1
|
Murphy JM, Jeong K, Tran DTK, Cioffi DL, Campbell PM, Kim JH, Jo H, Ahn EYE, Lim STS. Nuclear FAK in endothelium: An intrinsic inhibitor of NF-κB activation in atherosclerosis. Atherosclerosis 2023; 379:117189. [PMID: 37527611 PMCID: PMC10530536 DOI: 10.1016/j.atherosclerosis.2023.117189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND AIMS Hyperlipidemia leads to the accumulation of oxidized low-density lipoprotein (oxLDL) within the vessel wall where it causes chronic inflammation in endothelial cells (ECs) and drives atherosclerotic lesions. Although focal adhesion kinase (FAK) is critical in proinflammatory NF-κB activation in ECs, it is unknown if hyperlipidemia alters FAK-mediated NF-κB activity in vivo to affect atherosclerosis progression. METHODS We investigated changes in EC FAK and NF-κB activation using Apoe-/- mice fed a western diet (WD). Both pharmacological FAK inhibition and EC-specific FAK inhibited mouse models were utilized. FAK and NF-κB localization and activity were also analyzed in human atherosclerotic samples. RESULTS ECs of hyperlipidemic mice clearly showed much higher levels of FAK activation in the cytoplasm, which was associated with increased NF-κB activation compared to normal diet (ND) group. On the contrary, FAK is mostly localized in the nucleus and inactive in ECs under healthy conditions with a low NF-κB activity. Both pharmacological and EC-specific genetic FAK inhibition in WD fed Apoe-/- mice exhibited a significant decrease in FAK activity and cytoplasmic localization, NF-κB activation, macrophage recruitment, and atherosclerotic lesions compared to the vehicle or FAK wild-type groups. Analyses of human atherosclerotic specimens revealed a positive correlation between increased active cytoplasmic FAK within ECs and NF-κB activation in the lesions. CONCLUSIONS Hyperlipidemic conditions activate NF-κB pathway by increasing EC FAK activity and cytoplasmic localization in mice and human atherosclerotic samples. As FAK inhibition can efficiently reduce vascular inflammation and atherosclerotic lesions in mice by reversing EC FAK localization and NF-κB activation, these findings support a potential use for FAK inhibitors in treating atherosclerosis.
Collapse
Affiliation(s)
- James M Murphy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kyuho Jeong
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Duyen Thi Kieu Tran
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Donna L Cioffi
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Pamela Moore Campbell
- Department of Pathology, University of South Alabama College of Medicine, Mobile, AL, 36617, USA
| | - Jin H Kim
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, 36688, USA
| | - Hanjoong Jo
- Department of Bioengineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Eun-Young Erin Ahn
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ssang-Taek Steve Lim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
2
|
Mathieu PS, Fitzpatrick E, Di Luca M, Cahill PA, Lally C. Native extracellular matrix orientation determines multipotent vascular stem cell proliferation in response to cyclic uniaxial tensile strain and simulated stent indentation. Biochem Biophys Rep 2022; 29:101183. [PMID: 35005255 PMCID: PMC8715293 DOI: 10.1016/j.bbrep.2021.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide, with multipotent vascular stem cells (MVSC) implicated in contributing to diseased vessels. MVSC are mechanosensitive cells which align perpendicular to cyclic uniaxial tensile strain. Within the blood vessel wall, collagen fibers constrain cells so that they are forced to align circumferentially, in the primary direction of tensile strain. In these experiments, MVSC were seeded onto the medial layer of decellularized porcine carotid arteries, then exposed to 10%, 1 Hz cyclic tensile strain for 10 days with the collagen fiber direction either parallel or perpendicular to the direction of strain. Cells aligned with the direction of the collagen fibers regardless of the orientation to strain. Cells aligned with the direction of strain showed an increased number of proliferative Ki67 positive cells, while those strained perpendicular to the direction of cell alignment showed no change in cell proliferation. A bioreactor system was designed to simulate the indentation of a single, wire stent strut. After 10 days of cyclic loading to 10% strain, MVSC showed regions of densely packed, highly proliferative cells. Therefore, MVSC may play a significant role in in-stent restenosis, and this proliferative response could potentially be controlled by controlling MVSC orientation relative to applied strain. ECM constrained MVSC align with collagen fibers when cells are strained parallel to collagen. Straining MVSC aligned parallel to the direction of strain increased cell proliferation. Simulated stent strut indentation showed increased cell density surrounding the indented wire.
Collapse
Affiliation(s)
- P S Mathieu
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - E Fitzpatrick
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - M Di Luca
- School of Biotechnology, Vascular Biology & Therapeutics Group, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - P A Cahill
- School of Biotechnology, Vascular Biology & Therapeutics Group, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Jeong K, Murphy JM, Kim JH, Campbell PM, Park H, Rodriguez Y, Choi C, Kim JS, Park S, Kim HJ, Scammell JG, Weber DS, Honkanen RE, Schlaepfer DD, Ahn EYE, Lim STS. FAK Activation Promotes SMC Dedifferentiation via Increased DNA Methylation in Contractile Genes. Circ Res 2021; 129:e215-e233. [PMID: 34702049 DOI: 10.1161/circresaha.121.319066] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale: Vascular smooth muscle cells (SMCs) exhibit remarkable plasticity and can undergo dedifferentiation upon pathological stimuli associated with disease and interventions. Objective: Although epigenetic changes are critical in SMC phenotype switching, a fundamental regulator that governs the epigenetic machineries regulating the fate of SMC phenotype has not been elucidated. Methods and Results: Using SMCs, mouse models, and human atherosclerosis specimens, we found that focal adhesion kinase (FAK) activation elicits SMC dedifferentiation by stabilizing DNA methyltransferase 3A (DNMT3A). FAK in SMCs is activated in the cytoplasm upon serum stimulation in vitro or vessel injury and active FAK prevents DNMT3A from nuclear FAK-mediated degradation. However, pharmacological or genetic FAK catalytic inhibition forced FAK nuclear localization, which reduced DNMT3A protein via enhanced ubiquitination and proteasomal degradation. Reduced DNMT3A protein led to DNA hypomethylation in contractile gene promoters, which increased SMC contractile protein expression. RNA sequencing identified SMC contractile genes as a foremost upregulated group by FAK inhibition from injured femoral artery samples compared to vehicle group. DNMT3A knockdown in injured arteries reduced DNA methylation and enhanced contractile gene expression supports the notion that nuclear FAK-mediated DNMT3A degradation via E3 ligase TRAF6 drives differentiation of SMCs. Furthermore, we observed that SMCs of human atherosclerotic lesions exhibited decreased nuclear FAK, which was associated with increased DNMT3A levels and decreased contractile gene expression. Conclusions: This study reveals that nuclear FAK induced by FAK catalytic inhibition specifically suppresses DNMT3A expression in injured vessels resulting in maintaining SMC differentiation by promoting the contractile gene expression. Thus, FAK inhibitors may provide a new treatment option to block SMC phenotypic switching during vascular remodeling and atherosclerosis.
