1
|
Dai P, Wu H, Ding G, Fan J, Li Y, Li S, Bao E, Li Y, Gao X, Li H, Zhu C, Zhu G. Recombinant Salmonella gallinarum ( S. gallinarum) Vaccine Candidate Expressing Avian Pathogenic Escherichia coli Type I Fimbriae Provides Protections against APEC O78 and O161 Serogroups and S. gallinarum Infection. Vaccines (Basel) 2023; 11:1778. [PMID: 38140181 PMCID: PMC10747928 DOI: 10.3390/vaccines11121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is one of the leading pathogens that cause devastating economic losses to the poultry industry. Type I fimbriae are essential adhesion factors of APEC, which can be targeted and developed as a vaccine candidate against multiple APEC serogroups due to their excellent immunogenicity and high homology. In this study, the recombinant strain SG102 was developed by expressing the APEC type I fimbriae gene cluster (fim) on the cell surface of an avirulent Salmonella gallinarum (S. gallinarum) vector strain using a chromosome-plasmid-balanced lethal system. The expression of APEC type I fimbriae was verified by erythrocyte hemagglutination assays and antigen-antibody agglutination tests. In vitro, the level of the SG102 strain adhering to leghorn male hepatoma (LMH) cells was significantly higher than that of the empty plasmid control strain, SG101. At two weeks after oral immunization, the SG102 strain remained detectable in the livers, spleens, and ceca of SG102-immunized chickens, while the SG101 strain was eliminated in SG101-immunized chickens. At 14 days after the secondary immunization with 5 × 109 CFU of the SG102 strain orally, highly antigen-specific humoral and mucosal immune responses against APEC type I fimbriae protein were detected in SG102-immunized chickens, with IgG and secretory IgA (sIgA) concentrations of 221.50 μg/mL and 1.68 μg/mL, respectively. The survival rates of SG102-immunized chickens were 65% (13/20) and 60% (12/20) after challenge with 50 LD50 doses of APEC virulent strains O78 and O161 serogroups, respectively. By contrast, 95% (19/20) and 100% (20/20) of SG101-immunized chickens died in challenge studies involving APEC O78 and O161 infections, respectively. In addition, the SG102 strain effectively provided protection against lethal challenges from the virulent S. gallinarum strain. These results demonstrate that the SG102 strain, which expresses APEC type I fimbriae, is a promising vaccine candidate against APEC O78 and O161 serogroups as well as S. gallinarum infections.
Collapse
Affiliation(s)
- Peng Dai
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225012, China;
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd., Yangzhou 225008, China; (G.D.); (J.F.); (Y.L.)
| | - Hucong Wu
- Nei Monggol Animal Disease Control Center, Hohhot 010010, China;
| | - Guowei Ding
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd., Yangzhou 225008, China; (G.D.); (J.F.); (Y.L.)
| | - Juan Fan
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd., Yangzhou 225008, China; (G.D.); (J.F.); (Y.L.)
| | - Yuhe Li
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd., Yangzhou 225008, China; (G.D.); (J.F.); (Y.L.)
| | - Shoujun Li
- Tianjin Ringpu Bio-Technology Co., Ltd., Tianjin 300308, China; (S.L.); (E.B.); (Y.L.); (X.G.)
| | - Endong Bao
- Tianjin Ringpu Bio-Technology Co., Ltd., Tianjin 300308, China; (S.L.); (E.B.); (Y.L.); (X.G.)
| | - Yajie Li
- Tianjin Ringpu Bio-Technology Co., Ltd., Tianjin 300308, China; (S.L.); (E.B.); (Y.L.); (X.G.)
| | - Xiaolei Gao
- Tianjin Ringpu Bio-Technology Co., Ltd., Tianjin 300308, China; (S.L.); (E.B.); (Y.L.); (X.G.)
| | - Huifang Li
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; (H.L.); (C.Z.)
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; (H.L.); (C.Z.)
| | - Guoqiang Zhu
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225012, China;
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
2
|
Choi J, Tompkins YH, Teng PY, Gogal RM, Kim WK. Effects of Tannic Acid Supplementation on Growth Performance, Oocyst Shedding, and Gut Health of in Broilers Infected with Eimeria Maxima. Animals (Basel) 2022; 12:ani12111378. [PMID: 35681844 PMCID: PMC9179276 DOI: 10.3390/ani12111378] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to evaluate effects of tannic acid (TA) on growth performance, fecal moisture content, oocyst shedding, gut permeability, lesion score, intestinal morphology, apparent ileal digestibility, and the antioxidant and immune system of broilers infected with Eimeria maxima. A total of 420 one-day-old broilers were distributed to five treatments with seven replicates of 12 birds. The five treatments were the (1) sham-challenged control (SCC; birds fed a control diet and administrated with PBS); (2) challenged control (CC; birds fed a control diet and inoculated with E. maxima); (3) tannic acid 0.5 (TA0.5; CC + 500 mg/kg TA); (4) tannic acid 2.75 (TA2.75; CC + 2750 mg/kg TA); and (5) tannic acid 5 (TA5; CC + 5000 mg/kg TA). The TA2.75 group had significantly lower gut permeability compared to the CC group at 5 days post-infection (dpi). Supplementation of TA linearly reduced oocyst shedding of E. maxima at 7 to 9 dpi (p < 0.05). At 13 dpi, the TA2.75 group had significantly greater apparent ileal digestibility (AID) of dry matter (DM) and organic matter (OM) compared to the CC group. At 13 dpi, supplementation of TA linearly increased jejunal villus height (VH). Thus, this study showed that supplementation of TA at levels of 500 to 2750 mg/kg has the potential to be an anti-coccidial agent against E. maxima in broilers.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Yuguo Huo Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Robert M. Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
- Correspondence: ; Tel.: +1-706-542-1346
| |
Collapse
|
3
|
Nishiyama K, Yokoi T, Sugiyama M, Osawa R, Mukai T, Okada N. Roles of the Cell Surface Architecture of Bacteroides and Bifidobacterium in the Gut Colonization. Front Microbiol 2021; 12:754819. [PMID: 34721360 PMCID: PMC8551831 DOI: 10.3389/fmicb.2021.754819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
There are numerous bacteria reside within the mammalian gastrointestinal tract. Among the intestinal bacteria, Akkermansia, Bacteroides, Bifidobacterium, and Ruminococcus closely interact with the intestinal mucus layer and are, therefore, known as mucosal bacteria. Mucosal bacteria use host or dietary glycans for colonization via adhesion, allowing access to the carbon source that the host’s nutrients provide. Cell wall or membrane proteins, polysaccharides, and extracellular vesicles facilitate these mucosal bacteria-host interactions. Recent studies revealed that the physiological properties of Bacteroides and Bifidobacterium significantly change in the presence of co-existing symbiotic bacteria or markedly differ with the spatial distribution in the mucosal niche. These recently discovered strategic colonization processes are important for understanding the survival of bacteria in the gut. In this review, first, we introduce the experimental models used to study host-bacteria interactions, and then, we highlight the latest discoveries on the colonization properties of mucosal bacteria, focusing on the roles of the cell surface architecture regarding Bacteroides and Bifidobacterium.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsunari Yokoi
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ro Osawa
- Research Center for Food Safety and Security, Kobe University, Kobe, Japan
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
4
|
Alber A, Stevens MP, Vervelde L. The bird's immune response to avian pathogenic Escherichia coli. Avian Pathol 2021; 50:382-391. [PMID: 33410704 DOI: 10.1080/03079457.2021.1873246] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) cause colibacillosis in birds, a syndrome of severe respiratory and systemic disease that constitutes a major threat due to early mortality, condemnation of carcasses and reduced productivity. APEC can infect different types of birds in all commercial settings, and birds of all ages, although disease tends to be more severe in younger birds likely a consequence of an immature immune system. APEC can act as both primary and secondary pathogens, with predisposing factors for secondary infections including poor housing conditions, respiratory viral and Mycoplasma spp. infections or vaccinations. Controlled studies with APEC as primary pathogens have been used to study the bird's immune response to APEC, although it may not always be representative of natural infections which may be more complex due to the presence of secondary agents, stress and environmental factors. Under controlled experimental conditions, a strong early innate immune response is induced which includes host defence peptides in mucus and a cellular response driven by heterophils and macrophages. Both antibody and T-cell mediated adaptive responses have been demonstrated after vaccination. In this review we will discuss the bird's immune response to APEC as primary pathogen with a bias towards the innate immune response, as mechanistic adaptive studies clearly form a much more limited body of work despite numerous vaccine trials.
