore the exon5 sequences of the wx-TmA, wx-TsB, and wx-TtD genes were different from a cDNA encoding a waxy gene of common wheat previously reported. The striking difference was that an insertion of 11 amino acids occurred in the cDNA sequence that could not be observed in the exons of the A, B, and D genes. It was noted, however, that the 3' end of intron4 of these genes could account for the additional 11 amino acids. The sequence information from the available waxy genes identified the intron4-exon5-intron5 region as being diagnostic for sequence variation in waxy. The sequence variation in the waxy genes provides the basis for primer design to distinguish the respective genes in common wheat, and its progenitors, using PCR.
Collapse
Affiliation(s)
- L Yan
- School of Life Sciences and Technology, Victoria University of Technology, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|