Collapse
Affiliation(s)
- Kyuho Jeong
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | - James M Murphy
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | - Jung-Hyun Kim
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | | | - Hyeonsoo Park
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, KOREA, REPUBLIC OF
| | - Yelitza Rodriguez
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | - Chungsik Choi
- Physiology, University of South Alabama College of Medicine, UNITED STATES
| | - Jun-Sub Kim
- Biotechnology, Korea National University of Transportation, KOREA, REPUBLIC OF
| | - Sangwon Park
- Pharmacology, Gyeongsang National University, KOREA, REPUBLIC OF
| | - Hyun Joon Kim
- Anatomy and Convergence Medical Sciences, Gyeongsang National University
| | - Jonathan G Scammell
- Comparative Medicine, University of South Alabama College of Medicine, UNITED STATES
| | - David S Weber
- Physiology and Cell Biology, University of South Alabama College of Medicine, UNITED STATES
| | - Richard E Honkanen
- Biochemistry and Molecualr Biology, University of South Alabama College of Medicine, UNITED STATES
| | - David D Schlaepfer
- Obstetrics, Gynecology, and Reproductive Medicine, University of California, San Diego Moores Cancer Center, UNITED STATES
| | | | - Ssang-Taek Steve Lim
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| |
Collapse
|
4
|
Zahreddine R, Davezac M, Smirnova N, Buscato M, Lhuillier E, Lupieri A, Solinhac R, Vinel A, Vessieres E, Henrion D, Renault MA, Gadeau AP, Flouriot G, Lenfant F, Laffargue M, Métivier R, Arnal JF, Fontaine C. Tamoxifen Accelerates Endothelial Healing by Targeting ERα in Smooth Muscle Cells. Circ Res 2020; 127:1473-1487. [PMID: 33012251 DOI: 10.1161/circresaha.120.317062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Tamoxifen prevents the recurrence of breast cancer and is also beneficial against bone demineralization and arterial diseases. It acts as an ER (estrogen receptor) α antagonist in ER-positive breast cancers, whereas it mimics the protective action of 17β-estradiol in other tissues such as arteries. However, the mechanisms of these tissue-specific actions remain unclear. OBJECTIVE Here, we tested whether tamoxifen is able to accelerate endothelial healing and analyzed the underlying mechanisms. METHODS AND RESULTS Using 3 complementary mouse models of carotid artery injury, we demonstrated that both tamoxifen and estradiol accelerated endothelial healing, but only tamoxifen required the presence of the underlying medial smooth muscle cells. Chronic treatment with 17β-estradiol and tamoxifen elicited differential gene expression profiles in the carotid artery. The use of transgenic mouse models targeting either whole ERα in a cell-specific manner or ERα subfunctions (membrane/extranuclear versus genomic/transcriptional) demonstrated that 17β-estradiol-induced acceleration of endothelial healing is mediated by membrane ERα in endothelial cells, while the effect of tamoxifen is mediated by the nuclear actions of ERα in smooth muscle cells. CONCLUSIONS Whereas tamoxifen acts as an antiestrogen and ERα antagonist in breast cancer but also on the membrane ERα of endothelial cells, it accelerates endothelial healing through activation of nuclear ERα in smooth muscle cells, inviting to revisit the mechanisms of action of selective modulation of ERα.
Collapse
Affiliation(s)
- Rana Zahreddine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Morgane Davezac
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Natalia Smirnova
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Melissa Buscato
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Emeline Lhuillier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Adrien Lupieri
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Romain Solinhac
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Alexia Vinel
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Emilie Vessieres
- MITOVASC Institute, CARFI facility, INSERM U1083, UMR CNRS 6015, University of Angers, France (E.V., D.H.)
| | - Daniel Henrion
- MITOVASC Institute, CARFI facility, INSERM U1083, UMR CNRS 6015, University of Angers, France (E.V., D.H.)
| | - Marie-Ange Renault
- University of Bordeaux, INSERM, Biology of Cardiovascular Diseases, UMR 1034, Pessac, France (M.-A.R., A.-P.G.)
| | - Alain-Pierre Gadeau
- University of Bordeaux, INSERM, Biology of Cardiovascular Diseases, UMR 1034, Pessac, France (M.-A.R., A.-P.G.)
| | - Gilles Flouriot
- University of Rennes, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - INSERM, UMR_S 1085, France (G.F.)
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Muriel Laffargue
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Raphaël Métivier
- CNRS, Univeristy of Rennes, IGDR (Institut de Génétique De Rennes) - UMR 6290, France (R.M.)
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, University of Toulouse 3, France (R.Z., M.D., N.S., M.B., E.L., A.L., R.S., A.V., F.L., M.L., J.-F.A., C.F.)
| |
Collapse
|
5
|
Murphy JM, Jeong K, Lim STS. FAK Family Kinases in Vascular Diseases. Int J Mol Sci 2020; 21:ijms21103630. [PMID: 32455571 PMCID: PMC7279255 DOI: 10.3390/ijms21103630] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
In various vascular diseases, extracellular matrix (ECM) and integrin expression are frequently altered, leading to focal adhesion kinase (FAK) or proline-rich tyrosine kinase 2 (Pyk2) activation. In addition to the major roles of FAK and Pyk2 in regulating adhesion dynamics via integrins, recent studies have shown a new role for nuclear FAK in gene regulation in various vascular cells. In particular, FAK primarily localizes within the nuclei of vascular smooth muscle cells (VSMCs) of healthy arteries. However, vessel injury increased FAK localization back to adhesions and elevated FAK activity, leading to VSMC hyperplasia. The study suggested that abnormal FAK or Pyk2 activation in vascular cells may cause pathology in vascular diseases. Here we will review several studies of FAK and Pyk2 associated with integrin signaling in vascular diseases including restenosis, atherosclerosis, heart failure, pulmonary arterial hypertension, aneurysm, and thrombosis. Despite the importance of FAK family kinases in vascular diseases, comprehensive reviews are scarce. Therefore, we summarized animal models involving FAK family kinases in vascular diseases.
Collapse
|
6
|
Ren J, Zhou T, Pilli VSS, Phan N, Wang Q, Gupta K, Liu Z, Sheibani N, Liu B. Novel Paracrine Functions of Smooth Muscle Cells in Supporting Endothelial Regeneration Following Arterial Injury. Circ Res 2020; 124:1253-1265. [PMID: 30739581 DOI: 10.1161/circresaha.118.314567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Regeneration of denuded or injured endothelium is an important component of vascular injury response. Cell-cell communication between endothelial cells and smooth muscle cells (SMCs) plays a critical role not only in vascular homeostasis but also in disease. We have previously demonstrated that PKCδ (protein kinase C-delta) regulates multiple components of vascular injury response including apoptosis of SMCs and production of chemokines, thus is an attractive candidate for a role in SMC-endothelial cells communication. OBJECTIVE To test whether PKCδ-mediated paracrine functions of SMCs influence reendothelialization in rodent models of arterial injury. METHODS AND RESULTS Femoral artery wire injury was performed in SMC-conditional Prkcd knockout mice, and carotid angioplasty was conducted in rats receiving transient Prkcd knockdown or overexpression. SMC-specific knockout of Prkcd impaired reendothelialization, reflected by a smaller Evans blue-excluding area in the knockout compared with the wild-type controls. A similar impediment to reendothelialization was observed in rats with SMC-specific knockdown of Prkcd. In contrast, SMC-specific gene transfer of Prkcd accelerated reendothelialization. In vitro, medium conditioned by AdPKCδ-infected SMCs increased endothelial wound closure without affecting their proliferation. A polymerase chain reaction-based array analysis identified Cxcl1 and Cxcl7 among others as PKCδ-mediated chemokines produced by SMCs. Mechanistically, we postulated that PKCδ regulates Cxcl7 expression through STAT3 (signal transducer and activator of transcription 3) as knockdown of STAT3 abolished Cxcl7 expression. The role of CXCL7 in SMC-endothelial cells communication was demonstrated by blocking CXCL7 or its receptor CXCR2, both significantly inhibited endothelial wound closure. Furthermore, insertion of a Cxcl7 cDNA in the lentiviral vector that carries a Prkcd shRNA overcame the adverse effects of Prkcd knockdown on reendothelialization. CONCLUSIONS SMCs promote reendothelialization in a PKCδ-dependent paracrine mechanism, likely through CXCL7-mediated recruitment of endothelial cells from uninjured endothelium.
Collapse
Affiliation(s)
- Jun Ren
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Ting Zhou
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Vijaya Satish Sekhar Pilli
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Noel Phan
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Qiwei Wang
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Kartik Gupta
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Zhenjie Liu
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.).,Department of Vascular Surgery, 2nd Affiliated Hospital School of Medicine, Zhejiang University (Z.L.)
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison (N.S.)
| | - Bo Liu
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| |
Collapse
|
7
|
Buja LM, Ottaviani G, Mitchell RN. Pathobiology of cardiovascular diseases: an update. Cardiovasc Pathol 2019; 42:44-53. [PMID: 31255975 DOI: 10.1016/j.carpath.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
This article introduces the Second Special Issue of Cardiovascular Pathology (CVP), the official journal of the Society for Cardiovascular Pathology (SCVP). This CVP Special Issue showcases a series of commemorative review articles in celebration of the 25th anniversary of CVP originally published in 2016 and now compiled into a virtual collection with online access for the cardiovascular pathology community. This overview also provides updates on the major categories of cardiovascular diseases from the perspective of cardiovascular pathologists, highlighting publications from CVP, as well as additional important review articles and clinicopathologic references.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Cardiovascular Pathology Research Laboratory, Texas Heart Institute, CHI St. Luke's Hospital, Houston, TX, USA.