Collapse
Affiliation(s)
| | - Mark P Stevens
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Jiang J, Qi L, Wei Q, Shi F. Maternal stevioside supplementation ameliorates intestinal mucosal damage and modulates gut microbiota in chicken offspring challenged with lipopolysaccharide. Food Funct 2021; 12:6014-6028. [PMID: 34036963 DOI: 10.1039/d0fo02871a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our previous study showed that dietary stevioside supplementation could alleviate intestinal mucosal damage induced by lipopolysaccharide (LPS) through its anti-inflammatory and antioxidant effects in broiler chickens. However, it remains unknown whether feeding stevioside to breeder hens could exert similar biological functions in their offspring. The present study aimed to investigate whether maternal dietary stevioside supplementation could prevent LPS-induced intestinal mucosal damage and alteration of gut microbiota in chicken offspring. A total of 120 Jinmao yellow-feathered breeder hens were fed a basal diet (CON) or a 250 mg kg-1 stevioside-supplemented diet (STE) for 5 weeks before collecting their eggs. After hatching, 160 male offspring (80 chickens from each group) were randomly selected and divided into four treatment groups: (1) the offspring of hens fed a basal diet (CON); (2) the offspring of hens fed a stevioside-supplemented diet (STE); (3) the CON group challenged with LPS (LPS); and (4) the STE group challenged with LPS (LSTE). The results showed that maternal stevioside supplementation increased the hatching weight and improved the intestinal morphology. LPS challenge significantly decreased the terminal body weight and the concentrations of serum triglyceride (TG) and glucose (GLU) of the chicken offspring. Maternal stevioside supplementation protected against LPS-induced morphological damage, goblet cell impairment, intestinal apoptosis, and gene expression alteration. In addition, sequence analysis of 16S rRNA gene showed that maternal stevioside supplementation could prevent the impairment of bacterial diversity in LPS-challenged chicken offspring. Moreover, the increased abundance of Lactobacillus caused by maternal stevioside supplementation had a significant negative correlation with the expression of intestinal inflammatory cytokines. In conclusion, maternal stevioside supplementation could ameliorate intestinal mucosal damage and modulate gut microbiota in chicken offspring challenged with LPS.
Collapse
Affiliation(s)
- Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lina Qi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Yu L, Wang H, Han X, Li W, Xue M, Qi K, Chen X, Ni J, Deng R, Shang F, Xue T. The two-component system, BasSR, is involved in the regulation of biofilm and virulence in avian pathogenic Escherichia coli. Avian Pathol 2020; 49:532-546. [PMID: 32894030 DOI: 10.1080/03079457.2020.1781791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) is a subgroup of extra-intestinal pathogenic E. coli (ExPEC) strains that cause avian colibacillosis, resulting in significant economic losses to the poultry industry worldwide. It has been reported that a few two-component signal transduction systems (TCS) participate in the regulation of the virulence factors of APEC infection. In this study, a basSR-deficient mutant strain was constructed from its parent strain APECX40 (WT), and high-throughput sequencing (RNA-seq) was performed to analyse the transcriptional profile of WT and its mutant strain XY1. Results showed that the deletion of basSR down-regulated the transcript levels of a series of biofilm- and virulence-related genes. Results of biofilm formation assays and bird model experiments indicated that the deletion of basSR inhibited biofilm formation in vitro and decreased bacterial virulence and colonization in vivo. In addition, electrophoretic mobility shift assays confirmed that the BasR protein could bind to the promoter regions of several biofilm- and virulence-related genes, including ais, opgC and fepA. This study suggests that the BasSR TCS might be a global regulator in the pathogenesis of APEC infection. RESEARCH HIGHLIGHTS Transcriptional profiling showed that BasSR might be a global regulator in APEC. BasSR increases APEC pathogenicity in vivo. BasSR positively regulates biofilm- and the virulence-associated genes. BasSR can bind to the promoter regions of virulence-associated genes ais, opgC and fepA.
Collapse
Affiliation(s)
- Lumin Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, People's Republic of China
| | - Wenchang Li
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Mei Xue
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, People's Republic of China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, People's Republic of China
| | - Xiaolin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jingtian Ni
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Ruining Deng
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| |
Collapse
|
7
|
Yuan M, Peng LY, Wu SC, Li JH, Song K, Chen S, Huang JN, Yu JL, An Q, Yi PF, Shen HQ, Fu BD. Schizandrin attenuates inflammation induced by avian pathogenic Escherichia coli in chicken type II pneumocytes. Int Immunopharmacol 2020; 81:106313. [PMID: 32070918 DOI: 10.1016/j.intimp.2020.106313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) is a kind of highly pathogenic parenteral bacteria, which adheres to chicken type II pneumocytes through pili, causing inflammatory damage of chicken type II pneumocytes. Without affecting the growth of bacteria, anti-adhesion to achieve anti-inflammatory effect is considered to be a new method for the treatment of multi-drug-resistant bacterial infections. In this study, the anti-APEC activity of schizandrin was studied in vitro. By establishing the model of chicken type II pneumocytes infected with APEC-O78, the adhesion number, the expression of virulence genes, the release of lactate dehydrogenase (LDH), levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8 and activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were detected. The results showed that schizandrin reduced the release of LDH and the adherence of APEC on chicken type II pneumocytes. Moreover, schizandrin markedly decreased the levels of IL-1β, IL-8, IL-6, and TNF-α, the mechanism responsible for these effects was attributed to the inhibitory effect of schizandrin on NF-κB and MAPK signaling activation. In conclusion, our findings revealed that schizandrin could reduce the inflammatory injury of chicken type II pneumocytes by reducing the adhesion of APEC-O78 to chicken type II pneumocytes. The results indicate that schizandrin can be a potential agent to treat inflammation caused by avian colibacillosis.
