1
|
Hossen MS, Islam MSU, Yasin M, Ibrahim M, Das A. A Review on the Role of Human Solute Carriers Transporters in Cancer. Health Sci Rep 2025; 8:e70343. [PMID: 39807482 PMCID: PMC11725534 DOI: 10.1002/hsr2.70343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Background and Aim The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer. Methods We retrieved data from Google Scholar, Web of Science, PubMed, Cochrane Library, and EMBASE regarding the influence of human SLCs on the development of cancer. Articles published in English before August 2024 were included in the study. Results The overexpression of SLCs is strongly related to tumor cell proliferation and angiogenesis in a number of cancer types including thyroid, pancreatic, lung, hepatocellular, and colon cancers. They are crucial for the stimulation of several biological signaling pathways, particularly mTOR kinase activity, which starts a signaling cascade, protein synthesis, cell growth, and proliferation, and inhibits apoptosis of cancerous cells. Furthermore, they contribute to the activation of PI3K/AKT signaling, which has an impact on the growth, invasion, and death of cancer cells. Thus, SLC transporters become a potential therapeutic target that plays a crucial role in drug resistance, tumor microenvironment regulation, and modulation of immune response. Conclusion The review recognized the crucial role of SLC transporters in different types of cancer progression. Therefore, to confirm our findings, a case-control study is required to investigate the role of amino acid transporters in cancer development.
Collapse
Affiliation(s)
- Md. Shafiul Hossen
- Department of PharmacyState University of BangladeshDhakaBangladesh
- Department of PharmacyNoakhali Science and Technology UniversitySonapurBangladesh
| | | | - Mohammad Yasin
- Department of PharmacySouthern University BangladeshChittagongBangladesh
| | - Mohammed Ibrahim
- Department of PharmacyState University of BangladeshDhakaBangladesh
| | - Abhijit Das
- Department of PharmacyNoakhali Science and Technology UniversitySonapurBangladesh
| |
Collapse
|
2
|
Ichikawa Y, Sato B, Hirano SI, Takefuji Y, Satoh F. Realizing brain therapy with "smart medicine": mechanism and case report of molecular hydrogen inhalation for Parkinson's disease. Med Gas Res 2024; 14:89-95. [PMID: 39073335 PMCID: PMC466992 DOI: 10.4103/2045-9912.385949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/11/2022] [Accepted: 03/23/2023] [Indexed: 07/30/2024] Open
Abstract
The Michael J. Fox Foundation has been funding research on Parkinson's disease for 35 years, but has yet to find a cure. This is due to a problem with the philosophy behind the development of modern medical treatments. In this paper, we will introduce "smart medicine" with a substance that can solve all the problems of central nervous system drugs. The substance is the smallest diatomic molecule, the hydrogen molecule. Due to their size, hydrogen molecules can easily penetrate the cell membrane and enter the brain. In the midbrain of Parkinson's disease patients, hydroxyl radicals generated by the Fenton reaction cause a chain reaction of oxidation of dopamine, but hydrogen entering the midbrain can convert the hydroxyl radicals into water molecules and inhibit the oxidation of dopamine. In this paper, we focus on the etiology of neurological diseases, especially Parkinson's disease, and present a case in which hydrogen inhalation improves the symptoms of Parkinson's disease, such as body bending and hand tremor. And we confidently state that if Michael J. Fox encountered "smart medicine" that could be realized with molecular hydrogen, he would not be a "lucky man" but a "super-lucky man."
Collapse
Affiliation(s)
- Yusuke Ichikawa
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| | - Bunpei Sato
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| | - Shin-ichi Hirano
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
| | - Yoshiyasu Takefuji
- Faculty of Data Science, Musashino University, Tokyo, Japan
- Keio University, Tokyo, Japan
| | - Fumitake Satoh
- Research and Development Department, MiZ Company Limited, Kanagawa, Japan
- MiZ Inc., Newark, CA, USA
| |
Collapse
|
3
|
Siswina T, Rustama MM, Sumiarsa D, Apriyanti E, Dohi H, Kurnia D. Antifungal Constituents of Piper crocatum and Their Activities as Ergosterol Biosynthesis Inhibitors Discovered via In Silico Study Using ADMET and Drug-Likeness Analysis. Molecules 2023; 28:7705. [PMID: 38067436 PMCID: PMC10708292 DOI: 10.3390/molecules28237705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Along with the increasing resistance of Candida spp. to some antibiotics, it is necessary to find new antifungal drugs, one of which is from the medicinal plant Red Betel (Piper crocatum). The purpose of this research is to isolate antifungal constituents from P. crocatum and evaluate their activities as ergosterol biosynthesis inhibitors via an in silico study of ADMET and drug-likeness analysis. Two new active compounds 1 and 2 and a known compound 3 were isolated, and their structures were determined using spectroscopic methods, while their bioactivities were evaluated via in vitro and in silico studies, respectively. Antifungal compound 3 was the most active compared to 1 and 2 with zone inhibition values of 14.5, 11.9, and 13.0 mm, respectively, at a concentration of 10% w/v, together with MIC/MFC at 0.31/1.2% w/v. Further in silico study demonstrated that compound 3 had a stronger ΔG than the positive control and compounds 1 and 2 with -11.14, -12.78, -12.00, and -6.89 Kcal/mol against ERG1, ERG2, ERG11, and ERG24, respectively, and also that 3 had the best Ki with 6.8 × 10-3, 4 × 10-4, 1.6 × 10-3, and 8.88 μM. On the other hand, an ADMET analysis of 1-3 met five parameters, while 1 had one violation of Ro5. Based on the research data, the promising antifungal constituents of P. crocatum allow P. crocatum to be proposed as a new antifungal candidate to treat and cure infections due to C. albicans.