| | - Giulia Ottaviani
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and sudden infant death syndrome, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Richard N Mitchell
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Atherosclerosis as an inflammatory disease: Doubts? No more. IJC HEART & VASCULATURE 2018; 19:1-2. [PMID: 29946555 PMCID: PMC6016073 DOI: 10.1016/j.ijcha.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
|
9
|
Liu Y, Wang Z, Li J, Ban Y, Mao G, Zhang M, Wang M, Liu Y, Zhao B, Shen Q, Xu Q, Wang N. Inhibition of 5-Hydroxytryptamine Receptor 2B Reduced Vascular Restenosis and Mitigated the β-Arrestin2-Mammalian Target of Rapamycin/p70S6K Pathway. J Am Heart Assoc 2018; 7:e006810. [PMID: 29382665 PMCID: PMC5850233 DOI: 10.1161/jaha.117.006810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND As a monoamine neurotransmitter, 5-hydroxytryptamine (5-HT) or serotonin modulates mood, appetite, and sleep. Besides, 5-HT also has important peripheral functions. 5-HT receptor 2B (5-HT2BR) plays a key role in cardiovascular diseases, such as pulmonary arterial hypertension and cardiac valve disease. Percutaneous intervention has been used to restore blood flow in occlusive vascular disease. However, restenosis remains a significant problem. Herein, we investigated the role of 5-HT2BR in neointimal hyperplasia, a key pathological process in restenosis. METHODS AND RESULTS The expression of 5-HT2BR was upregulated in wire-injured mouse femoral arteries. In addition, BW723C86, a selective 5-HT2BR agonist, promoted the injury response during restenosis. 5-HT and BW723C86 stimulated migration and proliferation of rat aortic smooth muscle cells. Conversely, LY272015, a selective antagonist, attenuated the 5-HT-induced smooth muscle cell migration and proliferation. In vitro study showed that the promigratory effects of 5-HT2BR were mediated through the activation of mammalian target of rapamycin (mTOR)/p70S6K signaling in a β-arrestin2-dependent manner. Inhibition of mammalian target of rapamycin or p70S6K mitigated 5-HT2BR-mediated smooth muscle cell migration. Mice with deficiency of 5-HT2BR showed significantly reduced neointimal formation in wire-injured arteries. CONCLUSIONS These results demonstrated that activation of 5-HT2BR and β-arrestin2-biased downstream signaling are key pathological processes in neointimal formation, and 5-HT2BR may be a potential target for the therapeutic intervention of vascular restenosis.
Collapse
MESH Headings
- Animals
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Femoral Artery/drug effects
- Femoral Artery/enzymology
- Femoral Artery/injuries
- Femoral Artery/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Organic Chemicals/pharmacology
- Rats
- Receptor, Serotonin, 5-HT2B/drug effects
- Receptor, Serotonin, 5-HT2B/genetics
- Receptor, Serotonin, 5-HT2B/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Vascular Remodeling/drug effects
- Vascular System Injuries/drug therapy
- Vascular System Injuries/enzymology
- Vascular System Injuries/genetics
- Vascular System Injuries/pathology
- beta-Arrestin 2/genetics
- beta-Arrestin 2/metabolism
Collapse
Affiliation(s)
- Yahan Liu
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Zhipeng Wang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Jing Li
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Yiqian Ban
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Guangmei Mao
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Man Zhang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Mo Wang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Yan Liu
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Beilei Zhao
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Qiang Shen
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Qingbo Xu
- Cardiovascular Division, King's College London King's British Heart Foundation (BHF) Centre, London, United Kingdom
| | - Nanping Wang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Aortic smooth muscle cell alterations in mice systemically exposed to arsenic. Heart Vessels 2015; 31:807-15. [DOI: 10.1007/s00380-015-0708-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/19/2015] [Indexed: 11/27/2022]
|
12
|
Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs 2015; 13:3046-60. [PMID: 25988521 PMCID: PMC4446617 DOI: 10.3390/md13053046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 01/23/2023] Open
Abstract
Dihydroaustrasulfone alcohol (DA), an active compound firstly isolated from marine corals, has been reported to reveal anti-cancer and anti-inflammation activities. These reported activities of DA raised a possible application in anti-restenosis. Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) and the stimulation of platelet-derived growth factor (PDGF)-BB play major pathological processes involved in the development of restenosis. Experimental results showed that DA markedly reduced balloon injury-induced neointima formation in the rat carotid artery model and significantly inhibited PDGF-BB-stimulated proliferation and migration of VSMCs. Our data further demonstrated that translational and active levels of several critical signaling cascades involved in VSMC proliferation, such as extracellular signal-regulated kinase/mitogen-activated protein kinases (ERK/MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, and signal transducer and activator of transcription (STAT), were obviously inhibited. In addition, DA also decreased the activation and expression levels of gelatinases (matrix metalloproteinase (MMP)-2 and MMP-9) involved in cell migration. In conclusion, our findings indicate that DA can reduce balloon injury-neointimal hyperplasia, the effect of which may be modulated through suppression of VSMC proliferation and migration. These results suggest that DA has potential application as an anti-restenotic agent for the prevention of restenosis.
Collapse
|
13
|
Oxidized LDL stimulates lipid peroxidation-derived DNA and protein adducts in human vascular endothelial and smooth muscle cells. ACTA ACUST UNITED AC 2015; 35:200-205. [PMID: 25877352 DOI: 10.1007/s11596-015-1411-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/08/2015] [Indexed: 02/08/2023]
Abstract
Oxidized low density lipoprotein (oxLDL) can trigger intracellular production of reactive oxygen species and lipid peroxidation (LPO), and is thought to contribute to initiation and progression of atherosclerosis. In order to understand the correlation between oxLDL and macromolecular damage, we measured levels of LPO-derived miscoding etheno-DNA adducts and LPO-modified proteins in cultured human vascular endothelial and smooth muscle cells after incubation with oxLDL for up to 48 h. A semi-quantative analysis method for 1, N6-ethenodeoxyadenosine (ɛdA) by immunohistochemistry was applied. After oxLDL stimulation, ɛdA-stained nuclei were significantly increased in both endothelial and smooth muscle cells. Similarly, 4-hydroxy-2-nonenal (4-HNE)-modified proteins, as analyzed by immunohistochemistry and Western blotting, were also 3-5 fold increased. It was concluded LPO-derived etheno-DNA adducts and LPO-modified proteins are strongly induced by oxLDL in human vascular endothelial and smooth muscle cells. This macromolecular damage may contribute to the dysfunction of arterial endothelium and the onset of atherosclerosis.
Collapse
|
14
|
Iida M, Tanabe K, Matsushima-Nishiwaki R, Kozawa O, Iida H. Adenosine monophosphate-activated protein kinase regulates platelet-derived growth factor-BB-induced vascular smooth muscle cell migration. Arch Biochem Biophys 2013; 530:83-92. [DOI: 10.1016/j.abb.2012.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/26/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
|
15
|
Kivelä A, Hartikainen J, Ylä-Herttuala S. Dotted collar placed around carotid artery induces asymmetric neointimal lesion formation in rabbits without intravascular manipulations. BMC Cardiovasc Disord 2012; 12:91. [PMID: 23075120 PMCID: PMC3485168 DOI: 10.1186/1471-2261-12-91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 10/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neointimal formation in atherosclerosis has been subject for intense research. However, good animal models mimicking asymmetrical lesion formation in human subjects have been difficult to establish. The aim of this study was to develop a model which would lead to the formation of eccentric lesions under macroscopically intact non-denuded endothelium. METHODS We have developed a new collar model where we placed two cushions or dots inside the collar. Arterial lesions were characterized using histology and ultrasound methods. RESULTS When this dotted collar was placed around carotid and femoral arteries it produced asymmetrical pressure on adventitia and a mild flow disturbance, and hence a change in shear stress. Our hypothesis was that this simple procedure would reproducibly produce asymmetrical lesions without any intraluminal manipulations. Intima/media ratio increased towards the distal end of the collar with the direction of blood flow under macroscopically intact endothelium. Macrophages preferentially accumulated in areas of the thickest neointima thus resembling early steps in human atherosclerotic plaque formation. Proliferating cells in these lesions and underlying media were scarce at eight weeks time point. CONCLUSION The improved dotted collar model produces asymmetrical human-like atherosclerotic lesions in rabbits. This model should be useful in studies regarding the pathogenesis and formation of eccentric atherosclerotic lesions.