Collapse
Affiliation(s)
- Meng Yuan
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Shuai-Cheng Wu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jing-He Li
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Ke Song
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Shuang Chen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Jiang-Ni Huang
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Jia-Lin Yu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Qiang An
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Hai-Qing Shen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| |
Collapse
|
8
|
Yu L, Li W, Qi K, Wang S, Chen X, Ni J, Deng R, Shang F, Xue T. McbR is involved in biofilm formation and H2O2 stress response in avian pathogenic Escherichia coli X40. Poult Sci 2019; 98:4094-4103. [PMID: 31002106 DOI: 10.3382/ps/pez205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/22/2019] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes a variety of extraintestinal diseases known as colibacillosis and is responsible for significant economic losses in the poultry industry worldwide. Biofilm formation results in increased morbidity and persistent infections, and is the main reason for the difficult treatment of colibacillosis with antimicrobial agents. It is reported that the transcriptional regulator McbR regulates biofilm formation and mucoidy by repressing the expression of the periplasmic protein YbiM, and activates the transcription of the yciGFE operon by binding to the yciG promoter in E. coli K-12. However, whether McbR regulates biofilm formation and H2O2 stress response in APEC has been not reported. The present study showed that, in the clinical isolate APECX40, the deletion of mcbR increased biofilm formation by upregulating the transcription of the biofilm-associated genes bcsA, fliC, wcaF, and fimA. In addition, the deletion of mcbR decreased H2O2 stress response by downregulating the transcript levels of the stress-associated genes yciF and yciE. The electrophoretic mobility shift assays confirmed that McbR directly binds to the promoter regions of yciG and yciF. This study may provide new clues to understanding gene regulation in APEC.
Collapse
Affiliation(s)
- Lumin Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wenchang Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, Anhui 230036, China
| | - Siyu Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jingtian Ni
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ruining Deng
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
9
|
Epidemiological significance of poultry litter for spreading the antibiotic-resistant strains of Escherichia coli. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s004393391600043x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
|
11
|
Peng LY, Yuan M, Song K, Yu JL, Li JH, Huang JN, Yi PF, Fu BD, Shen HQ. Baicalin alleviated APEC-induced acute lung injury in chicken by inhibiting NF-κB pathway activation. Int Immunopharmacol 2019; 72:467-472. [PMID: 31035089 DOI: 10.1016/j.intimp.2019.04.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
Bacterial pneumonia is a leading cause of death in the animal husbandry. Acute lung injury (ALI), most often seen as a part of systemic inflammatory process, characterized by progressive hypoxemia, edema, and neutrophil accumulation in the lung. Baicalin has been reported to inhibit inflammatory response, but its role in ALI remains unknown. The purpose of our study was to determine the protective effect and possible mechanism of baicalin against avian pathogenic Escherichia coli (APEC)-induced ALI in chicken. Chickens were conditioned with baicalin 1 week before intratracheally instilled with APEC. Then, chickens were sacrificed by CO2 inhalation 12 h later and the lung tissues were collected for examining histopathological changes, wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, levels of pro-inflammatory cytokines and activation of NF-κB signaling pathway. The results showed that pre-treatment of chickens with baicalin significantly alleviated the death rate, histopathological changes in lung tissues. The W/D ratio, MPO activity and production of cytokines, such as IL-1β, TNF-α, IL-6 of lung tissues were also decreased following treatment with baicalin. Furthermore, the mechanism responsible for these effects was attributed to the inhibitory effect of baicalin on nuclear factor-κB (NF-κB) signaling activation. These data thus support the application of baicalin as a potential medicine for the treatment of E. coli-induced ALI by regulating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Meng Yuan
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Ke Song
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Jia-Lin Yu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Jing-He Li
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Jiang-Ni Huang
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Hai-Qing Shen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| |
Collapse
|
12
|
O'Brien KM, Chimenti MS, Farnell M, Tabler T, Bair T, Bray JL, Nonnenmann MW. High throughput genomic sequencing of bioaerosols in broiler chicken production facilities. Microb Biotechnol 2016; 9:782-791. [PMID: 27470660 PMCID: PMC5072194 DOI: 10.1111/1751-7915.12380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022] Open
Abstract
Chronic inhalation exposure to agricultural dust promotes the development of chronic respiratory diseases among poultry workers. Poultry dust is composed of dander, chicken feed, litter bedding and microbes. However, the microbial composition and abundance has not been fully elucidated. Genomic DNA was extracted from settled dust and personal inhalable dust collected while performing litter sampling or mortality collection tasks. DNA libraries were sequenced using a paired-end sequencing-by-synthesis approach on an Illumina HiSeq 2500. Sequencing data showed that poultry dust is predominantly composed of bacteria (64-67%) with a small quantity of avian, human and feed DNA (< 2% of total reads). Staphylococcus sp. AL1, Salinicoccus carnicancri and Lactobacillus crispatus were the most abundant bacterial species in personal exposure samples of inhalable dust. Settled dust had a moderate relative abundance of these species as well as Staphylococcus lentus and Lactobacillus salivarius. There was a statistical difference between the microbial composition of aerosolized and settled dust. Unlike settled dust composition, aerosolized dust composition had little variance between samples. These data provide an extensive analysis of the microbial composition and relative abundance in personal inhalable poultry dust and settled poultry dust.