Collapse
Affiliation(s)
- Tessa Siswina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
- Department of Midwifery, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Mia Miranti Rustama
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| | - Eti Apriyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| | - Hirofumi Dohi
- Graduate School of Horticulture, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan;
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| |
Collapse
|
4
|
Cutruzzolà F, Bouzidi A, Liberati FR, Spizzichino S, Boumis G, Macone A, Rinaldo S, Giardina G, Paone A. The Emerging Role of Amino Acids of the Brain Microenvironment in the Process of Metastasis Formation. Cancers (Basel) 2021; 13:2891. [PMID: 34207731 PMCID: PMC8227515 DOI: 10.3390/cancers13122891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Brain metastases are the most severe clinical manifestation of aggressive tumors. Melanoma, breast, and lung cancers are the types that prefer the brain as a site of metastasis formation, even if the reasons for this phenomenon still remain to be clarified. One of the main characteristics that makes a cancer cell able to form metastases in the brain is the ability to interact with the endothelial cells of the microvasculature, cross the blood-brain barrier, and metabolically adapt to the nutrients available in the new microenvironment. In this review, we analyzed what makes the brain a suitable site for the development of metastases and how this microenvironment, through the continuous release of neurotransmitters and amino acids in the extracellular milieu, is able to support the metabolic needs of metastasizing cells. We also suggested a possible role for amino acids released by the brain through the endothelial cells of the blood-brain barrier into the bloodstream in triggering the process of extravasation/invasion of the brain parenchyma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alessio Paone
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (A.B.); (F.R.L.); (S.S.); (G.B.); (A.M.); (S.R.); (G.G.)
| |
Collapse
|
5
|
Peng Y, Chu S, Yang Y, Zhang Z, Pang Z, Chen N. Neuroinflammatory In Vitro Cell Culture Models and the Potential Applications for Neurological Disorders. Front Pharmacol 2021; 12:671734. [PMID: 33967814 PMCID: PMC8103160 DOI: 10.3389/fphar.2021.671734] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Cell cultures are used in pharmaceutical, medical and biological sciences. Due to the ethical and cost limitations of in vivo models, the replaceable cell model that is more closely related to the characteristics of organisms, which has broad prospects and can be used for high-throughput drug screening is urgent. Neuronal and glial cell models have been widely used in the researches of neurological disorders. And the current researches on neuroinflammation contributes to blood-brain barrier (BBB) damage. In this review, we describe the features of healthy and inflamed BBB and summarize the main immortalized cell lines of the central nervous system (PC12, SH-SY5Y, BV2, HA, and HBMEC et al.) and their use in the anti-inflammatory potential of neurological disorders. Especially, different co-culture models of neuroinflammatory, in association with immune cells in both 2D and 3D models are discussed in this review. In summary, 2D co-culture is easily practicable and economical but cannot fully reproduce the microenvironment in vivo. While 3D models called organs-on-chips or biochips are the most recent and very promising approach, which made possible by bioengineering and biotechnological improvements and more accurately mimic the BBB microenvironment.
Collapse
Affiliation(s)
- Ye Peng
- School of Pharmacy, Minzu University of China, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yantao Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Naihong Chen
- School of Pharmacy, Minzu University of China, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Abstract
Abstract
Dietary di/tripeptides elicit preventive effects against lifestyle-related diseases such as hypertension, and hypercholesterolemia, etc. Although there have been evidential reports that the intake of protein hydrolysate improved impaired memory in human, limited studies on bioavailability, in particular, beyond the blood-brain barrier (BBB) of candidates in hydrolysate may prevent their extensive physiological studies. Thus, this review discusses the updated studies on BBB transport of peptides showing improved cognitive decline. Furthermore, their accumulation in the brain cerebral parenchyma is also introduced.
Graphical abstract
Collapse
|
8
|
Barnabas W. Drug targeting strategies into the brain for treating neurological diseases. J Neurosci Methods 2019; 311:133-146. [DOI: 10.1016/j.jneumeth.2018.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
|
9
|
Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D. Nanoscale drug delivery systems and the blood-brain barrier. Int J Nanomedicine 2014; 9:795-811. [PMID: 24550672 PMCID: PMC3926460 DOI: 10.2147/ijn.s52236] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The protective properties of the blood–brain barrier (BBB) are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs) in the brain’s vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS). As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual’s age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS.