Collapse
Affiliation(s)
- Antti Kivelä
- A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | |
Collapse
|
16
|
Kanwar RK, Chaudhary R, Tsuzuki T, Kanwar JR. Emerging engineered magnetic nanoparticulate probes for molecular MRI of atherosclerosis: how far have we come? Nanomedicine (Lond) 2012; 7:899-916. [DOI: 10.2217/nnm.12.57] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic, progressive, immunoinflammatory disease of the large and medium-sized arteries, and a major cause of cardiovascular diseases. Atherosclerosis often progresses silently for decades until the occurrence of a major catastrophic clinical event such as myocardial infarction, cardiac arrest and stroke. The main challenge in the diagnosis and management of atherosclerosis is to develop a safe, noninvasive technique that is accurate and reproducible, which can detect the biologically active high-risk vulnerable plaques (with ongoing active inflammation, angiogenesis and apoptosis) before the occurrence of an acute clinical event. This article reviews the events involved in the pathogenesis of atherosclerosis in light of recently advanced understanding of the molecular pathogenesis of the disease. Next, we elaborate on the interesting developments in molecular MRI, by describing the recently engineered magnetic nanoparticulate probes targeting clinically promising molecular and cellular players/processes, involved in early atherosclerotic lesion formation to plaque rupture and erosion.
Collapse
Affiliation(s)
- Rupinder K Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Center for Biotechnology & Interdisciplinary Biosciences, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Rajneesh Chaudhary
- Nanomaterials, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Takuya Tsuzuki
- Nanomaterials, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Jagat R Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Center for Biotechnology & Interdisciplinary Biosciences, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
17
|
Alef MJ, Tzeng E, Zuckerbraun BS. Nitric oxide and nitrite-based therapeutic opportunities in intimal hyperplasia. Nitric Oxide 2012; 26:285-94. [PMID: 22504069 DOI: 10.1016/j.niox.2012.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 12/22/2022]
Abstract
Vascular intimal hyperplasia (IH) limits the long term efficacy of current surgical and percutaneous therapies for atherosclerotic disease. There are extensive changes in gene expression and cell signaling in response to vascular therapies, including changes in nitric oxide (NO) signaling. NO is well recognized for its vasoregulatory properties and has been investigated as a therapeutic treatment for its vasoprotective abilities. The circulating molecules nitrite (NO(2)(-)) and nitrate (NO(3)(-)), once thought to be stable products of NO metabolism, are now recognized as important circulating reservoirs of NO and represent a complementary source of NO in contrast to the classic L-arginine-NO-synthase pathway. Here we review the background of IH, its relationship with the NO and nitrite/nitrate pathways, and current and future therapeutic opportunities for these molecules.
Collapse
Affiliation(s)
- Matthew J Alef
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | | |
Collapse
|
18
|
Laing ST, Kim H, Kopechek JA, Parikh D, Huang S, Klegerman ME, Holland CK, McPherson DD. Ultrasound-mediated delivery of echogenic immunoliposomes to porcine vascular smooth muscle cells in vivo. J Liposome Res 2012; 20:160-7. [PMID: 19842795 DOI: 10.3109/08982100903218918] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are important targets in the treatment of atherosclerosis. However, the arterial media, where the majority of VSMCs reside, have proven to be a difficult target for drug/gene delivery. We have demonstrated that ultrasound enhances drug/gene delivery to VSMCs in vitro by using echogenic immunoliposomes (ELIPs) as the vector. This study aimed to evaluate whether ultrasound can similarly enhance the delivery of an agent to VSMCs, particularly within the arterial media, in vivo, using ELIP. Anti-smooth-muscle cell actin-conjugated calcein-loaded ELIP were injected into the peripheral arteries of Yucatan miniswine (n = 8 arterial pairs). The right-sided porcine arteries were treated with 1-MHz continuous-wave ultrasound at a peak-to-peak pressure amplitude of 0.23 +/- 0.05 MPa for 2 minutes. The contralateral arteries served as controls. Arteries were harvested after 30 minutes and imaged with fluorescence microscopy. Image data were converted to grayscale and analyzed by using computer-assisted videodensitometry. There was significant improvement in calcein uptake in all three arterial layers in the arteries exposed to ultrasound (> 300%). This enhanced uptake was site specific and appeared limited to the ultrasound-treated arterial segment. We have demonstrated enhanced delivery of a small molecule to VSMCs in all arterial wall layers, particularly the arterial media, using ultrasound and targeted ELIP. The combined effect of ultrasound exposure and ELIP as a contrast agent and a drug/gene-bearing vector has the potential for site-specific therapy directed at VSMC function.
Collapse
Affiliation(s)
- Susan T Laing
- Department of Internal Medicine, University of Texas Health Science Center-Houston, 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Leemasawatdigul K, Gappa-Fahlenkamp H. Development of a mathematical model to describe the transport of monocyte chemoattractant protein-1 through a three-dimensional collagen matrix. Cardiovasc Pathol 2011; 21:219-28. [PMID: 22100989 DOI: 10.1016/j.carpath.2011.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/09/2011] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Monocyte chemoattractant protein-1 is a bioactive molecule that is expressed in significant amounts in all stages of atherosclerosis. The role of monocyte chemoattractant protein-1 in this disease is to recruit monocytes across the endothelium and into the arterial tissue. Eventually, the monocytes differentiate into cholesterol-engorged macrophages called "foam cells" that result in atherosclerotic plaque formation. The mechanism that monocyte chemoattractant protein-1 uses to mediate monocyte transendothelial migration is believed to be via its concentration gradient. However, the formation of the monocyte chemoattractant protein-1 concentration gradient in the extracellular matrix is still poorly understood. METHODS A three-dimensional in vitro vascular tissue model has been developed to study the cellular mechanisms involved in the early stages of atherosclerosis. In the present study, a mathematical model is used to determine the gradient of monocyte chemoattractant protein-1 in the collagen matrix of the three-dimensional in vitro vascular tissue model. Experiments were performed to investigate the stability of monocyte chemoattractant protein-1 and the interaction between monocyte chemoattractant protein-1 and the collagen matrix. RESULTS AND CONCLUSIONS Monocyte chemoattractant protein-1 is stable for at least 24 h under experimental conditions and monocyte chemoattractant protein-1 interacts with the collagen matrix. The diffusion coefficient for the transport of monocyte chemoattractant protein-1 in the collagen matrix and the rate constant for the binding of monocyte chemoattractant protein-1 to collagen were determined to be 0.108 mm(2) h(-1) and 0.858 h(-1), respectively. Numerical results from the model indicate that the concentration gradients of both soluble and matrix-bound (or static) monocyte chemoattractant protein-1 are formed inside the collagen matrix.
Collapse
Affiliation(s)
- Krisada Leemasawatdigul
- School of Chemical Engineering, Oklahoma State University, 423 Engineering North, Stillwater, OK 74078, USA
| | | |
Collapse
|
20
|
Vosper H. Extended release niacin-laropiprant in patients with hypercholesterolemia or mixed dyslipidemias improves clinical parameters. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2011; 5:85-101. [PMID: 22084607 PMCID: PMC3201109 DOI: 10.4137/cmc.s7601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The progression of atherosclerosis remains a major cause of morbidity and mortality. Plaque formation is an immunological response driven by a number of risk factors, and reduction of risk is the primary goal of treatment. The role of LDL-C is well established and statins have proved effective drugs, although the relative risk reduction is only around 30%. The importance of other factors-notably low HDL-C and high TGs-has become increasingly clear and the search for alternative strategies continues. Niacin is particularly effective in achieving normalization of HDL-C but is clinically underutilized due to the side effect of cutaneous flushing. The discovery that flushing is mediated by mechanisms distinct from the lipid-lowering effects has led to the development of combination drugs with reduced side effects. This review considers the evidence regarding the clinical efficacy of extended-release niacin and the DP1 antagonist laropiprant in the treatment of hypercholesterolemia and mixed dyslipidemias.
Collapse
Affiliation(s)
- Helen Vosper
- School of Pharmacy and Life Sciences, Robert Gordon University, Schoolhill, Aberdeen, AB10 1FR, Scotland, UK
| |
Collapse
|
21
|
Sekizawa N, Yoshimoto T, Hayakawa E, Suzuki N, Sugiyama T, Hirata Y. Transcriptome analysis of aldosterone-regulated genes in human vascular endothelial cell lines stably expressing mineralocorticoid receptor. Mol Cell Endocrinol 2011; 341:78-88. [PMID: 21664252 DOI: 10.1016/j.mce.2011.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/03/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022]
Abstract
A series of studies have demonstrated that endothelial cell is one of the target tissues of aldosterone. Here, we have conducted a transcriptome analysis of aldosterone-inducible genes in human endothelial cell lines stably expressing human mineralocorticoid receptor (MR) by retroviral system (MR-EAhy). We found that aldosterone in physiologic concentrations robustly induced MR-dependent transcriptional response in MR-EAhy. By DNA microarray analysis, we validated 12 aldosterone-up-regulated genes among which at least seven were concomitantly associated with increased protein expression. We also found five aldosterone-down-regulated genes. Among 11 aldosterone-up-regulated genes tested, mRNA expressions of three (ESM1, SNF1LK, ANGPTL4) were significantly up-regulated in aortic tissue from aldosterone-induced hypertensive rats compared to those from control rats, suggesting their potential pathophysiologic significance in vivo. In conclusion, using MR stably expressed human endothelial cell lines, we identified a variety of aldosterone-inducible genes, suggesting their possible roles in the development and/or the protection for aldosterone-induced vascular injury.