Collapse
Affiliation(s)
- Kate M O'Brien
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, Iowa City, IA, USA
| | - Morgan Farnell
- Mississippi State University Extension Service, Mississippi State, MS, USA
| | - Tom Tabler
- Mississippi State University Extension Service, Mississippi State, MS, USA
| | - Thomas Bair
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, Iowa City, IA, USA
| | - Joey L Bray
- Department of Agriculture, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Matthew W Nonnenmann
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Cui ZQ, Wu ZM, Fu YX, Xu DX, Guo X, Shen HQ, Wei XB, Yi PF, Fu BD. Autoinducer-2 of quorum sensing is involved in cell damage caused by avian pathogenic Escherichia coli. Microb Pathog 2016; 99:247-252. [PMID: 27569532 DOI: 10.1016/j.micpath.2016.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/14/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) infections are responsible for great losses in the poultry industry. Quorum sensing (QS) acts as a global regulatory system that controls genes involved in bacterial pathogenesis, metabolism and protein biosynthesis. However, whether QS of APEC is related to cell damage has not been elucidated. In the present study, we explored the correlation between the damage of chicken type II pneumocytes induced by APEC and the autoinducer-2 (AI-2) activity of APEC. The results showed that when chicken type II pneumocytes were co-cultured with 108 CFU/ml of APEC-O78 for 6 h, the release of LDH reached the highest level (192.5 ± 13.4 U/L) (P < 0.01), and the percentages of dead cells followed the same trend in trypan blue exclusion assay. In addition, the AI-2 activity of cell-free culture fluid (CF) reached the maximum value after 6 h co-culture with 108 CFU/ml of APEC-O78. At the same time, the mRNA expressions of eight virulence genes (papC, fimA, fimC, hlyE, ompA, luxS, pfs, and qseA) of 108 CFU/ml APEC-O78 were significantly increased compared with those of 107 CFU/ml, and the mRNA expressions of four virulence genes (hlyE, tsh, iss, and luxS) of 108 CFU/ml APEC-O78 were higher than those of 109 CFU/ml (p < 0.05) after incubation for 6 h. These results suggested that AI-2-mediated QS is involved in the cell damage induced by APEC-O78, indicating AI-2 may be one new potential target for preventing chicken colibacillosis.
Collapse
Affiliation(s)
- Zhen-Qiang Cui
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Zong-Mei Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Yun-Xing Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Dao-Xiu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Xun Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Hai-Qing Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Xu-Bin Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Peng-Fei Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Ben-Dong Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| |
Collapse
|
14
|
Witzig M, Camarinha da Silva A, Green-Engert R, Hoelzle K, Zeller E, Seifert J, Hoelzle LE, Rodehutscord M. Spatial Variation of the Gut Microbiota in Broiler Chickens as Affected by Dietary Available Phosphorus and Assessed by T-RFLP Analysis and 454 Pyrosequencing. PLoS One 2015; 10:e0143442. [PMID: 26588075 PMCID: PMC4654470 DOI: 10.1371/journal.pone.0143442] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/04/2015] [Indexed: 12/02/2022] Open
Abstract
Molecular fingerprinting and sequencing based techniques have been widely used to characterize microbial communities. Terminal restriction fragment length polymorphism (T-RFLP) and 454-pyrosequencing were used to determine the microorganisms present in the different sections of the chicken gastrointestinal tract (GIT) (crop, jejunum, ileum and caeca). Broilers fed with diets differing in phosphorous (P) and calcium (Ca) as well as in phytase levels were used to study the microbiota of the upper and lower part of the GIT. A database with terminal restriction fragments (T-RF) of the most important organism present in the different gastrointestinal sections was constructed. The analysis revealed a distinct microbial assemblage on each section. Regardless of the diet, crop, jejunum and ileum were mainly colonized by Lactobacillaceae, and caeca were the most diverse site. The correlation between Lactobacillus crispatus and L. reuteri was positive in the crop, but negative in the jejunum. In crop samples, higher P and Ca levels led to a shift in the abundance of L. reuteri and L. crispatus to L. salivarius and L. taiwanensis whereas in the ileum supplementation of phytase favored L. salivarius and L. taiwanensis but resulted in decreased abundance of L. crispatus. Both methods were correlating significantly, being T-RFLP a reliable fingerprinting method to rapidly analyze large numbers of samples in a cost-effective and rapid manner. Results are easy to interpret with no need of deep bioinformatics knowledge and can be integrated with taxonomic information.
Collapse
Affiliation(s)
- Maren Witzig
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart, Germany
- * E-mail:
| | | | | | - Katharina Hoelzle
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart, Germany
| | - Ellen Zeller
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart, Germany
| | - Ludwig E. Hoelzle
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart, Germany
| | - Markus Rodehutscord
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart, Germany
| |
Collapse
|
15
|
Nikoofard V, Mahdavi AH, Samie A, Jahanian E. Effects of different sulphur amino acids and dietary electrolyte balance levels on performance, jejunal morphology, and immunocompetence of broiler chicks. J Anim Physiol Anim Nutr (Berl) 2015; 100:189-99. [DOI: 10.1111/jpn.12316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/11/2015] [Indexed: 11/27/2022]
Affiliation(s)
- V. Nikoofard
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - A. H. Mahdavi
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - A.H. Samie
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - E. Jahanian
- Department of Animal Sciences; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| |
Collapse
|
16
|
Ojala T, Kankainen M, Castro J, Cerca N, Edelman S, Westerlund-Wikström B, Paulin L, Holm L, Auvinen P. Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis. BMC Genomics 2014; 15:1070. [PMID: 25480015 PMCID: PMC4300991 DOI: 10.1186/1471-2164-15-1070] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/24/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Lactobacillus crispatus is a ubiquitous micro-organism encountered in a wide range of host-associated habitats. It can be recovered from the gastrointestinal tract of animals and it is a common constituent of the vaginal microbiota of humans. Moreover, L. crispatus can contribute to the urogenital health of the host through competitive exclusion and the production of antimicrobial agents. In order to investigate the genetic diversity of this important urogenital species, we performed a comparative genomic analysis of L. crispatus. RESULTS Utilizing the completed genome sequence of a strain ST1 and the draft genome sequences of nine other L. crispatus isolates, we defined the scale and scope of the pan- and core genomic potential of L. crispatus. Our comparative analysis identified 1,224 and 2,705 ortholog groups present in all or only some of the ten strains, respectively. Based on mathematical modeling, sequencing of additional L. crispatus isolates would result in the identification of new genes and functions, whereas the conserved core of the ten strains was a good representation of the final L. crispatus core genome, estimated to level at about 1,116 ortholog groups. Importantly, the current core was observed to encode bacterial components potentially promoting urogenital health. Using antibody fragments specific for one of the conserved L. crispatus adhesins, we demonstrated that the L. crispatus core proteins have a potential to reduce the ability of Gardnerella vaginalis to adhere to epithelial cells. These findings thereby suggest that L. crispatus core proteins could protect the vagina from G. vaginalis and bacterial vaginosis. CONCLUSIONS Our pan-genome analysis provides insights into the intraspecific genome variability and the collective molecular mechanisms of the species L. crispatus. Using this approach, we described the differences and similarities between the genomes and identified features likely to be important for urogenital health. Notably, the conserved genetic backbone of L. crispatus accounted for close to 60% of the ortholog groups of an average L. crispatus strain and included factors for the competitive exclusion of G. vaginalis, providing an explanation on how this urogenital species could improve vaginal health.