Collapse
Affiliation(s)
- Renad Alyautdin
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh, Selangor, Malaysia
| | - Igor Khalin
- Faculty of Medicine and Defence Health, National Defence University of Malaysia (NDUM), Kuala Lumpur, Malaysia
| | - Mohd Ismail Nafeeza
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh, Selangor, Malaysia
| | | | - Dmitry Kuznetsov
- Department of Medicinal Nanobiotechnologies, N. I. Pirogoff Russian State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Ishikawa T, Miyagi M, Yamashita M, Kamoda H, Eguchi Y, Arai G, Suzuki M, Sakuma Y, Oikawa Y, Orita S, Inoue G, Ozawa T, Aoki Y, Toyone T, Takahashi K, Yamaguchi A, Ohtori S. In-vivo transfection of the proopiomelanocortin gene, precursor of endogenous endorphin, by use of radial shock waves alleviates neuropathic pain. J Orthop Sci 2013; 18:636-45. [PMID: 23624847 DOI: 10.1007/s00776-013-0397-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/02/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuropathic pain is difficult to control and patient response to current treatment is often inadequate. Opioids have been widely used to treat a variety of pain states, but have several side effects. Endogenous opioids are clinically safe, but are not used for treatment because of rapid metabolism. However, in-vivo transfection of endogenous opioid genes could have a powerful and safe analgesic effect. The purpose of this study was to investigate the efficacy of proopiomelanocortin (POMC, a precursor of the endogenous opioid peptide β-endorphin) gene transfer by use of radial shock waves (RSWs) in a rat neuropathic pain model. METHODS As a neuropathic pain model, we used the Bennett chronic constriction injury (CCI) method. Immediately after CCI induction, POMC plasmid was injected into the rats' gastrocnemius muscle followed by exposure to RSW. Mechanical allodynia was measured for 4 weeks and dorsal root ganglion (DRG) neurons were sectioned and immunostained. RESULTS β-Endorphin blood levels and the number of β-endorphin-immunoreactive (IR) muscle fibers increased over 28 days. β-Endorphin overexpression caused a decrease in the number of calcitonin gene-related peptide (CGRP)-IR DRG neurons and suppressed neuropathic pain induced by CCI without causing adverse side effects. The size-distribution pattern of CGRP-IR DRG neurons shifted from small to large cells in the CCI group; however, the number of both small and large CGRP-IR cells decreased in the POMC group. CONCLUSION POMC gene transfection alleviated allodynia and reduced CGRP expression in DRG neurons without adverse effects. CGRP is not produced in large neurons under physiologic conditions; however, in this study CGRP expression was shifted to large neurons after nerve injury. This change in cell-size distribution suggests that CGRP expression in large neurons is related to neuropathic pain. These findings suggest that POMC gene transfection using RSWs is a safe and effective treatment for neuropathic pain.
Collapse
Affiliation(s)
- Tetsuhiro Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hammarlund-Udenaes M. In Vivo Approaches to Assessing the Blood–Brain Barrier. TOPICS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1007/7355_2013_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Brainpeps: the blood-brain barrier peptide database. Brain Struct Funct 2011; 217:687-718. [PMID: 22205159 DOI: 10.1007/s00429-011-0375-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/12/2011] [Indexed: 01/13/2023]
Abstract
Peptides are able to cross the blood-brain barrier (BBB) through various mechanisms, opening new diagnostic and therapeutic avenues. However, their BBB transport data are scattered in the literature over different disciplines, using different methodologies reporting different influx or efflux aspects. Therefore, a comprehensive BBB peptide database (Brainpeps) was constructed to collect the BBB data available in the literature. Brainpeps currently contains BBB transport information with positive as well as negative results. The database is a useful tool to prioritize peptide choices for evaluating different BBB responses or studying quantitative structure-property (BBB behaviour) relationships of peptides. Because a multitude of methods have been used to assess the BBB behaviour of compounds, we classified these methods and their responses. Moreover, the relationships between the different BBB transport methods have been clarified and visualized.
Collapse
|
13
|
Fenyvesi F, Kiss T, Fenyvesi É, Szente L, Veszelka S, Deli MA, Váradi J, Fehér P, Ujhelyi Z, Tósaki Á, Vecsernyés M, Bácskay I. Randomly methylated β‐cyclodextrin derivatives enhance taxol permeability through human intestinal epithelial Caco‐2 cell monolayer. J Pharm Sci 2011; 100:4734-44. [DOI: 10.1002/jps.22666] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/23/2011] [Accepted: 05/25/2011] [Indexed: 11/10/2022]
|
14
|
Roles of organic anion/cation transporters at the blood–brain and blood–cerebrospinal fluid barriers involving uremic toxins. Clin Exp Nephrol 2011; 15:478-85. [DOI: 10.1007/s10157-011-0460-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/11/2011] [Indexed: 12/31/2022]
|
15
|
Abstract
The blood-brain barrier (BBB) is a dynamic physical and biological barrier between blood circulation and the central nervous system (CNS). This unique feature of the BBB lies in the structure of the neurovascular unit and its cerebral micro-vascular endothelial cells. The BBB restricts the passage of blood-borne drugs, neurotoxic substances and peripheral immune cells from entering the brain, while selectively facilitating the transport of nutrients across the BBB into the brain. Thus, the integrity and proper function of the BBB is crucial to homeostasis and physiological function of the CNS. A number of transport and carrier systems are expressed and polarized on the luminal or abluminal surface of the BBB to realize these discrete functions. Among these systems, ABC transporters play a critical role in keeping drugs and neurotoxic substances from entering the brain and in transporting toxic metabolites out of the brain. A number of studies have demonstrated that ABCB1 and ABCG2 are critical to drug efflux at the BBB and that ABCC1 is essential for the blood-cerebral spinal fluid (CSF) barrier. The presence of these efflux ABC transporters also creates a major obstacle for drug delivery into the brain. We have comprehensively reviewed the literature on ABC transporters and drug efflux at the BBB. Understanding the molecular mechanisms of these transporters is important in the development of new drugs and new strategies for drug delivery into the brain.