Collapse
Affiliation(s)
- Naoko Sekizawa
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Lee BS, Shin HS, Park K, Han DK. Surface grafting of blood compatible zwitterionic poly(ethylene glycol) on diamond-like carbon-coated stent. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:507-514. [PMID: 21279672 DOI: 10.1007/s10856-011-4235-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/11/2011] [Indexed: 05/30/2023]
Abstract
Blood compatibility is the most important aspect for blood-contacting medical devices including cardiovascular stents. In this study, the surface of nickel-titanium (TiNi) stent was coated with diamond-like carbon (DLC) and then subsequently grafted by using zwitterion (N(+) and SO(3) (-))-linked poly(ethylene glycol) (PEG). We hypothesize that this coupling of zwitterion and PEG may significantly improve blood compatibility of DLC-coated TiNi stent. The surface modified TiNi stents, including PEG-grafted stent (DLC-PEG) and zwitterionic PEG-grafted one (DLC-PEG-N-S) were the main focus on the tests of surface characteristics and blood compatibility. The zwitterionic PEG derivatives were obtained from a series of chemical reactions at room temperature. The results exhibited that as compared to the DLC-PEG, the hydrophilicity was much better with DLC-PEG-N-S and significantly increased atomic percentage of oxygen and nitrogen proved the entity of zwitterions on the surface of DLC-PEG-N-S. Meanwhile, the adsorption of blood proteins such as, human serum albumin (HSA) and fibrinogen was found considerably down-regulated in DLC-PEG-N-S, due mainly to the protein-repellent effect of PEG and zwitterion. Microscopic observation also revealed that as compared with the other substrates without zwitterion, the degree of platelet adhesion was the lowest with DLC-PEG-N-S. In addition, DLC-PEG-N-S retained an extended blood coagulation time as measured by activated partial thromboplastin time (APTT). The present results suggested that surface grafting of zwitterionic PEG derivatives could substantially enhance the blood compatibility of TiNi-DLC stent. In conclusion, anti-fouling properties of PEG and zwitterions are expected to be very useful in advancing overall stent performance.
Collapse
Affiliation(s)
- Bong Soo Lee
- Biomaterials Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | | | | | | |
Collapse
|
23
|
Lai ME, Vacquer S, Carta MP, Spiga A, Cocco P, Abete C, Dessì S, Mandas A. Evidence for a proatherogenic biochemical phenotype in beta thalassemia minor and intermedia. Acta Haematol 2011; 126:87-94. [PMID: 21576933 DOI: 10.1159/000327252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/24/2011] [Indexed: 01/14/2023]
Abstract
The purpose of this study was to focus on pathophysiological mechanisms linking β-thalassemia intermedia (β-TI) and minor (β-TMI) with cardiovascular risk. Iron status, prooxidant-antioxidant balance and lipid profiles in serum, and lipid content in peripheral blood mononuclear cells (PBMCs) were evaluated in 20 β-TMI subjects, 22 β-TI patients and in 30 nonthalassemic blood donors. The mRNA levels of some genes involved in the regulation of iron and cholesterol metabolism were also determined. In β-TI and in β-TMI, serum iron, prooxidant-antioxidant ratio, transferrin saturation and erythropoietin levels were higher, while transferrin and hepcidin were lower compared to controls. Hepcidin and interleukin-1α mRNA levels were found to be reduced in β-TI- and β-TMI-PBMCs, while those of tumor necrosis factor alpha were increased. A reduction in high-density lipoprotein cholesterol in serum and an accumulation of neutral lipids coupled with increased mRNA levels of acetyl-coenzyme A:cholesterol acyltransferase and decreased neutral cholesterol ester hydrolase in PBMCs were also observed in β-TI and β-TMI compared to controls. Taken together, these findings provide experimental support for the idea that not only β-TI patients but also β-TMI have a proatherogenic biochemical phenotype which may contribute to increase their cardiovascular disease risk.
Collapse
Affiliation(s)
- Maria Eliana Lai
- Department of Internal Medical Sciences, University of Cagliari, Monserrato, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Braun J, Hoffmann SC, Feldner A, Ludwig T, Henning R, Hecker M, Korff T. Endothelial cell ephrinB2-dependent activation of monocytes in arteriosclerosis. Arterioscler Thromb Vasc Biol 2010; 31:297-305. [PMID: 21127290 DOI: 10.1161/atvbaha.110.217646] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The expression of ephrinB2 in endothelial cells delineates their arterial phenotype and is a prerequisite for the development of the embryonic vasculature. Whereas the role of ephrinB2 in the microcirculation has been studied extensively, its expression and function in adult arteries is hardly understood. METHODS AND RESULTS Our analyses showed that in mouse arteries, ephrinB2 is located on the luminal surface of endothelial cells and may physically interact with monocyte EphB receptors. Moreover, transdifferentiation of human monocytes into macrophages was associated with an increase in EphB2 expression, and exposing monocytes to immobilized ephrinB2 resulted in phosphorylation of the receptor followed by an increased expression of proinflammatory chemokines such as interleukin-8 and monocyte chemotactic protein-1/CCL2. Relating to the (patho)physiological relevance of these findings, immunofluorescence analyses revealed that ephrinB2 is most abundantly expressed in endothelial cells at arteriosclerosis predilection sites of the mouse aorta. Subsequent analyses indicated that monocyte adhesion to aortic segments abundantly expressing ephrinB2 is strongly enhanced and that endothelial cell ephrinB2 forward signaling is sufficient to upregulate cytokine expression in monocytes. CONCLUSIONS These observations suggest a hitherto unknown link between vascular ephrinB2 expression and the proinflammatory activation of monocytes that may contribute to the pathogenesis of arteriosclerosis.
Collapse
Affiliation(s)
- Jennifer Braun
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Im Neuenheimer Feld 326, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Pasquinelli G, Pacilli A, Alviano F, Foroni L, Ricci F, Valente S, Orrico C, Lanzoni G, Buzzi M, Luigi Tazzari P, Pagliaro P, Stella A, Paolo Bagnara G. Multidistrict human mesenchymal vascular cells: pluripotency and stemness characteristics. Cytotherapy 2010; 12:275-287. [PMID: 20230218 DOI: 10.3109/14653241003596679] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND AIMS The presence of ectopic tissues in the pathologic artery wall raises the issue of whether multipotent stem cells may reside in the vasculature itself. Recently mesenchymal stromal cells (MSC) have been isolated from different human vascular segments (VW MSC), belying the previous view that the vessel wall is a relatively quiescent tissue. METHODS Resident multipotent cells were recovered from fresh arterial segments (aortic arches, thoracic and femoral arteries) collected in a tissue-banking facility and used to establish an in situ and in vitro study of the stemness features and multipotency of these multidistrict MSC populations. RESULTS Notch-1+, Stro-1+, Sca-1+ and Oct-4+ cells were distributed along an arterial wall vasculogenic niche. Multidistrict VW MSC homogeneously expressed markers of stemness (Stro-1, Notch-1 and Oct-4) and MSC lineages (CD44, CD90, CD105, CD73, CD29 and CD166) whilst they were negative for hematopoietic and endothelial markers (CD34, CD45, CD31 and vWF). Each VW MSC population had characteristics of stem cells, i.e. a high efflux capability for Hoechst 33342 dye and the ability to form spheroids when grown in suspension and generate colonies when seeded at low density. Again, VW MSC cultured in induction media exhibited adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic differentiation, as documented by histochemical, immunohistochemical, molecular and electron microscopy analysis. CONCLUSIONS Overall, these findings may enlighten the physiopathologic mechanisms of vascular wall diseases as well as having potential implications for cellular, genetic and tissue engineering approaches to treating vascular pathologies when these are unresponsive to medical and surgical therapies.