Collapse
Affiliation(s)
- Teija Ojala
- Institute of Biotechnology, University of Helsinki, Viikinkaari 4, PO Box 56, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guo X, Zhang LY, Wu SC, Xia F, Fu YX, Wu YL, Leng CQ, Yi PF, Shen HQ, Wei XB, Fu BD. Andrographolide interferes quorum sensing to reduce cell damage caused by avian pathogenic Escherichia coli. Vet Microbiol 2014; 174:496-503. [DOI: 10.1016/j.vetmic.2014.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/30/2014] [Accepted: 09/24/2014] [Indexed: 11/28/2022]
|
18
|
Spivey MA, Dunn-Horrocks SL, Duong T. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry. Poult Sci 2014; 93:2910-9. [PMID: 25239531 DOI: 10.3382/ps.2014-04076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry.
Collapse
Affiliation(s)
- Megan A Spivey
- Department of Poultry Science, Texas A&M University, College Station 77843-2472
| | | | - Tri Duong
- Department of Poultry Science, Texas A&M University, College Station 77843-2472
| |
Collapse
|
19
|
Addwebi TM, Call DR, Shah DH. Contribution of Salmonella Enteritidis virulence factors to intestinal colonization and systemic dissemination in 1-day-old chickens. Poult Sci 2014; 93:871-81. [DOI: 10.3382/ps.2013-03710] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Zhang LY, Lv S, Wu SC, Guo X, Xia F, Hu XR, Song Z, Zhang C, Qin QQ, Fu BD, Yi PF, Shen HQ, Wei XB. Inhibitory effects of α-cyperone on adherence and invasion of avian pathogenic Escherichia coli O78 to chicken type II pneumocytes. Vet Immunol Immunopathol 2014; 159:50-7. [PMID: 24629766 DOI: 10.1016/j.vetimm.2014.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/26/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) are extra-intestinal pathogenic E. coli, and usually cause avian septicemia through breaching the blood-gas barrier. Type II pneumocytes play an important role of maintaining the function of the blood-gas barrier. However, the mechanism of APEC injuring type II pneumocytes remains unclear. α-cyperone can inhibit lung cell injury induced by Staphylococcus aureus. In order to explore whether α-cyperone regulates the adherence and invasion of APEC-O78 to chicken type II pneumocytes, we successfully cultured chicken type II pneumocytes. The results showed that α-cyperone significantly decreased the adherence of APEC-O78 to chicken type II pneumocytes. In addition, α-cyperone inhibited actin cytoskeleton polymerization induced by APEC-O78 through down regulating the expression of Nck-2, Cdc42 and Rac1. These results provide new evidence for the prevention of colibacillosis in chicken.
Collapse
Affiliation(s)
- Li-Yan Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Shuang Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Shuai-Cheng Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Xun Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Fang Xia
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Xi-Rou Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Zhou Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Cui Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Qian-Qian Qin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Ben-Dong Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China.
| | - Peng-Fei Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Hai-Qing Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| | - Xu-Bin Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun 130062, Jilin, China
| |
Collapse
|
21
|
Wu R, Lu J. Proteomics of Lactic Acid Bacteria. LACTIC ACID BACTERIA 2014:249-301. [DOI: 10.1007/978-94-017-8841-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Casein glycomacropeptide in the diet may reduceEscherichia coliattachment to the intestinal mucosa and increase the intestinal lactobacilli of early weaned piglets after an enterotoxigenicE. coliK88 challenge. Br J Nutr 2012; 109:1001-12. [DOI: 10.1017/s0007114512002978] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Casein glycomacropeptide (CGMP), a glycoprotein originating during cheese manufacture, has shown promising effects by promoting the growth of some beneficial bacteriain vitro, although its activity has not been well explored. The present study was designed to evaluate the effects of CGMP against enterotoxigenicEscherichia coli(ETEC) K88in vitro(Trial 1) andin vivo(Trial 2). In Trial 1, increasing concentrations of CGMP (0, 0·5, 1·5 or 2·5 mg/ml) were tested regarding its ability to block the attachment of ETEC K88 to ileal mucosa tissues obtained from piglets. Increasing the concentration of CGMP resulted in a gradual decrease in ETEC K88 attachment to the epithelial surface. In Trial 2, seventy-two piglets were distributed in a 2 × 2 factorial combination including or omitting CGMP in the diet (control dietv.CGMP) and challenged or not with ETEC K88 (yesv.no). Inclusion of CGMP increased crude protein, ammonia and isoacid concentrations in colon digesta. CGMP also increased lactobacilli numbers in ileum and colon digesta, and reduced enterobacteria counts in mucosa scrapings and the percentage of villi withE. coliadherence measured by fluorescencein situhybridisation. The inclusion of CGMP in the diets of challenged animals also prevented the increase of enterobacteria in ileal digesta. We can conclude that CGMP may improve gut health by diminishing the adhesion of ETEC K88 to the intestinal mucosa, by increasing the lactobacilli population in the intestine and by reducing the overgrowth of enterobacteria in the digestive tract of piglets after an ETEC K88 challenge.
Collapse
|
23
|
Porcheron G, Chanteloup NK, Trotereau A, Brée A, Schouler C. Effect of fructooligosaccharide metabolism on chicken colonization by an extra-intestinal pathogenic Escherichia coli strain. PLoS One 2012; 7:e35475. [PMID: 22514747 PMCID: PMC3325963 DOI: 10.1371/journal.pone.0035475] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 03/18/2012] [Indexed: 11/19/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) strains cause many diseases in humans and animals. While remaining asymptomatic, they can colonize the intestine for subsequent extra-intestinal infection and dissemination in the environment. We have previously identified the fos locus, a gene cluster within a pathogenicity island of the avian ExPEC strain BEN2908, involved in the metabolism of short-chain fructooligosaccharides (scFOS). It is assumed that these sugars are metabolized by the probiotic bacteria of the microbiota present in the intestine, leading to a decrease in the pathogenic bacterial population. However, we have previously shown that scFOS metabolism helps BEN2908 to colonize the intestine, its reservoir. As the fos locus is located on a pathogenicity island, one aim of this study was to investigate a possible role of this locus in the virulence of the strain for chicken. We thus analysed fos gene expression in extracts of target organs of avian colibacillosis and performed a virulence assay in chickens. Moreover, in order to understand the involvement of the fos locus in intestinal colonization, we monitored the expression of fos genes and their implication in the growth ability of the strain in intestinal extracts of chicken. We also performed intestinal colonization assays in axenic and Specific Pathogen-Free (SPF) chickens. We demonstrated that the fos locus is not involved in the virulence of BEN2908 for chickens and is strongly involved in axenic chicken cecal colonization both in vitro and in vivo. However, even if the presence of a microbiota does not inhibit the growth advantage of BEN2908 in ceca in vitro, overall, growth of the strain is not favoured in the ceca of SPF chickens. These findings indicate that scFOS metabolism by an ExPEC strain can contribute to its fitness in ceca but this benefit is fully dependent on the bacteria present in the microbiota.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Nathalie Katy Chanteloup
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Angélina Trotereau
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Annie Brée
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Catherine Schouler
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- * E-mail:
| |
Collapse
|
24
|
Effects of Dietary Antibiotics, Actigen ® Yeast Cell Wall Derivative, or Both on Broiler Chicken Live Performance in a Fifty-Two Day Pen Trial on Built-up Litter. J Poult Sci 2012. [DOI: 10.2141/jpsa.0110175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Salmonella enterica serovar typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infect Immun 2011; 79:4105-21. [PMID: 21768276 DOI: 10.1128/iai.01390-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pattern of global gene expression in Salmonella enterica serovar Typhimurium bacteria harvested from the chicken intestinal lumen (cecum) was compared with that of a late-log-phase LB broth culture using a whole-genome microarray. Levels of transcription, translation, and cell division in vivo were lower than those in vitro. S. Typhimurium appeared to be using carbon sources, such as propionate, 1,2-propanediol, and ethanolamine, in addition to melibiose and ascorbate, the latter possibly transformed to d-xylulose. Amino acid starvation appeared to be a factor during colonization. Bacteria in the lumen were non- or weakly motile and nonchemotactic but showed upregulation of a number of fimbrial and Salmonella pathogenicity island 3 (SPI-3) and 5 genes, suggesting a close physical association with the host during colonization. S. Typhimurium bacteria harvested from the cecal mucosa showed an expression profile similar to that of bacteria from the intestinal lumen, except that levels of transcription, translation, and cell division were higher and glucose may also have been used as a carbon source.