Collapse
Affiliation(s)
- Shanshan Shen
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6
| | | |
Collapse
|
16
|
Lee NY, Kang YS. The Inhibitory Effect of Rivastigmine and Galantamine on Choline Transport in Brain Capillary Endothelial Cells. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.1.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
17
|
Ohtsuki S, Yamaguchi H, Asashima T, Terasaki T. Establishing a Method to Isolate Rat Brain Capillary Endothelial Cells by Magnetic Cell Sorting and Dominant mRNA Expression of Multidrug Resistance-associated Protein 1 and 4 in Highly Purified Rat Brain Capillary Endothelial Cells. Pharm Res 2007; 24:688-94. [PMID: 17318419 DOI: 10.1007/s11095-006-9188-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE To establish a method for isolating highly purified brain capillary endothelial cells (BCECs) from rat brain by using magnetic cell sorting, and clarify the expression levels of multidrug resistance-associated protein (Mrp) subtypes in these highly purified BCECs. METHODS The cells were prepared from the capillary enriched-fraction by enzyme digestion, and reacted with anti-PECAM-1 antibody. The cell sorting was performed by autoMACS. The mRNA levels were measured by quantitative real-time PCR analysis. RESULTS From five rats, 2.3 x 10(6) cells were isolated in the PECAM-1(+) fraction and the percentage of labeled cells in this was 85.9%. PECAM-1, claudin-5 and Tie-2 mRNA were concentrated in the PECAM-1(+) fraction compared with rat brain. The contamination by neurons and astrocytes was markedly less than in the brain capillary fraction prepared by the glass bead column method. Mrp1 and 4 were predominantly expressed in the PECAM-1(+) fraction at similar levels to Mdr1a. The mRNA levels of Mrp5 and 3 were 10.6 and 7.60% of that of Mrp1, respectively. CONCLUSIONS This new purification method provides BCECs with less contamination by neural cells. In the isolated BCECs, Mrp1 and 4 are predominantly expressed, suggesting that they play an important role at the rat blood-brain barrier.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Sendai, Japan
| | | | | | | |
Collapse
|
18
|
Yamazaki D, Aoyama M, Ohya S, Muraki K, Asai K, Imaizumi Y. Novel functions of small conductance Ca2+-activated K+ channel in enhanced cell proliferation by ATP in brain endothelial cells. J Biol Chem 2006; 281:38430-9. [PMID: 17062575 DOI: 10.1074/jbc.m603917200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain capillary endothelial cells (BCECs) form the blood-brain barrier (BBB), which is essential for maintaining homeostasis of the brain. Net cellular turnover, which results from the balance between cell death and proliferation, is important in maintaining BBB homeostasis. Here we report a novel mechanism that underlies ATP-induced cell proliferation in t-BBEC 117, a cell line derived from bovine brain endothelial cells. Application of 0.1-30 mum ATP to t-BBEC 117 concentration-dependently increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in two phases: an initial transient phase and a later and smaller sustained one. These two phases of [Ca(2+)](i) rise were mainly due to Ca(2+) release and sustained Ca(2+) influx, respectively. The pretreatment with apamin, a selective blocker of small conductance Ca(2+)-activated K(+) channels (SK), significantly reduced both the [Ca(2+)](i) increase and K(+) current induced by ATP. Transcripts corresponding to P2Yx, SK2, and transient receptor potential channels were detected in t-BBEC 117. Knock down of SK2 protein, which was the predominant Ca(2+)-activated K(+) channel expressed in t-BBEC 117, by siRNA significantly reduced both the sustained phase of the [Ca(2+)](i) rise and the K(+) current induced by ATP. Cell proliferation was increased significantly by the presence of the stable ATP analogue ATPgammaS. This effect was blunted by UCL1684, a synthesized SK blocker. In conclusion, in brain endothelial cells ATP-induced [Ca(2+)](i) rise activates SK2 current, and the subsequent membrane hyperpolarization enhances Ca(2+) entry presumably through transient receptor potential channels. This positive feedback mechanism can account for the augmented cell proliferation by ATP.
Collapse
Affiliation(s)
- Daiju Yamazaki
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya 467-8603
| | | | | | | | | | | |
Collapse
|
19
|
Hino T, Yokota T, Ito S, Nishina K, Kang YS, Mori S, Hori S, Kanda T, Terasaki T, Mizusawa H. In vivo delivery of small interfering RNA targeting brain capillary endothelial cells. Biochem Biophys Res Commun 2006; 340:263-7. [PMID: 16364250 DOI: 10.1016/j.bbrc.2005.11.173] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 12/14/2022]
Abstract
Brain capillary endothelial cells (BCECs) play an important role in blood-brain barrier (BBB) functions and pathophysiologic mechanisms in brain ischemia and inflammation. We try to suppress gene expression in BCECs by intravenous application of small interfering RNA (siRNA). After injection of large dose siRNA with hydrodynamic technique to mouse, suppression of endogenous protein and the BBB function of BCECs was investigated. The brain-to-blood transport function of organic anion transporter 3 (OAT3) that expressed in BCECs was evaluated by Brain Efflux Index method in mouse. The siRNA could be delivered to BCECs and efficiently inhibited endogenously expressed protein of BCECs. The suppression effect of siRNA to OAT3 is enough to reduce the brain-to-blood transport of OAT3 substrate, benzylpenicillin at BBB. The in vivo siRNA-silencing method with hydrodynamic technique may be useful for the study of BBB function and gene therapy targeting BCECs.