Collapse
Affiliation(s)
- Gianandrea Pasquinelli
- Clinical and Surgical Pathology, Department of Radiological and Histocytopathological Clinical Sciences, S. Orsola Hospital, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Dyslipidaemias, particularly those characterized by the 'atherogenic profile' of high low-density lipoprotein-cholesterol and triglycerides and low high-density lipoprotein-cholesterol, are the major modifiable risk factor for atherosclerosis. The search for drugs to favourably alter such lipid profiles, reducing the associated morbidity and mortality, remains a major research focus. Niacin (nicotinic acid) is the most effective agent available for increasing high-density lipoprotein-cholesterol, but its use is associated with side effects that negatively affect patient compliance: these appear to arise largely as a result of production of prostaglandin D(2) and its subsequent activation of the DP(1) receptor. Desire to reduce the side effects (and improve pharmacokinetic parameters) has led to the development of a number of agonists that have differing effects, both in terms of clinical potency and the severity of adverse effects. The recent discovery of the niacin G-protein-coupled receptor HM74A (GPR109A) has clarified the distinction between the mechanism whereby niacin exerts its therapeutic effects and the mechanisms responsible for the generation of side effects. This has allowed the development of new drugs that show great potential for the treatment of dyslipidaemia. However, recent advances in understanding of the contribution of prostaglandin metabolism to vascular wall health suggest that some of the beneficial effects of niacin may well result from activation of the same pathways responsible for the adverse reactions. The purpose of this review is to emphasize that the search for agonists that show higher tolerability must take into account all aspects of signalling through this receptor.
Collapse
Affiliation(s)
- Helen Vosper
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, UK.
| |
Collapse
|
27
|
Pacilli A, Pasquinelli G. Vascular wall resident progenitor cells: a review. Exp Cell Res 2009; 315:901-14. [PMID: 19167379 DOI: 10.1016/j.yexcr.2008.12.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 01/30/2023]
Abstract
The vessel wall has usually been thought to be relatively quiescent. But the discovery of progenitor cells in many tissues and in the vasculature itself has led to a reconsideration of the vascular biology. The presence of circulating endothelial and smooth muscle progenitors able to home to the injured vascular wall is a firm acquisition; less known is the notion, coming from embryonic and adult tissue studies, that stem cells able to differentiate into endothelial cells and smooth muscle cells also reside in the arterial wall. Moreover, the existence of a vasculogenic zone has recently been identified in adult human arteries; this niche-like zone is believed to act as a source of progenitors for postnatal vasculogenesis. From the literature it is already apparent that a complex interplay between circulating and resident vascular wall progenitors takes place during embryonal and postnatal life; a structural/functional disarray of these intimate stem cell compartments could hamper appropriate vascular repair, the development of vascular wall disease being the direct clinical consequence in adult life. This review gives an overview of adult large vessel progenitors established in the vascular wall during embryogenesis and their role in the maintenance of wall homeostasis.
Collapse
Affiliation(s)
- Annalisa Pacilli
- Chair of Vascular Surgery, Department of Specialistic Surgical and Anaestesiological Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
28
|
Kaminnyi AI, Lankin VZ, Perepelitsa EI, Konovalova GG, Samko AN, Tikhaze AK, Kukharchuk VV, Belenkov YN. Relationship between free-radical lipid oxidation and efficiency of coronary angioplasty in coronary patients. Bull Exp Biol Med 2008; 144:664-6. [PMID: 18683490 DOI: 10.1007/s10517-007-0399-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Low-dose (250 mg daily) oral probucol produces a significant antioxidant effect in coronary patients: increases activity of glutathione peroxidase (enzyme utilizing lipoperoxides) and reduces the content of free-radical oxidation products in the blood. Probucol therapy for 7 days before and for 6 months after coronary angioplasty significantly reduces the severity of coronary artery stenosis.
Collapse
Affiliation(s)
- A I Kaminnyi
- A. L. Myasnikov Institute of Cardiology, Russian Cardiological Center, Russian Ministry of Health, Moscow.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee HB, Noh H, Seo JY, Yu MR, Ha H. Histone deacetylase inhibitors: a novel class of therapeutic agents in diabetic nephropathy. Kidney Int 2007:S61-6. [PMID: 17653213 DOI: 10.1038/sj.ki.5002388] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are currently being tested as anticancer agents in clinical trials. Chromatin remodeling, such as through histone acetylation, is a fundamental phenomenon in eukaryotic cell biology, bearing implications to numerous physiological and pathological phenomena. Here, we discuss recent data from our own laboratory and those of others demonstrating antifibrotic and renoprotective effect of HDAC inhibitors in diabetic kidneys, and the possible mechanisms including the role of reactive oxygen species. HDAC inhibitors may prove to be a novel class of multitarget agents in the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- H B Lee
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | | | | | | | | |
Collapse
|
30
|
Soleimani B, Katopodis A, Wieczorek G, George AJT, Hornick PI, Heusser C. Smooth muscle cell proliferation but not neointimal formation is dependent on alloantibody in a murine model of intimal hyperplasia. Clin Exp Immunol 2006; 146:509-17. [PMID: 17100772 PMCID: PMC1810418 DOI: 10.1111/j.1365-2249.2006.03237.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2006] [Indexed: 11/29/2022] Open
Abstract
Transplant coronary artery disease is the pre-eminent cause of late cardiac allograft failure. It is primarily characterized by a concentric intimal hyperplasia, which we designate transplant intimal hyperplasia (TIH). Although the pathogenesis of TIH is predominately immune driven, the specific role of alloantibodies in the disease process remains undefined. In this study we investigated the contribution of alloantibodies to the development of TIH in a murine model. Orthotopic, carotid artery transplantation was performed between B10A(2R) (H-2(h2)) donor mice and B-cell deficient muMT(-/-) knockout or wild-type C57BL/6 (H-2(b)) recipients in the absence of immunosuppression. Grafts were harvested at 35 days and subjected to planimetry and immunohistochemistry. Alloantibodies were detectable in wild-type recipients within 7 days of transplantation and recipients developed marked TIH at 35 days. Allografts harvested from B-cell deficient recipient mice also developed TIH, which was comparable in severity with wild-type recipients. However, whereas allografts from wild-type recipients showed marked intimal smooth muscle cell (SMC) proliferation, the neointima in B-cell deficient recipients lacked SMCs. Post-transplantation administration of anti-donor serum to muMT(-/-) recipients restored neointimal SMC population but did not influence the severity of TIH. Significant neointimal formation occurs in the absence of alloantibodies but lacks a SMC component. Therefore, SMC migration and proliferation is antibody dependent.
Collapse
Affiliation(s)
- B Soleimani
- Department of Cardiac Surgery, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Kennedy S, Wadsworth RM, Wainwright CL. Locally administered antiproliferative drugs inhibit hypercontractility to serotonin in balloon-injured pig coronary artery. Vascul Pharmacol 2006; 44:363-71. [PMID: 16540378 DOI: 10.1016/j.vph.2006.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 01/13/2006] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
Although drugs such as sirolimus and paclitaxel are effective in reducing restenosis, their effects on vascular function are often overlooked. In this study, we have examined the effects of local delivery of several anti-restenotic drugs given in vivo after balloon injury on in vitro vascular contraction and relaxation 28 days after injury. Paclitaxel (50 microM), the farnesyl protein transferase inhibitor L744 (25 microM), sirolimus (25 microM) and Van 10/4 (decahydro-1,1,4,7-tetramethyl-1H-cycloprop[e]azulen-4-o-[2-(3-methylpent-2-enoyl)-fucopyranoside]; 25 microM) were delivered to porcine coronary arteries in vivo and the arteries removed 28 days later. Contractions to KCl and 5-hydroxytryptamine (5-HT) and relaxations to calcimycin and 3-morpholinosydnonimine (SIN-1) were measured in control (LCx) and balloon-injured (LAD) rings. In vehicle-infused coronary arteries, contraction to KCl and 5-HT was significantly enhanced 28 days after balloon injury, while the response to calcimycin had recovered fully, indicating endothelial regrowth. The response to SIN-1 was unchanged. None of the four drugs tested had any effect on the enhanced response to KCl 28 days after injury or on recovery of the calcimycin response. The hyper-responsiveness to 5-HT was eliminated by sirolimus, Van 10/4 and L744, but not paclitaxel. This study demonstrates that local drug infusion with structurally different antiproliferative drugs at the time of balloon angioplasty does not affect endothelial recovery and may in some cases prevent hyper-responsiveness to constrictor agents.