Collapse
|
26
|
The type VI secretion system plays a role in type 1 fimbria expression and pathogenesis of an avian pathogenic Escherichia coli strain. Infect Immun 2010; 78:4990-8. [PMID: 20855516 DOI: 10.1128/iai.00531-10] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) strains frequently cause extraintestinal infections and are responsible for significant economic losses in the poultry industry worldwide. APEC isolates are closely related to human extraintestinal pathogenic E. coli (ExPEC) strains and may also act as pathogens for humans. Known APEC virulence factors include adhesins such as type 1 fimbriae and curli, iron acquisition systems, and cytotoxins. Here we show that APEC strain SEPT362, isolated from a septicemic hen, expresses a type VI secretion system (T6SS); causes cytoskeleton rearrangements; and invades epithelial cells, replicates within macrophages, and causes lethal disease in chicks. To assess the contribution of the T6SS to SEPT362 pathogenesis, we generated two mutants, hcp (which encodes a protein suggested to be both secreted and a structural component of the T6SS) and clpV (encoding the T6SS ATPase). Both mutants showed decreased adherence and actin rearrangement on epithelial cells. However, only the hcp mutant presented a mild decrease in its ability to invade epithelial cells, and none of these mutants were defective for intramacrophage replication. Transcriptome studies showed that the level of expression of type 1 fimbriae was decreased in these mutants, which may account for the diminished adhesion and invasion of epithelial cells. The T6SS seems to be important for the disease process, given that both mutants were attenuated for infection in chicks. These results suggest that the T6SS influences the expression of type 1 fimbriae and contributes to APEC pathogenesis.
Collapse
|
27
|
Abstract
Lactobacillus crispatus is a common member of the beneficial microbiota present in the vertebrate gastrointestinal and human genitourinary tracts. Here, we report the genome sequence of L. crispatus ST1, a chicken isolate displaying strong adherence to vaginal epithelial cells.
Collapse
|
28
|
Phenotypic and genotypic properties of Escherichia coli isolated from colisepticemic cases of Japanese quail. Trop Anim Health Prod 2010; 42:1497-504. [PMID: 20401756 DOI: 10.1007/s11250-010-9583-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
Abstract
This study was conducted to characterize the Escherichia coli isolates from colisepticemic Japanese quails. One hundred and nine E. coli were isolated in pure culture from heart blood of dead Japanese quails. The sampled birds were originated from four different farms. Antibiotic resistance pattern of E. coli isolates were determined against nine antibacterial agents. Phylotype and virulence genes of the isolates were detected by polymerase chain reaction. By disc diffusion method, all of the isolates showed resistance to three or more antibiotics, and 19 different patterns of multiple drug resistance were observed. Phylotyping of the most prevalent multiple drug-resistant isolates revealed that they mostly belonged to phylogroups A (A(1) subgroup). The E. coli isolates belong to four phylogenetic groups: A (55.0%), B1 (18.3%), B2 (17.4%), and D (9.2%). Eighty-nine (81.7%) isolates were distributed in five phylogenetic subgroups including 22 (20.2%) in A(0), 38 (34.9%) in A(1), 19 (17.4%) in B2(3), 7 (6.4%) in D(1), and 3 (2.8%) in D(2). The examined E. coli isolates exhibit at least one of the virulence genes tested, whereas three most prevalent genes were crl (94.5%), fimH (89.0%), and iutA (51.4%), respectively. The genetic marker for Afa (afaI B-C), S (sfa/focD-E), and P (papE-F) fimbriae were found in one, four, and ten isolates, respectively. Thirteen different combinations of virulence gene were observed, where combination of crl and fimH genes was the most prevalent pattern. None of the isolates contained the ipaH, stx1, stx2, and eaeA genetic markers. In conclusion, E. coli strains could be considered as a causative agent of mortality in quail farms. In conclusion, E. coli isolates from colisepticemic quails are distributed in different phylogroups, are resistant to combinations of antibiotic agents, and contain several virulence genes.
Collapse
|
29
|
Mahdavi A, Rahmani H, Nili N, Samie A, Soleimanian-Zad S, Jahanian R. Effects of dietary egg yolk antibody powder on growth performance, intestinal Escherichia coli colonization, and immunocompetence of challenged broiler chicks. Poult Sci 2010; 89:484-94. [DOI: 10.3382/ps.2009-00541] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
30
|
Khazandi M, Tivey D. Developing an in vitro method for Eimeria tenella attachment to its preferred and non-preferred intestinal sites. Exp Parasitol 2010; 125:137-40. [PMID: 20097199 DOI: 10.1016/j.exppara.2010.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 12/27/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
A frozen section method utilising chicken intestinal tissue was developed to study the Eimeria tenella attachment ex vivo. In order to examine Eimeria-epithelial cell attachment, 10(5) E. tenella sporozoites were incubated with each caecal frozen section (6, 10 and 14 microm) for 1h in 5% CO2 incubator at 41 degrees C. E. tenella sporozoites attached successfully to enterocytes in 14 microm thick of caecal sections. Sporozoite attachment to caecal sections was shown to be dependent on the number of parasites added. To evaluate the method, E. tenella sporozoites were incubated to its preferred (caecum) and non-preferred (duodenum and jejunum) intestinal sites. The number of sporozoites attached to the caecal enterocytes was significantly greater (P<0.0001) in comparison with the limited number of sporozoites attached to enterocytes of non-preferred intestinal sites. This method was shown to be able to reveal differences in binding capability and allows for comparison of intestinal site attachment.