Collapse
Affiliation(s)
- Taro Hino
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ohtsuki S, Kamiya N, Hori S, Terasaki T. Vascular endothelium-selective gene induction by Tie2 promoter/enhancer in the brain and retina of a transgenic rat. Pharm Res 2005; 22:852-7. [PMID: 15948028 DOI: 10.1007/s11095-005-4579-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 02/17/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE To produce a transgenic rat harboring the Tie2 promoter/enhancer linked green fluorescence protein (GFP) gene and investigate the blood-brain barrier (BBB)- and inner blood-retinal barrier (iBRB)-selective GFP expression in the brain and retina. METHODS Transgenic rats were produced by the microinjection of mouse Tie2/GFP gene into fertilized oocytes of Wistar rats. The expression of GFP was observed in tissue slices by confocal microscopy. RESULTS One of the obtained transgenic lines showed intense GFP expression in vascular endothelial cells throughout the brain. After double immunostaining with glucose transporter 1, the GFP was found to be localized in the cytoplasmic compartment of brain capillary endothelial cells. In contrast, no fluorescence was observed in neural cells. In the retina of transgenic rats, intense GFP expression was detected in retinal capillary endothelial cells. No fluorescence was detected in other cells. In kidney and liver, GFP expression was detected in vascular endothelial cells, whereas the expressed region was limited. CONCLUSIONS Mouse Tie2 promoter/enhancer has the ability to induce gene expression selectively in vascular endothelial cells in the brain and retina of transgenic rats.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
21
|
Griffin J, Fletcher N, Clemence R, Blanchflower S, Brayden DJ. Selamectin is a potent substrate and inhibitor of human and canine P-glycoprotein. J Vet Pharmacol Ther 2005; 28:257-65. [PMID: 15953199 DOI: 10.1111/j.1365-2885.2005.00655.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transport of the antiparasitic agents, ivermectin, selamectin and moxidectin was studied in human intestinal epithelial cell monolayers (Caco-2) and canine peripheral blood lymphocytes (PBL). Both models expressed the mdr1-coded 170 kDa ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp). Fluxes of the P-gp substrate rhodamine-123 (Rh-123) across Caco-2 monolayers showed that ivermectin and selamectin acted as potent P-gp inhibitors with IC50 values of 0.1 microm. In contrast, moxidectin was a weaker P-gp inhibitor with an IC50 of 10 microm. The transport of radiolabelled ivermectin, selamectin and moxidectin through Caco-2 monolayers showed that ivermectin, selamectin and moxidectin were P-gp substrates with secretory/absorptive ratios of 7.5, 4.7 and 2.6 respectively. Secretory transport of [3H]-ivermectin and [3H]-selamectin was blocked by the P-gp inhibitor, verapamil. Ivermectin and selamectin inhibited the efflux of Rh-123 from PBL and the concentration of inhibition was similar to that of verapamil. In contrast, moxidectin did not have a significant effect on Rh-123 efflux from PBL. The data suggest that ivermectin and selamectin are potent P-gp substrates, while moxidectin is a weak one.
Collapse
Affiliation(s)
- J Griffin
- Faculty of Veterinary Medicine and Conway Institute of Biomolecular and Biomedical Research, University College, Dublin, Ireland
| | | | | | | | | |
Collapse
|
22
|
Hosoya KI, Tomi M. Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol Pharm Bull 2005; 28:1-8. [PMID: 15635153 DOI: 10.1248/bpb.28.1] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The retinal capillary endothelial cells are connected to each other by tight junctions that play a key role in permeability as the inner blood-retinal barrier (inner BRB). Thus, understanding the inner BRB transport mechanism is an important step towards drug targeting of the retina. Nevertheless, inner BRB transport studies have been very limited in number since it is not easy to use the retinal capillaries, which are very small in size, for in vitro transport studies. Conditionally immortalized rat retinal capillary endothelial cells (TR-iBRB), pericytes (TR-rPCT) and Müller cell lines (TR-MUL) have been established from transgenic rats harboring the temperature-sensitive simian virus 40 large T-antigen gene. These cell lines possess respective cell type markers and maintain certain in vivo functions. Using a combination of newly developed cell lines and in vivo studies, we have elucidated the mechanism whereby vitamin C, L-cystine, and creatine are supplied to the retina. TR-iBRB cells are also able to identify transporters and apply to study regulation of transporters under pathophysiological conditions. Furthermore, these cell lines permit the investigation of cell-to-cell interactions and the expression of inner BRB-specific genes between TR-iBRB and other cell lines.
Collapse
Affiliation(s)
- Ken-ichi Hosoya
- Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Japan.
| | | |
Collapse
|
23
|
Shiiki T, Ohtsuki S, Kurihara A, Naganuma H, Nishimura K, Tachikawa M, Hosoya KI, Terasaki T. Brain insulin impairs amyloid-beta(1-40) clearance from the brain. J Neurosci 2005; 24:9632-7. [PMID: 15509750 PMCID: PMC6730166 DOI: 10.1523/jneurosci.2236-04.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cerebral amyloid-beta peptide (Abeta) clearance plays a key role in determining the brain level of Abeta; however, its mechanism remains unclear. In this study, we investigated cerebral Abeta clearance across the blood-brain barrier (BBB) by using the Brain Efflux Index method. [125I]Abeta(1-40) was eliminated from rat brain to circulating blood with a half-life of 48.8 min and a half-saturation concentration of 8.15 nm. The Abeta(1-40) elimination rate was reduced by 30.5% in 23-month-old rats compared with 7-week-old rats. The intact form of Abeta(1-40) was detected in plasma after intracerebral administration, indicating the occurrence of efflux transport of intact Abeta(1-40). The Abeta(1-40) elimination rate was significantly inhibited by coadministration of 100 microg/ml insulin and 1 mm thiorphan by 44.6 and 34.0%, respectively. The level of intact [125I]Abeta(1-40) in the brain was increased by coadministration of insulin. Among insulin-degrading enzyme inhibitors, bacitracin inhibited the elimination rate, whereas N-ethylmaleimide and metal chelators had no effect. Receptor-associated protein, fucoidan, 3-bromo-5-t-butyl-4-hydroxy-benzylidenemalonitrile, anti-IGF-I receptor antibody, and l-tyrosine did not affect the Abeta(1-40) elimination rate, suggesting that the relevant receptors or transporters are not likely to be involved in the clearance. In conclusion, the present study has demonstrated the involvement of a proteolytic degradation process and an insulin-sensitive process in cerebral Abeta(1-40) clearance in the rat.