Collapse
Affiliation(s)
- Simon Kennedy
- Department of Physiology and Pharmacology, Strathclyde Institute of Biological Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, UK.
| | | | | |
Collapse
|
32
|
Mitra AK, Del Core MG, Agrawal DK. Cells, cytokines and cellular immunity in the pathogenesis of fibroproliferative vasculopathies. Can J Physiol Pharmacol 2006; 83:701-15. [PMID: 16333372 DOI: 10.1139/y05-080] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerosis and restenosis are the result of vascular injury followed by an inflammatory and fibroproliferative response that involves a large number of growth factors, cytokines, and cellular elements. Platelet activation and leukocyte recruitment into the arterial intima play a crucial role, initiating a whole spectrum of reactions leading to vascular smooth muscle cell hyperplasia and intimal migration. The roles of macrophages and lymphocytes and mast cells as mediators of inflammation and immune response is discussed, as are the roles of growth factors and cytokines. New light on the 'old' problems will help us to devise newer and better therapeutic strategies to combat these clinical entities.
Collapse
Affiliation(s)
- Amit K Mitra
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | |
Collapse
|
33
|
Fuchs D, Erhard P, Rimbach G, Daniel H, Wenzel U. Genistein blocks homocysteine-induced alterations in the proteome of human endothelial cells. Proteomics 2005; 5:2808-18. [PMID: 15952232 DOI: 10.1002/pmic.200401174] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dietary isoflavones from soy are suggested to protect endothelial cells from damaging effects of endothelial stressors and thereby to prevent atherosclerosis. In search of the molecular targets of isoflavone action, we analyzed the effects of the major soy isoflavone, genistein, on changes in protein expression levels induced by the endothelial stressor homocysteine (Hcy) in EA.hy 926 endothelial cells. Proteins from cells exposed for 24 h to 25 microM Hcy alone or in combination with 2.5 microM genistein were separated by two-dimensional gel electrophoresis and those with altered spot intensities were identified by peptide mass fingerprinting. Genistein reversed Hcy-induced changes of proteins involved in metabolism, detoxification, and gene regulation; and some of those effects can be linked functionally to the antiatherosclerotic properties of the soy isoflavone. Alterations of steady-state levels of cytoskeletal proteins by genistein suggested an effect on apoptosis. As a matter of fact genistein caused inhibition of Hcy-mediated apoptotic cell death as indicated by inhibition of DNA fragmentation and chromatin condensation. In conclusion, proteome analysis allows the rapid identification of cellular target proteins of genistein action in endothelial cells exposed to the endothelial stressor Hcy and therefore enables the identification of molecular pathways of its antiatherosclerotic action.
Collapse
Affiliation(s)
- Dagmar Fuchs
- Department of Food and Nutrition, Molecular Nutrition Unit, Technical University of Munich, Freising, Germany
| | | | | | | | | |
Collapse
|
34
|
Kaminnyi AI, Lankin VZ, Samko AN, Sozykin AL, Provatorov SI, Konovalova GG, Perepelitsa EI, Tikhaze AK, Polevaya TY, Kukharchuk VV, Belenkov YN. Low Daily Dose of Antioxidant Probucol Decreases Incidence and Severity of Restenosis after Transluminal Coronary Balloon Angioplasty. Bull Exp Biol Med 2005; 139:183-5. [PMID: 16027801 DOI: 10.1007/s10517-005-0242-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Antioxidant probucol in both high (1000 mg) and low (250 mg) daily doses effectively reduced manifestations of oxidative stress in patients with atherosclerosis (assessed by in vivo accumulation of lipoperoxides in atherogenic LDL). When probucol was administered in a dose of 250 mg/day for 7-10 days before transluminal balloon coronary angioplasty and then for 6 months after surgery, the incidence of restenosis decreased to 25% compared to 45% in the control (without probucol therapy). In the group of operated patients receiving probucol (250 mg/day for 6 months) the minimal artery lumen was significantly higher, and the degree of artery occlusion significantly lower than in the control group not treated with probucol.
Collapse
Affiliation(s)
- A I Kaminnyi
- A. L. Myasnikov Institute of Cardiology, Russian Cardiology Research and Production Center, Russian Ministry of Health, Moscow.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Smooth muscle cell proliferation has previously been regarded as a central feature in vascular disease. The role of this process has recently been substantially re-evaluated, and we have reconsidered the functional importance of smooth muscle cell proliferation, the origin of proliferating smooth muscle cells in lesions, and the mechanisms whereby smooth muscle cell proliferation is controlled. In this review, we summarize recent progress in the understanding of smooth muscle cell proliferation, with a particular focus on how interactions between the extracellular matrix, smooth muscle cells, and mitogens control critical steps in this process. RECENT FINDINGS Irrespective of the origin of smooth muscle cells in vascular lesions, fundamental interactions between the extracellular matrix and cell surface integrins are necessary in order to initiate a proliferative response in a quiescent smooth muscle cell, in a similar manner to any non-malignant cell. These interactions trigger intracellular signaling and cell cycle entry, which facilitate cell cycle progression and proliferation by mitogens. In addition, extracellular matrix interactions may also control the availability and activity of growth factors such as heparin-binding mitogens, which can be sequestered by heparan sulfate containing extracellular matrix components and regulate smooth muscle cell proliferation. SUMMARY New insights into mechanisms whereby the extracellular matrix takes part in the control of smooth muscle cell proliferation suggest a number of putative targets for future therapies that can be applied to increase plaque stability, prevent the clinical consequences of atherosclerosis and improve outcomes after interventional procedures and organ transplantation.
Collapse
Affiliation(s)
- Ulf Hedin
- Department of Surgical Sciences, Karolinska Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|
36
|
Lai JCK, Tranfield EM, Walker DC, Dyck J, Kerjner A, Loo S, English D, Wong D, McDonald PC, Moghadasian MH, Wilson JE, McManus BM. Ultrastructural evidence of early endothelial damage in coronary arteries of rat cardiac allografts. J Heart Lung Transplant 2003; 22:993-1004. [PMID: 12957609 DOI: 10.1016/s1053-2498(02)01163-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Events that occur early after transplantation, particularly immune recognition of allo-endothelium, initiate transplant vascular disease (TVD). Previous work suggests an important compromise of endothelial integrity as the allo-immune milieu evolves, although mechanisms by which integrity is altered remain unclear. Increased vascular permeability caused by endothelial damage may allow inflammatory cells, lipoproteins, other proteins, and plasma fluid to enter the sub-endothelial space, thereby contributing to the initiation of atherosclerosis. In this study, we examined endothelial integrity in coronary arteries and the proximal aorta after cardiac transplantation in rats. METHODS We used Lewis-to-Lewis and Lewis-to-F344 rat heterotopic cardiac transplant models. We studied the effects of cyclosporine (5mg/kg/day) therapy compared with saline-treated controls. En face silver nitrate staining was performed to demonstrate endothelial cell borders and gaps. We used scanning electron microscopy to extend silver nitrate findings and to further define the presence and nature of endothelial disruptions. We used transmission electron microscopy to further characterize immune cell identity and interaction with endothelium. RESULTS Syngrafts and cyclosporine-treated allografts showed normal-looking endothelium similar to that observed in arteries from native hearts. However, saline-treated allografts displayed progressive endothelial destruction, including large intercellular gaps, missing cells, and areas of bare extracellular matrix. Exfoliated surfaces were covered by platelets at various stages of adhesion, activation, and spreading. Similarly, we observed numerous leukocytes as either adherent to the endothelial lining or transmigrating into the sub-endothelial space. Cessation of cyclosporine therapy was associated with the development of similar abnormalities. CONCLUSIONS Our findings indicate that, especially when immunosuppression is insufficient, early endothelial damage may promote vascular permeability and thereby initiate TVD.