Collapse
|
31
|
Yang J, Huang K, Qin S, Wu X, Zhao Z, Chen F. Antibacterial action of selenium-enriched probiotics against pathogenic Escherichia coli. Dig Dis Sci 2009; 54:246-54. [PMID: 18612820 DOI: 10.1007/s10620-008-0361-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 06/03/2008] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to evaluate the inhibitory activity of selenium-enriched probiotics against pathogenic Escherichia coli (E. coli) in vitro and in vivo. Escherichia coli was co-cultured in vitro with each probiotic strain individually, and a mixture of the four strains and its population was counted at various time points. We also collected a cell-free culture supernatant (CFCS) of each probiotic strain and the four-strain mix to examine their antibacterial activity, using the cylinder plate method. Results demonstrated that co-culture with probiotics significantly reduced the number of E. coli. The different sizes of the inhibition zones made by each CFCS proved that E. coli was inhibited by the metabolites of the probiotics. In vivo, Kunming mice were allocated to different groups supplemented with selenium-enriched and other probiotics. After 28 days, the mice were inoculated with pathogenic E. coli so that we could compare mortality rates and inspect other indexes of each treatment. The mortality of the group with selenium-enriched probiotics was the lowest. In addition, the organic antioxidant status improved, immunity was fortified, and the internal environment of the intestinal tract was enhanced with selenium-enriched probiotic supplementation. In conclusion, selenium-enriched probiotics can strongly antagonize pathogenic E. coli in vitro and in vivo.
Collapse
Affiliation(s)
- Jiajun Yang
- Institute of Nutritional and Metabolic Disorders, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
32
|
Dziva F, Stevens MP. Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenicEscherichia coliin their natural hosts. Avian Pathol 2008; 37:355-66. [DOI: 10.1080/03079450802216652] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Pirgozliev V, Oduguwa† O, Acamovic T, Bedford M. Effects of dietary phytase on performance and nutrient metabolism in chickens. Br Poult Sci 2008; 49:144-54. [DOI: 10.1080/00071660801961447] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
The leucine-responsive regulatory protein, Lrp, activates transcription of the fim operon in Salmonella enterica serovar typhimurium via the fimZ regulatory gene. J Bacteriol 2007; 190:602-12. [PMID: 17981960 DOI: 10.1128/jb.01388-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The fim operon of Salmonella enterica serovar Typhimurium encodes type 1 fimbriae. The expression of fim is controlled in response to environmental signals through a complex regulatory cascade involving the proteins FimW, FimY, and FimZ and a genetic locus, fimU, that encodes a rare arginine tRNA. We discovered that a knockout mutation in lrp, the gene that codes for the leucine-responsive regulatory protein (Lrp), inhibited fim transcription. The loss of fim gene expression was accompanied by a corresponding loss of the mannose-sensitive hemagglutination that is a characteristic of type 1 fimbriae. Normal type 1 fimbrial expression was restored following the introduction into the knockout mutant of a plasmid carrying a functional copy of the lrp gene. Electrophoretic mobility shift analysis revealed no interactions between purified Lrp protein and the regulatory region of the fimA, fimU, or fimW gene. Instead, Lrp produced protein-DNA complexes with the regulatory region of the fimZ gene, and the nature of these complexes was leucine sensitive. DNase I footprinting showed that Lrp binds within a region between -65 and -170 with respect to the fimZ transcription start site, consistent with the binding and wrapping of the DNA in this upstream region. Ectopic expression of the fimZ gene from an inducible promoter caused Lrp-independent type 1 fimbriation in serovar Typhimurium. These data show that Lrp makes a positive contribution to fim gene expression through direct interaction with the fimZ promoter region, possibly by antagonizing the binding of the H-NS global repressor protein.
Collapse
|
35
|
Ma YL, Guo T, Xu ZR, You P, Ma JF. Effect of Lactobacillus isolates on the adhesion of pathogens to chicken intestinal mucus in vitro. Lett Appl Microbiol 2006; 42:369-74. [PMID: 16599990 DOI: 10.1111/j.1472-765x.2006.01844.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The aims of this study were to investigate in vitro the effects of Lactobacillus isolates from a chicken on adhesion of pathogenic Salmonella and Escherichia coli to chicken intestinal mucus obtained from different intestinal regions. METHODS AND RESULTS Bacteria were labelled by using methyl-1,2-[(3)H]-thymidine. The bacterial adhesion was assessed by measuring the radioactivity of bacteria adhered to the mucus. The results showed that the abilities of Lactobacillus spp. to bind to the same intestinal mucus were higher than those of pathogenic Salmonella and E. coli. Pretreatment of intestinal mucus with Lactobacillus fermentum and Lactobacillus acidophilus, alone or in combination, reduced the adhesion of the tested pathogens, but the reductive extent of pathogenic adhesion by Lactobacillus spp. in combination was relatively high. CONCLUSIONS The tested bacteria had different adhesions to mucus glycoproteins isolated from different intestinal regions of chicken. Lactobacillus acidophilus and Lact. fermentum in combination revealed a better ability to inhibit attachments of Salmonella and E. coli to chicken intestinal mucus than Lactobacillus sp. alone. SIGNIFICANCE AND IMPACT OF THE STUDY A mixture of intestinal Lactobacillus spp. from a chicken may play a protective role in excluding pathogenic Salmonella and E. coli from the intestine of chicken.
Collapse
Affiliation(s)
- Y-L Ma
- College of Life Science, Ningxia University, Yinchuan 750021, China.
| | | | | | | | | |
Collapse
|
36
|
Sun X, McElroy A, Webb KE, Sefton AE, Novak C. Broiler performance and intestinal alterations when fed drug-free diets. Poult Sci 2005; 84:1294-302. [PMID: 16156214 DOI: 10.1093/ps/84.8.1294] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A study was carried out to investigate the effects of a drug-free feeding program on broiler performance and intestinal morphology. Chicks vaccinated against coccidia were randomly assigned to 4 dietary treatments: 1) negative control (NC), basal diet; 2) positive control (PC), diet 1 + Lincomycin; 3) program 1 (PG1); diet 1 + Bio-Mos, Vegpro, MTB-100, Acid Pak 4-Way, and All-Lac XCL; 4) and program 2 (PG2), diet 1 + Bio-Mos and All-Lac XCL, each of which were assigned to 13 pens (48 birds in each of 52 pens). Growth traits (BW, feed intake, yield, mortality, BW gain, and feed conversion rate) were obtained through 49 d. At d 14, 3 chicks per pen were challenged with coccidia. Segments of duodenum, ileum, and ceca were removed to measure intestinal morphology at d 14, 28, 35, and 49. Final BW gain of broilers on PC (2.736 kg) was numerically higher than those for NC (2.650 kg). Cumulative feed conversion rate at d 49 was improved (P < 0.05) in birds consuming PC and PG2 compared with NC. Overall, mortality was higher for birds consuming the NC (P < 0.05) than the PC, PG1, and PG2 diets. Interaction of dietary treatments with age and age alone were evident (P < 0.0001) for morphology of duodenum, ileum, and ceca. Lamina propria in ceca was thicker (P < 0.008) in broilers consuming the NC than PG1 and PG2 diets. The results of this study indicated that feeding birds without growth promoters resulted in higher mortality and decreased growth performance than did feeding a diet with an antibiotic, and the combination of Bio-Mos and All-Lac XCL helped to reduce negative effects.