Collapse
Affiliation(s)
- Takeshi Shiiki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Sankyo Company, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
AIM To build up a theoretical model of organic compounds for the prediction of the activity of small molecules through the blood-brain barrier (BBB) in drug design. METHODS A training set of 37 structurally diverse compounds was used to construct quantitative structure-activity relationship (QSAR) models. Intermolecular and intramolecular solute descriptors were calculated using molecular mechanics, molecular dynamics simulations, quantum chemistry and so on. The QSAR models were optimized using multidimensional linear regression fitting and stepwise method. A test set of 8 compounds was evaluated using the models as part of a validation process. RESULTS Significant QSAR models (R=0.955, s=0.232) of the BBB penetration of organic compounds were constructed. BBB penetration was found to depend upon the polar surface area, the octanol/water partition coefficient, Balaban Index, the strength of a small molecule to combine with the membrane-water complex, and the changeability of the structure of a solute-membrane-water complex. CONCLUSION The QSAR models indicate that the distribution of organic molecules through BBB is not only influenced by organic solutes themselves, but also relates to the properties of the solute-membrane-water complex, that is, interactions of the molecule with the phospholipid-rich regions of cellular membranes.
Collapse
Affiliation(s)
- Xiao-lei Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
25
|
Hori S, Ohtsuki S, Ichinowatari M, Yokota T, Kanda T, Terasaki T. Selective gene silencing of rat ATP-binding cassette G2 transporter in an in vitro blood-brain barrier model by short interfering RNA. J Neurochem 2005; 93:63-71. [PMID: 15773906 DOI: 10.1111/j.1471-4159.2004.02994.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to specifically silence the rat ATP-binding cassette transporter G2 (rABCG2) gene in brain capillary endothelial cells by transfection of short interfering RNA (siRNA). Four different siRNAs designed to target rABCG2 were each transfected into HEK293 cells with myc-tagged rABCG2 cDNA. Quantitative real-time PCR and western blot analyses revealed that three of the siRNAs were able to reduce exogenous rABCG2 mRNA and protein levels in HEK293 cells. Moreover, rABCG2-mediated mitoxantrone efflux transport was suppressed by the introduction of these three siRNAs into HEK293 cells. In contrast, the other siRNA and non-specific control siRNA did not significantly affect the mRNA expression, the protein level or the transport activity. Endogenous rABCG2 mRNA and protein expression in a conditionally immortalized rat brain capillary endothelial cell line (TR-BBB13) was suppressed by the most potent siRNA among the four siRNAs tested. Furthermore, this siRNA did not affect the mRNA levels of other ABC transporters, such as ABCB1, ABCC1 and ABCG1, and the protein level of ABCB1 in TR-BBB13 cells, suggesting that it can selectively silence rABCG2 at the blood-brain barrier. This should be a useful and novel strategy for clarifying the contribution of rABCG2 to brain-to-blood transport of substrate drugs and endogenous compounds across the blood-brain barrier.
Collapse
Affiliation(s)
- Satoko Hori
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Ohtsuki S, Watanabe Y, Hori S, Suzuki H, Bhongsatiern J, Fujiyoshi M, Kamoi M, Kamiya N, Takanaga H, Terasaki T. mRNA expression of the ATP-binding cassette transporter subfamily A (ABCA) in rat and human brain capillary endothelial cells. Biol Pharm Bull 2005; 27:1437-40. [PMID: 15340233 DOI: 10.1248/bpb.27.1437] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ATP-binding cassette transporter subfamily A (ABCA) consists of the transporters mediating cholesterol release and regulated by cholesterol. As about 25% of total body cholesterol exists in the brain, sterol homeostasis is an important issue as far as central nervous system function is concerned. The purpose of this study was to clarify the mRNA expression of ABCA subtypes at the blood-brain barrier (BBB) using cultured rat and human brain capillary endothelial cells, TR-BBB and hBME cells, respectively. mRNA expression of ABCA1, 2, 3, 4, 5, 6, 7 and 8/9 was detected in TR-BBB cells. In the brain capillary-rich fraction, mRNA expression of ABCA1, 2, 3, 4, 5, 7 and 8/9 was detected. ABCA2 and 5 mRNA were also detected in hBME cells. These results demonstrate, for the first time, that ABCA subtypes are expressed at the rat and/or human BBB. The expression of ABCA subtypes at the BBB is likely to contribute to sterol homeostasis in the central nervous system.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Roux F, Couraud PO. Rat brain endothelial cell lines for the study of blood-brain barrier permeability and transport functions. Cell Mol Neurobiol 2005; 25:41-58. [PMID: 15962508 PMCID: PMC11529548 DOI: 10.1007/s10571-004-1376-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 08/02/2003] [Indexed: 10/25/2022]
Abstract
(1) In vitro models of the BBB have been developed from cocultures between bovine, porcine, rodent or human brain capillary endothelial cells with rodent or human astrocytes. Since most in vivo BBB studies have been performed with small laboratory animals, especially rats, it is important to establish a rat brain endothelial (RBE) cell culture system that will allow correlations between in vitro and in vivo results. The present review will constitute a brief description of the best characterized RBE cell lines (RBE4, GP8/3.9, GPNT, RBEC1, TR-BBBs and rBCEC4 cell lines) and will summarize their recent and important contribution to our current knowledge of the BBB transport functions and permeability to blood-borne solutes, drugs, and cells. (2) In most cases, primary cultures of RBE cells were transduced with an immortalizing gene (SV40 or polyoma virus large T-antigen or adenovirus E1A), either by transfection of plasmid DNA or by infection using retroviral vectors. In one case however, the conditionally immortalized TR-BBB cell line was derived from primary cultures of brain endothelial cells of SV40-T-expressing transgenic rats. (3) All cell lines appear to have an endothelial morphology. The absence of foci formation would mean that the cells are not transformed. The endothelial origin is shown by the expression of Factor VIII-related antigen. Immortalized RBE cells express all the enzymes and transporters that are considered as specific for the blood-brain barrier endothelium, with similar characteristics to those expected from in vivo analyses, but at a significantly lower level. Some RBE cell lines are responsive to astroglial factors, such as RBE4 cells, rBEC4, and TR-BBB cells. None of the immortalized RBE cell lines appear to generate the necessary restrictive paracellular barrier properties that would allow to use them in transendothelial permeability screening. (4) RBE cell lines have been used to demonstrate that transporters such as organic cation transporter/carnitine transporter, serotonin transporter, and the ATA2 system A isoform are expressed in rat brain endothelium. When the transporter is shown to be expressed with the same properties in the immortalized RBE cells as in vivo, regulation studies may be initiated even if the transporter is down-regulated. Pharmacological applications have been proposed with well-characterized transporters such as monocarboxylic acid transporter-1, large neutral amino acid tansporter-1, nucleoside carrier systems, and P-glycoprotein. RBE cell monolayers have also been used to investigate the mechanism of the transendothelial transport of large molecules, such as immunoliposomes or nanoparticles, potentially useful as drug delivery vectors to the brain. (5) RBE4 and GP8 cell lines have been extensively used to demonstrate that intercellular adhesion molecule-1 (ICAM-1) engagement in brain endothelial cells triggers multiple signal transduction pathways. Using functional assays, it was established that ICAM-1 signaling is intimately and actively involved in facilitating lymphocyte infiltration. (6) Several RBE cell lines have been described, which constitute tentative in vitro models of the rat BBB. The major limitation of these models generally appears to be due to their relatively high paracellular permeability to small molecules, thus limiting their use for permeability studies. The strategies developed for the production of these RBE cell lines will enable the characterization of still more efficient permeability models, as well as the immortalization of human brain endothelial cells.