Collapse
Affiliation(s)
- John C K Lai
- University of British Columbia McDonald Research Laboratories, iCAPTUR4E Centre, Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bizekis C, Pintucci G, Derivaux CC, Saponara F, Kim JH, Hyman KM, Sharony R, Grossi EA, Baumann FG, Mignatti P, Galloway AC. Activation of mitogen-activated protein kinases during preparation of vein grafts and modulation by a synthetic inhibitor. J Thorac Cardiovasc Surg 2003; 126:659-65. [PMID: 14502136 DOI: 10.1016/s0022-5223(03)00075-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Long-term durability of saphenous vein grafts used for coronary artery bypass grafting is limited by neointimal formation. Arterial vascular injury is known to activate intracellular mitogen-activated protein kinases, including extracellular signal-regulated kinases and c-jun N-terminal kinases, that affect cell differentiation, proliferation, migration, and apoptosis. This study tests the hypothesis that these mitogen-activated protein kinases are activated in saphenous veins during preparation for coronary artery bypass grafting. METHODS Saphenous veins were harvested from 10 patients undergoing coronary artery bypass grafting. A specimen from each vein was placed in ice-cold lysis buffer immediately after harvesting (t = 0). The remaining tissue was incubated at room temperature in normal saline, 0.1% dimethylsulfoxide (vehicle), or 50 mmol/L PD98059 (mitogen-activated protein kinase kinase-1/2 inhibitor) until the vein was grafted (mean 50 minutes). To study kinetics of intracellular signaling pathways, canine saphenous veins were harvested, and mitogen-activated protein kinases and PI-3 kinase pathways were studied after different incubation time intervals. Extracted proteins were analyzed by Western blotting or in vitro kinase assay. RESULTS The human saphenous veins showed elevated levels of active extracellular signal-regulated kinase after harvesting (t = 0) and prior to implant (t = 1). Incubation with PD98059 resulted in decreased activation of extracellular signal-regulated kinase. Kinetics of canine saphenous veins showed extracellular signal-regulated kinase and c-jun N-terminal kinase activation, in a time-dependent manner, along with activation of the growth factor-regulated PI3 kinase pathway. CONCLUSIONS This study characterizes activation of extracellular signal-regulated kinases and c-jun N-terminal kinases during vein graft preparation and demonstrates the ability to inhibit extracellular signal-regulated kinase activation by simple incubation with a specific inhibitor. Further studies are needed to evaluate the significance of these findings with respect to graft durability.
Collapse
Affiliation(s)
- Costas Bizekis
- Seymour Cohn Cardiovascular Research Laboratory, Division of Cardiovascular Surgery, Department of Surgery, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Inflammation plays a critical role in the vascular response to injury. In particular, mechanical injury using techniques such as balloon angioplasty and stenting results in complex inflammatory reactions which influence proliferation of vessel wall constituents such as endothelial cells, smooth muscle cells, and extracellular matrix proteins. Inflammatory cells are recruited to the injured vessel wall initially as a reparative mechanism; however, these same inflammatory processes are also pivotal in the development of restenotic lesions. Leukocytes serve as the primary inflammatory cells but we now know that platelets produce a number of important inflammatory mediators. This review describes the mechanisms that regulate endothelial cell migration, smooth muscle cell activation, and extracellular matrix protein production, all of which are key components in the inflammatory response to vascular injury.
Collapse
Affiliation(s)
- C Davis
- Department of Medicine, Cardiovascular Research Center, University of Virginia Health System, Charlottesville, VA 22908-0158, USA
| | | | | | | |
Collapse
|
39
|
Blindt R, Bosserhoff AK, vom Dahl J, Hanrath P, Schrör K, Hohlfeld T, Meyer-Kirchrath J. Activation of IP and EP(3) receptors alters cAMP-dependent cell migration. Eur J Pharmacol 2002; 444:31-7. [PMID: 12191579 DOI: 10.1016/s0014-2999(02)01607-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Migration of vascular smooth cells from the media to the intima essentially contributes to neointima formation after percutaneous transluminal angioplasty and stent implantation. The stable prostacyclin mimetic iloprost has been shown to inhibit neointima formation in experimental restenosis, but it is currently unknown whether this may be caused by an antimigratory effect. Hence, the present study analyses (i) the influence of G(s)-coupled prostacyclin (IP) receptors on cell migration and (ii) verifies whether EP(3) receptors with opposite (i.e., G(i)) coupling may conversely stimulate cell migration. In a modified Boyden chamber model, it was shown that iloprost dose-dependently inhibits the migration of primary human arterial smooth muscle cells, which constitutively express the IP receptor. On the other hand, human arterial smooth muscle cell migration was stimulated by the EP(3) receptor agonist M&B 28.767. To independently study the effects of these receptors, IP or EP(3) receptors were stably overexpressed in chinese hamster ovary cells (CHO-IP and CHO-EP(3)). Chemotaxis of CHO cells transfected with G(s)-coupled IP receptors was concentration-dependently inhibited by iloprost (2-100 nM), while there was no effect of iloprost on mock-transfected CHO. By contrast, CHO-cells that overexpressed EP(3) receptors showed a significant, concentration dependent (1-100 nM) increase of cell migration in presence of the selective EP(3) agonist M&B 28.767. It is concluded that the prostacyclin mimetic iloprost inhibits vascular cell migration, which probably depends on a G(s)-mediated increase of intracellular cAMP. EP(3) receptors conversely stimulate CHO migration.
Collapse
Affiliation(s)
- Rüdiger Blindt
- Medical Clinic I, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Cao Z, Li Y. Chemical induction of cellular antioxidants affords marked protection against oxidative injury in vascular smooth muscle cells. Biochem Biophys Res Commun 2002; 292:50-7. [PMID: 11890670 DOI: 10.1006/bbrc.2002.6614] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extensive evidence suggests that reactive oxygen species are critically involved in the pathogenesis of cardiovascular diseases, such as atherosclerosis and myocardial ischemia-reperfusion injury. Consistent with this concept, administration of exogenous antioxidants has been shown to be protective against oxidative cardiovascular injury. However, whether induction of endogenous antioxidants by chemical inducers in vasculature also affords protection against oxidative vascular cell injury has not been extensively investigated. In this study, using rat aortic smooth muscle A10 cells as an in vitro system, we have studied the induction of cellular antioxidants by the unique chemoprotector, 3H-1,2-dithiole-3-thione [corrected] (D3T) and the protective effects of the D3T-induced cellular antioxidants against oxidative cell injury. Incubation of A10 cells with micromolar concentrations of D3T for 24 h resulted in a significant induction of a battery of cellular antioxidants in a concentration-dependent manner. These included reduced glutathione (GSH), GSH peroxidase, GSSG reductase, GSH S-transferase, superoxide dismutase, and catalase. To further examine the protective effects of the induced endogenous antioxidants against oxidative cell injury, A10 cells were pretreated with D3T and then exposed to either xanthine oxidase (XO)/xanthine, 4-hydroxynonenal, or cadmium. We observed that D3T pretreatment of A10 cells led to significant protection against the cytotoxicity induced by XO/xanthine, 4-hydroxynonenal or cadmium, as determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium reduction assay. Taken together, this study demonstrates for the first time that a number of endogenous antioxidants in vascular smooth muscle cells can be induced by exposure to D3T, and that this chemical induction of cellular antioxidants is accompanied by markedly increased resistance to oxidative vascular cell injury.
Collapse
Affiliation(s)
- Zhuoxiao Cao
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Allied Health Professions, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | | |
Collapse
|
41
|
Abstract
Normal embryonic development, tissue differentiation and repair in the eukaryote requires a tightly regulated apoptosis, or programmed cell death. Apoptosis also plays an essential role in different pathological processes including atherosclerosis, in which it affects all cell types in the atherosclerotic lesion, including endothelial cells, vascular smooth muscle cells, and macrophages. During atherosclerosis progression, pro- and anti-apoptotic signals abound in the evolving lesion. Apoptosis limits the number of a particular cell type that accumulates in the lesion and slows down the overall progression of the lesion. On the other hand, it contributes to the production of unstable plaques. Many pharmacological agents used to treat cardiovascular and lipid disorders have pro- or/and anti-apoptotic effects. Pharmaceuticals that modulate apoptosis in specific types of cell can potentially serve as anti-atherogenic agents. However, to develop agents for clinical use requires a thorough knowledge of the pathophysiology of apoptosis in atheromatous lesions, a highly cell-specific process. Here we review our current understanding of the process to provide a background for future pharmacological research in the area.
Collapse
Affiliation(s)
- N V Guevara
- Department of Physical Science, University of Texas at Brownsville, Brownsville, TX 78520, USA
| | | | | |
Collapse
|
42
|
Borén J, Gustafsson M, Skålén K, Flood C, Innerarity TL. Role of extracellular retention of low density lipoproteins in atherosclerosis. Curr Opin Lipidol 2000; 11:451-6. [PMID: 11048887 DOI: 10.1097/00041433-200010000-00002] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pathogenesis for atherosclerosis is still unclear, and several hypotheses have been articulated to explain the initiating events in atherogenesis. Although these hypotheses are by no means mutually exclusive, there is a growing body of recent evidence that has led to the concept that subendothelial retention of apolipoprotein B100-containing lipoproteins is the initiating event in atherogenesis. Subsequently, a series of biological responses to this retained material leads to specific molecular and cellular processes that promote lesion formation. The present review assesses some of the studies that support this concept.
Collapse
Affiliation(s)
- J Borén
- Walenberg Laboratory, Göteborg Unversity, Sweden.
| | | | | | | | | |
Collapse
|