Collapse
Affiliation(s)
- X Sun
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
37
|
Tan YP, Zheng J, Tung SL, Rosenshine I, Leung KY. Role of type III secretion in Edwardsiella tarda virulence. Microbiology (Reading) 2005; 151:2301-2313. [PMID: 16000720 DOI: 10.1099/mic.0.28005-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Edwardsiella tarda is a Gram-negative enteric bacterium affecting both animals and humans. Recently, a type III secretion system (TTSS) was found in Ed. tarda. Such systems are generally used by bacterial pathogens to deliver virulence factors into host cells to subvert normal cell functions. Genome-walking was performed from the eseB and esrB genes (homologues of Salmonella sseB and ssrB, respectively) identified in previous studies, to determine the sequences of the TTSS. Thirty-five ORFs were identified which encode the TTSS apparatus, chaperones, effectors and regulators. Mutants affected in genes representing each category were generated and found to have decreased survival and growth in fish phagocytes. LD50 values of the mutants were increased by at least 10-fold in comparison to those of the wild-type strain. The adherence and invasion rates of the esrA and esrB mutants were enhanced while those of the other mutants remained similar to the wild-type. The eseC and eseD mutants showed slight autoaggregation in Dulbecco's Modified Eagle Medium, whereas the rest of the mutants failed to autoaggregate. Regulation of the TTSS was found to involve the two-component regulatory system esrA–esrB. This study showed that the TTSS is important for Ed. tarda pathogenesis. An understanding of this system will provide greater insight into the virulence mechanisms of this bacterial pathogen.
Collapse
Affiliation(s)
- Y P Tan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543
| | - J Zheng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543
| | - S L Tung
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543
| | - I Rosenshine
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, PO Box 12272, Jerusalem 91120, Israel
| | - K Y Leung
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543
| |
Collapse
|
38
|
De Buck J, Van Immerseel F, Haesebrouck F, Ducatelle R. Protection of laying hens against Salmonella Enteritidis by immunization with type 1 fimbriae. Vet Microbiol 2005; 105:93-101. [PMID: 15627520 DOI: 10.1016/j.vetmic.2004.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 10/15/2004] [Accepted: 10/22/2004] [Indexed: 11/17/2022]
Abstract
Eighteen chickens were immunized subcutaneously with purified type 1 fimbriae from Salmonella enterica serotype Enteritidis at 18 and 21 weeks of age. Evidence of IgG and IgA responses was found in the eggs and in the sera of the immunized hens. Three weeks later, immunized and non-immunized chickens (n=18) were challenged intravenously with 2x10(7) live Salmonella enterica serotype Enteritidis. There was no significant difference in the numbers of eggs laid by immunized and non-immunized birds. The percentage of Salmonella contaminated eggs was significantly higher in the non-immunized group than in the immunized group due to a higher percentage of contamination of the externally disinfected egg shells. There were no statistical differences in the percentages of contaminated yolks and egg whites between control and immunized birds. No differences in the number of colonizing bacteria could be found in the spleen nor in the liver between the immunized and the control groups throughout the experiment. Salmonella was cleared from the ovary of the immunized birds in the second week p.i., in contrast to the control birds where Salmonella was isolated till the third week after infection. Oviducts were significantly more infected in the control group than in the immunized group. Salmonella was cleared from the oviducts at 3 weeks p.i. in the immunized hens but not in the control hens. In conclusion, we demonstrated that the immunization of laying hens with type 1 fimbriae reduced the number of contaminated eggs and reduced the colonization of the reproductive organs.
Collapse
Affiliation(s)
- Jeroen De Buck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
39
|
Morgan E, Campbell JD, Rowe SC, Bispham J, Stevens MP, Bowen AJ, Barrow PA, Maskell DJ, Wallis TS. Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol 2004; 54:994-1010. [PMID: 15522082 DOI: 10.1111/j.1365-2958.2004.04323.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The severity of infections caused by Salmonella enterica serovar Typhimurium varies depending on the host species. Numerous virulence genes have been identified in S. Typhimurium, largely from studies in mice, but their roles in infections of other species remain unclear. In the most comprehensive survey of its kind, through the use of signature-tagged mutagenesis of S. Typhimurium we have identified mutants that were unable to colonize calf intestines, mutants unable to colonize chick intestines and mutants unable to colonize both species. The type three secretion systems encoded on Salmonella pathogenicity islands (SPIs) 1 and 2 were required for efficient colonization of cattle. However, disruption of these secretion systems only caused a minor defect in S. Typhimurium colonization of chicks. Transposon insertions in SPI-4 compromised S. Typhimurium colonization of cattle, but not chicks. This is the first data confirming a role for SPI-4 in pathogenesis. We have also been able to ascribe a role in colonization for cell surface polysaccharides, cell envelope proteins, and many 'housekeeping' genes and genes of unknown function. We conclude that S. Typhimurium uses different strategies to colonize calves and chicks. This has major implications for vaccine design.
Collapse
Affiliation(s)
- Eirwen Morgan
- Division of Microbiology, Institute for Animal Health, Compton, Nr Newbury, RG20 7NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Edelman S, Westerlund-Wikström B, Leskelä S, Kettunen H, Rautonen N, Apajalahti J, Korhonen TK. In vitro adhesion specificity of indigenous Lactobacilli within the avian intestinal tract. Appl Environ Microbiol 2002; 68:5155-9. [PMID: 12324367 PMCID: PMC126384 DOI: 10.1128/aem.68.10.5155-5159.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro adherence of Lactobacillus strains to cell and tissue types along the chicken alimentary tract and to ileal mucus were determined. Fresh isolates from chickens adhered to the epithelium of crop and, in a strain-dependent manner, to follicle-associated epithelium and the apical surfaces of mature enterocytes of intestinal villi. No adherence to the apical surfaces of undifferentiated enterocytes, the mucus-producing goblet cells, or the ileal mucus was detected.
Collapse
Affiliation(s)
- Sanna Edelman
- Division of General Microbiology, Department of Biosciences, FIN-00014 University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|