Collapse
|
28
|
Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 2005; 25:5-23. [PMID: 15962506 PMCID: PMC11529509 DOI: 10.1007/s10571-004-1374-y] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 08/15/2003] [Indexed: 02/04/2023]
Abstract
(1) Three main barrier layers at the interface between blood and tissue protect the central nervous system (CNS): the endothelium of brain capillaries, and the epithelia of the choroid plexus (CP) and the arachnoid. The classical work on these barriers in situ until the 1970s laid the foundations for modern understanding. Techniques for brain endothelial cell isolation and culture pioneered by Ferenc Joó in the 1970s opened up new fields of examination, enabling study of mechanisms at the cellular and molecular level. (2) Astrocytic glial cells are closely associated with the brain endothelial barrier. During evolution the barrier appears to have shifted from the glial to the endothelial layer, in parallel with the increasing importance of the microvasculature and its regulation. Vestiges of the barrier potential of glia remain in the modern mammalian CNS. (3) Evolutionary evidence suggests that the advantage derived from ionic homeostasis around central synapses was the major selective pressure leading to refinement of CNS barrier systems. This is one element of the modern 'multitasking' barrier function. (4) While epithelia are constitutively able to form barriers at appropriate interfaces, the 'default' condition for endothelia is more leaky; inductive influences from associated cells especially astrocytes are important in generating the full blood-brain barrier (BBB) phenotype in brain capillaries. The underlying mechanisms are being elucidated at the molecular and genomics level. (5) The barrier layers of the nervous system can be modulated by a number of receptor-mediated processes, involving several signal transduction pathways, both calcium dependent and independent. Some agents acting as 'inducers' in the long term can act as 'modulators' in the short-term, with some overlap of signaling pathways. Modulating agents may be derived both from the blood and from cells associated with cerebral vessels. Less is known about the modulation of the CP. (6) The challenge for the next era of CNS barrier studies will be to apply new knowledge from proteomics and genomics to understanding the in vivo condition in physiology and pathology.
Collapse
Affiliation(s)
- N Joan Abbott
- Blood-Brain Barrier Group, Wolfson Centre for Age Related Diseases, King's College University of London, London, UK.
| |
Collapse
|
29
|
Du RH, Cibangu DC, Dai DZ, Lin S, Guan L. CPU-86017 improves the compromised blood-brain barrier permeability mediated by impaired endothelial no system and oxidative stress caused byL-thyroxine. Drug Dev Res 2005. [DOI: 10.1002/ddr.10410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Fukuda M, Kitaichi K, Abe F, Fujimoto Y, Takagi K, Takagi K, Morishima T, Hasegawa T. Altered Brain Penetration of Diclofenac and Mefenamic Acid, but Not Acetaminophen, in Shiga-Like Toxin II-Treated Mice. J Pharmacol Sci 2005; 97:525-32. [PMID: 15821337 DOI: 10.1254/jphs.fp0040752] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
It is well accepted that bacterial and virus infections elevate the levels of cytokines in serum and cerebrospinal fluids. Such high levels of cytokines might alter the integrity of the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCSFB), subsequently affecting brain penetration of drugs. However, few reports have addressed this issue. Thus, we investigated brain penetration of cyclooxygenase (COX) inhibitors, commonly used as antipyretics, in mice treated with Shiga-like toxin II (SLT-II) derived from E. coli O157:H7, which significantly elevates cytokine levels. As antipyretics, we used diclofenac, mefenamic acid, and acetaminophen. We found that SLT-II significantly increased the brain-to-plasma concentration ratio (Kp) of diclofenac and mefenamic acid, but not of acetaminophen. Moreover, the Kp of diclofenac and mefenamic acid was increased by probenecid, an anionic compound. These results suggest that efflux anion transporters might be involved in the transport of diclofenac and mefenamic acid. Western blot analysis revealed that SLT-II decreased the expression of organic anion transporter-3, an efflux transporter located on the BBB and/or BCSFB. Taken together, these results suggest that SLT-II and/or SLT-II-stimulated cytokines might change brain penetration of drugs and could possibly increase the risk of their side-effects by altering the expression of transporters.
Collapse
Affiliation(s)
- Masaya Fukuda
- Department of Medical Technology, Nagoya University School of Health Sciences, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ohtsuki S, Tomi M, Hata T, Nagai Y, Hori S, Mori S, Hosoya KI, Terasaki T. Dominant expression of androgen receptors and their functional regulation of organic anion transporter 3 in rat brain capillary endothelial cells; Comparison of gene expression between the blood-brain and -retinal barriers. J Cell Physiol 2005; 204:896-900. [PMID: 15795901 DOI: 10.1002/jcp.20352] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Brain and retinal capillary endothelial cells (BCECs and RCECs, respectively) exhibit a barrier structure and function. Comparison of gene expression in these cells could clarify the selective function of each barrier. The purpose of this study was to identify the genes selectively expressed at the blood-brain barrier (BBB) and to clarify the function of the selective gene, androgen receptor (AR). Gene expression was compared by a differential display using conditionally immortalized rat BCECs and RCECs (TR-BBB and TR-iBRB, respectively). A total of 12 gene fragments were identified as the selective genes dominantly expressed in TR-BBB cells. The most selective fragment in TR-BBB cells had the highest homology with the 3'-UTR of human and mouse AR. Rat AR mRNA was detected in TR-BBB cells and the brain capillary rich fraction, but not in TR-iBRB cells. Expression of organic anion transporter 3 (OAT3) mRNA in TR-BBB cells was induced by treatment with dihydrotestosterone (DHT), an AR ligand, and this induction was suppressed by flutamide. Moreover, uptake of benzylpenicillin by TR-BBB cells was also induced by DHT treatment. In contrast, OAT3 mRNA expression in TR-iBRB cells was not affected by DHT treatment. The brain-to-blood efflux rate of benzylpenicillin was not affected by gender. These results suggest that AR is involved in the functional regulation of OAT3 at the BBB, but not at the inner blood-retinal barrier (iBRB), and this regulation is not affected by gender. The BBB function will be affected by the androgen levels in the brain and/or plasma via AR.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, Hosoya KI. New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov Today 2004; 8:944-54. [PMID: 14554158 DOI: 10.1016/s1359-6446(03)02858-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pharmaceutical industry has been searching for an in vitro blood-brain barrier (BBB) model that preserves in vivo transporter functions in CNS drug discovery and development. The application of conditionally immortalized cell lines derived from transgenic animals harboring temperature-sensitive SV40 large T-antigen gene, is a rational and promising approach to such a workable in vitro BBB model. The established brain capillary endothelial cell lines retain the in vivo transport rate of several compounds and various forms of gene expression. Furthermore, this new approach has enabled the development of stable and reproducible co-culture models with a pericyte cell line and/or an astrocyte cell line.
Collapse
Affiliation(s)
- Tetsuya Terasaki
- Department of Molecular, Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences and New Industry Creation, Hatchery Center, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Ohtsuki S, Hori S, Terasaki T. [Molecular mechanisms of drug influx and efflux transport at the blood-brain barrier]. Nihon Yakurigaku Zasshi 2003; 122:55-64. [PMID: 12843573 DOI: 10.1254/fpj.122.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The blood-brain barrier (BBB) segregates the circulating blood from interstitial fluid in the brain and restricts drug permeability into the brain. Recent studies have revealed that the BBB exhibits not only blood-to-brain influx transport for the supply of nutrients, but also brain-to-blood efflux transport to excrete drugs and endogenous compounds. The influx transport system allows drugs to enter the brain. (L)-DOPA is transported into the brain by the large neutral amino acid transport system, system L. A cationic mu-opioid peptide analogue enters the brain by adsorptive-mediated endocytosis. In contrast, efflux transport limits the distribution of drugs in the brain. The ATP binding cassette transporter B1 (ABCB1) mediates the efflux transport of lipophilic drugs at the BBB by using ATP energy. Furthermore, organic anion transporter 3 (OAT3) is expressed at the BBB and mediates the efflux transport of homovanillic acid, a dopamine metabolite. This efflux transport is also likely to be involved in the transport of anionic drugs such as 6-mercaptopurine and acyclovir. Clarifying the BBB transport could give us important information allowing the development of better CNS drugs and improving our understanding of the relationship between CNS diseases and BBB functions.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
34
|
Deguchi Y. Application of In Vivo Brain Microdialysis to the Study of Blood-brain Barrier Transport of Drugs. Drug Metab Pharmacokinet 2002; 17:395-407. [PMID: 15618691 DOI: 10.2133/dmpk.17.395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in blood-brain barrier (BBB) research have led to a new understanding of drug transport processes at the BBB. The BBB acts as a dynamic regulatory interface at which nutrients necessary for neural activity are actively taken up into the brain from the blood circulation, and actively excludes metabolites that might interfere with the maintenance of brain homeostasis. Such influx and efflux transport functions at the BBB would also control the concentrations of various drugs in the brain interstitial fluid (ISF), which are an important determinant of the central nervous system (CNS) effects. Thus, direct measurement of the brain ISF concentration of drugs can provide significant information for clarifying the influx and efflux transport functions of drugs across the BBB. Although several experimental techniques have been developed to investigate transport functions across the BBB, in vivo brain microdialysis seems to be one of the most suitable techniques for characterizing the influx and efflux transport functions across the BBB under physiological and pathological conditions. This review covers studies during the past decade, in which the influx and efflux transport of drugs across the BBB was kinetically and mechanistically evaluated by means of the brain microdialysis technique. Some applications of brain microdialysis to studies on neuronal function and neurotherapeutics are also included.
Collapse
Affiliation(s)
- Yoshiharu Deguchi
- Department of Drug Disposition & Pharmacokinetics, School of Pharmaceutical Sciences, Teikyo University, Tsukui-gun, Kanagawa, Japan.
| |
Collapse
|